
Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

Dynamic Configuration of Resource-Aware Services

 Vahe Poladian, João Pedro Sousa, David Garlan, Mary Shaw
School of Computer Science, Carnegie Mellon University

Pittsburgh, PA 15213, USA
 {vahe.poladian, jpsousa, garlan, mary.shaw}@ cs.cmu.edu

Abstract
An important emerging requirement for computing sys-

tems is the ability to adapt at run time, taking advantage of
local computing devices, and coping with dynamically
changing resources. Three specific technical challenges in
satisfying this requirement are to (1) select an appropriate
set of applications or services to carry out a user’s task, (2)
allocate (possibly scarce) resources among those applica-
tions, and (3) reconfigure the applications or resource as-
signments if the situation changes. In this paper we show
how to provide a shared infrastructure that automates con-
figuration decisions given a specification of the user’s task.
The heart of the approach is an analytical model and an
efficient algorithm that can be used at run time to make
near-optimal (re)configuration decisions. We validate this
approach both analytically and by applying it to a
representative scenario.

Keywords: Ubiquitous computing, resource-aware, multi-
fidelity applications, service composition, resource alloca-
tion.

1. INTRODUCTION
Despite steady increases in computing resources, such as

processing power, network bandwidth, and battery capaci-
tance, applications’ demand for these resources continues to
grow and exceed supply. The problem is exacerbated in
ubiquitous environments such as automobiles, coffee shops,
and airport kiosks, where availability of resources is both
limited and changing.

In response, we are beginning to see a new class of
applications that are engineered to be “resource-aware” and
“multi-fidelity” [11][16]. Such applications typically pro-
vide varying qualities of service depending on the resources
available to them. For example, some video players can be
configured to play at reduced frame rates in situations where
bandwidth is limited.

While the creation of such applications is a necessary
first step, it does not completely solve the problem. The
main issue is that while resource-aware applications can
work well in isolation, user tasks often encompass more than
one activity, requiring resources to be allocated among sev-
eral applications. For example, the task of writing a review
for a documentary clip may require a video player, a text
editor, and possibly a browser for searching the web for re-
lated information. Decisions on resource allocation made
independently by each application may not yield an optimal
composite solution.

This problem is further complicated by the availability of
alternative ways to realize the same task in a given environ-

ment. On a typical system, video playback is possible using
applications such as Windows Media, RealOne, and Quick-
Time. Combined with several possible text editors and web
browsers, the task of writing a clip review can be supported
by a large number of different application bundles. Thus the
problem of configuration involves both the selection of ap-
plications as well as allocation of resources.

One obvious, but deficient, way to solve the configura-
tion problem is to have the user manually configure the sys-
tem. Unfortunately, while a user may know what he wants,
he may not know how to realize it in a particular environ-
ment. Requiring a user to understand the low-level details of
a potentially unfamiliar computing environment, including
available resource levels and available applications, config-
uring the applications, and adapting to changes in the envi-
ronment is clearly unreasonable.

In this paper we show how to partially automate system
configuration for resource-aware applications. The key idea
is to provide a system infrastructure independent of, and
external to, applications [20]. Such infrastructure makes
dynamic configuration decisions based on inputs describing
users’ quality of service requirements, resource and service
availability, and application fidelity as a function of assigned
resources. The heart of this infrastructure is an analytical
model, and associated algorithm, that provides efficient,
near-optimal configuration decisions.

To achieve the goal of partially automated configuration,
the model separates concerns into three spaces: user utility,
application capability, and computing resources; and two
mappings. A mapping from capability space to utility space
expresses the user’s needs and preferences. A mapping from
capability space to resource space expresses the fidelity pro-
files of available applications. Available resource levels are
provided by the system, and constrain the configuration
space to a feasible region. Configuring the system formally
reduces to finding a point in the capability space that (1)
maximizes user utility, and (2) satisfies the resource con-
straints. As we will show, this point identifies which appli-
cations to run, and its projection into the capability sub-
space of each application identifies the quality level for that
application. Furthermore, it identifies when it is feasible,
and desirable, to perform reconfiguration decisions, based on
explicit modeling of the cost to make a change.

The rest of the paper is structured as follows. Section 2
surveys related work and highlights the novelty of this work.
Section 3 defines the main requirements for automatic con-
figuration, enumerates the expected Software Engineering
benefits, and presents our approach. The mathematical for-
mulation of the model and the expression of the underlying
optimization problem are presented in Section 4. Section 5

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

presents an algorithm for the search problem, and analyzes
its running time and scalability. Section 6 illustrates the ap-
plication of our approach to a representative scenario. Sec-
tion 7 presents an evaluation of our approach, highlights the
contributions, discusses software engineering benefits, and
enumerates related research that is out of scope of this paper.

2. RELATED WORK
Our work leverages multi-fidelity and resource-aware

application research such as Odyssey and Puppeteer
[5][6][11][16], but tackles the new problem of multi-
component integration, configuration, and reconfiguration.
Although somewhat related, this kind of automatic configu-
ration is distinct from the automatic configuration being
investigated in other research [13]. There, configuration is
taken in the sense of building and installing new applica-
tions into an environment, whereas here, it is taken in the
sense of selecting and controlling applications so that the
user can go about his tasks with minimal disruption. Further,
our work builds on service location [18] and discovery pro-
tocols and systems [9].

Resource scheduling [10], resource allocation [12][15]
and admission control have been extensively addressed in
research. Odyssey [15] addresses simultaneous adaptation of
fidelity-aware applications, but it lacks a notion of task-wide
user preferences. From analytical point of view, closest to
our work are Q-RAM [12], a resource reservation and ad-
mission control system maximizing the utility of a multime-
dia server based on preferences of simultaneously connected
clients; Knapsack algorithms [17]; and winner determination
in combinatorial auctions. In our work, we handle the addi-
tional problems of selecting applications among alternatives,
and accounting for cost of change.

Dynamic resolution of resource allocation policy con-
flicts involving multiple mobile users is addressed in [2]
using sealed bid auctions. While our work shares utility-
theoretic concepts with [2], the problem solved in our work
is different. In that work, the objective is to select among a
handful of policies so as to maximize an objective function
of multiple users. In our work, the objective is to choose
among possibly thousands of configurations so as to maxi-
mize the objective function of one user. As such, our work
has no game-theoretic aspects, but faces a harder computa-
tional problem. Furthermore, our work takes into account
tasks that users wish to perform.

