
A Model Driven Approach for Software Systems Reliability

Genáına Nunes Rodrigues
David Rosenblum and Wolfgang Emmerich (Supervisors)

Department of Computer Science
University College London

Gower Street, London UK WC1E 6BT
g.rodrigues@cs.ucl.ac.uk

1 Research Problem

Component-based development architectures (CBDA)
are increasingly being adopted by software engineers. The
Object Management Group (OMG) has focused on paving
the way to provide CBDAs with, among other benefits, in-
teroperability and portability standards through the Model
Driven Architecture (MDA). The main idea of MDA is to
use UML to specify both the static interfaces and the dy-
namic behavior of the components in platform-independent
models(PIM). Additionally, it defines rules so that PIMs
can be mapped into a number of platform-specific mod-
els(PSM).

Although MDA promises to overcome important un-
solved problems in software engineering, it has not spec-
ified ways to represent software dependability yet. Par-
ticularly, there are no current means to design and assess
system dependability, specially reliability, using the model-
driven principles proposed by MDA. Issues such as reliabil-
ity, safety, security and availability comprise software de-
pendability [1, 10].

The lack of a representation for dependability in MDA
models can consequently lead to undesirable situations dur-
ing the software executions. We argue that the standard
structure of MDA is suitable to address software depend-
ability, for the MDA designates the system function as re-
quired by the stakeholders. Among other dependability fea-
tures, our work focuses particularly on addressing reliabil-
ity concerns into MDA. The syntax and semantics of MDA
models are represented through profiles, a set of stereo-
types, tagged values and constraints that extend the core
UML using metamodeling techniques.

OMG has recently revised requests for proposals on
Quality of Service and Fault-Tolerant profiles [12]. Never-
theless, those requests still require means to assess depend-
ability by measurement and analysis methods to guarantee
that the desired properties of the system are correctly repre-
sented in the models. Additionally, OMG needs to address

how the PIMs will be consistent with the profile, once it is
specified. In other words, how to apply transformation rules
from profiles to PIMs and from PIMs to PSMs.

Existing research on dependability focuses on the early
design phases of software development [3, 9]. They look
at some of the problems we identify in our work related to
addressing dependability concerns in these phases. They
use analysis techniques based on architectural representa-
tion techniques, e.g. Architecture Description Languages
(ADL), or modeling languages, e.g. UML, to validate qual-
ities related to the design of the software system.

However, their work is tightly coupled with tools or plat-
forms where these solutions are targeted for, which does not
conform to the concepts of portability and interoperability
of MDA. [2] provides a useful transformation technique to
automate dependability analysis of systems designed using
UML. Nevertheless, to properly contemplate dependability
in all stages of the software engineering process, we believe
that one of the main concerns is to provide a unified se-
mantic representation between the analysis and the design
models.

Another approach to address software dependability is
to provide mechanisms to improve reliability of software
after it has been implemented through testing techniques.
Works such as [6] use those techniques to identify faults
in the software that are likely to cause failures. Our pur-
pose is to concentrate on the reliability assurance of the
system from design to deployment level through transfor-
mation techniques. Concentrating on these levels, we be-
lieve that the desired reliability of software systems will be
reported in the testing phase according to the required reli-
ability property defined in the architecture level.

2 Hypothesis

Our hypothesis is that MDA is a feasible environment to
systematically assess and express dependability by means



of profiles properly constructed. We propose to provide re-
liable software systems through a model driven approach.
Once reliability mechanisms provided by current CBDAs
are designed in a platform-independent way, platform-based
design and implementation models must be therefore ex-
tended.

The UML meta-model defines the abstract syntax of
UML, from which many concrete syntaxes can be de-
rived [5]. This feature in UML allows us to express the
design and analysis domains seamlessly, using the concepts
inherent to these domains. Thus, this facility permits the
mapping of the behavior of distributed component architec-
tures into a domain knowledge keeping the semantics of the
modeling requirements of UML.

Following this principle, our approach to meta-modeling
using the UML lightweight extension mechanisms, i.e. pro-
files, is consistent with the official MDA white paper [11],
which defines basic mechanisms to consistently structure
the models and formally express the semantics of the model
in a standard way. Moreover, the profiles define standard
UML extensions to describe platform-based artifacts in a
design and implemented model.

