Behaviour Model Synthesis From Properties and Scenarios

Sebastian Uchitel Greg Brunet’ Marsha Chechik*

fDepartment of Computing iDepartment of Computer Science
Imperial College, London, SW7 2RH, UK University of Toronto, Toronto, ON, Canada
{s.uchitel, gwb}@loc.ic.ac. uk {gbrunet, chechi k}@s. t oront 0. edu
Abstract been studied extensively.

Synthesis from declarative specifications such as goal

Synthesis of behaviour models from software develop-models describing the requirements of a system has a num-
ment artifacts such as scenario-based descriptions or re-per of advantages. Firstly, automatic synthesis delivers
quirements specifications not only helps significantly eedu executable models early in the requirements process, en-
the effort of model construction, but also provides a bridge abling a wide range of validation techniques such as ani-
between approaches geared toward requirements analysismations, simulations, and scenario-based techniques. Sec
and those geared towards reasoning about system design agndly, it provides a bridge between two modelling worlds:
the architectural level. However, the models favoured by gne well suited for requirements analysis, the another that
existing synthesis approaches are not sufficiently eximess s well suited for architectural and high-level design anal
to describe both universal constraints provided by require ysjs. Properties can be thought of as statements that prune
ments and existential statements provided by scenarios. Inhe space of acceptable behaviours of the system to be. A
this paper, we propose a novel synthesis technique that conpehaviour model synthesized from properties should char-
structs behaviour models in the form of Modal Transition acterize all pOSSible behaviours that do not violate the.pro
Systems (MTS) from a combination of safety properties anderties. Such a model provides apper boundon all the
scenarios. MTSs distinguish required, possible and pro- hehaviours that the system will actually provide, once im-
scribed behaviour, and their elaboration not only guaran- plemented.
tees the preservation of the properties and scenarios used Synthesis from scenario-based specifications such as

for synthesis but also supports further elicitation of new r Message Sequence Charts (MSCs) [7] has a number of ad-

quirements. vantages that complement those of property synthesis. In
ducti their simplest, and widely used form, scenarios are exis-

1 Introduction tential statements: they provide examples of the intended

Event-based behavioural models such as Labelled TranSystem behaviour; in other words, sequences of interac-
sition Systems (LTSs) are convenient formalisms for mod- tions that the system is expected to exhibit. By synthesiz-
elling and reasoning about system behaviour at the archi-ing behaviour models from scenarios, it is possible to sup-
tectural level. They describe a system as a set of inter-Port early analysis, validation, and incremental elaborat
acting Components where each Component is modelled a@f behaviour models. A behaviour model SynthESiZEd from
a state machine, and interactions between components ocscenarios should providd@aver boundrom which to iden-
cur through shared events. These models provide a basidfy the behaviours that the system will provide but thatdav
for a wide range of automated analysis techniques, such a§10t been explicitly captured by the scenarios.
model-checking and simulation. In this paper, we argue that classical state machine mod-

One of the serious limitations of behaviour modelling els such as LTSs are insufficiently expressive to support
and analysis is the complexity of building the models in the synthesis fromboth properties and scenarios. We extend
first place. Behavioural model construction remains a diffi- existing LTS synthesis algorithms to produce Modal Tran-
cult, labour-intensive task that requires considerabpeex sition Systems (MTSs) [12] and demonstrate that elabora-
tise. To address this, a wide range of techniques for sup-tion from MTSs not only preserves the original properties
porting (semi-)automated synthesis of behavioural modelsand scenarios, but also supports elicitation of new proper-
have been investigated. In particular, synthesis fromattecl ties and scenarios. In addition to the approach itself,iipec
ative requirements specifications (e.g., [11, 13, 21, 1, 8] contributions of the paper arei) @ technique for automat-
or from scenarios and use cases (e.g., [10, 20, 9, 3]), hascally generating MTSs from safety properties expressed in

