
Precise Service Level Agreements∗

James Skene, D. Davide Lamanna, Wolfgang Emmerich
Department of Computer Science, University College London

London, WC1E 6BT, UK
{j.skene, d.lamanna, w.emmerich}@cs.ucl.ac.uk

Abstract

SLAng is an XML language for defining service level
agreements, the part of a contract between the client and
provider of an Internet service that describes the quality at-
tributes that the service is required to possess. We define
the semantics of SLAng precisely by modelling the syntax of
the language in UML, then embedding the language model
in an environmental model that describes the structure and
behaviour of services. The presence of SLAng elements im-
poses behavioural constraints on service elements, and the
precise definition of these constraints using OCL constitutes
the semantic description of the language. We use the seman-
tics to define a notion of SLA compatibility, and an extension
to UML that enables the modelling of service situations as
a precursor to analysis, implementation and provisioning
activities.

1 Introduction

Increasingly, distributed systems primitives are being
used to build mission-critical applications that cross au-
tonomous organizations. Examples include the use of web
services in, for example, supply chain management, or com-
puting on demand using distributed component or grid tech-
nology as offered by IBM. Because the usefulness, and
sometimes even the functioning of a business, depend not
only on the functionality but also the quality of these ser-
vices, for example performance and reliability, and because
these qualities not only depend on the behaviour of the ser-
vice but on that of the client, contracts between the provider
and client of a service must contain terms governing their
individual and mutual responsibilities with respect to these
qualities. Such clauses are called Service Level Agreements
(SLAs) and previous work has proposed specialised lan-
guages to represent SLAs, for the purpose of easing their
preparation, automating their negotiation, adapting services

∗This research is partly funded through the EU project TAPAS (IST-
2001-34069)

automatically according to their terms, and reasoning about
their composition.

SLAng [7] is an SLA language that differs from previous
work in three significant respects:

Firstly, in contrast with other languages that focus on
web services exclusively, it defines SLA vocabulary for a
spectrum of Internet services, including Application Ser-
vice Provision (ASP), Internet Service Provision (ISP),
Storage Service Provision (SSP) and component hosting,
motivated by the observation that federated distributed sys-
tems must manage the quality of all aspects of their deploy-
ment.

Secondly, the structure of SLAng is derived from indus-
trial requirements [13]. It resembles SLAs currently in use
in an effort to provide realistic terms that are both useful
and usable.

Thirdly, the meaning of SLAng is formally defined in
terms of the behaviour of the services and clients involved
in service usage. Benefits of the formal semantics include
the reduction of ambiguity in the meaning of the language
and the means to check the semantics to ensure the absence
of inconsistencies and loopholes. The style of semantic def-
inition used aims to be user-friendly, allowing it to serve as
a reference for human negotiators. It also provides a formal
basis for comparisons between SLAs, and an abstract refer-
ence model of systems employing SLAs that can guide im-
plementation and analysis efforts. These latter facilities ad-
dress two types of compositionality for SLAs:inter-service
compositionin which required QoS levels are compared to
offered QoS levels, andintra-service compositionin which
the QoS levels offered by a service are related to the levels
provided by its components.

This paper describes the approach taken to produce a rig-
orous yet understandable specification of the semantics of
SLAng, and the use of the semantics in reasoning about ser-
vice composition.

We use the Unified Modelling Language (UML) [12] to
model the language, producing an abstract syntax. We em-
bed this language model in an object-oriented model of ser-
vices, service clients and their behaviour. The presence of

1



SLAs, instances of the language model, constrains the be-
haviour of the associated services and service clients. The
constraints are defined formally using the Object Constraint
Language (OCL) [10], with accompanying natural language
descriptions, and define the semantics of the language. The
semantics are easily understood in the context of the service
model. We exemplify the approach in Section 3 by describ-
ing SLAng’s semantics for ASP SLAs.

Inter-service composition requires the matching of de-
sired service levels, expressed as target SLA terms, with
offered service levels. SLAs are deemed to be compati-
ble if the offered SLA permits no behaviours (according to
the service model) that would violate the target SLA. Inter-
service composition is discussed in Section 4.

Intra-service composition requires a specification of the
behaviour of a system extraneous to SLAs. We therefore
employ our combined service and language model as the
basis for an extension of UML. This allows the modelling
of services and SLAs in the same context as more detailed
design information. The semantic model of services and
SLAs informs analysis activities that determine the emer-
gent qualities of composed systems. It can also inform the
development of SLA aware services, as it provides a refer-
ence model for the behaviour of such systems. The UML
extension is provided in the form of a QoS catalogue appro-
priate to the proposed ‘UML Profile for Modelling Quality
of Service and Fault Tolerance Characteristics and Mech-
anisms’ (henceforth ‘QoS profile’) [8], and is described in
Section 5.

