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1. INTRODUCTION

Data-intensive applications often dynamically construct database query strings
and execute them. For example, a typical Java servlet web service constructs
SQL query strings and dispatches them over a JDBC connector to an SQL-
compliant database. In this example scenario, the Java servlet program gener-
ates and manipulates SQL queries as string data. Here, we refer to Java as the
meta-language used to manipulate object-language programs in SQL.

We use a concrete example (see below) throughout this article to explain
our analysis technique. Consider a front-end Java servlet for a grocery store,
with an SQL-driven database back-end. The database has a table INVENTORY,
containing a list of all items in the store. This table has three columns: RETAIL,
WHOLESALE, and TYPE, among others. The RETAIL and WHOLESALE columns are
both of type integer, indicating their respective costs in cents. The TYPE column
is an integer, representing the product type-codes of the items in the table. In
the grocery store database, there is another table TYPES used to look up type-
codes. This table contains the columns TYPECODE, TYPEDESC, and NAME, of the
types integer, varchar (a string), and varchar, respectively.

The following example code fragment illustrates some common errors that
programmers might make when programming Java servlet applications:

ResultSet getPerishablePrices(String lowerBound) {

String query =  "SELECT ‘$’ || "
+ "(RETAIL/100) FROM INVENTORY "
+ "WHERE ";

if (lowerBound != null) {
query += "WHOLESALE > " + lowerBound + " AND ";
}
query += "TYPE IN (" + getPerishableTypeCode()
+ Il);ll;
return statement.executeQuery(query) ;

}

String getPerishableTypeCode() {
return "SELECT TYPECODE, TYPEDESC FROM TYPES "
+ "WHERE NAME = ‘fish’ OR NAME = ‘meat’";

The method getPerishablePrices constructs the string query to hold an SQL
SELECT statement to return the prices of all the perishable items, and executes
the query. It uses the string returned by the method getPerishable-TypeCode
as a sub-query. In the code, | | is the concatenation operator, and the clause TYPE
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IN (...) checks whether the type-code TYPE matches any of the type-codes of
the perishable items. If lowerBound is “5695”, then the query to be executed is:

SELECT ‘$’ || (RETAIL/100) FROM INVENTORY
WHERE WHOLESALE > 595 AND TYPE IN
(SELECT TYPECODE, TYPEDESC FROM TYPES
WHERE NAME = ‘fish’ OR NAME = ‘meat’);

Several different runtime errors can arise with this example. We list them
below; note that none of these would be caught by Java’s type system:

—Error (1). The expression ‘$’ || (RETAIL/100) concatenates the charac-
ter ‘$’> with the result of the numeric expression RETAIL/100. While some
database systems will implicitly type-cast the numeric result to a string,
many do not, and will issue a runtime error.

—Error (2). Consider the expression WHOLESALE > lowerBound. The variable
lowerBound is declared as a string, and the WHOLESALE column is of type in-
teger. As long as lowerBound is indeed a string representing a number, there
are no type errors. However, this is risky: nothing (certainly not the Java
type system itself) keeps the string variable lowerBound from containing
non-numeric characters.

—Error (3). The string returned by the method getPerishableTypeCode ()
constitutes a sub-query that selects two columns from the table TYPES. Be-
cause the IN clause of SQL supports only sub-queries returning a single col-
umn (in this context), a runtime error would arise. This can happen if the
method getPerishableTypeCode () did return a single column before, but was
inadvertently changed to return two columns.

This specific combination of Java as the meta-language and SQL as the
object-language is widely used today. The databases receiving these constructed
SQL queries certainly perform syntax and semantic checking of the queries.
However, because these queries are dynamically generated, errors are only dis-
covered at runtime. It would be desirable to catch these errors statically in the
source code.

In this article, we present a static analysis to flag potential errors or guaran-
tee their absence in dynamically generated SQL queries. Our approach is based
on a combination of automata-theoretic techniques [Hopcroft and Ullman 1979],
and a variant of the context-free language (CFL) reachability problem [Reps
et al. 1995; Melski and Reps 1997]. As a first step, our analysis builds upon a
static string analysis to construct a conservative representation of the gener-
ated query strings as a finite-state automaton. Then, we statically check the
finite-state automaton with a modified version of the context-free language
reachability algorithm. Our analysis is sound in the sense that if it does not
find any errors, then such errors do not occur at runtime. We have implemented
the analysis and tested our tool on realistic programs using JDBC, including
senior software-engineering student-team projects, online tutorial examples,
and a real-world purchase order system written by one of the authors. Our tool
is able to detect some known and unknown errors in these programs. Although

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 14, Pub. date: Sept. 2007.



14:4 o G. Wassermann et al.

it has not been tuned for performance, the analysis finishes in a few minutes on
all test programs. Furthermore, we observe a low false-positive rate in practice,
so empirically our analysis is quite precise.

The rest of the article is structured as follows. We begin with background on
the string analysis reachability and a brief overview of our analysis (Section 2).
Then we present our analysis in more detail (Section 3) and discuss our experi-
mental setup and results (Section 4). Finally, we survey related work (Section 5)
and conclude with a discussion of possible future work (Section 6).

2. BACKGROUND

We now describe the technical context of our work.

2.1 Static String Analysis of Java Programs

As mentioned earlier, our analysis makes use of a static string analysis of Java
programs [Christensen et al. 2003]. Essentially, it is an interprocedural data-
flow analysis [Kildall 1973; Kam and Ullman 1976] to approximate the seman-
tics of string manipulation expressions of a program. The analysis is similar to
a pointer analysis [Andersen 1994] for imperative languages or a control-flow
analysis (0-CFA) [Shivers 1988] for functional languages. It approximates the
set of possible strings that the program may generate for a particular string
variable at a particular program location of interest; these locations are called
hotspots. The string analysis produces a finite state automaton (FSA) that con-
servatively approximates the set of possible strings for each hotspot specified;
that is, the automaton accepts a larger set of strings than that is actually pro-
duced by the program, for that hotspot. In our earlier example, the following
statement:
return statement.executeQuery(query) ;

is a hotspot for that program.