Rascal [8] defines resources as physical devices in a
smart room, and configures resources by managing connec-
tions, interdependence of devices, wiring, and allocates re-
sources among competing applications using coarse-grained
utility. In our work, resources are CPU cycles, network
bandwidth, memory, and our notion of utility is much more
fine-grained.

Reducing user disruption in everyday computing is the
broad goal of Project Aura [7]. The work herein focuses on
the formal underpinnings of the mechanisms for the auto-
matic configuration of the computing environment around a
user. Such mechanisms are used in the middleware infra-

structure supporting task-oriented, distraction-free computa-
tion in Project Aura.

3. APPROACH
In this section we define the configuration problem, pose

specific technical challenges that need to be solved to pro-
vide automatic configuration, and describe our approach.

3.1 Terminology
We adopt the following, reasonably well-established ter-

minology in approaching a solution to the problem [19]. The
set of devices, applications, and resources that are accessible
to a user at a particular location constitutes the computing
environment for the user. Applications (and devices) in an
environment provide services, such as video playing, text
editing, web browsing. In a given environment there may be
many applications, or suppliers, that can provide the same
service. The richer the environment, the more suppliers are
likely available for a particular service.

Users carry out tasks, such as reviewing a video, plan-
ning a vacation, or selling a house. Each task typically re-
quires the use of multiple services. Today’ s systems provide
only weak support for such tasks, and users typically have to
manually configure the environments, by finding, directly
invoking, closing, and switching between specific suppliers
for the desired services.

Applications consume resources (such as computing cy-
cles, network bandwidth, and battery power) in providing
their services. In many environments (for instance, when the
user only has a portable device available) resources are
scarce. Furthermore, resource levels may change while a
user is carrying out a given task. For example, bandwidth
may vary over time in shared network environments, such as
a shared DSL line at a coffee shop, or a wireless LAN on a
university campus.

To provide an acceptable level of service despite the
scarcity of resources, applications (often termed “ multi-
fidelity” or “ resource-aware”) are designed to reduce the
quality of operation (e.g., exclude or reduce rich media from
web-pages, reduce accuracy of speech recognition), and as a
result consume less resources [6][11][16]. Such applications
offer quality and resource tradeoffs to users. The following is
a small subset of fidelity-aware applications: (1) media play-
ers such as Windows Media Player, RealOne Player, Quick-
Time, (2) browsers such as Internet Explorer, Netscape ,
Opera, (3) speech recognition software such as Janus, Pan-
GlossLite, or the Microsoft Speech API.

3.2 The Challenge
The principal goal of our approach is to reduce user dis-

tractions with the problem of configuration and reconfigura-
tion of computing environments. With that in mind, we
would like to allow a user to specify what he wants, on a per-
task basis, in terms of the services and their observable
qualities, and then to automatically determine how to realize
that in a changing environment. To meet this goal, a solution
must address several key requirements.

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

R1. Provide a representation of user needs and prefer-
ences that is expressive, efficient, and automatically proc-
essable.

To automate configuration, the infrastructure needs to
have sufficient input about the user’ s needs. What services
are needed for the task? Given alternative suppliers of a
service, which one should be chosen? What are the pre-
ferred tradeoffs between the quality dimensions, e.g. if the
bandwidth drops, which dimension of quality should be re-
duced? The system should be able to determine answers to
all these questions based on a specification of the user’ s task.
Such specification should be efficiently represented. For
example, enumerating a user’ s evaluation of each possible
environment configuration state is infeasible, as that state
may be rather large.

In the present work, we focus on the formalism to repre-
sent user needs and preferences, and on the mechanisms to
exploit such representation for automatically configuring
environments, rather than on the mechanisms to elicit those
needs and preferences. The later is an important research
topic in Human-Computer Interaction, and will be better
addressed after the form and substance of the information
required for supporting the automatic configuration of envi-
ronments is well established.

R2. Provide a representation of the capabilities of an
application, including the services it provides and the rela-
tionship between the quality levels it supports and the re-
source levels it demands.

While a specification of the user’ s task is needed to com-
pute how good a given configuration is, in order to deter-
mine possible configurations of the environment, a well-
specified description of the environment is necessary. What
are the available suppliers? What quality and resource
tradeoffs do the suppliers offer?

R3. Provide an efficient algorithm for computing a
near-optimal configuration of applications and quality lev-
els, given a specification of the user’ s task, and a specifica-
tion of the current environment.

To determine the best possible match between user’ s
needs and environment capabilities at run time, an efficient
algorithm is needed to find that match. Ideally, the algo-
rithm will employ provably correct strategies to find an op-
timal, or near-optimal, solution from the user’ s point of
view, avoiding an exhaustive search of the space, which may
be very large.

R4. Provide a mechanism to minimize disruption to the
user resulting from changes in the environment, or in user
intent.

As resources and supplier availability change over time,
an instantiated configuration may become either infeasible or
sub-optimal. Thus, the infrastructure should have mecha-
nisms to adapt the configuration. In making such adapta-
tions, it is desirable to reduce unnecessary disruption to the
user.

Additionally, should the user’ s task require an additional
service, disbanding a running service, or adjusting the user
preferences for a running service, the infrastructure should

be able to handle changes gracefully, in an incremental fash-
ion.

3.3 Software Engineering Benefits
As argued above, an automatic mechanism for the dy-

namic configuration of computing environments is needed to
(a) find optimal solutions in a potentially large space from
the point of view of the user, that is, in a utility-theoretic
sense; and (b) reduce the user’ s disruption in configuring
those environments for supporting his tasks.