The next section describes SLAng in more detail. Sec-
tion 3 gives an example of the semantic definition of SLAng
by presenting the semantics of ASP SLAs. Section 4 dis-
cusses the compatibility of SLAs, addressing inter-service
composition. Section 5 presents the QoS catalogue for
the ASP part of SLAng, addressing intra-service compo-
sition. Section 6 discusses the differences between SLAng
and other SLA languages in terms of approach and style of
semantic definition. Section 7 summarizes and Section 8
discusses future work.

2 SLAng

SLAng meets the need for an SLA language to support
construction of distributed systems and applications with re-
liable QoS characteristics. The syntactic structure and se-
mantics of SLAng are defined with reference to a model
of distributed system architecture. The model defines the
scope of the language, and has assisted in identifying the
service usage scenarios and parameters that SLAng must
represent. The reference model is shown in Figure 21.

In our model, applications are clients that use applica-
tion services to deliver end-user services. Application ser-

1Slightly modified from [7]

Underlying
Resources

Application
Tier

Middle Tier

Storage

Container

Application Service

Application

Network

ASAS

App App

Figure 1. Reference Model of Distributed Sys-
tem Architecture

vices are services with an electronic interface, such as web
services or J2EE or .NET components. Containers host ap-
plication services and are responsible for managing the un-
derlying resource services for communication, transactions,
security and so forth. Networks provide communication be-
tween services and storage can implement persistence for
containers.

All SLAng SLAs include: An end-point description of
the contractors (e.g., information on customer/provider lo-
cation and facilities); contractual statements (e.g., start date
and duration of the agreement); and Service Level Specifi-
cations (SLSs), i.e. the technical QoS description and the
associated metrics.

SLAng defines six different types of SLA, correspond-
ing to service usages present in the model. These are di-
vided into Vertical SLAs, in which the a service provides
technical support for the client, and Horizontal SLAs, in
which the client subcontracts part of the functionality of a
service to a service of the same type. The hierarchical struc-
ture of SLAng’s syntax subdivides the SLS terms into SLA-
type specific groups. The terms are further subdivided into
client, provider and mutual responsibility clauses.

The Vertical SLAs are Hosting (between service
provider and host),Persistence(between a host and stor-
age service provider) andCommunication(between appli-
cation or host and Internet service providers). The Horizon-
tal SLAs areASP(between an application or service and
ASP), Container (between container providers) andNet-
working(between network providers).

The SLAng syntax is defined using XML Schema. The
choice of XML as a basis for the language reflects the pop-
ularity of XML in the domain of distributed systems. In
particular XML documents are frequently used to provide
service meta-data [23, 14] and deployment descriptors [20].
By adopting XML as a basis for SLAng we seek to ease

2



the integration of QoS adaption and negotiation technolo-
gies depending on SLAng statements with existing Internet
service technologies.

3 SLAng Semantics

A formal semantic definition for SLAng has at least the
following advantages:

1. Ambiguity concerning the meaning of the SLA is lim-
ited to disagreements concerning correspondence be-
tween semantic elements and the real world. Since
the semantic elements are more specific than the cor-
responding language elements, ambiguity is reduced
overall.

2. The implications of the semantic definition can be
tested and refined by generating SLAs and assessing
whether the semantics are reasonable.

3. The semantic definition forms an objective basis for
definitions of relationships between SLAs, in particu-
lar matching desired service levels to offered service
levels as required for inter-service composition.

4. The semantic definition provides a reference for ser-
vice implementations that must conform to SLAng
SLAs.

3.1 Approach

The approach taken to formalising SLAng adapts the ap-
proach of the precise UML group to formalising UML [3]:

1. The language itself is modelled in UML. This creates
a meta-model, or abstract syntax. Statements in the
language can be regarded as instances of this model.
UML is based on a defined abstract syntax, which
serves as a point of attachment for semantic descrip-
tions, meta-data interfaces and notations. In the case
of SLAng, the XML schema provides the primary def-
inition of the language. It was therefore necessary to
manually translate this into UML. Figure 2 shows the
abstract syntax for ASP SLAs. It reflects the hierar-
chical structure of the XML schema for SLAng, with
the top level defining the type of the SLA and separate
clauses for provider and client responsibilities (there
are no mutual responsibilities in this example).

2. The parties and services involved in the agreement are
modelled. In the case of SLAng, the informal refer-
ence model provided a starting point. This was trans-
lated into UML and refined. Figure 3 shows the refined
reference model for application service provision. Ad-
ditional concepts are introduced to support the defini-
tion of semantics for terms in SLAng. For example, an

ASP SLA can specify the types of backup and mon-
itoring solution used. BackupSolution and Monitor-
ingSolution are introduced to allow the assertion that
the solutions used in the real world must correspond to
those specified in the SLA.