The string analysis works on Java bytecode. It starts by finding the hotspots
in the Java program. We simply mark, in the program, every location with a call
to the method executeQuery (such as return statement.executeQuery(query)
in our example) as a hotspot. Then, the analysis abstracts away the control
flow of the program, and creates a flow graph representing the possible string
expressions. The flow graph captures the flow of strings and string operations
in a program; everything else is abstracted away. The nodes in a flow graph
correspond to variables or expressions in the program, and the edges represent
directed def-use relationships for the possible data-flow. For example, for the
statement query = strl + str2; the following graph nodes and edges are
created:

@\1) concat
G

In the graph, the node labeled “concat” represents the concatenation expres-
sion strl + str2, with the edges labeled 1 and 2 corresponding to the first
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and second arguments. The edge between nodes labeled “concat” and “query”
indicates the assignment. The other expressions and operators are treated sim-
ilarly; full details can be found in Christensen et al. [2003]. Next, this flow graph
is reduced to an extended context-free grammar by treating the nodes of the
flow graph as terminals and nonterminals of the grammar. The extension han-
dles operator or functions on strings, if any.! For example, the flow graph given
earlier in this section yields the following grammar rules:

C = Sl Sz
Q =C
where S1, Se, C, and @ correspond to the respective nodes for stri1, str2, concat,

and query.

In general, the grammar derived from a flow graph is not regular (not even
context-free as mentioned earlier). To make further analysis computationally
possible, we widen this grammar to a regular language. As an example, the
widening step would change a language such as {("a)"} to {(*a)*}. The purpose
of the widening step is to allow syntax checking of the generated strings against
a context-free grammar. In practice, we do not find a function that concatenates
some string, the return value of a recursive call to itself, and another string
(which would construct a language such as {("a)"}), so this widening step does
not hurt the precision of the analysis.

In addition, we need to narrow (i.e., find an under-approximation of) the
SQL grammar to a regular language for syntax checking. As an example, if the
SQLlanguage were { ("a)"}, it could be narrowed to {a| (a) | ((a))}. The narrowed
language contains a subset of the strings in the original language. This needs to
be done because, in general, checking the containment of a regular language by a
context-free language is undecidable [Hopcroft and Ullman 1979]. In summary,
we ensure that all generated strings are syntactically correct by inferring a
grammar that over approximates the set of generated strings, widening that
grammar to a regular language R, and checking whether R, is a subset of
a narrowed regular approximation of the SQL grammar.

The subsequent steps of our algorithm assume that all strings in R, are
syntactically correct. Since the details of how the widening and narrowing are
accomplished algorithmically are not the main focus of this work, we omit them
here, and refer the interested readers to Christensen et al. [2003]. We note,
however, that the widening step is not necessary in principle. It is possible to
work directly with the grammar from the flow graph or with one widened to a
context-free grammar because of two well-known results: (i) The intersection
of a context-free language with a regular language is still context-free; and
(i1) It is straightforward to check the emptiness of a context-free language. We
use the string analyzer as a library or a black-box in our tool, so we have not
implemented these potential modifications. We have not found the narrowing
step to be a limitation because, in practice, generated queries do not use deeply
nested parentheses.

IFor the details on this step, the interested reader is referred to Christensen et al. [2003].
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2.2 Context-Free Language Reachability

In the next step, the FSA is processed by a context-free language (CFL) reach-
ability algorithm that forms the foundation of our analysis. We give a brief
description of the problem and the algorithm here (cf. Reps et al. [1995] and
Melski and Reps [1997] for CFL-reachability problem takes as inputs a context-
free grammar G with terminals 7' and nonterminals IV, and a directed graph
D with edges labeled with symbols from 7"U N. Let S be the start symbol of G,
and X = T'U N. A path in the graph is called an S-path if its word is derived
from the start symbol S. The CFL-reachability problem is to find all pairs of
vertices s and ¢ such that there is an S-path between s and ¢.

The algorithm to solve the CFL-reachability problem uses dynamic program-
ming, and also relates to dynamic transitive closure [Yellin 1993],2 which un-
derlies many standard program analysis algorithms such as type systems based
on subtyping, alias analysis, and control-flow analysis [Andersen 1994; Shivers
1988; Amadio and Cardelli 1991]. The algorithm first normalizes the grammar
G such that each production’s right-hand side contains at most two symbols.
This is easily done by introducing new nonterminal symbols. Then new derived
edges are added to D based on the productions of G. For example, suppose G
has the production X ::= A B, and D contains the edges respectively labeled A
and B:

A B

O—0—0

The algorithm adds a dotted edge labeled X:

The algorithm repeatedly applies the above transformation to the graph D until
no more new edges can be added. Any pair of nodes s and ¢ with an edge labeled
X in the final graph has an X-path from s to ¢ in the original graph D. The
running time of the algorithm is cubic in both the size of the alphabet and the
size of the graph, i.e., O(|Z|3|D|3).

We make use of CFL-reachability in two distinct phases of our analysis, as
we explain next.

3. OUR ANALYSIS

Figure 1 gives an overview of our analysis. There are two main steps. In the first
step (outlined in Section 3.1), we generate a finite state automaton to conser-
vatively approximate the set of object-programs. In the second step, we process
this automaton in two sub-stages. First, we apply CFL-reachability, using the

2The problem is to maintain transitive closure of a graph while new basic graph edges can be added
during graph closure.
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Fig. 1. Overview of the analysis.
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Fig. 2. Automaton transformation illustrated.

SQL grammar, to find scoping information and typing contexts (Section 3.2).
Second, we apply CFL-reachability again, using the database schema, to per-
form type-checking (Section 3.3). Semantic errors, if found, are reported during
both phases. Note that our analysis differs from a standard SQL type-checker,
which analyzes a single query at execution time. We statically analyze a poten-
tially infinite set of queries.

We now present the major components and steps of our analysis, and illus-
trate them with our working example from Section 1.

3.1 Automaton Generation and Transformation

In this first step, we apply the Java string analysis we mentioned earlier
[Christensen et al. 2003] to generate, for each hotspot in the program, an FSA
representing the possible set of query strings that the hotspot can have. The
transitions of the automaton are over single letters from the alphabet of the
source language. For convenience, we perform a simple compaction on the au-
tomaton, so that all transitions are over keywords, delimiters, or literals in the
object-language.

Consider again the example from Section 1. Figure 2a shows a fragment of
the automaton that the Java string analysis produces. In the figure, we use “...”
to indicate some omitted details of the automata. After our transformation of
the automaton in Figure 2a, we obtain the FSA in Figure 2b (where o denotes an
unknown string). To achieve this, we use a depth-first traversal of the original
automaton, which groups letters into tokens (in the same sense as those in the
lexical analysis phase of a compiler [Aho et al. 1986]). We then use these tokens
to create an equivalent FSA with transitions over the keywords, literals, and
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TABLE1

@ SELECT @ NAME @ FROM 4 -e H e

TABLE2

Fig. 3. An FSA with two table contexts.

delimiters of our object-language. In addition, white-spaces are removed from
the automaton in this step.

