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Abstract

Mapping code elements in one version of a program to
corresponding code elements in another version is a funda-
mental building block for many software engineering tools.
Existing tools that match code elements or identify struc-
tural changes—refactorings and API changes—between
two versions of a program have two limitations that we
overcome. First, existing tools cannot easily disambiguate
among many potential matches or refactoring candidates.
Second, it is difficult to use these tools’ results for various
software engineering tasks due to an unstructured repre-
sentation of results. To overcome these limitations, our ap-
proach represents structural changes as a set of high-level
change rules, automatically infers likely change rules and
determines method-level matches based on the rules. By
applying our tool to several open source projects, we show
that our tool identifies matches that are difficult to find using
other approaches and produces more concise results than
other approaches. Our representation can serve as a better
basis for other software engineering tools.

1. Introduction

Matching code elements between two versions of a pro-
gram is the underlying basis for various software engineer-
ing tools. For example, version merging tools identify pos-
sible conflicts among parallel updates by analyzing matched
code elements [27], regression testing tools prioritize orse-
lect test cases that need to be re-run by analyzing matched
code elements [15, 29, 30], and profile propagation tools
use matching to transfer execution information between ver-
sions [32]. In addition, emerging interest in mining software
repositories [1, 4] —studying program evolution by analyz-
ing existing software project artifacts—is demanding more
effective and systematic matching techniques. Our recent

survey [23] found that existing techniques match code at
particular levels (e.g., packages, classes, methods, or fields)
based on closeness of names, structures, etc. Though intu-
itive, this general approach has some limitations. First, ex-
isting tools do not consider which set of structural changes
are more likely to have happened; thus they cannot easily
disambiguate among many potential matches or refactoring
candidates. Second, existing tools represent the results as
an unstructured, usually lengthy, list of matches or refactor-
ings. Although this unstructured representation is adequate
for conventional uses (e.g., transferring code-coverage in-
formation in profile-propagation tools), it may prevent ex-
isting tools from being broadly used in mining software
repository research, which often demands an in-depth un-
derstanding of software evolution. It may also be an ob-
stacle to software tools that could benefit from additional
knowledge of the changes between versions.

Consider an example where a programmer reorganizes
a chart drawing program by the type of a rendered object,
moving axis-drawing classes from the packagechart to the
packagechart.axis. Then, to allow toggling of tool tips
by the user, she appends aboolean parameter to a set of
chart-creation interfaces. Even though the goals of these
transformations can be stated concisely in natural language,
a method-level matching tool would report a list of matches
that enumerates each method that has been moved and each
interface that has been modified, and a refactoring recon-
struction tool would report a list of low-level refactorings
(see Table 1). One may have to examine hundreds or thou-
sands of matches or refactorings before discovering that a
few simple high-level changes took place. Moreover, if the
programmer neglected to move one axis drawing class, this
likely design error would be hard to detect.

This paper presents two contributions. First, we present
an approach that automatically infers likely changes at or
above the level of method headers, and uses this information
to determine method-level matches. Second, our approach



represents the inferred changes concisely as first-order re-
lational logic rules, each of which combines a set of simi-
lar low-level transformations and describes exceptions that
capture anomalies to a general change pattern. Explicitly
representing exceptions to a general change pattern makes
our algorithm more robust because a few exceptions do not
invalidate a high-level change, and it can signal incomplete
or inconsistent changes as likely design errors.

For the preceding change scenario, our tool infers a
rule—details appear in Section 3—for each of the high-
level changes made by the programmer.
for all x in chart.*Axis*.*(*)

packageReplace(x, chart, chart.axis)

for all x in chart.Factory.create*Chart(*Data)

except {createGanttChart, createXYChart}

argAppend(x, [boolean])

We applied our tool to several open source projects. In
terms of matching, our evaluation shows that our tool finds
matches that are hard to find using other tools. Our rule
representation makes results smaller and more readable. We
also believe that by capturing changes in a concise and com-
prehensible form, our technique may enable software engi-
neering applications that can benefit from high level change
patterns; for example, bug detectors, documentation assis-
tance tools, and API update engines. Moreover, the mining
of software repositories can be enhanced by the accuracy of
our algorithm and the information captured by our rules.

Section 2 discusses related work. Section 3 describes the
representation of the structural changes our tool infers. Sec-
tion 4 describes our inference algorithm. Section 5 presents
our results and compares our approach to other approaches.
Section 6 discusses potential applications of our change
rules based on motivating examples from our study. Sec-
tion 7 discusses future work.

2. Background

Program Element Matching Techniques. To match
code elements, the differences between two programs must
be identified. Computing semantic differences is undecid-
able, so tools typically approximate matching via syntactic
similarity. Tools differ in their underlying program repre-
sentation, matching granularity, matching multiplicity,and
matching heuristics. In prior work [23], we compared ex-
isting matching techniques [3, 5, 17, 18, 19, 20, 24, 26,
28, 32, 35, 37] along these dimensions. Our survey found
that fine-grained matching techniques often depend on ef-
fective mappings at a higher level. For example,Jdiff [3]
cannot match control flow graph nodes if function names
are very different. Therefore, when package level or class
level refactorings occur, these techniques will miss many
matches. Our survey also found that most techniques work
at a fixed granularity and that most techniques report only

one-to-one mappings between code elements in the version
pair. These properties limit the techniques in the case of
merging or splitting, which are commonly performed by
programmers. Most existing tools report their results as an
unstructured list of matches, further limiting the potential of
these approaches.