Defining the type of software used for backup and
monitoring may seem to contribute little to the princi-
ple goal of ensuring QoS for distributed applications.
However, the industrial requirements on which SLAng
is based indicated that clients frequently required this.
The capacity to formalise clearly such apparently in-
formal constraints is a significant benefit of the ap-
proach taken.

3. The behaviour of the parties and services involved in
the agreement is modelled, using the reference model
as a basis. Figure 4 shows the behaviour of applica-
tion services and their clients. The primary interaction
in this case is the ServiceUsage, an interval of time
during which the client is invoking an operation of the
service. Operations are abstract capabilities of the ser-
vice that can be used. The client must be able to detect
the beginning of the usage and its successful comple-
tion. Also, if the usage appears to have completed, the
client can detect whether a failure occurred.

4. The language model is related to the elements that the
SLAs are intended to constrain. This can be seen in
Figure 2, where the classes ApplicationService, Oper-
ation, ServiceClient, BackupSolution and Monitoring-
Solution are reference model elements, associated with
the relevant clauses in the language model.

5. The semantics of SLAng are defined by the constraints
imposed on the behavioural model by the presence of
SLA elements. These are expressed using OCL con-
straints defined in the context of the SLA clauses. The
SLA is associated with a service and service client, so
the constraints can refer to these entities and place con-
ditions upon them. For readability, the constraints are
also expressed in natural language.

The complete set of constraints defining the meaning of
the ASP SLA are documented in [18].

3.2 Example

We now present the OCL definition of the constraint used
to define the meaning of maximum latency and reliability.

Reliability in the ASP SLA is defined in terms of failed
or overdue usages of the system. Each failure gives the
client leave to assume an interval of service outage equiva-
lent to the inter-invocation time if they were using the ser-
vice at the maximum allowable rate. This is because if the

3



ASPSLA

+serviceId : String

MonitoringClause

+solutionName[0..1] : String

+reportFrequency : double

+reportingOnDemand : boolean

ClientPerformanceClause

+name : String

+maximumThroughput : doubleClientResponsibilities

ApplicationServiceClient

+name : String

ServerResponsibilities

ServerPerformanceClause

+name : String

+maximumLatency[0..1] : double

+reliability[0..1] : double

+maxTimeToRepair[0..1] : double

BackupClause

+solutionName : String

+completeBackupInterval : double

+incrementalBackupInterval[0..1] : double

+backupEncryption[0..1] : boolean

+individualClientBackup[0..1] : boolean

Operation

+name : String

ScheduledClause

SLA

+startDate : double

+duration : double

+sLSId : String

ApplicationService

DataType

+name : String

1..*

0..*

0..*

1..*

0..1

0..* 0..*

0..*

0..*

+accessOperation

0..*

0..*

+accessOperation

0..*0..*

1..*

0..*

0..*

0..*0..*

Schedule

+name : String

+startDate : double

+duration : double

+period : double

+endDate : double
0..*1..*

Party

0..*

+client

0..*

+server

0..*0..*

+server +client

0..*1..*

1..*

0..*

0..* 0..*

0..*

0..* 0..*

0..1

0..*

0..*

0..*

1..*

0..*

0..*0..*

0..*

0..*

+accessOperation

+accessOperation

Figure 2. Abstract Syntax of SLAng

PartyAssetApplication

Operation

+name : String

ApplicationServiceClient

+name : String

BackupSolution

+name : String

DataType

+name : String

MonitoringSolution

+name : String

ApplicationService

0..* +owner

1..* 0..*

0..*1..*

0..* 1..*

1..*1..*

1..*

0..*

0..* +owner

1..* 0..*

1..* 0..*

1..*0..*

1..*1..*

0..*

1..*

Figure 3. Refined reference model for application service provision

client does not use the service then they cannot reasonably
claim that it is unavailable, and we do not assume that the
provider can be trusted to report their own outages honestly
(neither can the client necessarily be trusted – a trusted third
party could poll the service instead, with the same definition
of reliability being required). The maximum allowable rate

is the strictest client performance clause applying at the mo-
ment the failed operation is invoked.