3.2 Reconstruction of Type Environments

For an SQL query, the declared types of various columns are given in a database
schema. This is similar to the notion of a type environment in standard type
systems for language such as C, Java, and ML to look up types of variables. To
illustrate, consider the following sample SQL query:
SELECT NAME FROM EMPLOYEE WHERE SALARY > 20,000

The information that NAME is of type varchar, and SALARY is of type integer is
not explicit in the above query expression, but stored separately in the table
EMPLOYEE’s schema. For the same reason, our generated FSA does not have this
information either. We need to reconstruct it from the database schemas. We
now describe how we use the CFL-reachability analysis to obtain the column-
name to type mapping from the schema.

In this step, we assume that the generated FSA is syntactically correct,
i.e., the query strings produced by the FSA are all of valid SQL syntax. This
assumption is enforced by the string analysis [Christensen et al. 2003] because
it performs syntax-checking of the generated automaton.

The type environment reconstruction for the FSA is nontrivial; the type of
any given column depends upon its context, i.e., where it occurs. Depending
on the structure of the FSA, a given column may appear in many contexts.
For example, suppose we have the automaton shown in Figure 3. The type of
the column NAME can be different depending on which one of the two paths in
the automaton is taken. In one path, its type is determined by the schema’s
definition of TABLE1; in the other, it is determined by that of TABLE2.

Our solution to this problem is based on a variant of the CFL-reachability
algorithm. We apply the algorithm with the context-free grammar for SQL
queries and our transformed automaton as input. In essence, we use the CFL-
reachability algorithm to parse the automaton. This is very similar to general
context-free parsing (which is also of cubic time complexity). However, instead
of parsing a particular query, we work with an automaton that produces a
potentially infinite number of query strings.

In Table I, we show the grammar we use for SQL’s SELECT statement [Guyot
1998]. Nonterminals are in italic, and terminals are shown using the
typewriter font. Our grammar is not yet complete, but could be easily
made so by adding more rules. The CFL-reachability algorithm described in
Melski and Reps [1997] requires a normalized grammar such that the right-
hand side of any production has at most two symbols. Our implementation of
CFL-reachability has been extended so that it works with productions with at
most three symbols on their right-hand sides. This extension allows us to use
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Table I. SQL SELECT Statement Grammar.

14:9

column _list

func_paren_double

Nonterminal Productions
select_stmt select ;
select select_part1 select_part2
select_part1 SELECT column _list
SELECT DISTINCT column_list
SELECT ALL column_list
select_part2 FROM table list | FROM table list where_clause

displayed_col , columnlist | displayedcol | *

displayed _col exp_simple | exp_simple AS id
exp_simple exp_simple addop term | term | addop term
term factor |  term multop factor | term || factor
factor id | (expsimple)
function func_paren |  group_function group _func_paren
function UPPER | LOWER | ABS | LENGTH
func_paren (expsimple) | (func_paren_double )

exp_simple , exp_simple

group_function AVG | COUNT | MAX | MIN | SUM
group_func_paren (expsimple) | ( *)
table_list table list , table_name | table_name
table_name id | idid | idAsSid
where_clause WHERE condition
condition logicterm | NOT logic_term | condition OR logic_term
logic_term logic_factor |  logic_term AND logic factor
logic_factor exp_simple compare_op exp_simple

exp_simple IN subquery
subquery ( select )
addop + 1 -
multop * |/
compare_op = | < | >
id < any non-keyword >

more naturally written grammars—a feature intended to make extending this
tool easier.

Our modified CFL-reachability algorithm enables us to find the type con-
text (i.e., type environment) of each path through the automaton. We can then
use this information to match every column with all of its possible types. The
type contexts are discovered by annotating the automaton with the derivation
in use while running the CFL-reachability algorithm. In particular, whenever
the CFL-reachability process adds a nonterminal edge to the automaton, we
store references in that edge to the edges making up this derivation. This is
similar to actions in syntax-directed translation [Aho et al. 1986]; we build a
collection of parse trees for the automaton. In fact, the complete type environ-
ment reconstruction step is similar to attribute grammars in syntax directed
translation [Aho et al. 1986].

To illustrate this process, we will run through a few steps using an exam-
ple. First, let us return to the simple example in Figure 3. Here are a few
steps (shown in Figure 4) of running our algorithm for discovering the type
environments:

Figure 4a. Because NAME is not a keyword, it must be an identifier, so an
edge labeled id is added between nodes 2 and 3.
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: @%g @) 00

b.
tableTname
d. @—SELECT—)@ﬁRED)‘@meM —)@

~table_name -
table_list

Fig. 4. Sample steps in discovering type environments.

Figure 4b. The same goes for the two edges between nodes 4 and 5. How-
ever, the id edge from node 4 to 5 has two distinct derivations. This is different
from the standard CFL-reachability algorithm. With the standard algorithm,
if an edge to be added is already present, then nothing needs to be done for that
edge. In our example, suppose there is already an id edge from 4 to 5, which
was added through the edge labeled TABLE1. When the edge labeled TABLE2 is
to be processed, another id edge from 4 to 5 is to be added. However, the edge
is already present in the automaton. Instead of simply stopping (as is done in
the standard CFL-reachability algorithm), our algorithm adds a second deriva-
tion reference to the already-present id edge. This allows each context to be
discovered when searching through the derivation edges.

Figure 4c. After the id edge is added, an edge labeled table_name is added
from node 4 to node 5, which has a single derivation—the id edge from node 4
to node 5

Figure 4d. Then, an edge labeled table list will be added from node 4 to
node 5. This process continues until no further edges can be added based on
grammar productions.

The purpose of the first application of the CFL-reachability algorithm is
to find the types of columns. Finding the type of the columns requires first
identifying which tokens are column names, second matching them with the
appropriate table names, and finally looking up that column in the database
schema to determine its type. Applying CFL-reachability with the SQL gram-
mar essentially builds parse trees for the automaton. We use these parse tree
to find which tokens are column names and match them with the appropriate
tables. When the types are determined from the schema, type-edges are added
to the automaton.

Figure 5 illustrates the final steps of this process. Note that Figure 5 shows
the edges that are relevant to the completion of this algorithm, not every edge
that has been added. For example, because of the id edge from node 4 to node 5,
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Fig. 5. Making the type environment explicit.

there is also a factor edge from node 4 to node 5, which is not shown in the
figure.

Figure 5a. At each step of the CFL-reachability algorithm, if a sequences
of edges matches the ris of a production, references are added between the edge
representing the [hs of the production and the edge(s) representing the ras of
the productions. These references form a parse tree for each complete query.
The references from the id edge between nodes 4 and 5 are dotted to show that
they represent two distinct matchings rather than a matching from a single
production with two symbols on the rhs.

