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Abstract 
An important emerging requirement for computing sys-

tems is the ability to adapt at run time, taking advantage of 
local computing devices, and coping with dynamically 
changing resources.  Three specific technical challenges in 
satisfying this requirement are to (1) select an appropriate 
set of applications or services to carry out a user’s task, (2) 
allocate (possibly scarce) resources among those applica-
tions, and (3) reconfigure the applications or resource as-
signments if the situation changes. In this paper we show 
how to provide a shared infrastructure that automates con-
figuration decisions given a specification of the user’s task.  
The heart of the approach is an analytical model and an 
efficient algorithm that can be used at run time to make 
near-optimal (re)configuration decisions.  We validate this 
approach both analytically and by applying it to a 
representative scenario. 

Keywords: Ubiquitous computing, resource-aware, multi-
fidelity applications, service composition, resource alloca-
tion. 

1. INTRODUCTION 
Despite steady increases in computing resources, such as 

processing power, network bandwidth, and battery capaci-
tance, applications’ demand for these resources continues to 
grow and exceed supply.  The problem is exacerbated in 
ubiquitous environments such as automobiles, coffee shops, 
and airport kiosks, where availability of resources is both 
limited and changing.  

In response, we are beginning to see a new class of 
applications that are engineered to be “resource-aware” and 
“multi-fidelity” [11][16].  Such applications typically pro-
vide varying qualities of service depending on the resources 
available to them. For example, some video players can be 
configured to play at reduced frame rates in situations where 
bandwidth is limited. 

While the creation of such applications is a necessary 
first step, it does not completely solve the problem. The 
main issue is that while resource-aware applications can 
work well in isolation, user tasks often encompass more than 
one activity, requiring resources to be allocated among sev-
eral applications.  For example, the task of writing a review 
for a documentary clip may require a video player, a text 
editor, and possibly a browser for searching the web for re-
lated information.  Decisions on resource allocation made 
independently by each application may not yield an optimal 
composite solution. 

This problem is further complicated by the availability of 
alternative ways to realize the same task in a given environ-

ment.  On a typical system, video playback is possible using 
applications such as Windows Media, RealOne, and Quick-
Time.  Combined with several possible text editors and web 
browsers, the task of writing a clip review can be supported 
by a large number of different application bundles.  Thus the 
problem of configuration involves both the selection of ap-
plications as well as allocation of resources. 

One obvious, but deficient, way to solve the configura-
tion problem is to have the user manually configure the sys-
tem.  Unfortunately, while a user may know what he wants, 
he may not know how to realize it in a particular environ-
ment.  Requiring a user to understand the low-level details of 
a potentially unfamiliar computing environment, including 
available resource levels and available applications, config-
uring the applications, and adapting to changes in the envi-
ronment is clearly unreasonable. 

In this paper we show how to partially automate system 
configuration for resource-aware applications.  The key idea 
is to provide a system infrastructure independent of, and 
external to, applications [20].  Such infrastructure makes 
dynamic configuration decisions based on inputs describing 
users’ quality of service requirements, resource and service 
availability, and application fidelity as a function of assigned 
resources. The heart of this infrastructure is an analytical 
model, and associated algorithm, that provides efficient, 
near-optimal configuration decisions. 

To achieve the goal of partially automated configuration, 
the model separates concerns into three spaces: user utility, 
application capability, and computing resources; and two 
mappings.  A mapping from capability space to utility space 
expresses the user’s needs and preferences.  A mapping from 
capability space to resource space expresses the fidelity pro-
files of available applications.  Available resource levels are 
provided by the system, and constrain the configuration 
space to a feasible region.  Configuring the system formally 
reduces to finding a point in the capability space that (1) 
maximizes user utility, and (2) satisfies the resource con-
straints.  As we will show, this point identifies which appli-
cations to run, and its projection into the capability sub-
space of each application identifies the quality level for that 
application.  Furthermore, it identifies when it is feasible, 
and desirable, to perform reconfiguration decisions, based on 
explicit modeling of the cost to make a change. 

The rest of the paper is structured as follows.  Section 2 
surveys related work and highlights the novelty of this work.  
Section 3 defines the main requirements for automatic con-
figuration, enumerates the expected Software Engineering 
benefits, and presents our approach.  The mathematical for-
mulation of the model and the expression of the underlying 
optimization problem are presented in Section 4.  Section 5 
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presents an algorithm for the search problem, and analyzes 
its running time and scalability. Section 6 illustrates the ap-
plication of our approach to a representative scenario.  Sec-
tion 7 presents an evaluation of our approach, highlights the 
contributions, discusses software engineering benefits, and 
enumerates related research that is out of scope of this paper. 

2. RELATED WORK 
Our work leverages multi-fidelity and resource-aware 

application research such as Odyssey and Puppeteer 
[5][6][11][16], but tackles the new problem of multi-
component integration, configuration, and reconfiguration.  
Although somewhat related, this kind of automatic configu-
ration is distinct from the automatic configuration being 
investigated in other research [13].  There, configuration is 
taken in the sense of building and installing new applica-
tions into an environment, whereas here, it is taken in the 
sense of selecting and controlling applications so that the 
user can go about his tasks with minimal disruption.  Further, 
our work builds on service location [18] and discovery pro-
tocols and systems [9]. 

Resource scheduling [10], resource allocation [12][15] 
and admission control have been extensively addressed in 
research. Odyssey [15] addresses simultaneous adaptation of 
fidelity-aware applications, but it lacks a notion of task-wide 
user preferences. From analytical point of view, closest to 
our work are Q-RAM [12], a resource reservation and ad-
mission control system maximizing the utility of a multime-
dia server based on preferences of simultaneously connected 
clients; Knapsack algorithms [17]; and winner determination 
in combinatorial auctions.  In our work, we handle the addi-
tional problems of selecting applications among alternatives, 
and accounting for cost of change.  