Additionally, we would expect a good solution to provide
engineering benefits for application developers, specifically:

- making it easier to develop resource-adaptive applica-
tions by factoring a number of mechanisms out of the
applications and into a common infrastructure;

- making it feasible to improve the overall quality of ser-
vice to the user by using theoretically sound strategies
for optimizing the configuration and resource allocation
among all applications involved in a task, rather than
having to rely on application-centric heuristics;

3.4 Approach
Our approach is based on optimizing the match between

the needs of a user task and the environment capabilities. In
practice, finding such a match corresponds to maximizing
user’ s utility for a specific task. We express user’ s utility by
means of preference functions that map from a multidimen-
sional capability space to a uni-dimensional utility space.
Further, we express concrete capabilities of the suppliers in
an environment by means of application profiles that specify
tradeoffs between the capability space and resource space.

In the following subsections, we elaborate on these con-
cepts and extend on an example, introduced earlier, in which
the user’ s task is to prepare a review of a documentary
movie. Recall that to support this task, the user requests
three services: video playing, text editing, and browsing.

3.4.1 Utility Space
Utility is a measure of user’ s happiness with respect to

possible outcomes. For the purposes of our paper, the utility
space provides a formal representation of how useful the
possible configurations of services in the environment are
relative to a specific task. We encode utility in the interval
[0,1] of the real numbers, where 0 utility corresponds to the
environment being unacceptable for the task; and 1 corre-
sponds to user satiation, in the sense that increasing the ca-
pabilities of the environment will not improve the user’ s
perception of usefulness for the specific task.

3.4.2 Capability Space
The capability space is the Cartesian product of the QoS

dimensions for each service, and of an additional dimension
that captures supplier-specific features. Specifically, the
latter indicates the supplier type – for example, for text edit-
ing, possible values would be MS Word, Notepad, Textpad,
Wordpad, UltraEdit, Emacs, etc. Supplier type is a compact
representation for the availability of user-desired features,
such as automatic spell checking, or sophisticated text for-
matting.

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

Examples of quality of service dimensions are, for video
playing, frame rate, frame quality, and audio quality; for
browsing, latency of page loading, and richness of the pages.
The unit and range of possible values are dimension-specific.
For example, frame rate is measured in integer frames per
second and lies in the range from 0 to 30. The richness of a
web page is described by the discrete enumeration: {Images,
No Images}.

To determine whether a particular aspect of a service is a
quality dimension, we follow the following criteria:

- does not depend on choosing a particular supplier,
- the level can be varied (adapted) at run time, and
- the resource demand varies with the level of quality.

Video frame rate satisfies all three. First, all video play-
ers support the notion of frame rate; second, it can be
changed dynamically at run time; and third, higher frame
rate typically demands more CPU and bandwidth. On the
other hand, spell-checking support for text editors is a fea-
ture that is not a quality dimension. First, although common,
not all text editors support spell checking. Second, it would
be awkward, and probably ineffective, to enable or disable
spell checking at run time in response to resource variations.

3.4.3 Resource Space
The resource space describes the computational re-

sources of the environment. For the purposes of this paper,
we consider four types of resources: CPU, memory, battery,
and network bandwidth. The resource space is the Cartesian
product of individual resource dimensions. Although we
account for three types of resources, in a particular environ-
ment, the number of resource dimensions can be more than
three. For example, if the environment includes two com-
puters, then the CPU of each is accounted for as a separate
resource dimension. Further, upstream and downstream
bandwidth of a particular computer can be accounted as a
separate resource.

3.4.4 User Preferences
User preferences are a collection of functions that evalu-

ate how useful the environment is from the point of view of
his task. Formally, they map from the capability space to the
utility space. For each point in the capability space, user
preferences help compute a real-numbered utility value. The
capability space is potentially large but structured, and user
preferences are designed to take advantage of such structure.
For the purposes of this paper, user preferences capture two
concepts. First, QoS preferences express user’ s utility for
each possible level of service in each individual dimension
of quality of service (QoS), and tradeoffs among these di-
mensions. And second, supplier preferences capture which
specific applications are preferred to supply those services.

To illustrate supplier preferences, we refer again to the
example of reviewing a clip. For taking notes (text editing
service), the user may prefer MSWord over Notepad or
Emacs and be unwilling to use the vi editor at all. Note that
representing supplier preferences by discriminating the sup-
plier type, e.g. preference of MSWord over Notepad, is a
compact representation for the preferences with respect to
the availability of desired features, such as spell checking,

richness of editing capabilities, and to the user’ s familiarity
with the way those features are offered.

As an example of QoS preferences, suppose that the user
is watching the video over a network link and the bandwidth
suddenly drops: should the video player reduce the frame
quality or frame-update rate? The answer depends on the
user’ s preference for frame rate and frame quality in the con-
text of the current task. For a soccer game, the user may
prefer to preserve the frame-update rate at the expense of
frame quality; however, if the user is watching a movie, he
may prefer image quality to be preserved at the expense of
frame-update rate. Preferences with respect to tradeoffs such
as these are represented by indicating the acceptable levels
for each QoS dimension of the service. In the example, the
QoS preferences for the task of watching a soccer game
would set a high threshold for the acceptable frame updated
rate, say 25 frames per second, and a low threshold on the
acceptable image quality, say 20Kbit per frame; whereas for
the movie, the QoS preferences could set a high threshold for
image quality, and a low one for frame update rate. Since
both QoS dimensions compete for resources, such as band-
width, by swaying the thresholds the user can direct a re-
source-adaptive video player to make different tradeoffs
upon resource variation.

To make QoS preferences easier to both process and
elicit, we make two simplifying assumptions with respect to
their form. First, the preferences for each QoS dimension
are modeled independently of each other. In other words,
the preference function for each quality dimension captures
the user’ s preferences for that dimension independently of
other dimensions. Second, for each continuous QoS dimen-
sion, we characterize two intervals: one where the user con-
siders the quantity as good enough for his task, the other
where the user considers the quantity as insufficient. Sig-
moid functions characterize such intervals and provide a
smooth interpolation between the limits of those intervals.
Sigmoids are easily encoded by just two points: the values
corresponding to the knees of the curve; that is, the limits
good of the good-enough interval, and bad of the insufficient
interval. The case of when more-is-better (e.g. image qual-
ity) is just as easily captured as the case where less-is-better
(e.g. latency) by flipping the order of the good and bad val-
ues. For discrete QoS dimensions, for instance audio fidel-
ity, whose values are high, medium and low, we simply use a
discrete mapping (table) to the utility space. In the case
studies we evaluated so far, we found the expressiveness of
the forms above to be sufficient.