Origin analysis tools [24, 39] find where a particular
code element came from, tackling the matching problem di-
rectly. Zou and Godfrey’s analysis [39] matches procedures
using multiple criteria (names, signatures, metric values,
and callers/callees). It is semi-automatic; a programmer
must manually tune the matching criteria and select a match
among candidate matches. S. Kim et al. [24] automated Zou
and Godfrey’s analysis; matches are automatically selected
if an overall similarity, computed as a weighted sum of the
underlying similarity metrics, exceeds a given threshold.

Refactoring Reconstruction. Existing refactoring re-
construction tools [2, 8, 9, 11, 21, 25, 31, 33, 34] com-
pare code between two program versions and look for code
changes that match a predefined set of refactoring patterns:
move a method, rename a class, etc. For example, UML-
Diff [34] matches code elements in a top-down order, e.g.,
packages to classes to methods, based on name and struc-
tural similarity metrics. Then it infers refactorings fromthe
matched code elements. As another example, Fluri et al.
[11] compute tree edit operations between two abstract syn-
tax trees and identify changes inside the same class.

Many of these tools either find too many refactoring can-
didates and cannot disambiguate which ones are more likely
than others, or they do not find some refactorings when
some code elements undergo multiple refactorings during
a single check-in. Like matching tools, many of these tools
report simply a list of refactorings, making it difficult to find
emerging change patterns or to discover insights about why
a particular set of refactorings may have occurred.

3. Change Rules

Determining the changes between two versions enables
matching of their code elements. The research question is:
“Given two versions of a program, what changes occurred
with respect to a particular vocabulary of changes?”A
change vocabulary characterizes the applications for which
the matching results can be used. For example,diff defines
a change vocabulary in terms of delete, add, and move line.
Though this change vocabulary is satisfactory for applica-
tions such as conventional version control, it may not be
ideal for studying program evolution.

Consider Table 1. One change moves a group of classes
that match the*Axis pattern from packagechart to pack-
agechart.axis, and the other change adds aboolean pa-
rameter to a group of methods that match thecreate*Chart



Table 1. Comparison between Programmer’s Intent and Existing Tools’ Results
Programmer’s Intent Matching Tool Results [24] Refactoring Reconstruction Results [33]

Move classes that draw axes [chart.DateAxis. . ., chart.axis.DateAxis. . .] Move classDateAxis from chart to chart.axis
from chart package [chart.NumberAxis. . ., chart.axis.NumberAxis. . .] Move classNumberAxis from chart to chart.axis
to chart.axis package [chart.ValueAxis. . ., chart.axis.ValueAxis. . .] Move classValueAxis from chart to chart.axis
Widen the APIs of chart [createAreaChart(Data), createAreaChart(Data, boolean)] Add boolean parameter tocreateAreaChart
factory methods by adding a [createLChart(IntData), createLChart(IntData, boolean)] Add boolean parameter tocreateLChart
boolean type argument [createPieChart(PieData), createPieChart(PieData, boolean)] Add boolean parameter tocreatePieChart

pattern. Both changes involve applying the same atomic
change to a set of related code elements.

We have developed a change vocabulary with the goal of
representing groups of related homogeneous changes pre-
cisely. The core of our change vocabulary is a change rule
consisting of a quantifier and a scope to which a low-level
transformation applies: “for allx in (scope− exceptions),
t(x),” where t is a transformation,scopeis a set of code
elements, andexceptionsis a subset ofscope.

Currently, our change vocabulary describes structural
changes at or above the level of a method header. Given
two versions of a program, (P1, P2), our goal is to find
a set ofchange rules, i.e., change functions that trans-
form the method headers inP1 to generate the method
headers inP2, in turn generating a set of method-
level matches from these change functions. In this pa-
per, a Java method header is represented asreturn type

package.class.procedure(input argument list).1

Transformation. Currently we support the following
types of transformations:

• packageReplace(x:Method,f :Text,t:Text):
changex’s package name fromf to t

• classReplace(x:Method,f :Text,t:Text):
changex’s class name fromf to t

• procedureReplace(x:Method,f :Text,t:Text):
changex’s procedure name fromf to t

• returnReplace(x:Method,f :Text,t:Text):
changex’s return type fromf to t

• inputSignatureReplace(x:Method,f :List[Text],
t:List[Text]):
changex’s input argument list fromf to t

• argReplace(x:Method,f :Text,t:Text):
change argument typef to t in x’s input argument list

• argAppend(x:Method,t:List[Text]):
append the arg type listt to x’s input argument list

• argDelete(x:Method,t:Text):
delete every occurrence of typet in thex’s input argu-
ment list

• typeReplace(x:Method,f :Text,t:Text):
change every occurrence of typef to t in x

1The returntype is sometimes omitted for presentation purposes.

Rule. A change rule consists of ascope, exceptionsand a
transformation. The only methods transformed are those in
the scope but not in the exceptions. When a group of meth-
ods have similar names, we summarize these methods as a
scope expression using a wild-card pattern matching oper-
ator. For example,*.*Plot.get*Range() describes meth-
ods with any package name, any class name that ends with
Plot, any procedure name that starts withget and ends
with Range, and an empty argument list.