Dynamic resolution of resource allocation policy con-
flicts involving multiple mobile users is addressed in [2] 
using sealed bid auctions.  While our work shares utility-
theoretic concepts with [2], the problem solved in our work 
is different.  In that work, the objective is to select among a 
handful of policies so as to maximize an objective function 
of multiple users.  In our work, the objective is to choose 
among possibly thousands of configurations so as to maxi-
mize the objective function of one user.  As such, our work 
has no game-theoretic aspects, but faces a harder computa-
tional problem.  Furthermore, our work takes into account 
tasks that users wish to perform. 

Rascal [8] defines resources as physical devices in a 
smart room, and configures resources by managing connec-
tions, interdependence of devices, wiring, and allocates re-
sources among competing applications using coarse-grained 
utility.  In our work, resources are CPU cycles, network 
bandwidth, memory, and our notion of utility is much more 
fine-grained. 

Reducing user disruption in everyday computing is the 
broad goal of Project Aura [7].  The work herein focuses on 
the formal underpinnings of the mechanisms for the auto-
matic configuration of the computing environment around a 
user.  Such mechanisms are used in the middleware infra-

structure supporting task-oriented, distraction-free computa-
tion in Project Aura. 

3. APPROACH 
In this section we define the configuration problem, pose 

specific technical challenges that need to be solved to pro-
vide automatic configuration, and describe our approach. 

3.1 Terminology 
We adopt the following, reasonably well-established ter-

minology in approaching a solution to the problem [19]. The 
set of devices, applications, and resources that are accessible 
to a user at a particular location constitutes the computing 
environment for the user.  Applications (and devices) in an 
environment provide services, such as video playing, text 
editing, web browsing.  In a given environment there may be 
many applications, or suppliers, that can provide the same 
service.  The richer the environment, the more suppliers are 
likely available for a particular service. 

Users carry out tasks, such as reviewing a video, plan-
ning a vacation, or selling a house.  Each task typically re-
quires the use of multiple services.  Today’ s systems provide 
only weak support for such tasks, and users typically have to 
manually configure the environments, by finding, directly 
invoking, closing, and switching between specific suppliers 
for the desired services. 

Applications consume resources (such as computing cy-
cles, network bandwidth, and battery power) in providing 
their services. In many environments (for instance, when the 
user only has a portable device available) resources are 
scarce.  Furthermore, resource levels may change while a 
user is carrying out a given task.  For example, bandwidth 
may vary over time in shared network environments, such as 
a shared DSL line at a coffee shop, or a wireless LAN on a 
university campus. 

To provide an acceptable level of service despite the 
scarcity of resources, applications (often termed “ multi-
fidelity”  or “ resource-aware” ) are designed to reduce the 
quality of operation (e.g., exclude or reduce rich media from 
web-pages, reduce accuracy of speech recognition), and as a 
result consume less resources [6][11][16]. Such applications 
offer quality and resource tradeoffs to users. The following is 
a small subset of fidelity-aware applications: (1) media play-
ers such as Windows Media Player, RealOne Player, Quick-
Time, (2) browsers such as Internet Explorer, Netscape , 
Opera, (3) speech recognition software such as Janus, Pan-
GlossLite, or the Microsoft Speech API. 

3.2 The Challenge 
The principal goal of our approach is to reduce user dis-

tractions with the problem of configuration and reconfigura-
tion of computing environments.  With that in mind, we 
would like to allow a user to specify what he wants, on a per-
task basis, in terms of the services and their observable 
qualities, and then to automatically determine how to realize 
that in a changing environment.  To meet this goal, a solution 
must address several key requirements. 
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R1. Provide a representation of user needs and prefer-
ences that is expressive, efficient, and automatically proc-
essable. 

To automate configuration, the infrastructure needs to 
have sufficient input about the user’ s needs.  What services 
are needed for the task?  Given alternative suppliers of a 
service, which one should be chosen?  What are the pre-
ferred tradeoffs between the quality dimensions, e.g. if the 
bandwidth drops, which dimension of quality should be re-
duced?  The system should be able to determine answers to 
all these questions based on a specification of the user’ s task.  
Such specification should be efficiently represented.  For 
example, enumerating a user’ s evaluation of each possible 
environment configuration state is infeasible, as that state 
may be rather large. 

In the present work, we focus on the formalism to repre-
sent user needs and preferences, and on the mechanisms to 
exploit such representation for automatically configuring 
environments, rather than on the mechanisms to elicit those 
needs and preferences.  The later is an important research 
topic in Human-Computer Interaction, and will be better 
addressed after the form and substance of the information 
required for supporting the automatic configuration of envi-
ronments is well established. 

R2.  Provide a representation of the capabilities of an 
application, including the services it provides and the rela-
tionship between the quality levels it supports and the re-
source levels it demands. 

While a specification of the user’ s task is needed to com-
pute how good a given configuration is, in order to deter-
mine possible configurations of the environment, a well-
specified description of the environment is necessary.  What 
are the available suppliers?  What quality and resource 
tradeoffs do the suppliers offer? 

R3.  Provide an efficient algorithm for computing a 
near-optimal configuration of applications and quality lev-
els, given a specification of the user’ s task, and a specifica-
tion of the current environment. 

To determine the best possible match between user’ s 
needs and environment capabilities at run time, an efficient 
algorithm is needed to find that match.  Ideally, the algo-
rithm will employ provably correct strategies to find an op-
timal, or near-optimal, solution from the user’ s point of 
view, avoiding an exhaustive search of the space, which may 
be very large. 

R4.  Provide a mechanism to minimize disruption to the 
user resulting from changes in the environment, or in user 
intent. 

As resources and supplier availability change over time, 
an instantiated configuration may become either infeasible or 
sub-optimal.  Thus, the infrastructure should have mecha-
nisms to adapt the configuration.  In making such adapta-
tions, it is desirable to reduce unnecessary disruption to the 
user.   

Additionally, should the user’ s task require an additional 
service, disbanding a running service, or adjusting the user 
preferences for a running service, the infrastructure should 

be able to handle changes gracefully, in an incremental fash-
ion.   