Figure 5b. Productions that represent complete statements have associ-
ated handlers, which recursively descend parse trees. Handlers are used for
descending parse trees and performing a task. In the case of SQL data state-
ments, this task is matching column names with table names. The select_stmt
production represents a complete SELECT statement, and its handler is called
on the edge between nodes 1 and 6. The handler first finds NAME’s type based on
the column types in TABLE1—we assume that type is varchar. Since no varchar
edge between nodes 2 and 3 exists, a new one is added with a reference to the
NAME edge. The same will be done using TABLE2. When we come across a primi-
tive (e.g., an edge labeled 100 in the example in Section 1), we determine that
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it is not a column name, and must be a literal. At this point, we determine the
literal’s type and add it to the graph as an edge.

In type environment reconstruction, some errors can be discovered. For in-
stance, we can determine whether there is an invalid column that does not exist
in any of the applicable tables for that column. If this happens, an error can
be reported as either an improperly-quoted literal, or a nonexistent column.
Other errors are also detected in this step, including duplicate table references
(the same table appears more than once in the FROM clause), duplicate uses of
the same table alias (two tables are assigned the same alias), and nonexistent
tables (the schema does not have a table referenced in the FROM clause).

3.3 Type-Checking

In the final step of the analysis, we perform type-checking on the automaton
produced in the previous step, as described in the previous section. At this
stage, the automaton has been annotated to show the types of column names
and literals. SQL’s simple-type system lets us treat the type system as a context-
free grammar. For example, the type rule for additions over integers looks like:

I' ey : integer I - eq : integer
I ey + ey : integer '

The above rule can be viewed as equivalent to the grammar rule: integer ::=
integer + integer, which states that an integer plus an integer is again an in-
teger. The other rules for type-checking SQL expressions can be handled in a
similar manner. This is possible due to SQLs simple type language—a collection
of atomic types. This is in contrast to general-purpose programming languages
that have more complicated type structures. Table II shows a small subset of the
context-free grammar for the type-checking rules of SQL's SELECT statement.
All the rules are straightforward, except the last one, which merits some ex-
planation. The rule says that the conditional expression IN is well-typed if the
subquery inside the parentheses (here required to be of type integer) reduces
to a single column of type integer, when the outer expression is an integer.
Thus, this rule requires the subquery to be of the correct type. A similar rule,
not shown here, exists for the varchar type. Notice that we did not specify all
the rules; for example, the rules for the SELECT statement. These rules are ob-
vious, and we omit them in our presentation. As in a standard-type system, if
none of the rules apply for a language construct, then a type error is discovered.

We apply the CFL-reachability algorithm using the grammar in Table II to
propagate type information. If during the process, there is an expression that
does not match any one of the right-hand sides of the rules, then an error is
discovered. In some sense, there are implicit error rules in the grammar, such
as errortype ::= integer + varchar.

We illustrate type-checking with an example. Consider the small snippet
shown in Figure 6a taken from our working example in Section 1. Before type-
checking begins, the automaton is annotated with type information for the
column names and literals, as shown in Figure 6b. Figures 6¢-d show a few
steps of type propagation using our grammar rules.
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Table II. SQL SELECT Statement Type-System

Grammar
Nonterminal Productions
integer = integer + integer

integer - integer
integer * integer

( integer )
ABS integer
decimal u=  (decimal)
| integer / integer
varchar = (varchar)

UPPER varchar

varchar | | varchar

boolean = integer compare_op integer
| integer IN ( integer )

RETAIL

VY VY ) V@Y
a. O ) ) ) ) O
(o~ RETAIL o~ [~ 100 )
integer integer
( RETAIL / 100 )
c. O NG <) u
.. integer integer
décimal:::integer/integ‘evf”
( RETAIL / 100 )
) decimal e
‘d‘é'cimal:::(decimal).

Fig. 6. Sample steps of running CFL-reachability using the type grammar.

If our type-checking step does not produce any edges labeled errortype, then
all the object-programs specified by the automaton are type-correct. On the
other hand, if type-checking does produce an errortype edge, the analysis reports
potential errors and displays a sample derivation that causes the type error.
Note, however, that a reported error may not be an actual error in the origi-
nal Java program due to imprecision in the automaton characterization of the
object-programs. In the case of SQL, our analysis is precise under the assump-
tion that all the object-programs specified by the automaton are feasible in the
original Java source program and that no like-named columns have different
types.

Figure 7a shows the edge errortype being added to a snippet of our exam-
ple program, corresponding to the concatenation error between the character
‘¢’ and the numeric result of the division. Note that many irrelevant edges
are omitted in the figure. Figure 7b shows an errortype edge being added for
the second error in our example program. Figure 7c shows the errortype edge
for the third error, but we use more than just the type grammar to discover
it. Because lists (or tuples) of arbitrary length can be constructed, lists with
at least two elements are simply given the type listtype. The type-abstracted
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errortype
@/ T

o A~ $ . Il ( RETATL / 100 )

varchar

decimal
errortype

b Oy O30 O

integer varchar

errortype
. :TYPE ( SELECT TYPECODE » TYPEDESC select_part2 )

c. 9, O—O

integer

listtype

Fig. 7. Discovering a type error.

expression “integer IN listtype” is always an error. If there are two listtype’s in
the same expression, list-handling code descends the parse trees to check for
compatibility.

3.4 Correctness of the Analysis

We now state and briefly argue the soundness of our analysis. Due to conser-
vative approximations, our analysis may report spurious (infeasible) errors. In
Section 4, we present experimental data to support the claim that the analysis
is rather precise and has low false-positive rates.

TuEOREM 3.1 (SOUNDNESS). Qur analysis is sound. In other words, if the
analysis does not report any errors, then the generated SQL query strings are

type-safe.

Proor. We justify the soundness theorem here. We assume that the automa-
ton that we operate on is a conservative approximation of the set of possible SQL
query strings for a particular hotspot. This is guaranteed by the correctness of
the string analysis in Christensen et al. [2003]. We also make the assumption
that the query strings produced by the automaton are syntactically correct,?
which is crucial for the soundness of our analysis. If the query strings are guar-
anteed to be syntactically correct, then the sequences of character transitions
that comprise a token in the queries are preceded and followed by token delim-
iters (e.g., ¢ 7, ©’, etc.). This guarantees the generated automaton can be lexed
correctly into an automaton over tokens, and the language accepted by the lexed
automaton is the same as the language accepted by the original automaton.

Next, we can show by an inductive argument that CFL-reachability considers
all possible derivations of the query strings because the query strings are all of
the correct syntax. Consider an arbitrary string s generated by the automaton.