3.4.5 Application Profiles
Typically, an application supports only a subset of the

capability space corresponding to its various fidelities of
output. In practice, approximating this subset using a dis-
crete enumeration of points provides a reasonable solution,
even if the corresponding capability space is conceptually
continuous. For example, while it makes sense to discuss a
video stream encoding of decimal frames per second, typi-
cally video streams are encoded at integer rates. Despite
discrete approximation, our approach does allow the han-
dling of a rich capability space. For example, the capability

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

space of a specific video player application can have 90
points, which is made possible by combining 5 frame rates, 6
frame sizes, and 3 audio qualities. Such a capability space
can be made possible by encoding the same video in multiple
frame rates, frame size, and audio quality, and leveraging
application-specific features such as video smoothing.

Application profile specifies a discrete enumeration of
the capability points supported by an application and corre-
sponding resource demand for each point.

Note that specific mechanisms for obtaining and express-
ing application profiles exist. As demonstrated in [14], re-
source demand prediction based on historical data from ex-
perimental profiling is both feasible and accurate. Further,
metadata can be used to express application profiles [3].

4. MATHEMATICAL FORMULATION
In this section we present a mathematical formulation of

the model. We define the utility space, capability space, and
resource space, and define allowed operations in each space.
We formulate the configuration problem as an optimization
over a search space. In later sections we describe how our
implementation realizes this mathematical model through
efficient algorithms and shared infrastructure.

4.1 Utility Space
The utility space is represented by the real number inter-

val [0, 1]. The user’ s happiness with an outcome is repre-
sented by a utility value. The user is happy with utility val-
ues close to 1, and unhappy with utility values close to zero.
Given two outcomes, to determine the preferred one, we
compare their utilities. Higher utility corresponds to the
preferred outcome.

4.2 Capability Space
The capability space CCss corresponding to service s is the

Cartesian product of the individual quality dimensions d of
the service:

)(ˆ)dim(ddomC sQoSds ��

For example, for video playing service the quality dimen-
sions are the frame update rate, the frame size, and audio
quality. Thus, the capability space of video playing is three-
dimensional.

Cartesian product is used to combine the capability space
of two services. For distinct services s and t, their combined
capability space is formally expressed as:

tsts CCC � � ˆ

For example, a web browsing service has two quality di-
mensions: latency and page richness, and video playing has
3 dimensions of quality. Thus joint capability space of video
playing and web browsing has 5 quality dimensions.

4.3 Resource Space
The resource space RR is the Cartesian product of the in-

dividual resource dimensions r of the entire environment EE:

)(ˆ)dim(rdomR ERESr ��

Examples of resource dimensions are: CPU cycles, net-
work bandwidth, memory, and battery. The actual number
of resource dimensions is dependent on the environment.

4.4 User needs and preferences
The user expresses the requirements for a task by speci-

fying services needed and the associated preferences. A
shared vocabulary of services and service-specific quality
dimensions must exist between the user and the system. De-
veloping such a vocabulary is a subject of related research
and out of the scope of this paper, but we give insights to the
essential characteristics of such a vocabulary [4].

The user specifies a requested service using its type,
which is part of the common vocabulary. For example, to
watch a video, user requests a video playing service. The
user specifies an operation for the service: add, replace, and
disband. The add operation requests a new service, disband
requests that the current supplier for the service be shut
down, and replace requests that the current supplier of a pre-
viously requested service be disbanded, and another supplier
be added. Note that supplier changes resulting from a re-
place command should be accounted as user-initiated, and
should not carry disruption costs.

4.4.1 QoS Preferences
QoS preferences specify the utility function associated

with each QoS dimension. The names of the QoS dimensions
are also part of the shared vocabulary. The utility of service s
as a function of the quality of service is given by:

��

)dim(

ˆ)(
sQoSd

c
dQoS

dFsU

where for each QoS dimension d of service s,
]1,0()(: �ddomF d

 is a function that takes a value in the

domain of d, and the weight cd�[0,1] reflects how much the
user cares about QoS dimension d. As an example, video
playing has a QoS dimension of frame update rate. The
function FframeRate gives utility for various frame rates, and
cframerate specifies the weight of frame rate.

Weighted product specifies an “ AND” semantics when
combining QoS dimensions. A utility value of zero in one
dimension indicates that the user is not interested in the con-
figuration even if the quality of other dimensions is high.

4.4.2 Supplier Preferences
To evaluate the assignment of specific suppliers, we em-

ploy a supplier preference function, which is a discreet func-
tion that assigns a score to a supplier, based on its type.
Also, we account for the cost of switching from one supplier
to another at run time.

Precisely, the utility of the supplier assignment for a set a
of requested services is:

�� �
as

c
s

x
sSupp

ss FhaU ˆ)(

where for each service s in the set a,
]1,0()(: osSuppFs is a function that appraises the choice

for the supplier for s; and the weight cs�[0,1] reflects how

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

much the user cares about the supplier assignment for that
service.

4.4.3 Accounting for Switching of Suppliers
Among the technical challenges to automatic configura-

tion, is requirement R4 in 3.2.
The term sx

sh above (4.4.2) expresses a change penalty
as follows: hs indicates the user’ s tolerance for a change in
supplier assignment: a value close to 1 means that the user is
fine with a change, the closer the value is to zero, the less
happy the user will be. The exponent xs indicates whether
the change penalty should be considered (xs=1 if the supplier
for s is being exchanged by virtue of dynamic change in the
environment) or not (xs=0 if the supplier is being newly
added or replaced at the user’ s request).

4.4.4 Overall Utility
Overall utility is the product of the QoS preference and

supplier preference. The overall utility over a set a of sup-
pliers is:

¸̧¹
·

¨̈©
§� �� ��

)dim(

)(
sQoSd

c
d

as

c
s

x
soverall

dss FFhaU

4.4.5 Application Profiles
Application profiles describe the relationship between

the capability points supported by applications, and the cor-
responding resource requirements. Formally, the quality
resource mapping of supplier p is a partial function from the
capability space of service s to the resource space:

RCQoSprof sp �: . The range of the function is the
subset of the capability space that is supported by the sup-
plier.