3.3 Software Engineering Benefits 
As argued above, an automatic mechanism for the dy-

namic configuration of computing environments is needed to 
(a) find optimal solutions in a potentially large space from 
the point of view of the user, that is, in a utility-theoretic 
sense; and (b) reduce the user’ s disruption in configuring 
those environments for supporting his tasks. 

Additionally, we would expect a good solution to provide 
engineering benefits for application developers, specifically: 

- making it easier to develop resource-adaptive applica-
tions by factoring a number of mechanisms out of the 
applications and into a common infrastructure; 

- making it feasible to improve the overall quality of ser-
vice to the user by using theoretically sound strategies 
for optimizing the configuration and resource allocation 
among all applications involved in a task, rather than 
having to rely on application-centric heuristics; 

3.4 Approach 
Our approach is based on optimizing the match between 

the needs of a user task and the environment capabilities.  In 
practice, finding such a match corresponds to maximizing 
user’ s utility for a specific task.  We express user’ s utility by 
means of preference functions that map from a multidimen-
sional capability space to a uni-dimensional utility space.  
Further, we express concrete capabilities of the suppliers in 
an environment by means of application profiles that specify 
tradeoffs between the capability space and resource space. 

In the following subsections, we elaborate on these con-
cepts and extend on an example, introduced earlier, in which 
the user’ s task is to prepare a review of a documentary 
movie.  Recall that to support this task, the user requests 
three services: video playing, text editing, and browsing. 

3.4.1 Utility Space 
Utility is a measure of user’ s happiness with respect to 

possible outcomes. For the purposes of our paper, the utility 
space provides a formal representation of how useful the 
possible configurations of services in the environment are 
relative to a specific task.  We encode utility in the interval 
[0,1] of the real numbers, where 0 utility corresponds to the 
environment being unacceptable for the task; and 1 corre-
sponds to user satiation, in the sense that increasing the ca-
pabilities of the environment will not improve the user’ s 
perception of usefulness for the specific task. 

3.4.2 Capability Space 
The capability space is the Cartesian product of the QoS 

dimensions for each service, and of an additional dimension 
that captures supplier-specific features.  Specifically, the 
latter indicates the supplier type – for example, for text edit-
ing, possible values would be MS Word, Notepad, Textpad, 
Wordpad, UltraEdit, Emacs, etc.  Supplier type is a compact 
representation for the availability of user-desired features, 
such as automatic spell checking, or sophisticated text for-
matting. 
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Examples of quality of service dimensions are, for video 
playing, frame rate, frame quality, and audio quality; for 
browsing, latency of page loading, and richness of the pages.  
The unit and range of possible values are dimension-specific.  
For example, frame rate is measured in integer frames per 
second and lies in the range from 0 to 30.  The richness of a 
web page is described by the discrete enumeration: {Images, 
No Images}. 

To determine whether a particular aspect of a service is a 
quality dimension, we follow the following criteria: 

- does not depend on choosing a particular supplier, 
- the level can be varied (adapted) at run time, and 
- the resource demand varies with the level of quality. 

Video frame rate satisfies all three.  First, all video play-
ers support the notion of frame rate; second, it can be 
changed dynamically at run time;  and third, higher frame 
rate typically demands more CPU and bandwidth.  On the 
other hand, spell-checking support for text editors is a fea-
ture that is not a quality dimension.  First, although common, 
not all text editors support spell checking.  Second, it would 
be awkward, and probably ineffective, to enable or disable 
spell checking at run time in response to resource variations. 

3.4.3 Resource Space 
The resource space describes the computational re-

sources of the environment.  For the purposes of this paper, 
we consider four types of resources: CPU, memory, battery, 
and network bandwidth.  The resource space is the Cartesian 
product of individual resource dimensions.  Although we 
account for three types of resources, in a particular environ-
ment, the number of resource dimensions can be more than 
three.  For example, if the environment includes two com-
puters, then the CPU of each is accounted for as a separate 
resource dimension.  Further, upstream and downstream 
bandwidth of a particular computer can be accounted as a 
separate resource. 

3.4.4 User Preferences 
User preferences are a collection of functions that evalu-

ate how useful the environment is from the point of view of 
his task.  Formally, they map from the capability space to the 
utility space.  For each point in the capability space, user 
preferences help compute a real-numbered utility value.  The 
capability space is potentially large but structured, and user 
preferences are designed to take advantage of such structure.  
For the purposes of this paper, user preferences capture two 
concepts.  First, QoS preferences express user’ s utility for 
each possible level of service in each individual dimension 
of quality of service (QoS), and tradeoffs among these di-
mensions.  And second, supplier preferences capture which 
specific applications are preferred to supply those services. 

To illustrate supplier preferences, we refer again to the 
example of reviewing a clip.  For taking notes (text editing 
service), the user may prefer MSWord over Notepad or 
Emacs and be unwilling to use the vi editor at all.  Note that 
representing supplier preferences by discriminating the sup-
plier type, e.g. preference of MSWord over Notepad, is a 
compact representation for the preferences with respect to 
the availability of desired features, such as spell checking, 

richness of editing capabilities, and to the user’ s familiarity 
with the way those features are offered. 

As an example of QoS preferences, suppose that the user 
is watching the video over a network link and the bandwidth 
suddenly drops: should the video player reduce the frame 
quality or frame-update rate?  The answer depends on the 
user’ s preference for frame rate and frame quality in the con-
text of the current task.  For a soccer game, the user may 
prefer to preserve the frame-update rate at the expense of 
frame quality; however, if the user is watching a movie, he 
may prefer image quality to be preserved at the expense of 
frame-update rate.  Preferences with respect to tradeoffs such 
as these are represented by indicating the acceptable levels 
for each QoS dimension of the service.  In the example, the 
QoS preferences for the task of watching a soccer game 
would set a high threshold for the acceptable frame updated 
rate, say 25 frames per second, and a low threshold on the 
acceptable image quality, say 20Kbit per frame; whereas for 
the movie, the QoS preferences could set a high threshold for 
image quality, and a low one for frame update rate.  Since 
both QoS dimensions compete for resources, such as band-
width, by swaying the thresholds the user can direct a re-
source-adaptive video player to make different tradeoffs 
upon resource variation. 