To discover emerging transformation patterns, a scope
can have disjunctive scope expressions. The following rule
means that all methods whose class name either includes
Plot or JThermometer changed their package name from
chart to chart.plot.

for all x in chart.*Plot*.*(*)

or chart.*JThermometer*.*(*)

packageReplace(x, chart, chart.plot)

As another example, the following rule means that all
methods that match thechart.*Plot.get*Range() pat-
tern take an additionalValueAxis argument, except the
getVerticalRange method in theMarkerPlot class.
for all x in chart.*Plot.get*Range()

except {chart.MarkerPlot.getVerticalRange}

argAppend(x, [ValueAxis])

Rule-based Matching. We define a matching between
two versions of a program by a set of change rules. The
scope of one rule may overlap with the scope of another rule
as some methods undergo more than one transformation.
Our algorithm ensures that we infer a set of rules such that
the application order of rules does not matter. The methods
that are not matched by any rules are deleted or added meth-
ods. For example, the five rules in Table 2 explain seven
matches. The unmatched method O2 is considered deleted.

4. Inference Algorithm

Our algorithm accepts two versions of a program and in-
fers a set of change rules. Our algorithm has four parts:
(1) generating seed matches, (2) generating candidate rules
based on the seeds, (3) iteratively selecting the best rule
among the candidate rules, and (4) post-processing the se-
lected candidate rules to output a set of change rules. We
first describe a naı̈ve version of our algorithm, followed by
a description of essential performance improvements for the
second and third parts of the algorithm. Then we summarize



Table 2. Rule-based Matching Example
A set of method headers inP1 A set of method headers inP2

O1.chart.VerticalPlot.draw(Grph,Shp) N1. chart.plot.VerticalPlot.draw(Grph)
O2.chart.VerticalRenderer.draw(Grph,Shp) N2. chart.plot.HorizontalPlot.range(Grph)
O3.chart.HorizontalPlot.range(Grph,Shp) N3. chart.axis.HorizontalAxis.getHeight()
O4.chart.HorizontalAxis.height() N4. chart.axis.VerticalAxis.getHeight()
O5.chart.VerticalAxis.height() N5. chart.ChartFactory.createAreaChart(Data, boolean)
O6.chart.ChartFactory.createAreaChart(Data) N6. chart.ChartFactory.createGanttChart(Interval, boolean)
O7.chart.ChartFactory.createGanttChart(Interval) N7. chart.ChartFactory.createPieChart(PieData, boolean)
O8.chart.ChartFactory.createPieChart(PieData)

Rule Matches Explained
scope exceptions transformation

chart.*Plot.*(*) packageReplace(x, chart, chart.plot) [O1, N1]
chart.*Axis.*(*) packageReplace(x, chart, chart.axis) [O4, N3], [O5, N4]
chart.ChartFactory.create*Chart(*) argAppend(x, [boolean]) [O6, N5], [O7, N6], [O8, N7]
chart.*.*(Grph, Shp) {O2} argDelete(x, Shp) [O1, N1], [O3, N2], [O4, N3]
chart.*Axis.height() procedureReplace(x, height, getHeight) [O4, N3], [O5, N4]

key characteristics of our algorithm.

Part 1. Generating Seed Matches. We start by search-
ing for method headers that are similar on a textual level,
which we call seed matches. Seed matches provide ini-
tial hypotheses about the kind of changes that occurred.
Given the two program versions (P1, P2), we extract a set
of method headersO andN from P1 andP2 respectively.
Then, for each method headerx in O − N , we find the
closest method headery in N − O in terms of the token-
level name similarity, which is calculated by breakingx and
y into a list of tokens starting with capital letters and then
computing the longest common subsequence of tokens [18].
If the name similarity is over a thresholdγ, we add the pair
into the initial set of seed matches. In our study, we found
that thresholds in the range of 0.65-0.70 (meaning 65% to
70% of tokens are the same) gave good empirical results.
The seeds need not all be correct matches, as our rule selec-
tion algorithm (Part 3) rejects bad seeds and leverages good
seeds. Seeds can instead come from other sources such as
CVS comments, other matching tools, or recorded or in-
ferred refactorings.

Part 2. Generating Candidate Rules. For each seed
match[x, y], we build a set ofcandidate rulesin three steps.
Unlike a change rule, where for every match[x, y], y is the
result of applying a single transformation tox, a candidate
rule may include one or more transformationst1, . . . ti such
thaty = t1(...ti(x)). We write candidate rules as “for allx

in scope,t1(x)∧...∧ti(x).” This representation allows our
algorithm to find a match[x, y] wherex undergoes multiple
transformations to becomey.
Step 1. We comparex and y to find a set of trans-
formations T= {t1, t2, . . ., ti} such that t1(t2(. . .
ti(x)))= y. We then createT ’s power set2T . For
example, a seed [chart.VerticalAxis.height(),
chart.plot.VerticalAxis.getHeight()] produces the
power set of packageReplace(x, chart, chart.plot)

andprocedureReplace(x, height, getHeight).
Step 2. We guess scope expressions from a seed match
[x, y]. We dividex’s full name to a list of tokens start-

ing with capital letters. For each subset, we replace
every token in the subset with a wild-card operator to
create a candidate scope expression. As a result, when
x consists ofn tokens, we generate a set of2n scope
expressions based onx. For the preceding example
seed, our algorithm findsS ={*.*.*(*), chart.*.*(*),

chart.Vertical*.*(*), . . ., *.*Axis.height(), . . .,

chart.VerticalAxis.height()}.
Step 3. We generate a candidate rule with scope expression
s and compound transformationt for each(s, t) in S × 2T .
We refer to the resulting set of candidate rules asCR. Each
element ofCR is a generalization of a seed match and
some are more general than others.