Server and client performance clauses in the SLA are
associated with schedules. A schedule defines when the
clause applies, by specifying a start date, an end date, a
duration and a period. The clause applies repeatedly, last-

4



BackupAccessOperation

Backup

+incremental : boolean

+dataTypes[1..*] : String

+encrypted : boolean

+individual : boolean

Interval

+duration : double

Log ServiceUsage

+failed : Boolean

Operation

+name : String

LogAccessOperationMonitoringSolution

+name : String

ApplicationServiceClient

+name : String

StoredData DataLoss

DataType

+name : String

0..*

0..*

0..* 0..*

0..*0..*

0..*

0..* 0..*

+for 0..*

1..*

0..*

+owner
0..*

1..*

+created

0..1

0..*0..1

+deleted

0..*

+lost

1..*

+recovered

0..*

0..*

0..*

0..1

+created

0..*0..*

0..*

+recovered

1..*

0..*

0..*

0..*

0..*

0..*

0..*

Event

+date : double

BackupSolution

+name : String

0..*0..*

Figure 4. Behavioural model for application service provision

ing for the duration, then becoming inactive until the period
is complete. Multiple schedules can be associated with a
clause to allow the specification of complex timing, with
the interpretation that the clause applies when any one of its
schedules apply. For example, five schedules with durations
of 8 hours, periods of 1 week and start dates offset by 1 day
can be combined to specify the composite schedule ‘every
working day’.

The following OCL definitions rely on the models pre-
sented in Figures 2, 3 and 4. Each is defined in the context
of the class ServerPerformanceClause in Figure 2, meaning
that the constraints apply to all instances of that class, i.e.
all server performance clauses in the real world. The op-
erations and usages associated with the clause are referred
to in the constraints by navigating across the associations
present in the UML models, using the dot operator (.) and
the name of the opposite association end, usually the name
of the associated class with a lower-case first character. At-
tribute values and OCL operations are referred to using the
same syntax. OCL operations are side-effect free operations
defined in the context of classes, and we have used them to
decompose complex constraints. By convention we have
omitted their signatures from the operations compartment
of our diagrams.

Reliability constraint: Proportion of downtime observed
to total time that the clause applies must not be greater

than the percentage of permitted failures (1 - the reliability).

contextServerPerformanceClauseinv:
self.operation→forAll(o |
totalDowntime(o)< (applicationTime? (1 - reliability)))

The following additional OCL operations support the
definition of the reliability constraint:

contextServerPerformanceClausedef:
−− Returns the client performance clauses governing the
performance of operation o at time t.
let applicableClientClauses(t : double, o : Operation)=

sla.clientResponsibilities.clientPerformanceClause→select(c|
c.schedule→exists(s| s.applies(t)))

−− An expression for the maximum throughput with which
the client can use an operation at time t, or−1 if there is no limit
let minThroughput(t : double, o : Operation)=

if applicableClientClauses→isEmpty()then−1
elseapplicableClientClauses→iterate(
c : ClientPerformanceClause, minTP : double|
minTP.min(c.maxThroughput))

−− Amount of downtime observed for a failure at time t.
This is 1 / the most restrictive throughput constraint applicable at

5



the time
let downtime(t : double, o : Operation) : double=

if minThroughput(t, o)<= 0 then 0
else1 / minThroughput(t, o)

−− Total amount of downtime observed for the operation
let totalDowntime(o : Operation) : double=
o.serviceUsage→select(u|
(u.failed or u.duration> maximumLatency)and
schedule→exists(s| s.applies(u.date))
)→collect(u| downtime(u.date, o))→iterate(
p : double, sumP : double| sumP+ p)

The constraint also relies on the definition of the fol-
lowing operations: applicationTime, defined in the context
of ScheduledClause the superclass of ServerPerformance-
Clause, which evaluates to the total time for which a Sched-
uledClause is applicable; and applies, defined in the context
of Schedule, which evaluates to true if the schedule applies
at the specified time and date.

The complete set of operations, combined with the con-
straint, defines the effect of the SLA on the environment.
The proportion of failed or overdue service usages may not
exceed1− the specified reliability. The definition is un-
ambiguous and consistent, providing a strong reference for
parties employing SLAs. The semantics also support ac-
tivities related to service composition, as discussed in the
subsequent sections.

4 Inter-service Composition of SLAs

We say that an SLA B iscompatiblewith another A if the
set of allowable behaviours for B is a subset of those for A.
In other words, a system conforming to B would never vio-
late A, and would hence be perfectly acceptable to a client
requiring A.

The notion of compatibility supports inter-service com-
position. One service can require another and express its
requirements using an SLA. Any service that both provides
the required functionality and offers a compatible SLA can
be composed to fulfil the requirements.

Our definition only allows the comparison of fully spec-
ified SLAs. SLAs include restrictions on client behaviours
and it might seem preferable to allow the comparisons of
SLAs with requirements relating only to server behaviour.
However, this would be dangerous due to interactions be-
tween SLA terms. For example, in the definition of reliabil-
ity presented in the previous section there is a relationship
between the invocation rate constraint on the client and the
reliability. Therefore, an SLA offering higher reliability and
a faster rate is still not necessarily compatible with an SLA
with a slower rate, as the absolute number of failures may

be the property of concern for the client, rather than the ab-
solute number of successes.