4.5 The Optimization Problem
The optimization problem is to find a supplier assign-

ment a, and for each supplier p in this assignment, a capabil-
ity point such that the utility is maximized:

� �� �
�

� ¸̧¹
·

¨̈©
§��

as
dp

sQoSd

c
ds

c
s

x
s

ddomf
sSuppp

fFpFh dss

d

s

)()(maxarg ,
)dim(

)(
)(

The maximization is over a set of constraints, which we
express below. The capability constraint stating that the cho-
sen point fp,d is in the capability space for supplier p is as
follows:

pdpsQoSdpsSuppp Cff �� � �� ,)dim()(

And to ensure that the resource constraints are met:

RfQoSprof
sSuppp

pp d¦	
)(

)(

where summation is in the vector space R of resources,
and the inequality is observed in each dimension of that
space. In non-mathematical terms, this constraint expresses
the fact that the aggregate resource demand by all the suppli-
ers can not exceed the resource supply.

5. ALGORITHM AND ANALYSIS
In this section we solve the optimization problem. As

identified by requirement R3 in 3.2, the algorithm must be
efficient to be usable at runtime. Two metrics we are inter-
ested in are the latency of computing an answer to a given
instance of the problem, and in the computational overhead
of the algorithm.

5.1 The Algorithm
The algorithm works in three phases: (1) query, (2) gen-

erate, and (3) explore. In the first phase, it queries for rele-
vant suppliers for each service in the task. In the second
phase, it combines suppliers into configurations and ranks
them according to the supplier preference only. In the third
phase, it explores the quality space of the configurations.
The pseudocode of the algorithm is shown in Figure 1.

HashMap SuppPrefs; // supplier preferences
HashMap QoSPrefs; // qos preferences
HashMap SuppReg; // registered suppliers
Config BestConfig(Set reqstdSvcs){
 // 1. QUERY
 Map suppListsBySvc;
 for each svc in reqstdSvcs do{
 List suppList = null;
 Pref suppPref = SuppPrefs.get(svc);
 // query for supp based on svc type
 suppList = query(SuppReg, svc, suppPref);
 suppListsBySvc.put(svc.type, suppList);
 }
 // 2. GENERATE configs, compute supp pref
 List configs = GenConfigs(suppListsBySvc);
 configs = sort(configs);
 // 3. EXPLORE the QoS space
 int indexBestConfig;
 float overallUtilBest = 0.0;
 for each i from configs.size-1 to 0 do {
 Config cCur = configs.get(i);
 if (overallUtilBest > cCur.suppPrefUtil)
 break;
 cCur = searchQoS(cCur, QoSPrefs);
 if (cCur.overallUtil > overallUtilBest){
 indexBestConfig = i;
 overallUtilBest = cCur.overallUtil;
 }
 }
 return configs.get(indBestConfig);
}
GenConfigs(Map suppListsBySvc){
 List configs = new List(MAX_INT);
 int depth = 0;
 Config partialConfig = null;
 GenConfigsRecur(depth, configs,
 suppListsBySvc, partialConfig);
}
GenConfigsRecur(int d, List configs,
 Map suppListsBySvc, Config partialConfig){
 if (d == suppListsBySvc.size()){
 configs.add(new Config(partialConfig));
 return;
 }
 List suppList = suppListsBySvc.getByInd(d);
 for each supp in suppList do{
 partialConfig.add(d, suppList);
 GenConfigsRec(d+1, configs,
 suppListsBySvc, partialConfig);
 partialConfig.remove(d);
 }
}

Figure 1. Pseudocode of the algorithm

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

The double product term of the utility formula in 4.5 al-
lows for a clever exploration strategy. The outer product is
the supplier preference score. It can be computed at the time
the supplier assignment is known (in phase 2), and can be
used as an upper bound for overall utility during the explore
phase. Since overall utility is the product of supplier prefer-
ence and QoS preference, and the latter is bounded by one,
then maximum overall utility is bounded by supplier prefer-
ence. The break in the loop in BestConfig takes advantage of
that fact.

Consider a simple example. Assume that two services
are requested. For each service, there are two possible sup-
pliers: a1 and a2 for the first service, b1 and b2 for the second,
yielding 4 possible configurations as shown in Table 1. The
search space can be divided into 4 quadrants, each represent-
ing the capability space of a specific configuration. We are
searching for a point with the highest utility.

As noted, the maximum utility that can be achieved
within each quadrant is bounded by the supplier preference
portion of utility. These observations help provide a stop
condition for the search: once a point is found that has over-
all utility of , there is no need to explore configurations
with supplier preference portion of utility of less than .

Table 1. The structure of the search space
a1,b1 a1,b2
a2,b1 a2,b2

In Table 1, the shading of each quadrant reflects the hy-
pothetical values of supplier preference portion of utility for
each configuration: the darker the shade, the higher the
value. Assume these values are: .8, .6, .4, and .2. Each of
these values is an upper bound for maximum overall utility
possible from the respective quadrant. We explore inside the
quadrants, starting from the darkest. If the maximum utility
for the quadrant a1, b1 is higher than 0.6, then at this time we
know the best point in the entire space is found, and can stop
the search. If not, we continue the search in quadrant a2, b1,
and so on.

Exploring the quality space of a configuration is a variant
of a 0-1 Knapsack problem, called multiple dimensional,
multiple choice 0-1 Knapsack. Multiple dimensions refer to
the multiple constraints that are present in the problem.
Multiple choice refers to choosing one among a set of similar
items. In our problem, resources map to knapsack dimen-
sions and the capability space of one service maps to one set
of similar items. This is a well-studied problem in the op-
timizations research, and is at the core of such optimization
problems as winner determination in combinatorial algo-
rithms. [12][17] show the problem to be NP-complete, and
give approximation algorithms. [17] gives an exact solution
that is demonstrably fast on inputs drawn from certain prob-
ability distributions.

One of the approximating algorithms to the problem uses
utility to resource ratio as a metric for ranking the capability
points, then applies greedy selection and LP-relaxation to
find a near-optimal answer. In the multiple resource case,
quadratic weighted-average is used to compute a single re-

source currency from multiple resources, and the solution to
the single resource case is reused iteratively [12].