3 Our Proposed Solution

The main contribution of this research is to provide
platform-independent means to support reliability design
following the principles of a model driven approach. The
contribution aims to systematically address dependability
concerns from the early to the late stages of software de-
velopment. MDA appears to be a suitable framework to
assess these concerns and, therefore, semantically integrate
analysis and design models into one environment.

We propose to overcome the lack of a model driven de-
pendability concern by identifying the levels of abstraction
following OMG’s MDA principles. To achieve this goal,
this work relies on reference models specifications such
as [13] as well as extensions of the UML metamodels. The
current dependability property on focus is reliability. To
guarantee and assess reliability properties of software sys-
tems using the MDA approach, we plan to achieve reliabil-
ity in such a way that it is specified in the early stages of
software architecture design.

The first step towards achieving reliability in MDA prin-
ciples is to define a profile. In this regard, we have to rep-
resent software reliability in different levels of abstraction
according to the MDA approach as well as the transitions
from PIM to PSM and from PSM to code. Current CBDAs,
such as Enterprise Java Beans, address a considerable range
of features to support system reliability. There are some
mechanisms these CBDAs provide in order to provide reli-
able services [4]:

• Replication transparency through clustering;

• Failure transparency through atomic transactions;

• Asynchronous communications through message ori-
ented components;

• Persistency support through stateful and persistent
component objects.

For each of these reliability mechanisms, we plan to build a
profile for.

By means of a reliability profile, the architecture of
an application can express both method invocations and
deployment relationships between the application compo-
nents. Actually, the reliability profile comprises three other
sub-profiles: the design (where the reliability mechanism
is modeled), the mapping (to map the desired reliability to
the designed classes), and the deployment (to show how the
components can be distributed in the network according to
the required reliability support).

In the design profile, meta-modeling techniques are used
to map out reliability mechanisms in a profile. This pro-
file extends two main specifications:(1) the UML Profile
for Schedulability, Performance and Real-Time Specifica-
tion [13] and (2) the UML Specification [14]. The first step
to accomplish this profile is to build a reference model that
defines the classes, relationships, attributes and operations
to represent the dynamic behaviour of the reliability mech-
anism.

In the mapping domain, where the elements in the design
profile are mapped to the deployment profile, constraints
rule how the desired reliability mechanisms are mapped to
a designed application. The transformation rules defined
by the OCL constraints are the core part of this domain.
Finally, the deployment profile provides the configuration
of how the components communicate and are distributed
throughout the network.

4 Ongoing Work and Expected Contribu-
tions

We had previously concentrated on mapping out the area
of interest, finding the problem to tackle, analyzing the con-
tributions related to the problem we identified and defining
the strategy to overcome the lack in the identified problem.
The result of this work is in [8].

We decided to define a profile for each reliability prop-
erty at a time. We have been currently working out the
construction of reliability profile based on replication. In
this regard, we have built a profile for transient systems
and mapped the core elements of the profile to the EJB ar-
chitecture as a platform-specific mapping of that reference
model. The elements of the design profile were identified
by extending the UML metamodeling language and map-
ping them into the deployment diagram of the components



following transformation rules to be automated in a future
step of our work.

Expected Contributions - At the end of this process of
mappings and refinements, it is therefore expected the iden-
tification of the elements required to design, implement and
deploy reliability according to the OMG MDA. By these
means, the main contributions we plan to achieve are:

1. Propose a way of specifying reliability in a platform-
independent way;

2. Propose a set of rules to automatically map reliability
mechanisms from PIM to PSMs in the context of the
MDA.

In addition to these direct contributions, we expect to come
up with ideas that contribute in the overall process of using
a model driven approach in the software development so as
to:(1) identify general procedure to build a reference model
and (2) guarantee that the reference model and the profile
are consistent with each other and with the generated code.

5 Future Work and Concluding Remarks

As soon as our reliability profile based on replication is
built, our plans for the future contemplate:

1. Analysis - Identify those qualities that require formal
analysis to determine and choose an appropriate tech-
nique for reliability analysis. Define a profile to repre-
sent the entities within the analysis domain.

