
Challenges in Automotive Software Engineering
Manfred Broy

Institut für Informatik
Technische Universität München

D-80290 München, Germany
broy@in.tum.de

ABSTRACT
The amount of software in cars grows exponentially. Driving
forces of this development are cheaper and more powerful
hardware and the demand for innovations by new functions. The
rapid increase of software and software based functionality brings
various challenges (see [21], [23], [25], [26]) for the automotive
industries, for their organization, key competencies, processes,
methods, tools, models, product structures, division of work,
logistics, maintenance, and long term strategies. From a software
engineering perspective, the automotive industry is an ideal and
fascinating application domain for advanced techniques. Although
the automotive industry may adopt general results and solutions
from the software engineering body of knowledge gained in other
domains, the specific constraints and domain specific
requirements in the automotive industry ask for individual
solutions and bring various challenges for automotive software
engineering. In cars we find literally all interesting problems and
challenging issues of software and systems engineering.

Categories and Subject Descriptors
D.2 [Software Engineering]: D.2.1 Requirements/Specifications
(D.3.1), D.2.2 Design Tools and Techniques, D.2.10 Design
(D.2.2), D.2.11 Software Architectures

General Terms
Design, Economics, Reliability, Experimentation, Human Factors,
Standardization

Keywords
Automotive Software Engineering, Model Driven Development,
Embedded Systems

1. INTRODUCTION
In many technical products, software plays a dominant role today.
In cars, this applies even to the extreme. Today software in cars is
a dominant factor for the car industry, bringing various problems
but being nevertheless decisive for competition.
One can easily see that the amount of software in cars has been
growing exponentially over the last 30 years, and one can expect
this trend to continue for another 20 years at least.

The first software found its way into cars only at a time about
thirty years ago – so software grew in only more or less four
generations of cars. From one generation to the next, the software
amount was growing by a factor of ten, or even more. Today we
find in premium cars more than ten million lines of code and we
expect to find in the next generation ten times more.
Many new innovative functions in cars are enabled and driven by
software. Recent issues are energy management and the current
step into hybrid solutions, which can only be realized in an
economic way by plenty of software. It is mainly the application
domain specific innovations with their stronger dependencies and
feature interactions that ask for cross application domain
organizations.
In the following, we shortly describe the history of software in
cars as far as it is relevant to understand the current challenges.
Then we sketch the state of practice with its problems, challenges,
and opportunities. Based on a short estimation of the future
development we describe our expectation how the field will
develop. Finally we describe current research in the domain of
automotive software engineering (see also [14]).

2. The History
Just 30 year ago, software was first deployed into cars to control
the engine and, in particular, the ignition.
The first software-based solutions were very local, isolated and
unrelated. The hardware/software systems were growing bottom
up. This determined the basic architecture in cars with their
dedicated controllers (Electronic Control Units or ECUs) for the
different tasks as well as dedicated sensors and actuators. Over the
time to optimize wiring, bus systems (see [29]) were deployed
into the cars by which the ECUs became connected with the
sensors, and actuators.
Given such an infrastructure, ECUs got connected, too, and could
exchange information. As a result the car industry started to
introduce functions that were realized distributed over several
ECUs connected by the bus systems. Such functions were built
bottom up. A systematic top down design was never used. If we
would not go in evolutionary steps but re-design the
hardware/software systems in cars from scratch today, we would
certainly come up with a quite different solution.

3. State of Practice
Today premium cars feature not less than 70 ECUs connected by
more than 5 different bus systems. Up to 40 % of the production
costs of a car are due to electronics and software.

3.1 The Role of Software in Cars
Within only 30 years the amount of software in cars went from 0
to more than 10.000.000 lines of code. More than 2000 individual
functions are realized or controlled by software in premium cars,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’06, May 20-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

33

today. 50–70% of the development costs of the software/hardware
systems are software costs. For a view on the network in a car see
Figure 1.
Software as well as hardware became enabling technologies in
cars. They enable new features and functionalities. Hardware is
becoming more and more a commodity – as seen by the price
decay for ECUs – while software determines the functionality and
therefore becomes the dominant factor.

3.2 Embedded Software as Innovation Driver
Software is today the most crucial innovation driver for technical
systems, in general. By software we realize innovative functions,
we find new ways of implementing known functions with reduced
costs, less weight or higher quality, we save energy and, what is,
in particular, important, we combine functions and correlate them
into multi-functional systems.

Figure 1. Onboard Network

This way software allows for completely new solutions of, in
principle, known tasks. What has been said here for embedded
systems, in general, applies to cars, in particular.

3.3 Deficits in Engineering Software in Cars
Today the engineering of software in cars is still in its infancy.
The quick increase of software and the traditional structures of the
car industry make it difficult for this old economy to adapt fast
enough to the quite different requirements of software-intensive
system, which cars become more and more.
Following its tradition to find its own proprietary solutions (see
[7]) the car industry developed to a large extent its own
approaches also in the software domain. It is amazing to see the
amount of proprietary technology in the software in cars. This
applies to operating system, communication protocols, tools,
architecture, in fact, basically to all aspects of software in cars. Of
course, automotive software engineering has its own domain
specific requirements (see below). Nevertheless the car industry
could have done much better by benefiting from existing
experiences and technology from other domains, in particular,
telecommunication and avionics.
Livecycle management of software in cars is in its early stage.
Many suppliers and even some OEMs are not even at CMM level
2. This is, in particular, a problem in a situation where the systems
are developed by distributed concurrent engineering and the

software is highly complex, multi-functional, distributed, real time
and safety critical.
Reuse of solutions (see [22]) from one car to the next is
insufficient and only done in a consequent way in some limited
areas. In many sub-domains the functionality from one car
generation to the next is only changed and enhanced by 10 %
while more than 90 % of the software is rewritten. The reason is a
low level, hardware specific implementation, which makes it
difficult to change, adopt, and port existing code.
Finally, the amount of automation in software production for
software in cars is quite low. Tools are only used in an isolated
manner. There is neither a properly defined design flow nor
seamless tool chains for distributed functions.