Part 3. Evaluating and Selecting Rules. Our goal is to
select a small subset of candidate rules inCR that explain a
large number of matches. While selecting a set of candidate
rules, we allow candidate rules to have a limited number of
exceptions to the general rule they represent.

The inputs are a set of candidate rules (CR), a domain
(D = O − N ), a codomain (C = N ), and an exception
threshold (0 ≤ ǫ < 1). The outputs are a set of selected
candidate rules (R), and a set of found matches (M ). For a
candidate ruler, “for all x in scope,t1(x)∧...∧ti(x)”:

1. r has amatch [a, b] if a ∈ scope,t1, ..., ti are applica-
ble toa, andt1(...ti(a)) = b.

2. a match[a, b] conflicts with a match[a′, b′] if a = a′

andb 6= b′

3. r has apositive match[a, b] given D, C, andM , if
[a, b] is a match forr, [a, b] ∈ {D × C}, and none of
the matches inM conflict with [a, b]

4. r has anegativematch[a, b], if it is a match forr but
not a positive match forr.

5. r is avalid rule if the number of its positive matches is
at least(1− ǫ) times its matches. For example, whenǫ

is 0.34 (our default),r’s negative matches (exceptions)
must be fewer than roughly one third of its matches.

Our algorithm greedily selects one candidate rule at each it-
eration such that the selected rule maximally increases the



total number of matches. Initially we set bothR andM to
the empty set. In each iteration, for every candidate rule
r ∈ CR, we computer’s matches and check whetherr is
valid. Then, we select a valid candidate rules that maxi-
mizes|M ∪ P | whereP is s’s positive matches. After se-
lecting s, we updateCR := CR − {s}, M := M ∪ P ,
and R := R ∪ {(s, P, E)} whereP and E are s’s pos-
itive and negative matches (exceptions) respectively, and
we continue to the next iteration. The iteration terminates
when no remaining candidate rules can explain any addi-
tional matches. The naı̈ve version of this greedy algorithm
hasO(|CR|2 × |D|) time complexity.

Part 4. Post Processing. To convert a set of candi-
date rules to a set of rules, for each transformationt, we
find all candidate rules that containt and then create a new
scope expression by combining these rules’ scope expres-
sions. Then we find exceptions to this new rule by enumer-
ating negative matches of the candidate rules and checking
if the transformationt does not hold for each match.

Optimized Algorithm. Two observations allow us to im-
prove the naı̈ve algorithm’s performance. First, if a candi-
date ruler can addn additional matches toM at theith

iteration,r cannot add more thann matches on any later
iteration. By storingn, we can skip evaluatingr on any it-
eration where we have already found a better rules that can
add more matches thanr. Second, candidate rules have a
subsumption structure because the scopes can be subsets of
other scopes (e.g.,*.*.*(*Axis)⊂ *.*.*(*)).

Our optimized algorithm behaves as follows. Suppose
that the algorithm is at theith iteration, and after examining
k − 1 candidate rules in this iteration, it has found the best
valid candidate rules that can addN additional matches.
For thekth candidate rulerk,
(1) If rk could add fewer thanN additional matches up to
i-1st iteration, skip evaluatingrk as well as candidate rules
with the same set of transformations but a smaller scope, as
our algorithm does not preferrk overs.
(2) Otherwise, reevaluaterk.

(2.1) If rk cannot add any additional matches toM , re-
moverk from CR.

(2.2) If rk can add fewer thanN additional matches re-
gardless of its validity, skip evaluating candidate rules with
the same set of transformations but a smaller scope.

(2.3) If rk is not valid but can add more thanN addi-
tional matches toM , evaluate candidate rules with smaller
scope and the same set of transformations.
(3) Updates andN as needed and go to step (1) to consider
the next candidate rule inCR.

By starting with the most general candidate rule for each
set of transformations and generating more candidate rules
on demand only in step (2.3) above, the optimized algorithm
is much more efficient. Running our tool currently takes

only a few seconds for the usual check-ins and about seven
minutes in average for a program release pair.

Key Characteristics of Our Algorithm. First, our al-
gorithm builds insight from seed matches, generalizes the
scope that a transformation applies to, and validates this in-
sight. Second, it prefers a small number of general rules to
a large number of specific rules. Third, when there are a
small number of exceptions that violate a general rule, our
algorithm allows these exceptions but remembers them.

5. Evaluation

In this section, we quantitatively evaluate our tool in
terms of its matching power. Then in the following sec-
tion, we qualitatively assess additional benefits of inferred
rules based on examples found in our study. To evaluate our
matches (M ), we created a set of correctly labeled matches
(E). We did this in two steps. First, we used our own in-
ference algorithm on each version pair in both directions
(which can find additional matches) and we computed the
union of those matches with the matches found by other ap-
proaches. Second, we labeled correct matches through a
manual inspection. Our quantitative evaluation is based on
the three following criteria.

Precision: the percentage of our matches that are cor-
rect, |E∩M|

|M| .
Recall: the percentage of correct matches that our tool

finds, |M∩E|
|E| .