A possible generalisation of the notion of compatibility
would be the ability to compare an SLA C against another
D where sets of values or ranges were specified for each
parameter in D, with the interpretation that C is compatible
if it is compatible for some specific valuation of D within
the ranges.

One possible procedure for checking if B is compatible
with A is to employ the semantic model as a meta-model.
A could then be associated with the service model and the
constraints of A checked for the set of all behavioural mod-
els acceptable to B (which might be thought of as the set
of all traces of system behaviours). Clearly this approach is
potentially extremely computationally expensive, and un-
workable if the possible behaviours of B are infinite. It
would be preferable to employ a theorem prover to estab-
lish the validity ofB → A whereB is the union of the
constraints in B andA the equivalent for A. Future work
will investigate this approach.

Our definition of compatibility is similar to that ofcon-
formance, defined in relation to the language QML [5],
in which a contract A conforms to another B if its con-
straints arestronger. Each SLA dimension defined for a
contract in QML has a direction indicating an ordering over
values of the metric, with higher values implying stronger
constraints. Conformance of contracts can therefore be as-
sessed by comparing the values of corresponding dimen-
sions in two contracts. In comparison our definition of com-
patibility is hard to check and somewhat inflexible. How-
ever, its basis in the semantic definition of the SLA terms,
rather than on user-defined ordering of metric spaces sug-
gests that the concept offers safer guarantees that require-
ments will be met, particularly in the presence of depen-
dencies between SLA terms as discussed above.

5 QoS Catalogue for SLAng

Reasoning about internal composition of SLAs is a spe-
cial case of QoS prediction, in which some components are
governed by SLAs and the system as a whole will conform
to, or offer an SLA. QoS prediction requires a view of the
system in which the effect of the components on the quality
attributes are known. It may also require sophisticated anal-
ysis to determine the emergent QoS values. UML poten-
tially offers such a view. It can represent the logical struc-
ture, deployment and behaviour of a service. It can also
be extended using profiles to enable the description of QoS
properties. In this section we describe how SLAng SLAs
may be modelled using UML, and how their semantics en-
ables analysis and implementation activities.

A profile is a semantic extension for UML allowing it to
naturally model domains of interest [12]. It is common to

6



<<QoSCharacteristic>>

ApplicationServiceBackupQoS

+backupSolutionName : String

+completeBackupInterval : double

+incrementalBackupInterval : double

+dataTypes[1..*] : String

+backupEncryption[0..1] : boolean

+individualClientBackup[0..1] : boolean

<<QoSCharacteristic>>

OperationQoS

+maximumLatency : double

+reliability : double

+maxTimeToRepair : double

Schedule

+startDate : double

+endDate : double

+period : double

+duration : double<<QoSCharacteristic>>

ApplicationServiceMonitoringQoS

+monitoringSolutionName : String

+reportFrequency : double

+reportingOnDemand : double

<<QoSCharacteristic>>

ClientPerfomance

+maximumThroughput : double

<<QoSCharacteristic>>

ASPSLA

Figure 5. ASP QoS Characteristics for SLAng catalogue

define the semantics of a profile with reference to a domain
model [4]. The interpretation is that elements in the UML
model labelled with stereotypes correspond to instances of
the domain model. The Object Management Group (OMG)
has standardise profiles for particular application areas. Us-
ing standard profiles ensures reusability for models, and for
tools that operate on annotated model data.

The QoS profile [8] is currently a proposed standard. It
allows the modelling of QoS characteristics as classes, and
QoS values as instances of these classes. QoS values can be
associated with other model elements to indicate behaviour
or requirements. The proposal compensates by providing
a catalogue of QoS characteristics with informally defined
semantics.

Rather than define a new profile to represent services and
SLAs we have reused the QoS profile by defining a QoS cat-
alogue for SLAng. Figure 5 shows the SLAng catalogue for
ASP SLAs. The SLA terms are defined as QoS character-
istics and therefore inherit the definitions provided by the
semantic model, analogously to defining a profile directly
according to a domain model.

The QoS profile allows corresponding QoS values to be
attached to messages in a UML 2 communication diagram
using one of three stereotypes: QoSContract, QoSRequired
and QoSOffered. In all cases we state that the recipient of
the message corresponds to the service associated with the
SLA in the semantic model, and the sender corresponds to
the service client. These elements are assumed to behave
in accordance with the SLA terms. Where QoSOffered is
defined together with QoSRequired or QoSContract there
is the opportunity for a tool to check the compatibility of
SLAs according to the compatibility criteria defined in the
previous section.