Fluent Linear Temporal Logic (FLTL);i) a technique for User Sorver Admin

extending LTS synthesis from scenario approaches to sup- e ! ! !
port construction of MTS modelsiji() a demonstration that al I authenticate | ;
composition of MTSs is anerge[19], and therefore it pre- |£Lf sendMsg |
serves the original properties and scenarios and completes T logout__! 3
the approach for combined synthesis of behaviour models | qlogoutiisg | 3
from all these artifacts. It also characterizes all MTSgl(an L authenticate ! E
LTSs) that preserve these artifacts and consequently-repre | sendusg__]
sents the starting point for further elaboration of system b | ogouttsg 050]
haviour. {v) a report on a case study that demonstrates that i‘ e

analysis of synthesized MTSs can help find new meaningful
properties and scenarios to be used to further the require-
ments elaboration process.

The rest of the paper is organized as follows. We be- Registered= (enabledisablé initially TRUE
gin with a motivating example in Section 2, followed by the Loggedin= (authenticate{logout, disable}) initially FALSE

Figure 1. Webmail scenario specification sc.

necessary background in Section 3 and discussion of FLTL (Legal access) p1 = G(Loggedin= Registered
in Section 4. Sections 5 and 6 present algorithms for synthe- (Private access) p» = G(sendMsg= LoggedIn
sizing MTSs from safety properties and scenarios, respec- (Logouts are ack'd) ps = G(logout=- X logoutMsg
tively. In Section 7, we use the merge operator to put such)]]

partial behavioural descriptions together. In Section 8, w Figure 2. Webmail system properties.

apply results of this paper, illustrating construction qfe-

tial model and its elaboration, identifying new scenariod a
properties. We discuss our work and compare it to related
approaches in Section 9, and conclude in Section 10.

Formalization op3 states that ifogoutoccurs, then the next
(X) event to occur isogoutMsg
We now consider synthesis of LTS models from the sce-
narios and properties of the Webmail system.
2 Motivating Example Property P = p1 A p2 A p3 can be used to syn-
thesize, via an adaptation of the method in [4], an
In this section, we provide a motivating example, ex- LTS model L(P) shown in Fig. 3. This model de-
plaining the concepts of scenarios, properties, LTSs andscribesall possible behaviours over the everist,., =
synthesis informally. {enabledisable authenticatelogout sendMsglogoutMsg
Consider a simple web-based email system. Fig. 1 pro-that do not violate”. If P represents a subset of the actual
vides some examples of the intended system behaviouisystem requirements, then the modéP) can be thought
using a standard message sequence chart notation [7]of as providing anupper boundon the actual intended
The scenaricc describes a repetition (the outep box) behaviour of the system, and the elaboration process is
of a choice (the innemlt box) between two sequences aimed at removing behaviour from(P).
of actions: (1) a User requests authentication from the The problem withZ(P), and with synthesis of LTSs in
Server which then sends a number of messages; after thageneral, is that the model blurs the distinction between be-
the User logs out and receives a logout message. (2haviours thamayoccur as they will not violaté”, and be-
an Admin disables the User during user activities, effec- haviours thatmustoccur in order to avoid a violation a?.
tively expelling the latter from the system. An exam- Forinstance, it does not convey that removing a self-loop on
ple of a sequence of events required &yis sc; = logoutMsgfrom state) does not violate”?, whereas remov-
authenticatesendMsgdisable logoutMsg . .. ing a transition on the same event between stataad 0
The Webmail system is required to enforce legal and pri- does. Consequently, elaboration by arbitrary removal ef be
vate access to the emails it stores. These requirements arkeaviour can be incorrect. Furthermore, the problem of lack
formalized in FLTL [4] in Fig. 2 as propertigs, andp,. of distinction betweenmequired and possiblebehaviour is
Legal access requires the UserRegisteredf it is to be aggravated when the scenario description in Fig. 1 is censid
LoggedIn Private access requires that the Uselcbggedin ered as well. Fromc we know that removing the transition
if it is to receive e-mail from the Serves¢ndMsy Regis- on authenticatdrom 0 to 1 would be incorrect as it would
teredandLoggedInare fluents that change value according impedesc; from occurring; however(P) does not, and
to the occurrence of events. A UserRegisterecbnce he cannot be extended to, reflect this. In summary, the prob-
has beemnabledand not yetisabled A User isLoggediIn lem is that by interpreting the LTS(P) as an upper bound
once he has beesuthenticatd and not yet done bbgout to the actual intended system behaviour, the distinction of
nor beendisabled An additional requirementys, speci- what behaviour is required is lost. Such is the case of the
fies that users should be sent an acknowledgment on logouttransition onauthenticatebetween state8 and4 and the