Conciseness: the measure of how concisely a set of rules
explains matches, represented as a M/R ratio =|M|

|Rules| .
A high M/R ratio means that using rules instead of plain
matches significantly reduces the size of results.

Our evaluations are based on both releases (i.e., released
versions) as well as check-in snapshots (i.e., internal, in-
termediate versions). The primary difference is that there
tends to be a much larger delta between successive program
releases than between successive check-in snapshots.

Section 5.1 presents rule-based matching results for
three open source release archives. Sections 5.2 presents
comparison with two refactoring reconstruction tools [33,
34] and a method-level origin analysis tool [24]. Section
5.3 discusses the impact of the seed generation threshold
(γ) and the exception threshold (ǫ). Section 5.4 discusses
threats to the validity of our evaluation.

5.1. Rule-Based Matching Results

Subject Programs. We chose three open source Java pro-
grams that have release archives onsourceforge.netand
contain one to seven thousand methods. The moderate
size lets us manually inspect matches when necessary.
JFreeChartis a library for drawing different types of charts,



Table 3. Rule-based Matching Results
JFreeChart (www.jfree.org/jfreechart)

The actual release numbers are prefixed with 0.9.
O N O ∩ N Rule Match Prec. Recall M/R Time

4→5 2925 3549 1486 178 1198 0.92 0.92 6.73 21.01
5→6 3549 3580 3540 5 6 1.00 1.00 1.20 <0.01
6→7 3580 4078 3058 23 465 1.00 0.99 20.22 1.04
7→8 4078 4141 0 30 4057 1.00 0.99 135.23 43.06
8→9 4141 4478 3347 187 659 0.91 0.90 3.52 22.84
9→10 4478 4495 4133 88 207 0.99 0.93 2.35 0.96
10→11 4495 4744 4481 5 14 0.79 0.79 2.80 <0.01
11→12 4744 5191 4559 61 113 0.78 0.79 1.85 0.40
12→13 5191 5355 5044 10 145 1.00 0.99 14.50 0.11
13→14 5355 5688 5164 41 134 0.94 0.86 3.27 0.43
14→15 5688 5828 5662 9 21 0.90 0.70 2.33 0.01
15→16 5828 5890 5667 17 77 0.97 0.86 4.53 0.32
16→17 5890 6675 5503 102 285 0.91 0.86 2.79 1.30
17→18 6675 6878 6590 10 61 0.90 1.00 6.10 0.08
18→19 6878 7140 6530 98 324 0.93 0.95 3.31 1.67
19→20 7140 7222 7124 4 14 1.00 1.00 3.50 <0.01
20→21 7222 6596 4454 71 1853 0.99 0.98 26.10 62.99
MED 0.94 0.93 3.50 0.43
MIN 0.78 0.70 1.20 0.00
MAX 1.00 1.00 135.23 62.99

JHotDraw (www.jhotdraw.org)
5.2→5.3 1478 2241 1374 34 82 0.99 0.92 2.41 0.11
5.3→5.41 2241 5250 2063 39 104 0.99 0.98 2.67 0.71
5.41→5.42 5250 5205 5040 17 17 0.82 1.00 1.00 0.07
5.42→6.01 5205 5205 0 19 4641 1.00 1.00 244.26 27.07

MED 0.99 0.99 2.54 0.41
MIN 0.82 0.92 1.00 0.07
MAX 1.00 1.00 244.26 27.07

jEdit (www.jedit.org)
3.0→3.1 3033 3134 2873 41 63 0.87 1.00 1.54 0.13
3.1→3.2 3134 3523 2398 97 232 0.93 0.98 2.39 1.51
3.2→4.0 3523 4064 3214 102 125 0.95 1.00 1.23 0.61
4.0→4.1 4064 4533 3798 89 154 0.88 0.95 1.73 0.90
4.1→4.2 4533 5418 3799 188 334 0.93 0.97 1.78 4.46

MED 0.93 0.98 1.73 1.21
MIN 0.87 0.95 1.23 0.61
MAX 0.95 1.00 2.39 4.46

JHotDraw is a GUI framework for technical and structured
graphics, andjEdit is a cross platform text editor. On aver-
age, release versions were separated by a two-month gap in
JFreeChartand a nine-month gap inJHotDrawandjEdit.

Results. Table 3 summarizes results for the projects
(γ=0.7 andǫ=0.34).O andN are the number of methods in
an old version and a new version respectively, andO∩N is
the number of methods whose name and signature did not
change. Running time is described in minutes.

The precision of our tool is generally high in the range of
0.78 to 1.00, and recall is in the range 0.70 to 1.00. The me-
dian precision and the median recall for each set of subjects
is above, often well above, 0.90.

The M/R ratio shows significant variance not only across
the three subjects but also for different release pairs in the
same subject. The low end of the range is at or just over 1
for each subject, representing cases where each rule repre-
sents roughly a single match. The high end of the range
varies from 2.39 (forJEdit) to nearly 244.26 (forJHot-
Draw). We observed, however, that most matches are actu-
ally found by a small portion of rules (recall our algorithm
finds rules in descending order of the number of matches).
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Figure 1. Recall and Precision vs. Percentage
of Found Matches

Figure 1 plots the cumulative distribution of matches for
the version pairs with the median M/R ratio from each of
the three projects. The x axis represents the percentage of
rules found after each iteration, and the y axis represents the
recall and precision of matches found up to each iteration.