3This can be enforced by the string analysis in Christensen et al. [2003].
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Assume that the string has been parsed and that the grammar rules have two
symbols on their right-hand sides. Suppose that CFL-reachability has added
transitions representing the nonterminals in the grammar to depth n. Consider
anode pins’s parse tree at height n + 1. Because pis at height n+1, p’s children,
at height n, have corresponding edges in the automaton. When the second of
these edges is added to the automaton, it was added to a worklist. When it is
removed from the worklist, the grammar rule that added p to s’s parse tree
will be used to add an edge p’ corresponding to p to the automaton, if p’ does
not exist already. References from p’ to the edges that allowed it to be added
will also be added, if they do not exist already. This argument holds for the
base case when n = 0 because all edges are initially added to the worklist. The
argument generalizes to grammars whose productions have three-symbols on
their right-hand sides.

We now argue that the type reconstruction is correct. Consider an arbitrary
edge e labeled with a column name. The references between edges added by
the CFL-reachability algorithm form parse trees for all complete queries in
2 the graph, so for all queries ¢ generated which use e, there exists an edge r in
the graph such thatr is at the root of the parse tree for ¢. Recursive descent code
gets called on each edge r which is at the root of the parse tree for a complete
statement. For each edge r, the recursive descent code or handler that gets
called depends on r’s label, for example, if r’s label is select_stmt, a handler for
SELECT statements is called. For each unique label that a root edge r may have,
the handler is designed to find the table lists in the parse tree and match them
with all column names. Therefore, the column named at e will get matched with
the appropriate table lists. For each table ¢ in the lists, the database schema
tells whether ¢ includes a column with the name that labels e, and if so, what
its type is. Thus, if on some path a column name has type z, the environment
recovery phase adds an edge labeled with t parallel to that column name. At
the end of this step, each column is labeled with a superset of its actual types.

Finally, we argue that the type checking phase is correct. Consider an arbi-
trary binary operator op preceded by type t; and followed by 15 in the graph.
The complete sets of operators and types are enumerated statically and a gram-
mar rule is made out of each possible combination. If 71 op 12 is typeable as 13,
then an edge labeled 73 spanning the three edges it is derived from is added. If
71 Op T2 is not typeable, then the grammar production with that sequence on its
right-hand side will have error_type on its left-hand side, and an edge labeled
error_type will be added. The addition of such an edge will cause a handler for
the error_type to be called, and this handler will report an error. This argument
also holds for unary operators, parentheses, and all other syntactically possible
constructs. Thus, for all possible type errors, an error report will be issued. O

The incompleteness in our analysis comes from two sources. First and pri-
marily, the string analysis may over-approximate the set of possible generated
strings. In our experiments (see Section 4), this did result in some false pos-
itives. The precision of the string analysis could be improved, but finite state
automata lack the expressive power to match precisely an arbitrary set of string
generated by a program. The second source of incompleteness in our analysis
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errortype '

TABLE1 < integer integer h

TABLE2 varchar varchar

Fig. 8. Imprecision in type checking from CFL-reachability.

comes from decoupling the type environment recovery from the type checking.
Consider the example in Figure 8. Suppose that TABLE1.COL1 and TABLE1.COL2
are integer columns and TABLE2.COL1 and TABLE2.COL2 are varchar columns.
The type environment recovery would add type edges accordingly. The type
checking phase would find that integer = varchar is a type error and would
report an error even though all of the possible queries type check correctly.
We have not encountered this, and we expect that it will be rare in practice.
Most operators are defined only for one type or interchangeable types. Also, it
seems to be uncommon that a database schema has two columns with the same
name but different types. In part, this is because column names often imply col-
umn types (e.g., a column named “TITLE” probably has type varchar). Having
two pairs of columns with the same names but different types would be quite
rare.

3.5 Discussions

We now briefly discuss some technical issues in directly applying our technique
to more expressive languages than SQL. The division of our semantic checking
algorithm into two separate applications of context-free language reachability
works well due to the simplicity of SQL and its type system. In fact, we can prove
that our analysis is precise assuming that no like-named columns have different
types and that the string analysis is precise (and surely the string analysis
is not precise and cannot be precise in general). However, in extending our
technique to handle more expressive languages, certain imprecisions do show
up due to our decoupling of syntax reconstruction and type checking. We use
an example to illustrate. Suppose we extend SQL’s syntax for its WHERE clause
to allow boolean primitives in the search condition. For example, the clause
WHERE ISNEWHIRE AND SALARY > 1000 is allowed, where ISNEWHIRE is a column
of type Boolean indicating whether an employee is a newhire or not. Notice that
standard SQL considers this clause illegal, and it needs to be rewritten as WHERE
ISNEWHIRE = ‘true’ OR SALARY > 1000. With this rewriting, the correct use of
the basic comparisons in the search condition guarantees the correct typing
of the whole clause. To see the problem with our extension, notice that the
three edges in bold results in an error with context-free language reachability
(cf. Figure 9).

For more expressive languages, more precise information about the underly-
ing syntactic structure of the object-programs is required. By unifying the two
steps of CFL-reachability, we retain this information. In more detail, we apply
CFL-reachability to reconstruct the complete set of possible derivations of the
object-programs as a tree forest. Then, it is processed and checked top-down for
errors by modifying standard analysis techniques for a single derivation. Each
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boolean:
Na\ ISNEWHIRE e OR m > Na 1000
A S NS~ I NS~ N

" boolean integer | ! integer

errortype

Fig. 9. Imprecision in type checking for more expressive languages.

expression in the object-programs carries with it a set of possible types instead
of a single type. In some sense, this is related to languages with union types.
This does potentially increase the complexity of the analysis, and in return
gains more precision. Further theoretical and experimental study is required
to understand this trade-off.

4. EXPERIMENTAL EVALUATION

We have built a prototype tool, embodying our approach, and have tested its
ability to detect programming errors in Java/JDBC applications. As any SQL
developer will attest, every database vendor implements a different version of
SQL; thus checkers such as ours require some porting effort for each different
database. We have implemented our analysis for the SELECT statement specified
by the grammar for Oracle version 7 [Guyot 1998]. This grammar is a subset
of what is specified in the SQL-92 standard. Adding support for other state-
ments or different vendors is not difficult, because we have separated the type
environment reconstruction and type-checking steps. In most cases, we would
simply need to modify our syntax grammar and/or type-system rules (specified
as input files to our analysis) and the recursive-descent code to traverse the
parse trees, and map column names with their possible types. With the goal
of having a sound analysis, we have built a strict semantics into our tool: if
a program is deemed type-safe by our analysis, it should be type-safe on any
database system. Because the semantics of many database systems is not as
strict as the one enforced by our tool, the tool may report an error which some
database systems consider legitimate.