4. The Domain Profile
Traditionally the car industry is highly vertically organized. In
software engineering we would say it is modular. The mechanical
engineers worked hard for over 100 years to make the various
sub-systems in cars in their development and production quite
independent. This facilitates independent development and
production of the sub-parts and allows for an enormous division
of labor.
As a result, suppliers could take over a considerable part of the
engineering, the development, and also the production by a
consequent outsourcing. Ideally, the parts of cars are produced by
a chain of suppliers and more or less only assembled by the car
manufacturer (called OEM in the following). Thus, a large
amount of the engineering and production is outsourced and the
cost and risk distribution can be optimized. A car is (or better
was) considered as a kit of subparts that are assembled by the
OEM.
With software becoming a major force of innovation the situation
changed drastically:

• Traditionally quite unrelated and independent functions
(such as braking, steering, or controlling the engine) that
were freely controlled by the driver get related and start to
interact. The car turns from an assembled device into an
integrated system. Phenomena like unintentional feature
interaction become issues.

• Assembling sub-parts becomes system integration.

• The behavior of cars becomes much more programmable.
Certain properties, such as comfort or sportive handling are
no longer solely determined the mechanics but also by the
software.

• The costs of cars get more and more influenced by
development costs of software, for which the traditional cost
models dominated by the cost by part paradigm are no
longer fully valid.

Size and structure of the embedded software/hardware systems in
cars are enormous. The application software is built on top of real
time operating systems and bus drivers. Most of the software is
hard real time critical or at least soft real time critical.
The requirements for the software systems in cars are quite
specific:

• wide range of different users (drivers and passengers, but
also maintenance)

34

• specific maintenance situation

• safety critical functions

• specific context of operation of the systems

• heterogeneity of functions (from embedded real time control
to infotainment, from comfort functions like air condition to
driver assistance, from energy management to software
download (flash) functionality, from air bags to on board
diagnosis and error logging).

As a result the complexity and spectrum of requirements for on
board software is enormous.

5. THE FUTURE
The increase of software and functionality in cars is not close to
an end, in the contrary. We can expect a substantial growth in the
future. The future development is driven by the following trends:

• high demand of new innovative or improved functionality

• quickly changing platforms and system infrastructures

• rapid increase in development cost in spite of a heavy cost
pressure

• demand for higher quality and reliability

• shorter time-to-market

• increased individualization
As a result there is a high demand for dedicated research on
software and systems engineering.

5.1 Innovation in Functionality
Software will remain the innovation driver in cars for the next two
decades. We will see many new software-based functions in cars
in the future. Each new software based function that comes into
the cars enables several further features. This accelerates the
development.

5.1.1 Crash Prevention, Crash Safety
Already today the safety standards in cars are very high. The rates
of people seriously injured or killed in their cars in accidents are
decreasing in spite of increased traffic. Statistically, software in
cars helped impressively to prevent accidents and many severe
injuries in accidents. Nevertheless, the systems are far from being
perfect by now. New generations of crash prevention, pre-crash,
and crash mitigating functions are in preparation.

5.1.2 Advanced Energy Management
Hybrid cars are just at their beginning. In future cars we can
expect a technical infrastructure that takes care of many in-car
issues like energy consumption, car calibration, and management
of the electric energy available.

5.1.3 Advanced Driver Assistance
The complexity of the software systems in cars for their drivers,
passengers, but also for maintenance is too high. What can help is
various driver assistance functions at all levels, supporting
instantaneous driver reactions but also providing short term
driving assistance in, for instance, lane departure or tour planning.

5.1.4 Adaptable MMI
What seem less far in the future are integrated seamless adaptive
MMI (Man Machine Interface) systems in cars. Cars get more

complex also due to software – but they get safer due to that
software and they get more convenient. But to get an easy access
to this convenience we have to offer those functions to drivers and
passengers in a way where they do not have to operate all this
complexity explicitly. Adaptive context aware assistance systems
which grasp the situations and are able to react within a wide
range without too much explicit interaction by the driver or the
passengers can lead to a new quality of MMIs.

5.1.5 The Programmable Car
Equipped with various actuators and sensors, as premium cars are
today, we get already close to a point where we can purely by
programming, by introducing new software, create new functions
for cars. This comes close to the vision of the programmable car.

5.1.6 Personalization and Individualization
A promising issue is personalization and individualization of cars.
Drivers are quite different. When cars get more and more
complex, of course, it is crucial to adapt the ways cars have to be
operated to the individual demands and expectations of the users.

5.1.7 Interconnection Car Networking
Another notable line of innovation is the networking of on-board
and off-board systems. Using wireless connections, in particular
peer-to-peer solutions, we can connect cars, which gives many
possibilities to improve safety issues in the traffic or to find new
solutions in the coordination of traffic far beyond the classical
road signs of today. For instance, in the long-term future when we
can imagine that all road signs are complemented by digital
signals between the cars, we can have a completely different way
of coordinating traffic.

5.2 Cost Reduction
The software costs in car increase enormously. These are not only
pure development costs. Sometimes even more significant are
maintenance costs and especially warranty costs.