In all three cases, the top 20% of the rules find over 55%
of the matches, and the top 40% of the rules find over 70%
of the matches. In addition, as the precision plots show, the
matches found in early iterations tend to be correct matches
evidenced by a general change pattern. The fact that many
matches are explained by a few rules is consistent with the
view that a single conceptual change often involves multiple
low level transformations, and it confirms that leveraging an
emergent change structure is a good matching approach.

Our tool handled the major refactorings in the subject
programs quite well. For example, consider the change
from release 4 to 5 ofJFreeChart. Although nearly half
of the methods cannot be matched by name, our tool finds
178 rules and 1198 matches. The inferred rules indicate that
there were many package-level splits as well as low-level
API changes. As presented below, these kind of changes
are not detected by other tools we analyzed. Examples of
the inferred rules inJFreeChartinclude:
for all x in chart.*Plot.*(CategoryDataSet)

or chart.*.*(Graph, Rect, Rect2D)

or chart.*.*(Graph, Plot, Rect2D)

argAppend(x, [int])

for all x in int renderer.*.draw*(*, Graph, Rect)

returnReplace(int, AxisState)

5.2. Comparison with Other Approaches

Refactoring reconstruction tools [2, 8, 9, 33, 34] com-
pare two versions of a program and look for code changes
that match a predefined set of refactoring patterns [12].



Table 4. Comparison: Number of Matches and Size of Result
Other Approach Our Approach Improvement

Xing and Stroulia (XS) Match Refactoring Match Rules
jfreechart (17 release pairs) 8883 4004 9633 939 8% more matches 77% decrease in size
Weigerber and Diehl (WD) Match Refactoring Match Rules
jEdit RCAll 1333 2133 1488 906 12% more matches 58% decrease in size

(2715 check-ins) RCBest 1172 1218 1488 906 27% more matches 26% decrease in size
Tomcat RCAll 3608 3722 2984 1033 17% fewer matches 72% decrease in size

(5096 check-ins) RCBest 2907 2700 2984 1033 3% more matches 62% decrease in size
S. Kim et al (KPW) Match Match Rules

jEdit (1189 check-ins) 1430 2009 1119 40% more matches 22% decrease in size
ArgoUML (4683 check-ins) 3819 4612 2127 21% more matches 44% decrease in size

Table 5. Comparison: Precision
Comparison of Matches Match Precision

Xing and Stroulia (XS) XS ∩ Ours 8619 1.00
jfreechart Ours− XS 1014 0.75

(17 release pairs) XS − Ours 264 0.75
Weißgerber and Diehl (WD) WD ∩ Ours 1045 1.00

RCAll Ours− WD 443 0.94
jEdit WD − Ours 288 0.36

(2715 check-ins) WD ∩ Ours 1026 1.00
RCBest Ours− WD 462 0.93

WD − Ours 146 0.42
WD ∩ Ours 2330 0.99

RCAll Ours− WD 654 0.66
Tomcat WD − Ours 1278 0.32

(5096 check-ins) WD ∩ Ours 2251 0.99
RCBest Ours− WD 733 0.75

WD − Ours 656 0.54
S. Kim et al. (KPW) KPW∩ Ours 1331 1.00

jEdit Ours− KPW 678 0.89
(1189 check-ins) KPW− Ours 99 0.75

KPW∩ Ours 3539 1.00
ArgoUML Ours− KPW 1073 0.78

(4683 check-ins) KPW− Ours 280 0.76

Among these tools, we compared our matching results with
Xing and Stroulia’s approach (XS) [34] and Weißgerber and
Diehl’s approach (WD) [33]. To uniformly compare our
rules with the results of XS and WD’s approaches, we built
a tool that deduces method-level matches from their inferred
refactorings. Then we compared both approaches in terms
of the number of matches as well as the size of the results
(the number of rules in our approach and the number of rel-
evant refactorings in XS and WD’s approach).

Among origin analysis tools, we chose S. Kim et al.’s
approach (KPW) [24] for comparison because it is the most
recent work that we know of and it reported 87.8% to 91.1%
accuracy on their evaluation data set.2

For comparison, XS provided their results onJFreeChart
release archives, WD provided their results onjEdit and
Tomcatcheck-in snapshots, and KPW provided their results
on jEdit andArgoUMLcheck-in snapshots.

Comparison with Xing and Stroulia’s UMLDiff. XS’s
tool UMLDiff extracts class models from two versions of
a program, traverses the two models, and identifies corre-
sponding entities based on their name and structure simi-

2KPW created an evaluation data by having human judges identify re-
naming events inSubversionandApacheprojects. The accuracy is defined
as the percentage of agreement between two sets of origin relations.

larity. Then it reports additions and removals of these enti-
ties and inferred refactorings. XS can find most matches
that involve more than one refactoring; however, to re-
duce its computational cost, it does not handle combi-
nations of move and rename refactorings such as ‘move
CrosshairInfo class fromchart to chart.plot package’
and ‘rename it toCrosshairState.’

The comparison results are summarized in Tables 4 and
5. Overall, XS’s precision is about 2% (=8807/8883-
9369/9633) higher. However, our tool finds 761
(=1014×0.75) correct matches not found by XS while there
are only 199 (=264×0.75) correct matches that our tool
failed to report. More importantly, our tool significantly re-
duces the result size by 77% by describing results as rules.
Many matches that XS missed were matches that involve
both rename and move refactorings. Many matches that our
tool missed had a very low name similarity, indicating a
need to improve our current seed generation algorithm.