2. Mapping - Define and verify the mapping between the
design domain and the analysis domain from the previ-
ous step that correctly represents the semantics of each
domain extending an MDA tool for code generation.

3. Another PSM - Choose another platform and extend
the platform-specific profile (e.g. [7]) to represent the
reliability mechanisms of interest.

Evaluation - The evaluation aims to test the maturity
of the approach, its applicability, and the effectiveness of
the reliability models. To provide such assessment, we
plan to monitor the performance of the model using a case
study. The rationale is to populate failure analysed from real
life scenarios into a subject system. The evaluation aims
to assess the ability of the models to detect the following
qualities of interest: replication transparency, failure trans-
parency, persistency and asynchronous communications.

Concluding Remarks - This work is expected to turn
the provision of reliability for software systems into a more
practical approach. There are currently mechanisms to pro-
vide reliability for software systems. However, techniques
such as process algebras are generally considered time con-
suming, in regard to the software development. The model

driven approach seems suitable to fill in this gap and we ex-
pect to provide a solution where reliability can be assured
along the life cycle of software development.

References

[1] A. Avizienis, J. Laprie, and B. Randell. Fundamental Con-
cepts of Dependability, Research Report N01145, LAAS-
CNRS, Apr. 2001.

[2] A. Bondavalli, I. Majzik, and I. Mura. Automatic Depend-
ability Analysis for Supporting Design Decisions in UML.
In R. Paul and C. Meadows, editors,Proc. of the4th IEEE
International Symposium on High Assurance Systems Engi-
neering. IEEE, 1999.

[3] V. Cortellessa, H. Singh, and B. Cukic. Early reliability
assessment of uml based software models. InProceedings
of the third international workshop on Software and perfor-
mance, pages 302–309. ACM Press, 2002.

[4] W. Emmerich.Engineering Distributed Objects. John Wiley
& Sons, Inc, 2000.

[5] D. S. Frankel. Applying MDA to Enterprise Computing.
OMG Press and Wiley Publishing, Inc, 2003.

[6] P. Frankl, R. Hamlet, B. Littlewood, and L. Strigini. Choos-
ing a Testing Method to Deliver Reliability. InInternational
Conference on Software Engineering, pages 68–78, 1997.

[7] J. Greenfield. UML Profile for EJB. Technical report,
http://www.jcp.org/jsr/detail/26.jsp, May 2001.

[8] G.Rodrigues, G.Roberts, W.Emmerich, and J.Skene. Re-
liability Support for the Model Driven Architecture. In
Workshop on Software Architecture for Dependable Sys-
tems (ICSE/WADS 2003), Portland, OR., pages 7–12. ACM
Press, May 2003.

[9] G. Huszerl and I. Majzik. Modeling and analysis of redun-
dancy management in distributed object–oriented systems
by using UML statecharts. InProc. of the27th EuroMi-
cro Conference, Workshop on Software Process and Product
Improvement, Poland, pages 200–207, 2001.

[10] B. Littlewood and L. Strigini. Software Reliability and De-
pendability: A Roadmap. In A. Finkelstein, editor,The Fu-
ture of Software Engineering, pages 177–188. ACM Press,
Apr. 2000.

[11] Object Management Group. Model Driven Architec-
ture. Technical report, http://cgi.omg.org/docs/ormsc/01-07-
01.pdf, July 2001.

[12] Object Management Group. UML Profile for Mod-
eling Quality of Service and Fault Tolerance Char-
acteristics and Mechanisms. Technical report,
http://www.omg.org/docs/ad/02-01-07.pdf, December
2002.

[13] Object Management Group. UML Profile for Schedulabil-
ity, Performance and Real-Time Specification. Technical
report, http://www.omg.org/cgi-bin/doc?ptc/02-03-02.pdf,
March 2002.

[14] Object Management Group. Unified Modeling
Language (UML), version 1.4. Technical report,
http://www.omg.org/cgi-bin/doc?formal/01-09-67.pdf,
January 2002.