To make QoS preferences easier to both process and 
elicit, we make two simplifying assumptions with respect to 
their form.  First, the preferences for each QoS dimension 
are modeled independently of each other.  In other words, 
the preference function for each quality dimension captures 
the user’ s preferences for that dimension independently of 
other dimensions.  Second, for each continuous QoS dimen-
sion, we characterize two intervals: one where the user con-
siders the quantity as good enough for his task, the other 
where the user considers the quantity as insufficient.  Sig-
moid functions characterize such intervals and provide a 
smooth interpolation between the limits of those intervals.  
Sigmoids are easily encoded by just two points: the values 
corresponding to the knees of the curve; that is, the limits 
good of the good-enough interval, and bad of the insufficient 
interval.  The case of when more-is-better (e.g. image qual-
ity) is just as easily captured as the case where less-is-better 
(e.g. latency) by flipping the order of the good and bad val-
ues.  For discrete QoS dimensions, for instance audio fidel-
ity, whose values are high, medium and low, we simply use a 
discrete mapping (table) to the utility space.  In the case 
studies we evaluated so far, we found the expressiveness of 
the forms above to be sufficient. 

3.4.5 Application Profiles 
Typically, an application supports only a subset of the 

capability space corresponding to its various fidelities of 
output.  In practice, approximating this subset using a dis-
crete enumeration of points provides a reasonable solution, 
even if the corresponding capability space is conceptually 
continuous.  For example, while it makes sense to discuss a 
video stream encoding of decimal frames per second, typi-
cally video streams are encoded at integer rates.  Despite 
discrete approximation, our approach does allow the han-
dling of a rich capability space.  For example, the capability 
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space of a specific video player application can have 90 
points, which is made possible by combining 5 frame rates, 6 
frame sizes, and 3 audio qualities.  Such a capability space 
can be made possible by encoding the same video in multiple 
frame rates, frame size, and audio quality, and leveraging 
application-specific features such as video smoothing. 

Application profile specifies a discrete enumeration of 
the capability points supported by an application and corre-
sponding resource demand for each point. 

Note that specific mechanisms for obtaining and express-
ing application profiles exist.  As demonstrated in [14], re-
source demand prediction based on historical data from ex-
perimental profiling is both feasible and accurate.  Further, 
metadata can be used to express application profiles [3]. 

4. MATHEMATICAL FORMULATION 
In this section we present a mathematical formulation of 

the model.  We define the utility space, capability space, and 
resource space, and define allowed operations in each space.  
We formulate the configuration problem as an optimization 
over a search space. In later sections we describe how our 
implementation realizes this mathematical model through 
efficient algorithms and shared infrastructure. 

4.1 Utility Space 
The utility space is represented by the real number inter-

val [0, 1].  The user’ s happiness with an outcome is repre-
sented by a utility value.  The user is happy with utility val-
ues close to 1, and unhappy with utility values close to zero.  
Given two outcomes, to determine the preferred one, we 
compare their utilities.  Higher utility corresponds to the 
preferred outcome. 

4.2 Capability Space 
The capability space CCss corresponding to service s is the 

Cartesian product of the individual quality dimensions d of 
the service: 

)(ˆ )dim( ddomC sQoSds ��  

For example, for video playing service the quality dimen-
sions are the frame update rate, the frame size, and audio 
quality.  Thus, the capability space of video playing is three-
dimensional. 

Cartesian product is used to combine the capability space 
of two services.  For distinct services s and t, their combined 
capability space is formally expressed as: 

tsts CCC � � ˆ  

For example, a web browsing service has two quality di-
mensions: latency and page richness, and video playing has 
3 dimensions of quality.  Thus joint capability space of video 
playing and web browsing has 5 quality dimensions. 

4.3 Resource Space 
The resource space RR is the Cartesian product of the in-

dividual resource dimensions r of the entire environment EE: 

)(ˆ )dim( rdomR ERESr ��  

Examples of resource dimensions are: CPU cycles, net-
work bandwidth, memory, and battery.  The actual number 
of resource dimensions is dependent on the environment. 

4.4 User needs and preferences 
The user expresses the requirements for a task by speci-

fying services needed and the associated preferences.  A 
shared vocabulary of services and service-specific quality 
dimensions must exist between the user and the system.  De-
veloping such a vocabulary is a subject of related research 
and out of the scope of this paper, but we give insights to the 
essential characteristics of such a vocabulary [4]. 

The user specifies a requested service using its type, 
which is part of the common vocabulary.  For example, to 
watch a video, user requests a video playing service.  The 
user specifies an operation for the service: add, replace, and 
disband.  The add operation requests a new service, disband 
requests that the current supplier for the service be shut 
down, and replace requests that the current supplier of a pre-
viously requested service be disbanded, and another supplier 
be added.  Note that supplier changes resulting from a re-
place command should be accounted as user-initiated, and 
should not carry disruption costs. 

4.4.1 QoS Preferences 
QoS preferences specify the utility function associated 

with each QoS dimension. The names of the QoS dimensions 
are also part of the shared vocabulary. The utility of service s 
as a function of the quality of service is given by: 

��
 

)dim(

ˆ)(
sQoSd

c
dQoS

dFsU  

where for each QoS dimension d of service s, 
]1,0()(: �ddomF d

 is a function that takes a value in the 

domain of d, and the weight cd�[0,1] reflects how much the 
user cares about QoS dimension d.  As an example, video 
playing has a QoS dimension of frame update rate.  The 
function FframeRate gives utility for various frame rates, and 
cframerate specifies the weight of frame rate. 