In our solution, SearchQoS invokes a third-party library
called Q-RAM, the package described in [12].

5.2 Analysis
To analyze the running time of the algorithm, let:
x n be the number of requested services
x P be the total number of available suppliers
x p be the number of suppliers for a given service type
x q be the size of the capability space of a supplier.

P and p describe the richness of the environment, and
can potentially increase as more applications, hardware, and
devices are made available. q describes the capability rich-
ness of a supplier. It is reasonable to assume that the size of
the user task is limited to a small number of applications.
Thus n is bounded.

Next we analyze the running time of the three phases.
The query phase retrieves items from a hashtable. Re-

trieving one item can be done in constant time. n retrievals
from a hashtable take O(n) time.

The generate phase is a recursion of depth n, with a loop
of size p at each level. Thus, it takes O(pn).

The explore phase in the worse case takes O(pn) *
O(searchQoS). The size of the QoS space of a configuration
of n suppliers each of which has a capability space of size q
is O(qn). Approximation algorithm we use can search that
space in time O(n*q*logq) [12][17]. Thus the explore phase
takes O(pn) * O(n*q*logq) in the worst case, and dominates
all other terms. The first term, O(pn), presents a possible
scalability bottleneck.

Let us demonstrate how the exploration strategy de-
scribed earlier helps tackle that bottleneck. Recall the break
condition in the explore phase, illustrated in the example
introduced in 5.1. The number of configurations that are
explored will depend on the distribution of the supplier pref-
erence valXHV�� DQG� �� WKH� KLJKHVW� DFKLHYDEOH� XWLOLW\� YDOXH���
Let’ s assume an average number of suppliers per service p =
10, and a specific distribution of supplier preference values
that is uniform, i.e. the most preferred supplier scores 0.90,
the next one scores: 0.91, etc. In Table 2, we show the num-
ber of configurations generated, and the number of configu-
rations that are actually explored depending on the value of
maximum achievable utilLW\�� , and number of services in
the task, n.

Table 2. Number of configurations generated and ex-
plored for various values of n, and , maximum utility

achieved
 n=1 2 3 4 … 8

Generated 10 102 103 104 … 108
� ��� 2 3 4 5 … 8
� ���� 3 6 10 15 … 36
� ���� 4 10 20 35 … 120
�= .66 5 15 35 70 … 330

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

The first row shows the number of services. The second
row shows the number of configurations generated, which is
pn, in this case, 10n. In each subsequent row, we show the
number of configurations that are sufficient to explore, if the
maximum utility shown in the first column in that row is
actually achieved by some configuration. For instance, for a
task with 4 requested services, even if the maxim utility
DFKLHYDEOH�LV�DV�PRGHVW�DV� � ������WKHQ�WKH�QXPEHU�RI�VXp-
plier configurations explored is 126, which is two orders of
magnitude smaller than the 104, the total number of configu-
rations.

5.3 Reconfiguration
The algorithm also handles reconfiguration. When there

is a running configuration, the utility from the best computed
configuration is compared with the observed utility of the
running configuration, and a switch is made if the latter is
lower than the former. Because of the cost of change term in
formula 4.4.2, some of the suppliers in the running configu-
ration may get an advantage.

6. CASE STUDY
In this section we report on a case study of configuring

an environment for the task of reviewing a documentary
video clip. The task requires 3 services: video playing, text
editing, and browsing. The user watches the clip, takes
notes, while browsing the net for information. The quality
dimensions are as follows: for video playing: frame rate,
frame size, and audio quality; for browsing: latency of load-
ing pages, and richness of the pages (pages have graphics
that are not required for the task can be helpful); for text
editing: none.

We performed the case study in two steps. In the first
step we collected application profile data, specified prefer-
ences, and identified resource limits. In the second step, we
ran a prototype implementation of the algorithm.

6.1 Input Data Collection
As an experimental platform, we chose an IBM Thinkpad

30 laptop, equipped with 256 MB of memory, 1.6 Ghz CPU,
WaveLAN card, and Windows XP Professional. In power
saving mode, the CPU can run at a percentage of the maxi-
mum speed, effectively creating a tight CPU constraint.

The model requires three inputs: (1) user preferences, (2)
application profiles, and (3) resource availability. For the
purposes of this experiment, we used synthetic preferences
intended to be representative of the tasks. We identified
several applications that supported various facets of the task.
Those applications were installed on the laptop. To obtain
application profiles, we measured resource usage corre-
sponding to a small set of capability points. We performed
this profiling offline, with each supplier running separately.
Resource availability is as follows: 400 MHz of processing
power, when the CPU is running at ¼ of the baseline speed;
64 MB of free memory after excluding the memory taken by
the operating system and other essential critical systems; and
512 Kbps of bandwidth, provided by an 802.11 wireless
access point backed by a DSL line.

The applications used in the experiment were:
x Video players: RealOne and Windows Media,
x Text editors: TextPad, WordPad, Notepad, Microsoft

Word, and GNU Emacs,
x Browsers: Internet Explorer, Netscape, and Opera,

These suppliers allow a total of 30 = 2*5*3 configura-
tions.

We measured CPU and physical memory load using
Windows Performance Monitor. We used percent processor
time, working set counters of the Process performance object
to measure CPU and memory utilization respectively. We
took the sampling average over a period of time. The per-
formance monitoring API does not provide per process net-
work statistics, so the mechanism for measuring bandwidth
demand was different in each case, as explained below.

For a representative clip to watch, we obtained a two
minute trailer of a movie in Windows native .wmv and Real
Networks native .rpm in several different bit-rates. Where
cross-player compatibility is supported, we obtained addi-
tional capability points. For example, RealOne plays .wmv
format. Also, players provide quality knobs, allowing im-
proved quality in exchange for higher CPU utilization. For
example, Windows Media player supports video smoothing
that provides higher frame rate than the rate encoded in the
stream. For each player, 32 points quality points were sam-
pled. To measure bandwidth demand, we consider the bit-
rate of the stream, and cross-check with the application-
reported value. We observed that the CPU consumption of
different players can be widely different for the same quality
point.

We measured CPU and memory used while typing and
formatting text for 2 minutes with each text editor. We ob-
served that the memory consumption of different text editors
can be widely different.