Figure 6 shows an example model including a SLAng

ASP contract governing the interaction between a client and
an online auction service. Constraints on the bidding oper-
ation are shown.

The ability to represent SLAs in UML is a necessary
but insufficient condition to enable reasoning about QoS
properties. It is also necessary to represent the impact of
system components not directly governed by SLAs, and in
some cases to support an analysis method for determining
the emergent characteristics of the system. The ‘Profile for
Schedulability, Performance and Real-Time Specification’
(henceforth ‘real-time profile’) [11] provides these facili-
ties for systems in which performance is an issue and re-
source utilisation and scheduling have the greatest perfor-
mance impact. It supports the derivation of models such as
queuing networks or Petri nets. Other efforts are underway
to extend UML to describe reliability properties [16].

[8] shows how QoS characteristics can be defined using
the domain model of the real-time profile, allowing direct
analysis. Because we use an alternative semantic model
this approach is not directly available to us. However, it
is perfectly possible to use our QoS characteristics simul-
taneously with real-time profile annotations with the inter-
pretation that the real-time measures are an approximation
of the service levels (future work will consider how this can
be formalised). This provides a complete picture of the be-
haviour of the system in terms of performance, including
SLA terms and sufficiently detailed to permit analysis.

UML is the design language of choice when adopting a
Model Driven Architecture (MDA) [4] development strat-
egy. In this methodology models of business knowledge
are maintained separately from technical models and arti-
facts, enhancing their reusability across multiple platforms.
Model transformation is a key technology in the MDA, used
to deploy business knowledge automatically in new techni-

7



:ApplicationServiceMonitoringQoS:ApplicationServiceBackupQoS

sd ASP Example

 :Customer  :AuctionService

1: Bid

 :ASPSLA

<< QoSValue >>

<<QoScontract>>

<<QoSValue>>

 

backupSolutionName = "TAR"
completeBackupInterval = 1 day
incrementalBackupInterval = 1 hour
dataTypes = {"users", "bids"}

<<QoScontract>>

<<QoSValue>>

 

monitoringSolutionName = "webstats"
reportFrequence = 1 day
reportingOnDemand = false

<<QoSValue>>

 :OperationQoS

maximumLatency = 0.5 sec
reliability = 0.995
maxTimeToRepair = 5 min

<<QoScontract>>

 

<<QoSValue>>

:ClientPerformance

maximumThrouput = 10 /s

<<QoScontract>>

Figure 6. Example communication diagram including SLAng QoS values

cal domains. Transformations rely on the semantics of both
source and target domains. By providing a rich semantic
and representation for SLA-aware systems our QoS cata-
logue potentially serves as a starting point for implemen-
tations of such systems, according to MDA principles and
benefiting from model transformations. Moreover, in [17]
we show how MDA techniques can be used to enable au-
tomatic analysis, giving an example in which performance
analysis proceeds from designs expressed using the real-
time profile. The SLAng semantics therefore provides a
reference for both analysis and implementation efforts re-
lating to internal composition of SLAs.

6 Related Work

Our approach to defining the semantics of SLAng is de-
rived from the work of the Precise UML group, who define
an abstract syntax for UML and lend it semantics by associ-
ating a semantic domain. Our contribution to the approach
is to demonstrate its application at a high level of abstrac-
tion, and including sophisticated quantitative properties. In
this section we compare the semantic definition of SLAng
to that offered by other SLA languages. We also briefly de-
scribe features of other languages lacking in SLAng, and
their potential impact on the semantic definition.

The QuA project adopts the most rigorous approach to
defining the semantics of QoS properties [19], although to
our knowledge they have yet to define a concrete syntax
for representing SLAs. According to their model, all QoS
properties are related to the performance of a service, which
supplies a set of operations. Input and output messages are
causally related by operation invocations. Output messages

are characterised by a set of variables. A set of error func-
tions are defined over the difference vector between an ob-
served output trace for a particular input trace, and the ideal
trace as it would be observed were the service deployed on
infinitely fast equipment operating without error. SLAs are
defined using constraints on the values of error functions.

It is possible to see correspondences between our seman-
tics and the QuA approach. In our case the service model
defines the information available concerning service opera-
tion, and the OCL constraints provide a concrete represen-
tation of the error functions. Features of our semantics not
obvious in the QuA approach are constraints independent
of a service model assumption, such as the constraint that
the service provider must be capable of providing the mon-
itoring solution specified in an ASP SLA, and the ability to
constrain client behaviour (in QuA terms, the input trace).