Weighted product specifies an “ AND”  semantics when 
combining QoS dimensions.  A utility value of zero in one 
dimension indicates that the user is not interested in the con-
figuration even if the quality of other dimensions is high. 

4.4.2 Supplier Preferences 
To evaluate the assignment of specific suppliers, we em-

ploy a supplier preference function, which is a discreet func-
tion that assigns a score to a supplier, based on its type.  
Also, we account for the cost of switching from one supplier 
to another at run time.  

Precisely, the utility of the supplier assignment for a set a 
of requested services is: 

�� � 
as

c
s

x
sSupp

ss FhaU ˆ)(  

where for each service s in the set a, 
]1,0()(: osSuppFs  is a function that appraises the choice 

for the supplier for s; and the weight cs�[0,1] reflects how 
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much the user cares about the supplier assignment for that 
service.   

4.4.3 Accounting for Switching of Suppliers 
Among the technical challenges to automatic configura-

tion, is requirement R4 in 3.2.   
The term sx

sh  above (4.4.2) expresses a change penalty 
as follows: hs indicates the user’ s tolerance for a change in 
supplier assignment: a value close to 1 means that the user is 
fine with a change, the closer the value is to zero, the less 
happy the user will be.  The exponent xs indicates whether 
the change penalty should be considered (xs=1 if the supplier 
for s is being exchanged by virtue of dynamic change in the 
environment) or not (xs=0 if the supplier is being newly 
added or replaced at the user’ s request). 

4.4.4 Overall Utility 
Overall utility is the product of the QoS preference and 

supplier preference.  The overall utility over a set a of sup-
pliers is: 

¸̧¹
·

¨̈©
§� �� ��

)dim(

)(
sQoSd

c
d

as

c
s

x
soverall

dss FFhaU  

4.4.5 Application Profiles 
Application profiles describe the relationship between 

the capability points supported by applications, and the cor-
responding resource requirements.  Formally, the quality 
resource mapping of supplier p is a partial function from the 
capability space of service s to the resource space: 

RCQoSprof sp �: .  The range of the function is the 
subset of the capability space that is supported by the sup-
plier. 

4.5 The Optimization Problem 
The optimization problem is to find a supplier assign-

ment a, and for each supplier p in this assignment, a capabil-
ity point such that the utility is maximized: 

� �� �
�

� ¸̧¹
·
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c
ds

c
s
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s
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sSuppp
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s

)()(maxarg ,
)dim(

)(
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The maximization is over a set of constraints, which we 
express below. The capability constraint stating that the cho-
sen point fp,d is in the capability space for supplier p is as 
follows: 

pdpsQoSdpsSuppp Cff �� � �� ,)dim()(  

And to ensure that the resource constraints are met: 

RfQoSprof
sSuppp

pp d¦	
)(

)(

 

where summation is in the vector space R of resources, 
and the inequality is observed in each dimension of that 
space.  In non-mathematical terms, this constraint expresses 
the fact that the aggregate resource demand by all the suppli-
ers can not exceed the resource supply. 

5. ALGORITHM AND ANALYSIS 
In this section we solve the optimization problem.  As 

identified by requirement R3 in 3.2, the algorithm must be 
efficient to be usable at runtime.  Two metrics we are inter-
ested in are the latency of computing an answer to a given 
instance of the problem, and in the computational overhead 
of the algorithm. 

5.1 The Algorithm 
The algorithm works in three phases: (1) query, (2) gen-

erate, and (3) explore.  In the first phase, it queries for rele-
vant suppliers for each service in the task.  In the second 
phase, it combines suppliers into configurations and ranks 
them according to the supplier preference only.  In the third 
phase, it explores the quality space of the configurations.  
The pseudocode of the algorithm is shown in Figure 1. 

HashMap SuppPrefs;    // supplier preferences 
HashMap QoSPrefs;     // qos preferences 
HashMap SuppReg;      // registered suppliers 
Config BestConfig(Set reqstdSvcs){ 
  // 1. QUERY 
  Map  suppListsBySvc; 
  for each svc in reqstdSvcs do{ 
    List  suppList = null; 
    Pref  suppPref = SuppPrefs.get(svc); 
    // query for supp based on svc type  
    suppList = query(SuppReg, svc, suppPref); 
    suppListsBySvc.put(svc.type, suppList); 
  } 
  // 2. GENERATE configs, compute supp pref 
  List configs = GenConfigs(suppListsBySvc); 
  configs = sort(configs); 
  // 3. EXPLORE the QoS space 
  int indexBestConfig; 
  float overallUtilBest = 0.0; 
  for each i from configs.size-1 to 0 do { 
    Config cCur = configs.get(i); 
    if (overallUtilBest > cCur.suppPrefUtil) 
       break; 
    cCur = searchQoS(cCur, QoSPrefs); 
    if (cCur.overallUtil > overallUtilBest){ 
     indexBestConfig = i; 
     overallUtilBest = cCur.overallUtil; 
    } 
  } 
  return configs.get(indBestConfig); 
} 
GenConfigs(Map suppListsBySvc){ 
  List configs = new List(MAX_INT); 
  int depth = 0; 
  Config partialConfig = null; 
  GenConfigsRecur(depth, configs, 
       suppListsBySvc, partialConfig);  
} 
GenConfigsRecur(int d, List configs,  
   Map suppListsBySvc, Config partialConfig){ 
  if ( d == suppListsBySvc.size()){ 
    configs.add(new Config(partialConfig)); 
    return; 
  } 
  List suppList = suppListsBySvc.getByInd(d); 
  for each supp in suppList do{ 
    partialConfig.add(d, suppList); 
    GenConfigsRec(d+1, configs,  
            suppListsBySvc, partialConfig); 
    partialConfig.remove(d); 
  } 
} 

Figure 1.  Pseudocode of the algorithm 
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The double product term of the utility formula in 4.5 al-
lows for a clever exploration strategy.  The outer product is 
the supplier preference score.  It can be computed at the time 
the supplier assignment is known (in phase 2), and can be 
used as an upper bound for overall utility during the explore 
phase.  Since overall utility is the product of supplier prefer-
ence and QoS preference, and the latter is bounded by one, 
then maximum overall utility is bounded by supplier prefer-
ence. The break in the loop in BestConfig takes advantage of 
that fact. 