All browsers surveyed support a text-only mode, provid-
ing two points in the page richness dimension. To obtain
different levels of latency, we used a bandwidth-limiting http
proxy, and pointed the browser to the proxy. We measured
latency by allowing the following bandwidth limits: 28, 33,
56, 128, 256, 512 Kbps. Our script included a sequence of
approximately 15 pages with a mix of both text graphics on
the internet. Each test started with a clean browser cache.
16 quality points were sampled. We observed that the
browsers have very similar resource consumption patterns.

Although we realize that the methods for obtaining the
resource consumption measures are not precise, we believe
that they yield good enough approximations for this feasibil-
ity analysis.

Note that the capability space of a configuration of sup-
pliers has approximately 500 points (32*16*1), based on the
samples taken. 30 configurations together provide a capabil-
ity space of approximately 15,000 points.

6.2 Prototype Evaluation
The algorithm is guaranteed to find an optimal assign-

ment of suppliers. Furthermore, it will obtain the optimal set
of quality points for the suppliers, as long as Q-RAM finds
the optimal point inside each quadrant. Whenever Q-RAM

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

returns a near-optimal answer, our algorithm will return a
near-optimal set of quality points.

Additionally, we evaluated a prototype implementation
of the algorithm according to two metrics: (1) latency, and
(2) system overhead. Latency measures the time it takes to
compute an answer, from the time that a client program re-
quests it. Overhead measures percent CPU and memory
utilization of the algorithm. To adapt the configuration in
response to environment changes, it might be necessary to
run the algorithm periodically. Thus, the overhead of the
periodic invocation provides a useful metric.

The latency of computing the best configuration aver-
aged over 10 trials was 531 ms. In the query and generate
phases, the algorithm spends less then 10 ms each. In the
explore phase, it spends just under 500 ms (approximately
10 ms was due to parsing the request, and formatting the
answer). The bulk of the time in the explore phase was due
to external process invocation and file input-output (Q-RAM
package is an external executable). Thus, the latency can be
significantly reduced by linking into Q-RAM in-process.

We invoke the algorithm a total of 50 times in 5 second
intervals over a period of 250 seconds, and measure average
CPU utilization. Average CPU utilization is 3.8%. This
overhead is fairly low, and can be further lowered by running
the algorithm less frequently, e.g. once per 10 or 25 seconds.
Alternatively, the algorithm can be run in response to events
that may lead to changing the configuration, e.g. in response
to changes in suppliers, resource levels, or user preferences.

Memory usage of the Java Virtual Machine process run-
ning the algorithm is approximately 8.8 MB.

The case study presented here only addresses the per-
formance of the optimization algorithm, using data collected
via profiling. Ongoing work on the Aura platform [19] ad-
dresses the runtime instantation and monitoring of applica-
tions utilizing the analytical model described in this paper.

7. EVALUATION
In this section we discuss how our approach meets the

requirements of Section 3.2, highlight software engineering
benefits of the approach, discuss the limitations of the model
and scope of the work, and indicate future work.

7.1 Addressing the Requirements
We set forth four requirements in Section 3.2 (to con-

serve space, we omit the text of the requirements).
R1: Representation of user task. Our approach allows a

user to specify services needed, and preferences for observ-
able qualities of the services. Through preferences, the user
can express fine grain control over resource allocation be-
tween applications, and guide adaptation policies of applica-
tions. Although the space of possible configurations is large,
the encoding of preferences is efficient because it exploits
the independence of quality dimensions. Sigmoid functions
further improve the efficiency of the encoding, requiring
three numbers per quality dimension: two for the knees of
the sigmoid curve, and one for the weight of that dimension.

To enable automatic processing of a user request, our
approach employs a shared vocabulary of service names,

quality dimensions and preference encodings. Representa-
tion of user’ s task is only one aspect of a broader problem.
Another important issue is the elicitation of preferences,
which is not addressed in this paper, but is a subject of ongo-
ing research.

R2: Representation of application capabilities. Our ap-
proach meets this requirement by specifying the capabilities
of an application using a shared vocabulary of service names
and quality dimensions, and using discrete enumeration of
vector pairs to specify the relationship between quality and
resources. This is a general solution, as it does not rely on
the existence of functional forms between application quality
and resource usage. Our approach uses historical profile
data to estimate demand at runtime.

R3: Optimal and efficient algorithm. We have presented
an algorithm for efficient searching of the configuration
space. We have demonstrated analytically that the algorithm
finds a near-optimal answer in polynomial time by taking
advantage of the special structure of the problem, which is
NP-hard. Using a case study, we have demonstrated that the
algorithm has a latency of less one second on an input of
moderate size.

R4: Reconfiguration. Our approach explicitly models
the cost of disruption to the user from possible re-
configurations. Specifically, our approach considers on-the-
fly switching of suppliers as a possible source of disruption,
allows the user to express his tolerance for such a change as
a preference function, and takes the latter into account when
doing reconfiguration.

Our approach also allows user-initiated incremental
changes to a running configuration.

7.2 Software Engineering Benefits
Although the primary focus of this paper has been on ad-

dressing issues of efficiency and optimality, the approach
also embodies a number of significant engineering benefits.

First, our approach provides an integration architecture
(via a shared infrastructure) that helps maximize the benefits
of resource-aware applications. Today's default integration
architecture requires each such application to make resource-
awareness decisions independently. In our approach applica-
tions are composed through intermediaries and resource al-
location decisions are made through a shared infrastructure
that can provide better overall utility to the user by consider-
ing the capabilities of the entire system.

Second, our approach addresses usability issues of to-
day's applications. By providing mechanisms that automati-
cally translate from user preferences of the qualities they
desire to the configuration of specific services, we reduce the
cognitive burden of users in taking full advantage of re-
source-configurable applications.

Third, our approach adds new functionality to existing
applications that makes them better suited for resource vari-
able environments. Specifically we incorporate in our con-
figuration infrastructure the ability to make reconfiguration
decisions, factoring in issues of user distraction.

Fourth, our approach can contribute to reductions in en-
gineering costs for resource-aware applications themselves

Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004.

by shifting the burden of decision-making into the infrastruc-
ture.