QML[5]defines a type system for SLAs, allowing the
user to define their own dimension types. Whilst this makes
the language highly extensible the meaning of the individual
metrics in the context of the system is not formally estab-
lished. Since exchange of SLAs between parties requires
a common understanding of such metrics, this can be re-
garded as a serious deficit. QML does define a rigorous
semantic for both its type system and its notion of SLA con-
formance however.

QML and WSOL [22] both provide type systems for
SLAs, allowing the same SLA to be described in abstract
and also instantiated with specific values. This provides
more guidance to developers of new SLAs than our use
of XML schemas. Because SLAs require common under-
standing of terms between parties, it is to be hoped that new
types of SLA will be defined only infrequently. However,

8



the generalisation relationships between SLAs are poten-
tially helpful in structuring a family of SLA types. WSOL
provides additional reuse facilities [15], including template
instantiation and reuse of definitions.

WSOL [21] and UniFrame [2] SLA specifications both
rely on the specification of measurements in external on-
tologies. These ontologies are structured natural language
descriptions of measurements, including advice on how
they should be taken and their interdependencies.

WSLA [6] is another XML based web services SLA lan-
guage. All measurements are assumed to be provided by
a web service encapsulating monitors. No constraints are
placed on the implementation of such monitors, so a com-
mon understanding of their role remains external to the def-
inition of the language.

WSLA provides the ability to create new metrics de-
fined as functions over existing metrics. This is useful to
formalise requirements expressed in terms of multiple QoS
characteristics, without impacting on notions of compatibil-
ity of SLAs. The semantic for expressions over metrics is
not formally defined, but no barrier prevents such a defini-
tion.

WSLA is an XML language, structured in such a way
that monitoring clauses can be separated from contractual
terms for distribution to a third party. We are interested
in supporting third party monitoring schemes with SLAng.
Precisely how such schemes will work will require careful
modelling to inform the design of the metrics. However,
this principle of syntactic separation is clearly useful.

WSOL provides an additional syntax to interrelate ser-
vice offerings. Relationships indicate substitutability of
SLAs in the event of a violation. Such facilities are clearly
useful for a language

WSOL and WSLA allow the definition of manage-
ment information, including financial terms associated with
SLAs. These are not presented with a defined semantic (al-
though WSOL claims the need for financial ontologies), but
are clearly a desirable feature of SLA languages lacking in
SLAng. Both languages also define management actions,
including notifications in the event of SLA violations.

The CORBA Trading Object Service [9] allows the ad-
vertisement and selection of services offers based on con-
straints over typed properties. These properties can include
QoS specifications, and generally can take any IDL type.
Their semantics is not formally defined; neither are external
ontologies specified. It is therefore up to the trader and its
clients to agree an interpretation for the properties.

QuO [1] is a CORBA specific framework for QoS adap-
tion based on proxies. It includes a quality description lan-
guage used for describing QoS states, adaptations and no-
tifications. Properties in the language are defined to be the
result of invoking instrumentation methods on remote ob-
jects. Like WSLA, no formal constraints are placed on the

implementation of these methods.

7 Conclusions

We have presented the approach taken to defining the se-
mantics of SLAng. The advantages of the semantic are to
reduce the ambiguity of the language, improve its consis-
tency and to support SLA composition. The model forms
the basis for a common understanding of SLA terms be-
tween parties to an SLA, reducing the risk of outsourcing
functionality to other organisations, and providing an unam-
biguous reference for negotiation and arbitration of agree-
ments. These facilities are vital to the emerging Internet
service business model.

We have introduced the concepts of inter- and intra- ser-
vice composition of SLAs. Inter-service composition is
supported by the notion of compatibility of SLAs, defined
as a relationship between possible service behaviours ac-
cording to the SLAng semantics. Intra-service composition
relies on the semantics to provide meaning for models of
services in UML diagrams, supporting analysis and imple-
mentation activities.2

8 Future Work

SLAng is an evolving language. The related work sec-
tion highlights desirable features of previous SLA lan-
guages that SLAng could benefit from incorporating. These
include: Payments related to service violations; reuse fea-
tures, including SLA templates, clause reuse and generali-
sation hierarchies; the specification of management actions,
performed in response to QoS state changes or SLA vio-
lations; the ability to define new parameter types in terms
of existing types; the ability to distribute clauses to third
parties without exposing sensitive details of the client and
server; and the ability to define dynamic relationships be-
tween service levels, effectively defining the permissible
states for a system capable of adapting its QoS behaviour.

These features would enhance the utility and usability
of the language without modifying the semantic definition
of the underlying parameters, although potentially requiring
extensions to the existing semantics. Additional work will
further realise the value of the semantic definition: By au-
tomating consistency checking of SLAs; by implementing
application monitors that rely on the definition of SLAs to
assess conformance to SLAng terms; by defining additional
relationships between SLAs, and automating their compar-
ison; and by investigating methodologies and designs for
systems governed by SLAng SLAs.