Consider a simple example.  Assume that two services 
are requested.  For each service, there are two possible sup-
pliers: a1 and a2 for the first service, b1 and b2 for the second, 
yielding 4 possible configurations as shown in Table 1.  The 
search space can be divided into 4 quadrants, each represent-
ing the capability space of a specific configuration.  We are 
searching for a point with the highest utility. 

As noted, the maximum utility that can be achieved 
within each quadrant is bounded by the supplier preference 
portion of utility.  These observations help provide a stop 
condition for the search: once a point is found that has over-
all utility of , there is no need to explore configurations 
with supplier preference portion of utility of less than . 

Table 1. The structure of the search space 
a1,b1 a1,b2 
a2,b1 a2,b2 

In Table 1, the shading of each quadrant reflects the hy-
pothetical values of supplier preference portion of utility for 
each configuration: the darker the shade, the higher the 
value.  Assume these values are: .8, .6, .4, and .2.  Each of 
these values is an upper bound for maximum overall utility 
possible from the respective quadrant. We explore inside the 
quadrants, starting from the darkest. If the maximum utility 
for the quadrant a1, b1 is higher than 0.6, then at this time we 
know the best point in the entire space is found, and can stop 
the search.  If not, we continue the search in quadrant a2, b1, 
and so on. 

Exploring the quality space of a configuration is a variant 
of a 0-1 Knapsack problem, called multiple dimensional, 
multiple choice 0-1 Knapsack.  Multiple dimensions refer to 
the multiple constraints that are present in the problem.  
Multiple choice refers to choosing one among a set of similar 
items.  In our problem, resources map to knapsack dimen-
sions and the capability space of one service maps to one set 
of similar items.  This is a well-studied problem in the op-
timizations research, and is at the core of such optimization 
problems as winner determination in combinatorial algo-
rithms.  [12][17] show the problem to be NP-complete, and 
give approximation algorithms. [17] gives an exact solution 
that is demonstrably fast on inputs drawn from certain prob-
ability distributions. 

One of the approximating algorithms to the problem uses 
utility to resource ratio as a metric for ranking the capability 
points, then applies greedy selection and LP-relaxation to 
find a near-optimal answer.    In the multiple resource case, 
quadratic weighted-average is used to compute a single re-

source currency from multiple resources, and the solution to 
the single resource case is reused iteratively [12]. 

In our solution, SearchQoS invokes a third-party library 
called Q-RAM, the package described in [12]. 

5.2 Analysis 
To analyze the running time of the algorithm, let: 
x n be the number of requested services 
x P be the total number of available suppliers 
x p be the number of suppliers for a given service type 
x q be the size of the capability space of a supplier.   

P and p describe the richness of the environment, and 
can potentially increase as more applications, hardware, and 
devices are made available.  q describes the capability rich-
ness of a supplier.  It is reasonable to assume that the size of 
the user task is limited to a small number of applications.  
Thus n is bounded. 

Next we analyze the running time of the three phases. 
The query phase retrieves items from a hashtable.  Re-

trieving one item can be done in constant time.  n retrievals 
from a hashtable take O(n) time. 

The generate phase is a recursion of depth n, with a loop 
of size p at each level.  Thus, it takes O(pn). 

The explore phase in the worse case takes O(pn) * 
O(searchQoS).  The size of the QoS space of a configuration 
of n suppliers each of which has a capability space of size q 
is O(qn).  Approximation algorithm we use can search that 
space in time O(n*q*logq) [12][17]. Thus the explore phase 
takes O(pn) * O(n*q*logq) in the worst case, and dominates 
all other terms.  The first term, O(pn), presents a possible 
scalability bottleneck. 

Let us demonstrate how the exploration strategy de-
scribed earlier helps tackle that bottleneck.  Recall the break 
condition in the explore phase, illustrated in the example 
introduced in 5.1.  The number of configurations that are 
explored will depend on the distribution of the supplier pref-
erence valXHV�� DQG� �� WKH� KLJKHVW� DFKLHYDEOH� XWLOLW\� YDOXH���
Let’ s assume an average number of suppliers per service p = 
10, and a specific distribution of supplier preference values 
that is uniform, i.e. the most preferred supplier scores 0.90, 
the next one scores: 0.91, etc.  In Table 2, we show the num-
ber of configurations generated, and the number of configu-
rations that are actually explored depending on the value of 
maximum achievable utilLW\�� , and number of services in 
the task, n. 

Table 2. Number of configurations generated and ex-
plored for various values of n, and , maximum utility 

achieved 
 n=1 2 3 4 … 8 

Generated 10 102 103 104 … 108 
� ��� 2 3 4 5 … 8 
� ���� 3 6 10 15 … 36 
� ���� 4 10 20 35 … 120 
�= .66 5 15 35 70 … 330 
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The first row shows the number of services.  The second 
row shows the number of configurations generated, which is 
pn, in this case, 10n.  In each subsequent row, we show the 
number of configurations that are sufficient to explore, if the 
maximum utility shown in the first column in that row is 
actually achieved by some configuration. For instance, for a 
task with 4 requested services, even if the maxim utility 
DFKLHYDEOH�LV�DV�PRGHVW�DV� � ������WKHQ�WKH�QXPEHU�RI�VXp-
plier configurations explored is 126, which is two orders of 
magnitude smaller than the 104, the total number of configu-
rations. 

5.3  Reconfiguration 
The algorithm also handles reconfiguration.  When there 

is a running configuration, the utility from the best computed 
configuration is compared with the observed utility of the 
running configuration, and a switch is made if the latter is 
lower than the former.  Because of the cost of change term in 
formula 4.4.2, some of the suppliers in the running configu-
ration may get an advantage. 