5.3 Innovative Architectures
The car of the future will certainly have much less ECUs in favor
of more centralized multi-functional multipurpose hardware, less
communication lines and less dedicated sensors and actuators.
Arriving today at more than 70 ECUs in a car, the further
development will rather go back to a small number of ECUs by
keeping only a few dedicated ECUs for highly critical functions
and combining other functions into a small number of ECUs,
which then would be rather not special purpose ECUs, but very
close to general-purpose processors. Such a radically changed
hardware would allow for quite different techniques and
methodologies in software engineering.

6. CHALLENGES
Software issues hit the car industry in a dramatic way. In a time of
only 30 years the amount of software related development
activities went from 0 to 30 or even 40 %. If we assume that an
engineer works about 35 to 40 years in industry, it is obvious that
the companies where not able to gather sufficient competencies
quickly enough. A second problem is that there are not enough
software engineers educated by the universities in the skills
needed in the embedded and especially the automotive domain.
The high intensity of software in cars puts the car industry under
stress and a high change pressure. The reasons are manifold. First

35

of all, an important issue is the dependencies between the
different functions in the car leading to all kinds of wanted or
unwanted feature interactions.
This is quite different from what the automotive industry was used
to before software came into the cars. Over a hundred years the
car industry managed to make their different functionality as
independent as possible such that cars could be developed and
produced in a highly modular way. With the coming up of
software-based functions in the cars these independence
disappeared. Today a car has to be understood much more as a
complex system where all the functions act together. So software
engineering in cars needs to take a very massive step into systems
engineering.

6.1 Competency and Improved Processes
The growth of software in cars means that the car industry needs
new competencies. It has to master the competency management
to build up software competencies as fast as needed.
On the other hand the car industry needs completely new
development processes. Processes that – in contrast to those used
today – are much more influenced by software issues. It is
fascinating to see how the processes and models of software
engineering influence more and more what is going on in
mechanical engineering in the automotive domain.

6.1.1 From Software to Systems Engineering
In the end the whole structure and organization of the automotive
industry starts to change. One issue is the amount of development
done by the OEM. The general tendency is that basically all
implementation is done via outsourcing. However, as long as the
OEMs are interested to do the integration work themselves it is
obvious that the OEM has to gain a deep understanding of the
software intensive systems.

6.1.2 The Role of Control Theory
Traditionally control theory plays a prominent role in the car
development. However, today a lot of the software in cars is not
actually control theoretic but event based. The challenge here is to
find the right theory and methodology to combine control theory
and the engineering of discrete event systems.

6.1.3 Chances and Risks
The speed of the development, the complex requirements, the cost
pressure and the insufficient competency in the field bring
enormous challenges and risks but also high potentials and
opportunities for improvements.

6.2 Innovation in Architecture
The enormous complexity of software in cars asks for an
appropriate structuring by architectures in layers and levels of
abstraction.

6.2.1 Functionality
One of the most interesting observations is the rich multi-
functionality that we observe in a car today. In premium cars we
find up to 2000 and more software based functions. Those
functions address many different issues including classical driving
questions but also other features in comfort and infotainment and
many more. Most remarkably, these functions do not stand alone,
but show a high dependency between each other. In fact, many

functions are very sensitive with respect to other functions
operated at the same time.
So far, the understanding of these feature interactions between the
different functions in the car is insufficient. We hope to develop
much better models to understand how to describe a structured
view on multi-functional systems like those found in cars.

6.2.2 MMI
What is obvious today and what is well understood by now is that
the man machine interfaces (MMI) in cars have to be done in a
radically different way. It was BMW that was brave enough to do
a first step in the right direction. Their iDrive concept is very
much influenced by the interaction devices of computer systems
like mice or a touch pads we are used to by our computers, today.
BMW got a lot of criticism for that step. In the meanwhile all its
competitors have followed the same road.
But quite obviously, these are merely first steps. Multi-
functionality of cars needs flexible ways of addressing and
operating and interacting with all those functions.
What makes the situation more difficult than in classical
computers is, of course, that car drivers cannot pay as much
attention as computer users would but rather must concentrate on
the traffic and driving; thus drivers should get an user interface
which allows them to deal with the many functions in a car in a
way that takes not too much of their attention compared to
attention given to the traffic.

6.2.3 Complex Comprehensive Data Models
Currently in cars there is a very distributed uncoordinated data
management. Each of the ECUs contains and manages its own
data. But we should not think about this data as a distributed
database that is well organized with some kind of data integrity.
Instead, all the different ECUs and functions keep a large portion
of their data separately. This can lead to a kind of schizophrenic
situation in cars where some ECUs think, according to their local
data, that the car is moving, while others believe that the car has
stopped.
It would be an interesting exercise to design the architecture of a
car in a way that there is an integrated inter-function data model
that includes sensor fusion and overall car data management.

6.3 Development and Maintenance Processes
Certainly the development process that is needed for the
development of software systems gets more and more complex.
What we need is a suitable process that reduces complexity,
enables innovation, saves costs, is transparent and addresses
outsourcing.

6.3.1 Requirements Engineering
One of the biggest problems in automotive software engineering is
a fitting requirements engineering. That this is essential is quite
obvious because a lot of the functions in cars are innovative and
completely new. When introducing new functions, of course, we
have no experience with them. What is the best way to work out
the detailed functionality, what are the best dialogs to access the
functions, what are the best reactions of the systems? By software
we get a much larger design space for solutions than in cars
before. Therefore requirements engineering is one of the crucial
issues (see [19], [20]).