Comparison with Weißgerber and Diehl’s Work.
WD’s tool extracts added and deleted entities (fields,
methods and classes) by parsing deltas from a version
control system (CVS) and then compares these entities
to infer various kinds of structural and local refactorings:
move class, rename method, remove parameter, etc.
The tool finds redundant refactoring events for a single
match. For example, if thePlot class were renamed to
DatePlot, it would infer ‘rename classPlot to DatePlot

as well as ‘move method’ refactorings for all methods
in the Plot class. When it cannot disambiguate all
refactoring candidates, it uses the clone detection tool
CCFinder [20] to rank these refactorings based on code
similarity. For example, ifVerticalPlot.draw(Graph)
is deleted and VerticalPlot.drawItem(Graph) and
VerticalPlot.render(Graph) are added, it finds both
‘rename methoddraw to drawItem’ and ‘rename method
draw to render,’ which are then ordered.

We compared our results both with (1) all refactoring
candidatesRCall and (2) only the top-ranked refactoring
candidatesRCbest. The comparison results withRCbest

andRCall (γ=0.65 andǫ=0.34) are shown in Table 4 and
5. When comparing withRCbest, our approach finds 27%
more matches yet decreases the result size by 26% injEdit,
and it finds 3% more matches yet decreases the result size



by 62% inTomcat. This result shows our approach achieves
better matching coverage while retaining concise results.
We also compared our matches and the matches generated
by WD’s tool. We manually inspected 50 sample check-
ins to estimate precision for the matches missed by one
tool but not the other as well as the matches found by both
tools. ForjEdit, our approach found 462 matches not iden-
tified by WD’s RCbest, andRCbest found just over 146
matches that we failed to report. When combined with
the precision, this means our approach found about 430
(=462×0.93) additional useful matches, and their approach
found about 61 (=146×0.42) additional useful matches.
Tomcatshows roughly similar results. WD’s tool missed
many matches when compound transformations were ap-
plied. Our tool missed some matches becauseγ=0.65 did
not generate enough seeds to find them.

Comparison with S. Kim et al.’s Origin Analysis. For
comparison, both our tool and KPW’s tool were applied
to jEdit andArgoUML’s check-in snapshots. Table 4 and
5 shows the comparison result (γ=0.65 andǫ=0.34). For
jEdit, our approach finds 40% more matches yet reduces
the result size by 22%, and forArgoUML, it finds 21% more
matches yet reduces the result size by 44%.

We also compared our matches to KPW’s matches and
inspected the matches from 50 sample check-ins to measure
precision. ForjEdit, we found over 678 matches not identi-
fied by KPW’s approach, and KPW’s approach found about
99 matches that we did not. When combined with the pre-
cision of sampled matches, this means our approach found
over 600 (=678×0.89) useful matches and that KPW’s ap-
proach found about 75 (=99×0.75) useful matches.Ar-
goUML shows roughly similar results. This result is note-
worthy because KPW’s approach considers more informa-
tion such as calling relationships as well as clone detection
results in addition to name similarity. We suspect that it
is because KPW’s approach cannot accept correct matches
when their overall similarity score is lower than a certain
threshold and cannot easily prune incorrect matches once
their overall similarity score is over a certain threshold and
is higher than other matches. On the other hand, our al-
gorithm tends to reject matches whose transformation is an
isolated incident even if the similarity score is high. Our
tool’s incorrect matches usually come from bad seeds that
coincidentally have similar names. Overall, our approach
finds more matches without sacrificing its precision and rep-
resents results more concisely than KPW’s approach.

5.3. Impact of Threshold

Seed Threshold. Our results in part depend on the quan-
tity and quality of seeds. Figure 2 shows how our algorithm
behaves when we change the seed generation thresholdγ

for JFreechart(0.9.4→0.9.5). We variedγ from 0.9 to 0.5
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Figure 2. Impact of Seed Threshold γ

and measured recall of seeds, precision, recall, and the ratio
of rejected seeds to the total number of seeds. Whenγ is
set high in the range of 0.9 to 0.8, the name matching tech-
nique finds a relatively small number of seeds, but the seeds
tend to be all good seeds. So our algorithm rejects very few
seeds and leverages the good seeds to quickly reach the re-
call of 0.65 to 0.85. However, the recall is still below 0.85
as the seeds do not contain enough transformations. Asγ

decreases, more seeds are produced and a higher percent-
age of them are bad seeds that our algorithm later rejects.
Using a low threshold (< 0.6) generally leads to higher re-
call (above 0.9) but lowers precision and increases the run-
ning time since there are more candidate rules based on bad
seeds. For the results in Figure 2, we observed a roughly lin-
ear increase from 6 minutes (γ=0.9) to 26 minutes (γ=0.5).

In general, when the precision and recall of seed matches
are low, our algorithm improves both measures signifi-
cantly. When the seed matches already have precision and
recall over 0.9, the algorithm still improves both measures,
although less so because the seeds are already very good.
However, even in this case, our algorithm significantly im-
proves the conciseness measure. Effective seed generation
and its interaction with our candidate rule selection algo-
rithm needs additional research.