6. CASE STUDY 
In this section we report on a case study of configuring 

an environment for the task of reviewing a documentary 
video clip.  The task requires 3 services: video playing, text 
editing, and browsing.  The user watches the clip, takes 
notes, while browsing the net for information.  The quality 
dimensions are as follows: for video playing: frame rate, 
frame size, and audio quality; for browsing: latency of load-
ing pages, and richness of the pages (pages have graphics 
that are not required for the task can be helpful); for text 
editing: none. 

We performed the case study in two steps. In the first 
step we collected application profile data, specified prefer-
ences, and identified resource limits.  In the second step, we 
ran a prototype implementation of the algorithm. 

6.1 Input Data Collection 
As an experimental platform, we chose an IBM Thinkpad 

30 laptop, equipped with 256 MB of memory, 1.6 Ghz CPU, 
WaveLAN card, and Windows XP Professional.  In power 
saving mode, the CPU can run at a percentage of the maxi-
mum speed, effectively creating a tight CPU constraint. 

The model requires three inputs: (1) user preferences, (2) 
application profiles, and (3) resource availability.  For the 
purposes of this experiment, we used synthetic preferences 
intended to be representative of the tasks.  We identified 
several applications that supported various facets of the task. 
Those applications were installed on the laptop.  To obtain 
application profiles, we measured resource usage corre-
sponding to a small set of capability points.  We performed 
this profiling offline, with each supplier running separately. 
Resource availability is as follows: 400 MHz of processing 
power, when the CPU is running at ¼ of the baseline speed; 
64 MB of free memory after excluding the memory taken by 
the operating system and other essential critical systems; and 
512 Kbps of bandwidth, provided by an 802.11 wireless 
access point backed by a DSL line. 

The applications used in the experiment were:  
x Video players: RealOne and Windows Media, 
x Text editors: TextPad, WordPad, Notepad, Microsoft 

Word, and GNU Emacs, 
x Browsers: Internet Explorer, Netscape, and Opera, 

These suppliers allow a total of 30 = 2*5*3 configura-
tions. 

We measured CPU and physical memory load using 
Windows Performance Monitor.  We used percent processor 
time, working set counters of the Process performance object 
to measure CPU and memory utilization respectively.  We 
took the sampling average over a period of time. The per-
formance monitoring API does not provide per process net-
work statistics, so the mechanism for measuring bandwidth 
demand was different in each case, as explained below. 

For a representative clip to watch, we obtained a two 
minute trailer of a movie in Windows native .wmv and Real 
Networks native .rpm in several different bit-rates.  Where 
cross-player compatibility is supported, we obtained addi-
tional capability points.  For example, RealOne plays .wmv 
format.  Also, players provide quality knobs, allowing im-
proved quality in exchange for higher CPU utilization.  For 
example, Windows Media player supports video smoothing 
that provides higher frame rate than the rate encoded in the 
stream.  For each player, 32 points quality points were sam-
pled. To measure bandwidth demand, we consider the bit-
rate of the stream, and cross-check with the application-
reported value. We observed that the CPU consumption of 
different players can be widely different for the same quality 
point.  

We measured CPU and memory used while typing and 
formatting text for 2 minutes with each text editor.  We ob-
served that the memory consumption of different text editors 
can be widely different. 

All browsers surveyed support a text-only mode, provid-
ing two points in the page richness dimension. To obtain 
different levels of latency, we used a bandwidth-limiting http 
proxy, and pointed the browser to the proxy.  We measured 
latency by allowing the following bandwidth limits: 28, 33, 
56, 128, 256, 512 Kbps.  Our script included a sequence of 
approximately 15 pages with a mix of both text graphics on 
the internet.  Each test started with a clean browser cache.  
16 quality points were sampled.  We observed that the 
browsers have very similar resource consumption patterns. 

Although we realize that the methods for obtaining the 
resource consumption measures are not precise, we believe 
that they yield good enough approximations for this feasibil-
ity analysis.   

Note that the capability space of a configuration of sup-
pliers has approximately 500 points (32*16*1), based on the 
samples taken.  30 configurations together provide a capabil-
ity space of approximately 15,000 points. 

6.2 Prototype Evaluation 
The algorithm is guaranteed to find an optimal assign-

ment of suppliers.  Furthermore, it will obtain the optimal set 
of quality points for the suppliers, as long as Q-RAM finds 
the optimal point inside each quadrant. Whenever Q-RAM 
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returns a near-optimal answer, our algorithm will return a 
near-optimal set of quality points.  

Additionally, we evaluated a prototype implementation 
of the algorithm according to two metrics: (1) latency, and 
(2) system overhead. Latency measures the time it takes to 
compute an answer, from the time that a client program re-
quests it.  Overhead measures percent CPU and memory 
utilization of the algorithm.  To adapt the configuration in 
response to environment changes, it might be necessary to 
run the algorithm periodically.  Thus, the overhead of the 
periodic invocation provides a useful metric. 

The latency of computing the best configuration aver-
aged over 10 trials was 531 ms.  In the query and generate 
phases, the algorithm spends less then 10 ms each.  In the 
explore phase, it spends just under 500 ms (approximately 
10 ms was due to parsing the request, and formatting the 
answer).  The bulk of the time in the explore phase was due 
to external process invocation and file input-output (Q-RAM 
package is an external executable).  Thus, the latency can be 
significantly reduced by linking into Q-RAM in-process.   

We invoke the algorithm a total of 50 times in 5 second 
intervals over a period of 250 seconds, and measure average 
CPU utilization.  Average CPU utilization is 3.8%.  This 
overhead is fairly low, and can be further lowered by running 
the algorithm less frequently, e.g. once per 10 or 25 seconds.  
Alternatively, the algorithm can be run in response to events 
that may lead to changing the configuration, e.g. in response 
to changes in suppliers, resource levels, or user preferences. 