36

In addition, some of the requirements engineering has to be done
inside the OEMs and the supplementary requirements engineering
has to be added by the suppliers, which usually carry out the
implementation of the functions. Therefore the communication
between OEMs and suppliers has to be organized via the
requirements documents, which nowadays are often not precise
and not complete enough.

This brings us to the issue of distributed concurrent engineering.
Typically in the automotive industries we have a change. The
more complex systems become, the more important it is to use
good product models to support the integrity of the information
exchange between the supplier chains.

6.3.2 Design
Designing the architecture in an IT system in a car means to
determine the hardware architecture consisting of ECUs, bus
systems and communication devices, sensors, actuators and the
MMI. On this hardware structure the software infrastructure is
based including the operating system, the bus drivers, and
additional services. This system software forms, together with the
hardware, the implementation platform.
The application software is based on the platform and consists of
the application code. This shows the significance of the platform
for many typical software engineering goals such as suitable
architecture, separation of concerns, portability, reusability etc.

6.3.3 Coding
Suppliers carry out most of the coding, today. Only in
extraordinary cases the OEM, for instance, produces code for
some of the infrastructure (such as bus gateways).
A lot of the code is still written by hand, although some tools
generate good quality code. Code generation, however, is often
considered not efficient enough to exploit the ECUs in the
optimal way. Highly optimized code, however, makes reuse and
maintenance quite hard.

6.3.4 Software and Systems Integration
Since today, by their design, architecture and the interaction
between the sub-systems are not precisely specified, and since the
suppliers realize the sub-systems in a distributed process, it is not
surprising that integration is a major challenge.

First of all a virtual integration and architecture verification is not
possible, today, due to the lack of precise specifications. Second,
in turn the sub-systems delivered by the suppliers do not fit
together properly and thus the integration fails. Third when trying
to carry out the error correction due to the missing guidelines of
architecture, there is no guiding blue print to make the design
consistent.

6.3.5 Quality Assurance
A critical issue of the car industry is quality. Since the car
industry is so much cost aware, quality issues are often not
observed in the way advisable for software system (see [15]). This
and the application of established certification processes in the
avionic industry are the reasons for airplanes’ reliability
outmatching cars’ reliability by far.

6.3.6 Maintenance
A critical issue is of course that cars are in operation over more
than two or three decades. This means we have to organize long-
term maintenance.

6.3.6.1 Compatibility
Doing maintenance for the software in cars is not so easy. Today
new versions of software are brought in during maintenance by
flashing techniques, i.e. replacing the software of an ECU. But
doing this, one has to be sure that the new versions interoperate
with the old version. In other terms we have to answer the
question whether the new version is compatible (see [34]) with
the one we had before. A lot of the problems we see today in cars
in the field are actually compatibility problems.

6.3.6.2 Defect Diagnosis and Repair
An interesting observation says that today more than fifty percent
of the ECUs that are replaced in cars are technically error-free.
They are just replaced because the garage could not find a better
way to fix the problem. However, often the problem does not lie
in broken hardware but rather ill designed or incompatible
software.
Actually we need much better adapted processes and logistics to
maintain the software of the cars. Understanding how we do a
further development of the software architecture in cars,
understanding the configurations and version management and
making sure that not very well trained people in garages really can
handle the systems is a major challenge.

6.3.6.3 Changing Hardware
Hardware has to be replaced in cars if it is broken. Moreover, over
the production time of a car model, which is about 7 years, not all
the ECUs originally chosen are available in the market the whole
period. Some of them will no longer be produced and have to
replaced by newer types. Already after the first 3 years of
production 20 to 30 percent of the ECUs in the car typically have
to be replaced due to discontinued ECUs. As a result the software
has to be reimplemented, since it is tightly coupled with the ECU.
Therefore portability and reusability become more and more
important for car industry.

6.4 Hardware and Technical Infrastructure
Today in cars we find a very complex technical infrastructure. We
have up to five bus systems and more. We find real time operating
systems, a lot of system technical infrastructure on which the
applications are based. This is why relatively simple applications
get wildly complex since they have to be distributed and they have
to communicate over a complex infrastructure.
One of the problems of this infrastructure is that on the bus level
there is a lot of multiplexing going on. The same holds for the
ECUs where there are tasks and schedulers. Actually we can find
all the problems of distributed systems – and this in a situation
where physical and technical processes have to be controlled by
the software, some of them highly critical and hard real time.
What creates the big problems due to the multiplexing going on in
the cars? In the transmission time of the messages, there is some
jitter and delay such that systems appear to be nondeterministic
and that in many cases time guarantees cannot be given. This is
one of the reasons why we do not have more X-by-wire solutions
in cars today. On one hand the reliability today is not good

37

enough, on the other hand the time guarantees are not good
enough. Therefore a lot of interesting potentials for improvement
looking at drive-by-wire systems are not realized so far.

6.5 Cost Issues
Traditionally the car industry is very cost aware. Competition is to
a large extent determined by prices on one side and by branch
image on the other side. Image is determined by design, quality,
comfort, and innovation. The last three factors are heavily
influenced by software in cars.

6.5.1 Software Cost Control
Software cost control is today of course closely related to the
traditional cost per piece and production-centric cost models in
the car industry. However, we observed an exponential growth of
software costs in cars in recent years.
At the moment most of the software in cars is re-implemented
over and over again. The reasons for that are to a large extend the
optimization of the costs per part. The car industry always tries to
use the cheapest processors they can find and to exploit more than
eighty percent of their power and capacity. As a result, late
changes bring those processors close to their limits and thus the
software has to be highly optimized. This causes that the software
cannot be reused from one ECU to the other.