Exception Threshold. We experimented with different
exception thresholds: 0.25, 0.34, 0.5. Using a low threshold
increases running time and slightly decreases the M/R ratio.
Surprisingly we found that changing exception thresholds
does not affect precision and recall much. We suspect that
it is because most exceptions come from deleted entities.

5.4. Threats to Validity

To measure precision, the first author manually inspected
the matches generated by our tool and by other tools. Man-



ual labeling is subject to evaluator bias. All data are pub-
licly available,3 so other researchers can independently as-
sess our results (and use our data).

Our effort to date is limited in a number of ways.
First, we have not explored other (non-Java) program-
ming languages, other (non-object-oriented) programming
paradigms, or even different naming conventions, all of
which could have consequences. Second, we have not ex-
plored possible ways to exploit information from program-
ming environments (such as Eclipse) that support higher-
level operations, such as some common refactorings.

6. Applications of Change Rules

Our rules represent inferred changes in a concise and
comprehensible form. This allows them to serve as a basis
for many software engineering applications that can benefit
from additional knowledge about change. We sketch several
such applications and include motivating examples from our
study. (Some of the example rules below are slightly modi-
fied for presentation purposes.)

Bug Finding. While examining the inferred rules, we
found that exceptions often signal a bug arising from in-
complete or inconsistent changes. For example, the rule
for all x in J*.addTitle(*)

except { JThermometer.addTitle(Title) }

procedureReplace(x, addTitle, addSubtitle)

has one exception, which indicates that a programmer mis-
spelledaddSubtitle to addSubitle when modifying the
addTitle method ofJThermometer, which is a subclass
of JFreeChart. This misspelling causes dynamic dis-
patching toJThermometer not to function properly because
addSubtitle is no longer overridden.

As another example, consider the following two rules,
in which the second one is found one release after the first
one. We suspect that a programmer fixed only two out of
the three problems, leaving one bug.
for all x in *.draw(*, Key, *)

except { HorizontalBar, VerticalBar, StatBar }

argReplace(x, Key, Category)

for all x in *Bar.draw(*, Key, *)

except { VerticalBar }

argReplace(x, Key, Category)

A similar idea that detects potential errors from inferred
refactorings has been explored by Görg and Weißgerber
[14]. However, they check only a predefined set of refac-
toring consistency patterns.

Assisted Documentation. By inferring change rules at
each check-in, our approach could be integrated into a ver-
sion control system to assist programmers in documenting

3www.cs.washington.edu/homes/miryung/matching

their changes. Suppose that a programmer modified 14
methods to modify plot drawing APIs. Our tool can infer
the following rule, summarizing the changes concisely.
for all x in chart.plot.*Plot.draw(ChartInfo)

inputSignatureReplace([ChartInfo],

[PlotState,PlotInfo])

If a programmer wants to examine instances of this change,
we can simply display the matches found by the rule.

If inferring and documenting rules becomes a part of
standard development practice, this practice opens doors
for richer software evolution research. In classic software
evolution studies [6], changes are often measured in terms
of LOC or the number of components. These quantitative
metrics do not necessarily depict an accurate picture of evo-
lution in general. For the preceding example, while mea-
suring LOC changes may show that there were hundreds of
lines of dispersed changes, our rule can convey qualitative
information about evolution that conventional metrics can-
not.

API Evolution Analysis. Our inferred rules may be
able to shed light on understanding the evolution of APIs
[10]. Suppose that a programmer removed theShape type in
some APIs to hide unnecessary details from clients. Before
checking in this change, our tool can automatically infer the
following rule and assist in describing what kinds of details
are hidden:
for all x in chart.*.*(Graphic, *, Shape)

argDelete(x, Shape)

Someone who sees this comment later will better under-
stand the intention of the change. More importantly, we
found our inferred rules often reveal volatility of some API
changes. In the following example, the first rule shows that
the use ofCategory type was replaced by[Key, int] type.
for all x in *.*.*(Category)

inputSignatureReplace(x,[Category],[Key, int])

for all x in *.*.*(Key, int)

inputSignatureReplace(x,[Key, int],[Category])

In the next release, we found that that the same change was
quickly reversed based on the second rule.

API Update. When an imported API is modified, pro-
grammers often have to update their code manually to adapt
to the modified interface. One approach, embodied by
CatchUp! captures refactorings performed within Eclipse
and uses this information to help API users to update their
code accordingly [7, 16]. In the absence of recorded refac-
torings, our tool can act as a refactoring reconstruction tool
[9, 33], feeding input for an API update tool.

Identifying Related Changes. Recent work has pro-
posed ways to use historical information to identify parts
of a software system that are likely to change together
[13, 36, 38]. By grouping related changes and represent-
ing them as a rule, our tool can also identify what parts of



a system change together. For example, consider this rule
with 13 matches.
for all x in int *.*.*(CharIndex, REMatch)

returnReplace(x, int, boolean)

This rule shows a programmer modified a group of methods
similarly although they are not in the same class or package.
If one wants to factor out a set of related but scattered meth-
ods using the AspectJ programming language [22], we be-
lieve that the scope expressions of our rules can be excellent
candidates for the point-cut descriptor.

7. Conclusions

Our approach is the first to automatically infer structural
changes, represent them concisely as a set of rules, and use
the rules to determine matches between two program ver-
sions. Our tool finds more and better matches than the other
tools we surveyed and evaluated. Furthermore, the inferred
change rules show promise in enabling new approaches to a
wide variety of software engineering applications.
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