Memory usage of the Java Virtual Machine process run-
ning the algorithm is approximately 8.8 MB.  

The case study presented here only addresses the per-
formance of the optimization algorithm, using data collected 
via profiling.  Ongoing work on the Aura platform [19] ad-
dresses the runtime instantation and monitoring of applica-
tions utilizing the analytical model described in this paper. 

7. EVALUATION 
In this section we discuss how our approach meets the 

requirements of Section 3.2, highlight software engineering 
benefits of the approach, discuss the limitations of the model 
and scope of the work, and indicate future work. 

7.1 Addressing the Requirements 
We set forth four requirements in Section 3.2 (to con-

serve space, we omit the text of the requirements). 
R1: Representation of user task.  Our approach allows a 

user to specify services needed, and preferences for observ-
able qualities of the services.  Through preferences, the user 
can express fine grain control over resource allocation be-
tween applications, and guide adaptation policies of applica-
tions.  Although the space of possible configurations is large, 
the encoding of preferences is efficient because it exploits 
the independence of quality dimensions.  Sigmoid functions 
further improve the efficiency of the encoding, requiring 
three numbers per quality dimension: two for the knees of 
the sigmoid curve, and one for the weight of that dimension. 

To enable automatic processing of a user request, our 
approach employs a shared vocabulary of service names, 

quality dimensions and preference encodings.  Representa-
tion of user’ s task is only one aspect of a broader problem.  
Another important issue is the elicitation of preferences, 
which is not addressed in this paper, but is a subject of ongo-
ing research. 

R2: Representation of application capabilities. Our ap-
proach meets this requirement by specifying the capabilities 
of an application using a shared vocabulary of service names 
and quality dimensions, and using discrete enumeration of 
vector pairs to specify the relationship between quality and 
resources.  This is a general solution, as it does not rely on 
the existence of functional forms between application quality 
and resource usage.  Our approach uses historical profile 
data to estimate demand at runtime. 

R3: Optimal and efficient algorithm. We have presented 
an algorithm for efficient searching of the configuration 
space.  We have demonstrated analytically that the algorithm 
finds a near-optimal answer in polynomial time by taking 
advantage of the special structure of the problem, which is 
NP-hard.  Using a case study, we have demonstrated that the 
algorithm has a latency of less one second on an input of 
moderate size. 

R4:  Reconfiguration. Our approach explicitly models 
the cost of disruption to the user from possible re-
configurations.  Specifically, our approach considers on-the-
fly switching of suppliers as a possible source of disruption, 
allows the user to express his tolerance for such a change as 
a preference function, and takes the latter into account when 
doing reconfiguration. 

Our approach also allows user-initiated incremental 
changes to a running configuration. 

7.2 Software Engineering Benefits 
Although the primary focus of this paper has been on ad-

dressing issues of efficiency and optimality, the approach 
also embodies a number of significant engineering benefits. 

First, our approach provides an integration architecture 
(via a shared infrastructure) that helps maximize the benefits 
of resource-aware applications. Today's default integration 
architecture requires each such application to make resource-
awareness decisions independently. In our approach applica-
tions are composed through intermediaries and resource al-
location decisions are made through a shared infrastructure 
that can provide better overall utility to the user by consider-
ing the capabilities of the entire system. 

Second, our approach addresses usability issues of to-
day's applications. By providing mechanisms that automati-
cally translate from user preferences of the qualities they 
desire to the configuration of specific services, we reduce the 
cognitive burden of users in taking full advantage of re-
source-configurable applications. 

Third, our approach adds new functionality to existing 
applications that makes them better suited for resource vari-
able environments. Specifically we incorporate in our con-
figuration infrastructure the ability to make reconfiguration 
decisions, factoring in issues of user distraction. 

Fourth, our approach can contribute to reductions in en-
gineering costs for resource-aware applications themselves 
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by shifting the burden of decision-making into the infrastruc-
ture. 

7.3 Limitations of the Model 
Our approach relies on a small number of assumptions, 

which arguably are reasonable for the problem at hand.  For 
completeness, we discuss these assumptions: 
x Our multiplicative model of preferences for QoS re-

quires that these dimensions satisfy certain independ-
ence assumptions. Proving that independence conditions 
hold in each case is not possible.  However, there is evi-
dence, that even though in practice independence does 
not hold completely, additive (and consequently multi-
plicative) preferences provide good enough approxima-
tions [1][21]. 

x The model depends on accurate prediction of applica-
tions’  resource demand. Related research suggests [14], 
that historical profiling can be used to accurately predict 
demand. Although we realize that the methods for ob-
tained the resource consumption measures for the case 
study described in Section 6 are not precise, we believe 
that they yield good enough approximations for this fea-
sibility analysis. 

7.4 Other Research 
To address the configuration problem completely, several 

related problems need to be solved.  In this work, we address 
only a subset of them.  The following related problems are 
being addressed elsewhere: 
x Elicitation of user tasks [4] and preferences.  For the 

approach to work in practice, user-friendly and accurate 
elicitation of preferences is required. 

x Development of resource- and fidelity-aware applica-
tions [5][11][16]. 

x Development of an infrastructure for runtime monitoring 
of resource supply levels [16]. 

7.5 Conclusion 
 An important emerging requirement for computing sys-

tems is the ability to adapt at run time, taking advantage of 
local computing devices, and coping with dynamically 
changing resources.  In this paper, we have presented an 
analytical model and an efficient algorithm for the dynamic 
configuration of resource-aware services in ubiquitous com-
puting environments.  We demonstrated that it is feasible to 
automatically configure such environments, given a specifi-
cation of user preferences.  Our analysis shows that the pre-
sented algorithm is scalable to rich environments. Addition-
ally, the preliminary evaluation of the prototype implementa-
tion yielded promising performance.  Furthermore, our ap-
proach embodies a number of software engineering benefits.  
Future work includes runtime instantiation of applications, 
monitoring of the environment, and scaling the approach to 
more than one device under a user’ s control.  
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