6.5.2 New Players in Field
Software will become an independent sub-part in the automotive
domain. This due to the fact that more and more ECUs are no
longer dedicated to one application, but are multiplexing several
sub-applications. This means that suppliers no longer produce
integrated solutions where ECUs, sensors, actuators, software and
hardware as well as the mechanical devices are developed as one
integrated piece. The software then has to be delivered separately
running on an ECU not delivered by the same supplier. As a result
the software is rather like a device driver of the mechanical
device. In fact, then there is no real reason why the software has
to come from the supplier producing the mechatronic part, it may
come separately from a software house. This way, software
becomes an independent sub-product and sub-system for the car
industry.
Due to this observation it seems very likely that new players come
into the industry. Sometime ago a software house would not be an
interesting first tier supplier for the embedded systems of the car
industry. This is about to change radically.

6.5.3 Long Term Investment
An economically interesting question is who will, in the long run,
own the investment that is created by the development of software
in the car. It is not clear at all who will own the intellectual
property for that investment and therefore who will, on the long
run, be the dominant player in the industry.

6.5.4 Reuse and Product Lines
One of the big hopes for cost reduction in software development
for the automotive domain is product line approaches. But so far,
product line engineering is only used by a few suppliers and not
systematic at all by the OEMs.

7. RESEARCH CHALLENGES
As explained, the car industry is facing many challenging issues
for software in cars. This opens a wide field for research.

7.1 Comprehensive Architecture for Cars
Due the multi-functionality and all the related issues we need a
sophisticated structural view on the architecture in cars that
addresses all the aspects that are relevant. In such an architecture
(see [35]), we distinguish ingredients that we briefly explain in
the following.

7.1.1 Functionality Level – Users View
The usage view aims at capturing all the software-based
functionality offered by the car to the users. Users include not
only drivers and passengers but also the people in a garage and
maintenance staff, perhaps even the people in the production and
many more. We call this the functionality level (see [28]).

In any case, the functionality level provides specifically a
perspective onto the car that captures its family of services and
aims at understanding how the services are offered and how they
depend on and interfere with each other. So-called feature or
function hierarchies can model this best.

7.1.2 Design Level – Logical Architecture
The design level addresses the logical component architecture. In
a logical architecture, the functionality hierarchy is decomposed
into a distributed system of interacting components.

At the design level we describe the distributed architecture of a
system, independent from the fact whether the components are
implemented by hardware or software. The logical architecture
can be described by a number of interfaces for communicating
state machines with input and output that realize the functions that
are found in the system. Via their interaction, they realize the
observable behavior described at the functionality level. The
logical architecture describes abstract solutions and to some
extent the protocols and abstract algorithms used in these
solutions.

7.1.3 Cluster Level
In the clustering we rearrange the logical architecture in a way
that prepares the deployment and the step towards the software
architecture.

7.1.4 Software Architecture
The software architecture consists of the classical division of
software in platforms like operating systems and bus drivers on
one side and the application software represented by tasks, which
are scheduled by the operating system, on the other side. This
software has to be deployed onto the hardware.

7.1.5 Hardware Level – Hardware Architecture
The hardware architecture consists of all the devices including
sensors, actuators, bus systems, communication lines, ECUs, man
machine interface and many more.

7.1.6 Deployment – Software/Hardware Codesign
Finally we need a deployment function that relates hardware to
software. The hardware/software and the deployment function
together have to represent a concrete realization of the logical
architecture that just describes the interaction between the logical
components.

38

7.1.7 Architecture Modeling and Description
A modeling approach has to be expressive enough to deal with all
the mentioned aspects of architecture.

7.2 Reducing Complexity
One of the biggest problems in car industry today is the
overwhelming complexity of the systems they face today. How
can we reduce complexity?

Of course, we can use classical techniques from software
engineering, which is structuring, separation of concerns, and
abstraction. Structure is what we have achieved if we get an
appropriate architectural view with the levels as described above.
Abstraction is what we gain if we use models. Model orientation
remains one of the big hopes for the car industry to improve its
situation.

7.3 Improving Processes
A key issue is process orientation and software development
processes. So far the processes in the car industry are not adapted
to the needs of software intensive systems and software
engineering. Process orientation will introduce a much higher
awareness for processes.

7.3.1 Maturity Levels
A good example is the introduction of Spice and CMMI
techniques into the car industry, which already has helped a lot to
improve the competencies there.

Actually, a deep process orientation on the long run would need a
well-understood handling of the product models. The product data
of course need a comprehensive coherent and seamless model
chain. Here we find an exciting dependency between engineering
support software and embedded on board software.

7.4 Seamless Model Driven Development
One of the great hopes for improvement is seamless model driven
development. This means that we work with a chain of models for
the classical activities:

• Requirements modeling

• Design modeling

• Implementation modeling

• Modeling test cases

A vision would be an integrated modeling approach where the
relationship between all the models is captured and parts of the
next models are generated from the models before.

7.4.1 The Significance of Models
Models, if they are formalized and have a proper theory, are
useful in many respects. Starting with documentation,
formalization and making informal descriptions precise we can go
on with analysis, reuse, transformation, code generation, and
finally enter into product lines. In particular, models are the key to
tooling and automation.

Usage level

Design level

Cluster level

Platform level

Function hierarchy

Logical architecture

Hardware architecture

Task level

Software architecture

Figure 2. Comprehensive Architecture

Finally, models capture development knowledge and give
guidelines for the development processes.

7.4.2 Weaknesses of Modeling Today
Today models and model-based development are used to some
extent in the automotive industry but their use is fractal. Modeling
is applied only at particular spots in the development process. So
a lot of its benefits get lost that could be exploited if we had
integrated model chains.