Our tool is implemented in Java and uses the string analysis of Christensen
et al. [2003]. for computing the FSA, which in turn uses the Soot frame-
work [Vallee-Rai et al. 1999] to parse class files and compute interprocedural
control-flow graphs. We have tested our tool on various test programs, including
student team projects from an undergraduate software engineering class, sam-
ple code from online tutorials found on the web, and code from other projects
made available to us. Table III lists the test programs that we use. For each
test program, we list the Java source code size (number of lines of source code),
number of hotspots in the program, number of columns in the database schema,
generated automaton size (number of edges and nodes). Note that the test pro-
grams are sorted by automaton size, since it is a good measure of the complexity
of the object-programs for our analysis. Table IV summarizes our experimental
results. For each test program, we list the analysis time (split into automaton
generation and semantic analysis), numbers of various warnings and errors
found (cf. Table V). The semantic analysis here includes both the time to extract
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Table III. Test Programs

Test Programs Size

(S) Student Java

(W) Web Download Program Schema Automaton
(I) Industrial (Lines) Hotspots (Columns) Edges/Nodes
Smi (S) 1559 1 19 35/27
CFWorkshop (S) 36 5 13 47/52
OrderUp (S) 6139 7 48 59 /66
PizzaParlor (S) 4915 10 36 74 /80
TicTacToe (S) 2888 2 26 134/121
Checkers (S) 6620 4 36 150/ 125
WebBureau (W) 50 10 21 152 /162
JuegoParadis (S) 6139 13 29 248/ 226
PizzaToGo (S) 8491 35 47 295 /330
Snowman (S) 6743 25 61 331/349
Reservations (S) 2385 22 54 368 /383
OfficeTalk (S) 5812 29 14 524 / 525
Sanford (S) 8512 54 84 614 /585
PurchaseOrders (I) 642 51 82 1324 /1373

Table IV. Experimental Results

Analysis Time (sec) Errors Found

String Semantic Total Confirmed False
Test Programs Analysis | Analysis | Warnings | Errors Errors Errors
Smi (S) 1.5 7.1 0 0 0 0
CFWorkshop (S) 0.6 1.3 0 0 0 0
OrderUp (S) 2.53 0.75 0 0 0 0
PizzaParlor (S) 3.13 0.97 0 0 0 0
TicTacToe (S) 6.4 144.8 3 1 1 0
Checkers (S) 11.8 97.8 0 15 15 0
WebBureau (W) 0.5 2.5 0 1 1 0
JuegoParadis (S) 27.0 45.0 0 9 0 9
PizzaToGo (S) 10.57 9.93 1 6 6 0
Snowman (S) 2.56 46.45 5 3 3 0
Reservations (S) 1.7 29.1 0 0 0 0
OfficeTalk (S) 7.0 120.8 0 2 2 0
Sanford (S) 11.23 16.68 0 28 28 0
PurchaseOrders (I) 1.3 173.3 41 10 9 1

the automaton from the string analyzer and the time to analyze the automata.
All experiments were done on a machine with a 2 GHz Intel Xeon processor and
1 GB RAM, running Linux kernel 2.4.20. The results indicate that our analysis
is rather precise, that is, with low false-positive rates. Because our analysis is
sound, if the tool does not report any error on a program, then we have verified
that the program is type-correct.

Table V shows a breakdown of the kinds of errors that we found in the test
programs. We next explain these errors in more detail:

—Type Mismatch:
(I) Concatenation of fields with wrong types. Thisis the same error asin the
concatenation ‘$’ || (RETAIL/100) (Section 1). After discovering this
error in porting a program to a different (more strict) database, our tool
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Table V. Error Breakdown of Confirmed Errors.

Type Mismatch Semantic
@O (e8] (II1) @D (ID)
Concatenation Unquoted | Quoted | Ambiguous Column
Test Programs Of Wrong Types String Number Column Not Found
Smi (S) 0 0 0 0 0
CFWorkshop (S) 0 0 0 0 0
OrderUp (S) 0 0 0 0 0
PizzaParlor (S) 0 0 0 0 0
TicTacToe (S) 0 0 1 0 0
Checkers (S) 0 0 14 0 1
WebBureau (W) 0 0 0 1 0
JuegoParadis (S) 0 0 0 0 0
PizzaToGo (S) 0 0 6 0 0
Snowman (S) 0 0 3 0 0
Reservations (S) 0 0 0 0 0
OfficeTalk (S) 0 0 2 0 0
Sanford (S) 0 0 28 0 0
PurchaseOrders (I) 5 1 0 0 3

(ID

(II1)

has been used to find all instances of the error in the “PurchaseOrders”
program.

Possibly unquoted string. Assume we have a comparison such as NAME
= a, where a represents an unknown string. If there are no quotes in a
string that o possibly represents, then such an error occurs.

Quoting a numerical value. This happens when a numerical value is
quoted but still treated as a numerical literal. This is a common error
found in student projects. They were using MySQL, which permits nu-
merical literals to be quoted. Many other database systems consider this
an error because quoted numerical literals are of type varchar.

—Semantic Errors:
(I) Ambiguous column selection. Our tool detected such an error in some

(ID)

sample code from a tutorial website (http://web-bureau.com/modules/

sql.php). This error is quite subtle, and it appears unknown. The partic-

ular statement is:
SELECT customer_id FROM customers c, orders o
WHERE c.customer_id = o.customer_id;

The error is that the database does not know which table’s customer_id

to choose. Certainly, it seems not matter which customer_id to select in

this particular statement, but in general, the semantics of the column
list should not depend on the outcome of the WHERE clause.

Column not found. This error happens when a column name does not

exist in any of the tables in the FROM clause. We found two distinct causes

of this error—one a real error and the other a spurious error:

—Real error.  'The schema of the database does not include this column.
This can be caused by either selecting a non-existent column, or miss-
ing the quotes around a literal, and thus being treated as a column.

—Spurious error. This is due to the imprecision in the string analysis.
Consider the following example, where makeQuery is a public method
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taking a string parameter tables to construct a FROM clause:

public String makeQuery(String tables) {

return "SELECT name FROM " + tables;

}
The string analysis adds an « edge to the table list of the FROM clause
(meaning any table is possible), in addition to the concrete table list
it finds through analyzing other input classes. The reason is that this
method is public, and the string analysis expects other calls to the
method possible and thus views the input classes incomplete. The pres-
ence of this o edge causes the analysis to search for the column in an
empty table list, which certainly fails. This is the only kind of spurious
errors we found in our test programs. These errors can easily be filtered
out by modifying the string analysis to consider its input as a complete
set of classes. We did not implement this modification because we used
the string analyzer as a black-box in our implementation.

—Warning. We found one type of warning in our test programs. It is the
same as the one illustrated in our running example in Section 1: to compare
a numerical column with a possibly non-numerical value at runtime.