7.3 Limitations of the Model
Our approach relies on a small number of assumptions,

which arguably are reasonable for the problem at hand. For
completeness, we discuss these assumptions:
x Our multiplicative model of preferences for QoS re-

quires that these dimensions satisfy certain independ-
ence assumptions. Proving that independence conditions
hold in each case is not possible. However, there is evi-
dence, that even though in practice independence does
not hold completely, additive (and consequently multi-
plicative) preferences provide good enough approxima-
tions [1][21].

x The model depends on accurate prediction of applica-
tions’ resource demand. Related research suggests [14],
that historical profiling can be used to accurately predict
demand. Although we realize that the methods for ob-
tained the resource consumption measures for the case
study described in Section 6 are not precise, we believe
that they yield good enough approximations for this fea-
sibility analysis.

7.4 Other Research
To address the configuration problem completely, several

related problems need to be solved. In this work, we address
only a subset of them. The following related problems are
being addressed elsewhere:
x Elicitation of user tasks [4] and preferences. For the

approach to work in practice, user-friendly and accurate
elicitation of preferences is required.

x Development of resource- and fidelity-aware applica-
tions [5][11][16].

x Development of an infrastructure for runtime monitoring
of resource supply levels [16].

7.5 Conclusion
 An important emerging requirement for computing sys-

tems is the ability to adapt at run time, taking advantage of
local computing devices, and coping with dynamically
changing resources. In this paper, we have presented an
analytical model and an efficient algorithm for the dynamic
configuration of resource-aware services in ubiquitous com-
puting environments. We demonstrated that it is feasible to
automatically configure such environments, given a specifi-
cation of user preferences. Our analysis shows that the pre-
sented algorithm is scalable to rich environments. Addition-
ally, the preliminary evaluation of the prototype implementa-
tion yielded promising performance. Furthermore, our ap-
proach embodies a number of software engineering benefits.
Future work includes runtime instantiation of applications,
monitoring of the environment, and scaling the approach to
more than one device under a user’ s control.

8. ACKNOWLEDGMENTS
This research is supported by the National Science Foundation under

Grants CCR- 0205266, ITR-0086003, by the Sloan Software Industry Cen-

ter at Carnegie Mellon, and the NASA High Dependability Computing
Program under cooperative agreement NCC-2-1298. Authors would like to
thank Bradley Schmerl for help in designing the system, and Sourav Ghosh
for help in integrating QRAM.

9. References
[1] S. Butler. Security Attribute Evaluation Method. A Cost-Benefit

Approach. Proc Int’l Conf in Software Engineering (ICSE), 2002.

[2] L. Capra, W. Emmerich and C. Mascolo. CARISMA: Context-Aware
Reflective mIddleware System for Mobile Applications. IEEE Trans-
actions on Soft Eng, Volume 29, Num. 10, pp. 929- 945 (2003).

[3] L. Capra, W. Emmerich and C. Mascolo. Reflective Middleware
Solutions for Context-Aware Applications. Int’ l Conf on Metalevel
Architectures and Separation of Crosscutting Concerns (REFLEC-
TION), 2001.

[4] The DAML Services Coalition (multiple authors), "DAML-S: Web
Service Description for the Semantic Web", Int’ l Semantic Web Con-
ference (ISWC), 2002.

[5] J. Flinn, M. Satyanarayanan. Energy-Aware Adaptation for Mobile
Applications. Proc Symp Operating Syst Principles (SOSP), 1999.

[6] J. Flinn, E. de Lara, et al. Reducing the Energy Usage of Office Ap-
plications. IFIP/ACM Int’ l Conf on Distributed Syst Platforms (Mid-
dleware), 2001.

[7] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project
Aura: Towards Distraction-Free Pervasive Computing. IEEE Perva-
sive Computing, Volume 21, Number 2, April-June, 2002.

[8] K. Gajos. Rascal - a Resource Manager for Multi-Agent Systems In
Smart Spaces. Proceedings of CEEMAS'01, 2001.

[9] Jini. www.jini.org. Accessed: Sep. 2003.

[10] M. Jones, D. Rosu, M. Rosu. CPU Reservations and Time Con-
straints: Efficient, Predictable Scheduling of Independent Activities.
Proc Symp Operating Systems Principles (SOSP), 1997.

[11] E. de Lara, D. S. Wallach, W. Zwaenepoel. Puppeteer: Component-
based Adaptation for Mobile Computing. Proc. USENIX Symp on
Internet Technologies and Systems (USITS), 2001.

[12] C. Lee, et al. A Scalable Solution to the Multi-Resource QoS Prob-
lem. Proc IEEE Real-Time Systems Symposium (RTSS), 1999.

[13] F. Kon, et al. Dynamic Resource Management and Automatic Con-
figuration of Distributed Component Systems. Proc. USENIX Con-
ference on OO Technologies and Systems (COOTS), 2001.

[14] D. Narayanan, J. Flinn, M. Satyanarayanan. Using History to Improve
Mobile Application Adaptation. Proc. 3rd IEEE Workshop on Mo-
bile Computing Systems and Applications (WMCSA), 2000.

[15] R. Neugebauer and D. McAuley. Congestion Prices as Feedback
Signals: An Approach to QoS Management. Proc. ACM SIGOPS
European Workshop, 2000.

[16] B. Noble, et al. Agile Application-Aware Adaptation for Mobility.
Proc ACM Symp Operating Systems Principles (SOSP), 1997.

[17] D. Pisinger. An exact algorithm for large multiple knapsack problems.
European Journal of Operational Research, 114, (1999).

[18] Service Location Protocol. www.srvloc.org. Accessed: Sep. 2003.

[19] J.P. Sousa, D. Garlan. The Aura Software Architecture: an Infrastruc-
ture for Ubiquitous Computing. Carnegie Mellon Technical Report,
CMU-CS-03-183, 2003.

[20] J.P. Sousa, D. Garlan. Improving User-Awareness by Factoring it Out
of Applications. Proc System Support for Ubiquitous Computing
Workshop (UbiSys), 2003.

[21] Yoon, K. Paul and Hwang, Ching-Lai. Multiple Attribute Decision
Making: An Introduction, Sage Publications, 1995.