Since the models are only semiformal and the modeling languages
are not formalized, a deeper benefit is not achieved. Typical
examples are consistency checking or the generation of tests from
models (see [17]). Another issue is that models could help very
much in the communication between the different companies such
as OEMs and first and second tier suppliers; also here models are
used only in a limited way so far.

Pragmatic approaches such as UML (see [30]) and other modeling
approaches used in industry are not good enough. Such
approaches are not based on a proper theory and sufficient
formalization. As a result, tool support is weak, possibilities to do
analysis with models are weak, and the preciseness of the
modeling is insufficient.

It is important to keep in mind that modeling is more than
documentation. UML should rather be called UDL: „Unified
Documentation Language“. So far UML is not a full modeling
language. It does not offer a good basis for automation and
refinement.

Modeling can help to improve the quality of the automotive
software systems. As well known, quality has a wide spectrum of
different aspects and facets.

Unfortunately, what we can find in modeling today can not so
much help to improve the quality of the development processes
and of the software intensive products because it does not give
precise and uniform views onto systems based on theories.

39

7.4.3 Potentials of Modeling
Using models in an integrated seamless way, we come up with a
vision of a strictly model based process in the automotive
industry. The idea is as follows:
After first business requirements are captured and the most
important informal requirements are brought together, we split the
requirements into functional and nonfunctional requirements.
Functional requirements are formalized by a function hierarchy
where all the atomic features are described by interacting state
machines or by interaction diagrams between the different
functions. In the function hierarchy, dependency relations are
introduced.
The non-functional requirements are process requirements and
quality requirements for the product. For the product quality
requirements a quality profile is drawn up. We have to understand
how the quality requirements determine properties of the
architecture. This way we form a quality driven architecture onto
which we map the functional requirements.
Along this line we arrive at system decomposition. In the
decomposition we have to specify a logical architecture and the
interfaces (see [33]) of its logical components. At that level we
can already do a proof of concept in terms of a virtual verification
of the logical architecture as long as we have formal models for
the logical components and their composition. This step already
proves that at the application level the architecture is correct.
From here on we do the decomposition of the components in
software parts, we design the hardware architecture and we design
the deployment.

7.5 Integrated Tool Support
Tool support is a key issue. Today we find a rich family of tools in
use but unfortunately these tools are not integrated. Therefore
there are a number of attempts to create pragmatic tool chains by
connecting the tools in a form where the data models of one tool
are exported and imported by the next tool. Unfortunately this
does not help if there is not a semantic understanding how the
different tools are based on joint concepts.

7.6 Learning from Other Domains
In the automotive industry we find basically all the problems we
find software engineering, in general, sometimes even in a more
crucial way. It is an appealing question, what we can do to bring
solutions and ideas from software engineering in general into the
automotive domain to try them out there, to improve them and on
the other hand to get some feedback and maybe improvements
and new ideas for software engineering as such.

7.7 Improving Quality and Reliability
Today the reliability of software in cars is insufficient. In avionics
reliability numbers of 109 hours mean time between failures and
more are state of the art. In cars we do not even know these
figures. Only adapted quality processes can improve the situation.
As an example, Toyota is quite successful with reviews based on
failure modes.

7.7.1 Automatic Test Case Generation
The amount of quality assurance in cars is enormous. Today the
industry relies very much on hardware and software as well as
system in the loop techniques (HIL/SIL). There sub-systems are
executed under simulated environments in real time. However,

this technology is coming to its limits because of the growing
combinatorial complexity of software in cars.
More refined test techniques can help here, where test are
generated based on models.

7.7.2 Architecture and Interface Specification
A critical issue for the precise modeling of architectures is the
mastering of interface specifications. So far interface specification
methods in software engineering in general are not good enough.
This fact is, in particular, a disaster for the car industry, because
of its distributed mode of development.
The OEM has to do the logical architecture today and then
distributes the development of the components that correspond to
the components of the logical architectures to the suppliers. The
suppliers do the implementation, even supply the hardware and
bring back pieces of hardware and software that then have to be
integrated into the car and connected to the bus systems. Since the
interfaces are not properly described, the integration process gets
into a nightmare. A lot of testing and experimentation has to go
on, a lot of change processes have to be needed to understand and
finally work out the integration process.

7.7.3 Error Diagnosis and Recovery
Today the amount of error diagnosis and error recovery in cars is
limited. In contrast to avionics, where hardware redundancy and
to some extent also software redundancy is used, in cars we do not
find an extensive error treatment. In the CPUs some error logging
takes place, but there is neither any consideration nor logging of
errors at the level of the network and the functional distribution
nor is there neither a comprehensive error diagnosis nor any
systematic error recovery.
There are some fail safe and graceful degration techniques found
in cars today, but there is not a systematic and comprehensive
error treatment.
One result of this deficiency is problems in maintenance. Today –
as mentioned above – in the cause of repair of a defect more than
50 % of the hardware devices that are replaced in garages are
physically and electro-technically without defects. They are
changed, since a successful diagnosis, error tracing, and error
location did not work and thus by replacing the CPU software is
replaced, too, such that the error symptom disappears – but often
further, different errors show up later.

7.7.4 Reliability
Another critical issue is reliability. We do actually not know how
reliable our cars are in terms of mean time to failure. In fact there
are no clear reliability numbers and figures. In contrast to the
avionic industry there is no serious reliable calculation for cars.
The high reliability in the avionic field is of course, to a large
extend, due to the fact that they use very sophisticate error
tolerance methods, redundancy techniques and at the same time
they work with a sophisticated way of error modeling (like
FMEA). In cars today errors are only captured within processors
in so called error logging stores.
What we need on the long run are comprehensive error models in
cars and also software that for the detection of errors. On such
models we can base techniques to guarantee fail safe and graceful
degration and in the end also error avoidance by the help of
redundancy. Another issue is error logging to get into a better
error diagnosis for maintenance.