The original version of our implementation is quite efficient even though
we did not tune it for performance—it was able to analyze each of our test
programs within a matter of minutes. As previously stated, our tool consists
of three components: Soot to parse class files, the BRICS Java String Analyzer
to analyze string variables and construct FSAs, and our own additions to type
check the queries represented by the FSAs. Generating the automata proved
to be the performance bottleneck in our tool, but we expect that this can be
made much more efficient. The ratios of nodes to edges averaged approximately
1: 1, which indicates that these automata are usually linear or nearly linear.
We expect that heuristics designed to search for queries that are statically
determined and possibly include user inputs can produce linear automata much
more quickly and improve the tool’s performance.

We did not attempt to re-implement or optimize either of the first two com-
ponents, but we did study the effects of optimizing our analysis. Our analysis
consists of three phases: lexing the automaton, recovering the type environ-
ment, and type checking. As explained in Section 3.2, we reconstruct the type
environment by using CFL-reachability to parse the automaton. However, re-
constructing the type environment only requires identifying constants and cor-
rectly matching columns with tables; the schema then yields the columns’ types
immediately, and no external information is needed to type constants. A more
efficient algorithm can accomplish the same end. We re-implemented the envi-
ronment reconstruction using a flow-based algorithm. Essentially, at each node
after a FROM token or before a WHERE token, we find all tables which could be
reached from that node or to that node, respectively. These are the nodes that
terminate the table list at either end. The lists of possible tables are then prop-
agated in either direction to match columns with tables. It is also necessary to
find table and column aliases (e.g., items AS i) and propagate this information
appropriately. The two implementations are interchangeable with the following
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Table VI. Comparison of Performance when using CFL-Reachability vs. a Flow-Based
Algorithm for Environment Recovery

Environment Recovery Type Checking

Lexing CFL | Flow | Percent CFL | Flow | Percent
Test Programs (ms) (ms) | (ms) | Speedup (ms) | (ms) | Speedup
Smi (S) 7 54 18 200% 39 38 3%
CFWorkshop (S) 6 53 20 170% 34 37 —6%
OrderUp (S) 9 58 12 394% 53 40 31%
PizzaParlor (S) 10 84 14 500% 34 62 —45%
TicTacToe (S) 11 136 33 312% 723 251 188%
Checkers (S) 11 139 107 29% 110 97 14%
WebBureau (W) 25 131 24 447% 85 52 65%
JuegoParadis (S) 23 165 28 489% 74 72 3%
PizzaToGo (S) 25 149 21 597% 94 102 —8%
SnowMan (S) 23 218 24 795% 110 95 17%
Reservations (S) 26 240 38 525% 158 73 117%
OfficeTalk (S) 25 248 39 541% 460 102 351%
Sanford (S) 27 275 42 556% 42 109 30%
PurchaseOrders (I) 38 1089 76 1326% 1291 414 212%

exceptions:

—The flow-based implementation will not discover ambiguous column refer-
ences or cardinality errors in IN clauses. In our tests, we found one of the
first kind of error and zero of the second.

—If the automaton generates queries whose syntax cannot be parsed by the
grammar that the tool implements (e.g., a query with an ORDER BY clause if
ORDER BYisnotinthe tool’s grammar), the CFL-reachability implementation
will ignore those queries. The flow-based approach will attempt to analyze
them, and may find errors that the other technique ignored.

—The type checking phase requires a larger type grammar if the flow-based
implementation is used (see below).

Table VI summarizes the performance of our tool in the lexing, environment
recovery, and type checking phases. The performance using the original (cubic
time) CFL-reachability in both the environment recovery and type checking
phases is shown under the column labeled “CFL,” and the performance using
a (quadratic time) flow-based algorithm is shown under the column labeled
“Flow.” In the largest example, using the flow-based algorithm improved the
time for environment recovery by more than an order of magnitude. The flow-
based algorithm clearly performs better than the CFL-reachability algorithm.
On the other hand, the implementation based on CFL-reachability is easier to
extend and maintain. The supported SQL grammar is implicit and diffuse in
the flow-based algorithm, so modifying the grammar is more difficult.

The type checking phase was not modified, but in most cases it performed
better when CFL-reachability was not used to recover the type environment.
This is because CFL-reachability adds many new edges to the graph in the envi-
ronment recovery phase, resulting in a larger input graph to the type checking
phase. In some cases, however, the type checking phase was slower. This is
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because the type grammar needs more rules when the edges that would be
added during the environment reconstruction are not present. For example,
the type grammar has a rule like:

I ey : integer I' ey : integer

I +ey add op es : integer

rather than having separate rules for “+” and “—.” If CFL-reachability is used,
it adds an add_op edge during environment recovery. If it is not, the rule to add
this edge must be included in the type grammar.

We expect our analysis to scale to large systems, because analyses based on
the same underlying algorithms have been shown to scale to millions of source
lines of C [Su et al. 2000; Heintze and Tardieu 2001]. Further experiments
are needed to verify our claim. In many cases, however, large, Java-based web
applications use an object-relational mapping API, so our analysis would not
apply to them directly. We have shown that our tool can detect errors in non-
trivial programs. Currently the tool is being evaluated by a few friendly users
in both commercial and research-oriented settings.

5. RELATED WORK

In this section, we survey closely related work. Perhaps the most closely re-
lated is the string analysis of Christensen et al. [2003] that forms the basis of
our analysis. Their string analysis ensures that the generated object-programs
are syntactically correct. However, it does not provide any semantic correct-
ness guarantee of the object-programs. The string analysis has some limita-
tions regarding precision, but related work [Choi et al. 2006] shows that it can
smoothly be extended with standard techniques for better heap modeling and
context sensitivity. Many domain specific languages have been proposed for en-
suring correctness of dynamically generated web documents. Most of these are
language extensions enhanced with tree manipulation capabilities, instead of
string manipulations that we deal with in this work. In addition, they usually
provide only guarantee of correct syntax; semantic correctness is not guar-
anteed. We mention two research efforts in static validation of dynamically
generated web documents such as HTML. Sandholm and Schwartzbach [2000]
proposed a typed, higher-order template language that provides safety of the
dynamically generated web documents within the <bigwig> project [Brabrand
et al. 2002], an extension to Java for high-level web service development. Their
type system is based on standard data-flow analysis techniques [Kildall 1973;
Kam and Ullman 1976]. Another work along the same lines is the work by
Braband et al. [2001] to statically validate dynamically generated HTML doc-
uments against the official DTD for XHTML. The work again is based on a
data-flow analysis that computes a summary of all possible documents at a
particular point of the program. The summary graph is then validated against
the official DTD for XHTML. This work is again done in the context of the
<bigwig>language. In Kapfhammer and Soffa [2003], a test adequacy criterion
for data-intensive applications is presented. Our approach is complementary;
static analysis can save testing time, but testing can discover logical defects
not related to SQL query construction.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 14, Pub. date: Sept. 2007.