2Thanks to Vladimir Tosic and Richard Staehli for guidance to related
work.

9



References

[1] Specifying and measuring quality of service in distributed
object systems. In1st International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 43 – 52,
Kyoto, Japan, April 1998. IEEE Press.

[2] G. Brahnmath, R. R. Raje, A. Olson, M. Auguston, B. R.
Bryant, and C. C. Burt. A quality of service catalogue
for software components. InSoutheastern Software Engi-
neering Conference, pages 513 – 520, Huntsville, Alabama,
USA, April 2002.

[3] A. S. Evans and S. Kent. Meta-modelling semantics of uml:
the puml approach. In2nd International Conference on the
Unified Modeling Language, volume 1723 ofLecture Notes
in Computer Science (LNCS), pages 140 – 155. Springer-
Verlag, 1999.

[4] D. Frankel. Model Driven Architecture - Applying MDA to
Enterprise Computing. OMG Press. Wiley Publishing, Inc.,
2003.

[5] S. Frolund and J. Koistinen. Qml: A language for quality
of service specification. Technical Report TR-98-10, Palo
Alto, California, USA, 1998.

[6] International Business Machines (IBM), Inc.Web Service
Level Agreement (WSLA) Language Specification, January
2003.

[7] D. D. Lamanna, J. Skene, and W. Emmerich. Specification
language for service level agreements. Technical Report D2,
University College London, March 2003.

[8] The Object Management Group (OMG).Joint Submisison
to the QoS for Fault Tolerance RFP, I-Logix, Open-IT, and
THALES, realtime/03-08-06 edition.

[9] The Object Management Group (OMG).The CORBA Trad-
ing Service, formal-97-04-01 edition, May 1997.

[10] The Object Management Group (OMG).UML 2.0 OCL 2nd
revised submission, ad/03-01-07 edition, January 2003.

[11] The Object Management Group (OMG).UML Profile for
Schedulability, Performance and Real-time Specification,
Final Draft, ptc/03-03-02 edition, March 2003.

[12] The Object Management Group (OMG).The Unified Mod-
elling Language v1.5, formal/2003-03-01 edition, March
2003.

[13] M. Oleneva and W. Beckmann. Application hosting re-
quirements. Technical Report D1, Adesso AG, Dortmund,
September 2002.

[14] Organization for the Advancement of Structured Informa-
tion Standards (OASIS).Universal Description Discovery
and Integration (UDDI), July 2002.

[15] B. Pagurek, V. Tosic, and K. Patel. Reusability constructs
in the web service offerings language (wsol). InWork-
shop on Web Services, e-Business, and the Semantic Web ’03
(CAiSE-WES), Lecture Notes in Computer Science (LNCS),
Velden, Austria, June 2003. Springer-Verlag.

[16] G. N. Rodriguez, G. Roberts, W. Emmerich, and J. Skene.
Reliability support for the model driven architecture. In
Workshop on Software Architectures for Dependable Sys-
tems (ICSE-WADS), to appear, Portland, Oregon, USA,
May 2003. ACM Press.

[17] J. Skene and W. Emmerich. A model-driven approach to
non-functional analysis of software architectures. In18th
IEEE Conference on Automated Software Engineering, to
appear, Montreal, Canada, October 2003.

[18] J. Skene and D. D. Lamanna. Semantics of slang asp slas.
[19] R. Staehli, F. Eliassen, J. O. Aagedal, and G. Blair. Quality

of service semantics for component-based systems. In2nd
International Conference on Reflective and Adaptive Mid-
dleware Systems - Middleware 2003, volume 2672 ofLec-
ture Notes in Computer Science (LNCS), pages 153 – 157.
Springer-Verlag, June 2003.

[20] Sun Microsystems, Inc.Enterprise Java-Beans (EJB) Spec-
ification v2.0, August 2001.

[21] V. Tosic, B. Esfandiari, B. Pagurek, and K. Patel. On re-
quirements for ontologies in management of web services.
In Workshop on Web Services, e-Business, and the Seman-
tic Web ’02 (CAiSE-WES), volume 2512 ofLecture Notes
in Computer Science (LNCS), pages 237 – 247, Toronto,
Canada, May 2002. Springer-Verlag.

[22] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma.
Management applications of the web service offerings lan-
guage (wsol). In15th International Conference on Ad-
vanced Information Systems Engineering (CAiSE), volume
2681 ofLecture Notes in Computer Science (LNCS), pages
468 – 484, Velden, Austria, June 2003. Springer-Verlag.

[23] The World Wide Web Consortium (W3C).Web Services
Description Language (WSDL) 1.1.

10