40

7.8 Software and System Infrastructure
An important step in car industry is to go away from proprietary
solutions and to develop standards. A promising step in that
direction is the AUTOSAR project (see [4], [5], [31]) that defines
a uniform platform architecture. AUTOSAR is only one small
step, however.

8. RESEARCH AT TUM
In our research group at TUM we started research in the area of
automotive software engineering more than 10 years ago. Over
one decade, we developed, step-by-step, very tight research co-
operations with chief OEMs and suppliers leading to a kind of
strategic partnership.
On the one hand, our research agenda is strongly influenced by
burning questions in industry. On the other hand, our research
results are accepted as helpful contributions and input to improve
the situation. This enables also a lot of fruitful joint research and
development.

8.1 Foundations: Distributed System Models
Software in car forms a concurrent, distributed, interacting, often
hard or at least soft real time system. Modeling and understanding
such systems lies in the center of software and systems
engineering. What we need there is a comprehensive theory of
modeling as a basis for capturing the functionality and the
architecture. We have worked out a large part of such a theory of
modeling in recent years (see [11], [12], [13], [16]).
It has to contain a theory of functions, components, features,
interfaces, state machines, function combination and component
composition, property, interface as well as time granularity
refinement, hierarchical decomposition and architecture,
communication, levels of abstraction, architectural layering, and
interaction processes and how all these are connected on a
conceptual basis which includes a notion of time.

Figure 3. Screenshot from the Tool AutoFocus 2

If we work such a theory the right way we gain all what is needed
to attack many of the issues, we need to understand to be able to
model and develop automotive software systems in a systematic
way.

8.2 Adapted Development Process
From our observations we aimed at improving the development
process, in particular, adding roles for the principal and the

supplier into a software lifecycle model, the V-Model XT (see
[18], [24], [27]) developed by our group for the German
Government.
8.2.1 Requirements Engineering
Requirements engineering has to address the needs of multi-
functional systems and concurrent distributed engineering. In
particular, such models are needed to support requirements
engineering.
8.2.2 Architecture
We have developed a comprehensive view onto architectures
defining levels and layers of abstraction along the lines described
above (see [6]).
8.2.3 Methodology
In a strictly model based development we support all steps in the
development process via models and techniques of validation,
verification, transformation, and generation.
8.2.4 Testing
Automatic test generation is a very promising approach. Once
models have been created, we can generate test cases from them,
leading to a much better coverage and mach deeper test impact.
8.2.5 Verification
Today we are at the point where we do verification for industrial
type software systems in cars. An ambitious approach is provided
by the Verisoft project (see [9]) where we verify the automatic
emergency call function, which is found in cars today, in all its
details. The example of the emergency call function is verified by
modeling it together with the used infrastructure like FlexRay, the
real time operating system OSEKtime, and the code running on
processors in all details. In Verisoft we use Autofocus as the
modeling tool and Isabelle as the verification engine.

8.3 Tool Support
We have developed prototyping tools like AutoFocus for design
and its enhancement AutoRaid (see [32]) for requirements
engineering (see [1], [2], [3]).
Figure 3 shows a screen shot of the AutoFocus tool, with
extensions like AutoFlex especially target the development of
embedded control applications.

9. CONCLUSION
It is absolutely clear that software in cars is one of the big
challenges and at the same time one of the interesting fields of
research for the software engineering community. Much can be
gained in this area, much can be learned in this area, much can be
contributed by well-targeted research. We consider automotive
software engineering as one of the very challenging fields where
we have the chance to get into a fruitful dialog between
application domain and software engineering experts.
Software and systems engineering for embedded systems in cars is
one of the major challenges for software engineering research
today. In a car we find many of the great research issues for
software engineering in a nutshell.
Acknowledgement
I am grateful to a number of people, including Martin Rappl, Doris
Wild, Christian Kühnel, Jan Jürjens, Alexander Pretschner,
Christian Salzmann, Hans Georg Frischkorn, Bernhard Schätz,
Florian Deissenböck as well as engineers from BMW, Daimler
Chrysler, Ford, Honda, Porsche, Audi, Volkswagen, ESG, Validas

41

AG, Bosch, and Siemens VDO for stimulating discussions on
topics of automotive software engineering.

10. REFERENCES
[1] AutoFOCUS – Webseite, http://autofocus.in.tum.de, 2005.
[2] AutoFOCUS 2 – Webseite, http://www4.in.tum.de/~af2/, 2006.
[3] AutoRAID – Webseite, http://www4.in.tum.de/~autoraid/,

2005.
[4] AUTOSAR consortium: www.autosar.org, 2005
[5] AUTOSAR Development Partnership. www.autosar.com
[6] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Freund,

N. Mata, R. Sandner, and D. Ziegenbein. Auto-MoDe—
Notations, Methods, and Tools for Model-Based Development of
Automotive Software. In Proceedings of the SAE 2005 World
Congress, Detroit, MI, Apr. 2005. Society of Automotive
Engineers

[7] M. Bloos: Echtzeitanalyse der Kommunikation in KfZ-
Bordnetzen auf Basis des CAN Protokolls, Dissertation TU
München, 1999.