Static Checking of Dynamically Generated Queries in Database Applications . 14:23

To be put in a broader context, our research can be viewed as an instance
of providing static safety guarantee for meta-programming [Taha and Sheard
1997]. Macros were the earliest meta-programming technique, where the issue
of correctness of generated code first arose. Macro programmers using powerful
macro programming languages clearly need to worry about the correctness of
the generated code. How can such macro meta-programs be statically checked
for correctness? The widely used cpp macro pre-processor does little checking,
and allows one to write arbitrary macros, without regard to correctness. The
programmable syntax macros of Weise and Crew [1993] work at the level of cor-
rect abstract-syntax tree (AST) fragments, and guarantee that generated code is
syntactically correct with respect (specifically) to the C language. Static type-
checking is used to guarantee that AST fragments (e.g., Expressions, State-
ments, etc.) are assembled correctly by macro meta-programs. Another issue
is scoping of generated names: macro expansion should not “capture” variable
names in an unexpected manner. Hygienic macro expansion algorithms, begin-
ning with Kohlbecker et al. [1986] provide these guarantees. More recent work
seeks to extend syntactic and scoping guarantees, with semantic guarantees
for the generated code. The work of Taha and Sheard [1997] and others is con-
cerned with (in a functional programming setting) guaranteeing that generated
code is type-safe. We do not introduce a new macro language, like Weise and
Crew [1993], nor work in a uniform functional setting, like Taha and Sheard
[1997], with functional languages both at meta- and target-levels. Our goal is
simply to ensure that strings passed into a database from an arbitrary Java
program are type-safe SQL queries from the perspective of a given database
schema. We expect that the general technique outlined in this article can be
extended to apply in other settings as well.

Other techniques have been proposed for static checking of generated
database queries, some since the first presentation of the ideas in this arti-
cle. For completely static queries, SQLJ [1997] provides a higher-level API for
using SQL in Java than JDBC. The SQLJ translator performs type checking
and schema checking of SQL statements at program development time rather
than at runtime. Safe Queries Objects [Cook and Rai 2005] provides the bene-
fits of SQLJ for dynamically generated SQL queries written in Java. Safe query
objects use object relational mapping and reflective metaprogramming to trans-
late query classes into traditional database queries. In contrast to the above,
our technique does not introduce a new API.

Other existing APIs provide object-relational mappings to databases.
Hibernate [JBoss 2006] is open source and is a powerful, high-performance
object-relational persistence and query service. Oracle’s TopLink [Oracle 2006]
provides roughly the same features plus caching, support for transactions,
and performance tuning options. ADO.Net [Microsoft 2004] is another object-
relation mapper; it was designed specifically for the web with scalability, state-
lessness, and XML in mind. All of these allow for queries to be passed directly as
strings (as JDBC does), so the technique presented in this article would apply
directly to such uses. Other uses of these API’s provide some type checking but
do not integrate into the static type system of the source language. For exam-
ple, consider the JDO [Sun 2003] code in Figure 10. The types are declared in a
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void PrintInfo(String prefix, int base)

{
Command q = new Query(Employee.class);
String paramDecl = "String prefix, int base";
String filter = "emp.name.startsWith(prefix)"
+ " && emp.salary >= base";
q.declareParameters( paramDecl );
q.setFilter( filter );
for ( Employee emp : q.execute(prefix, base) )
print( emp.name );
}

Fig. 10. Example JDO code.

string, which is not interpreted by source language’s type checker. Our approach
is not designed to discover potential type errors in this API. LINQ [Microsoft
2005], in contrast, fully integrates the types involved in database access into the
source language. Cook and Ibrahim [2005] survey more broadly the problems of
interfacing databases with programming languages (including type checking)
and discuss the merits of each of these APIs with respect to several criteria Cook
and Ibrahim [2005]. Each of these techniques does alleviate the problem of type
errors in generated queries to some degree, but the merit of our approach is that
it can be applied to many existing applications which have not been written with
these APIs.

SQL command injection is a security threat, which is more dangerous than
type errors in dynamically generated queries. Two papers have leveraged
the techniques presented here to address this problem. The first is purely
static [Wassermann and Su 2004]. It works by doing a more sophisticated anal-
ysis on the generated automata to discover access control errors and potential
tautologies in the WHERE clauses. The second uses the generated automata as
an inferred specification for the queries [Halfond and Orso 2005]. It then mon-
itors the queries at runtime to ensure they conform to this specification. For
a more extensive survey of techniques for alleviating SQL command injection,
see Wassermann and Su [2004].

6. CONCLUSIONS AND FUTURE WORK

We have presented a sound, static analysis technique for verifying the correct-
ness of dynamically generated SQL query strings in database applications. Our
technique is based on applications of a string analysis for Java programs and
a variant of the context-free language reachability algorithm. The technique is
designed for programs that construct string queries directly; it is not intended
to address queries produced by other APIs (e.g., object-relational mappers) or
queries constructed by the database (e.g., with stored procedures). We have
implemented our technique and have performed extensive testing of our tool
on realistic programs. The tool has detected known and unknown errors in
these programs, and it is rather precise with low false-positive rates on our test
programs.
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For future work, there are a few interesting directions. First, to increase
the usability of our tool for debugging, it would be interesting to map an error
path that we find in the automaton to the original Java source. One possible
approach is to carry line numbers of the flow-graph nodes in the source code to
the automaton, so that a path in the automaton can be associated with a set
of source lines in the original Java program. A related problem is to check the
correct uses of the query results in the source program. Consider the following
example:

query = ¢‘SELECT NAME, SALARY FROM EMPLOYEE’’;
rset = statement.executeQuery(query) ;

salary = rset.getInt(1); // should be getInt(2)
name = rset.getString(2); // should be getString(1l)

The result set rset is a table of pairs of type String (the NAME column) and
int (the SALARY column). The statement salary = rset.getInt(1) attempts
to read the first field of the pair, a string, and treat it as an integer. The last
statement has a similar error. By mapping our analysis results back to the
original program, we can detect this class of errors. Second, the class of embed-
ded SQL command injection problems [Viega and McGraw 2001] in web and
database applications is also interesting to look at. The problem is, without
proper input validation, an attacker can supply arbitrary code to be executed
by a web or database server, which is extremely dangerous. We plan to extend
our approach to deal with this class of errors. Finally, we have considered SQL
so far in this article. We believe our technique is general and plan to inves-
tigate how to extend it to analyze dynamically generated programs in other
languages.
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