[8] BMW Group: Annual Report 2004.
[9] J. Botaschanjan, L. Kof, Ch. Kühnel, M. Spichkova: Towards

Verified Automotive Software. ICSE, SEAS Workshop, St.
Louis, Missouri, USA May 21, 2005

[10] M. Broy, K. Stølen: Specification and development of
interactive systems – FOCUS on Streams, Interfaces and
Refinement, Springer, 2001.

[11] M. Broy: Automotive Software Engineering. Proc. ICSE 2003,
pp. 719-720.

[12] M. Broy: Modeling Services and Layered Architectures. H.
König, M. Heiner, A. Wolisz (Eds.): Formal Techniques for
Networked and Distributed Systems. Berlin 2003, Lecture Notes
in Computer Science 2767, Springer 2003, 48-61

[13] M. Broy: Service-oriented Systems Engineering: Specification
and Design of Services and Layered Architectures - The JANUS
Approach. In: Manfred Broy, Johannes Grünbauer, David Harel
and Tony Hoare; Engineering Theories of Software Intensive
Systems, Marktoberdorf, 3 – 15 August 2004, Germany, NATO
Science Series, II. Mathematics, Physics and Chemistry – Vol
195, Springer

[14] M. Broy, A. Pretschner, C. Salzmann, T. Stauner: Software-
intensive systems in the automotive domain: challenges for
research and education. SAE 2006, to appear

[15] M. Broy, F. Deißenböck, M. Pizka: A Holistic Approach to
Software Quality at Work. 3rd World Congress for Software
Quality (3WCSQ)J.Dannenberg, C.Kleinhans,: The Coming Age
of Collaboration in the Automotive Industry, Mercer
Management Journal 18:88-94, 2004.

[16] D. Herzberg, M. Broy: Modeling layered distributed
communication systems. Applicable Formal Methods. Springer
Verlag, Volume 17, Number 1, May 2005

[17] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, A. Pretschner
(Eds.); Model-Based Testing of Reactive Systems, Advanced
Lectures, Springer-Verlag Berlin Heidelberg 2005

[18] Manfred Broy, Andreas Rausch: Das Neue V-Modell XT,
Informatik Spektrum A 12810, Band 28, Heft 3, Juni 2005

[19] A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl, S. Rittmann,
D. Wild: Concretization and Formalization of Requirements for

Automotive Embedded Software Systems Development, In: The
Tenth Australian Workshop on Requirements Engineering
(AWRE), Melbourne, Australia, K. Cox, J.L. Cybulski et.al
(ed.), 2005, 60-65

[20] E. Geisberger: Requirements Engineering eingebetteter Systeme
– ein interdisziplinärer Modellierungsansatz, Dissertation TU
München, 2005

[21] K. Grimm: Software Technology in an Automotive Company—
Major Challenges. Proc ICSE 2003, pp. 498-505.

[22] B. Hardung, T. Kölzow, A. Krüger: Reuse of Software in
Distributed Embedded Automotive Systems. Proc. EMSOFT’04,
pp. 203—210, 2004.

[23] H. Heinecke: Automotive System Design—Challenges and
Potential. Proc. DATE’05.

[24] M. Kuhrmann, D. Niebuhr, A. Rausch: Application of the V-
Modell XT - Report from A Pilot Project. In: Unifying the
Software Process Spectrum, International Software Process
Workshop, SPW 2005, Beijing, China, May 25-27, Mingshu Li,
Barry Boehm, Leon J. Osterweil (ed.), pp. 463-473, Springer,
2005

[25] A. Pretschner, C. Salzmann, T. Stauner: SW engineering for
automotive systems at ICSE’04. Software Engineering Notes
29(5):5-6, 2004.

[26] A. Pretschner, C. Salzmann, T. Stauner: SW engineering for
automotive systems at ICSE’05. To appear in Software
Engineering Notes, 2005.

[27] A. Rausch, Ch. Bartelt, Th. Ternité, M. Kuhrmann: The V-
Modell XT Applied – Model-Driven and Document-Centric
Development. In: 3rd World Congress for Software Quality,
VOLUME III, Online Supplement, 2005, pp. 131 - 138

[28] S. Rittmann, A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl,
D. Wild: Integrating Service Specifications on Different Levels
of Abstraction, In: IEEE International Workshop on Service-
Oriented System Engineering (SOSE), IEEE (ed.), IEEE, 2005.

[29] Robert Bosch GmbH. CAN Specification Version 2.0, 1991.
[30] C. Salzmann, T. Stauner: Automotive Software Engineering.

Languages for system specification: Selected contributions on
UML, systemC, system Verilog, mixed-signal systems, and
property specification from FDL'03, pp. 333-347, Kluwer 2004.

[31] C. Salzmann, H. Heinecke, M. Rudorfer, M. Thiede, T. Ochs, P.
Hoser, M. Mössmer, A. Münnich. Erfahrungen mit der
technischen Anwendung einer AUTOSAR Runtime
Environment, VDI Tagung Elektronik im Kraftfahrzeug, Baden-
Baden, 2005.

[32] B. Schätz, A. Fleischmann, E. Geisberger, M. Pister. Model-
Based Requirements Engineering with AutoRAID. In:
Informatik 2005, Springer, 2005.

[33] B. Schätz, Interface Descriptions for Embedded Components. In:
Object-oriented Modeling of Embedded Real-Time Systems
(OMER'05), Paderborn 2005

[34] T. Stauner. Compatibility Testing of Automotive System
Components. 5th Int. Conf. on SW Testing (ICSTEST),
Düsseldorf, 2004.

[35] D. Wild, A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl, S.
Rittmann: An Architecture-Centric Approach towards the
Construction of Dependable Automotive Software, SAE
Technical Paper Series 2006, Detroit, 2006

42