logout logout

Do ®

logoutMsg

Figure 3. LTS synthesized from property ~ P. Figure 4. LTS synthesized from scenario sc.
self-loop onlogoutMschetween in stateé.

Synthesis of LTS models from scenarios presents theof MTSs. For the ease of presentation, we assume that all
dual problem. A scenario description specifies only some of transition systems have the same alphabet and do not use
the required traces of the system. For example, Fig. 1 saysion-observabler() actions. For a treatment of models with
nothing about the possibility of the Admin disabling a User different alphabets, please refer to [1].
while the latter is not logged into the system (e =
disable enabledisable enable. . .) or the possibility of the
User receiving messages after he has been disabled (e.g
scs = authenticatedisable sendMsglogoutMsg. . .).
Such behaviours, although not explicitly required, could
still be possible.

Synthesis from scenarios aims to build models that pre-
cisely capture the traces described by the scenarios. FoLTSs model interaction of a (sub-)system with its environ-
example, Fig. 4 depicts the LTK(sc) synthesized fromthe ment. An example LTS is shown in Fig. 3. We use a con-
Webmail scenariace using the algorithm described in [20]. vention that the initial state is labeled @sOtherwise, the
Since scenario descriptions are partial, it is expectediiea numbers on states are for reference only and have no se-
final LTS for the Webmail system will include all traces of mantics. Transitions labelled with several actions is shor
L(sc) as well as others. Henc&(sc) can be thought of as for an individual transition on each action.
providing alower boundof the intended system behaviour. Modal Transition Systems (MTSs) [12], which allow for
The problem is, however, that not all LTS models that in- explicit modelling of what isot known, extend LTSs with
clude the traces of(sc) are reasonable. For instance, the an additional set of transitions that model interactionishwi
final LTS may include the trace:, but notscz since the lat- the environment that the system cannot be guaranteed to
ter violates the requirement3 of the system. LTSs cannot provide, and equally cannot be guaranteed to prohibit.
capture such restrictions.

To summarize, a major limitation of synthesis ap-
proaches is that the models being synthesized are assume
to be complete descriptions of the system behaviour with re-
spect to a fixed alphabet of actions. Given the partial nature
of the synthesis inputs (i.e., properties and scenaribs), t
forces the models to be interpreted as either lower or upperevery LTS (S, Act, A, so) can be embedded into an MTS
bounds of the intended system behaviour. Traditional be-(g, Act, A, A, sp). An MTS (or LTS) isdeterministiovhen
haviour models such as LTSs cannot capture in one modehg state has more than one outgoing transition on the same
the middle ground, i.e., the behaviour that does not violate action. We refer to transitions AP \ A" asmaybaransi_
safety properties yet has not been required by scenarids, antions. Maybe transitions are denoted with a question mark
this hinders validation, analysis and elaboration of sgste following the label. We refer to the MTS (LTS) with a sin-
behaviour models. gle state and an empty transition relation asehetyMTS

In this paper, we show how the limitations of exist- (LTS). An example MTS is shown in Fig. 8(b).
ing synthesis techniques can be overcome by synthesizing An MTS M = (S, Act, A", AP, s0) has a required
more expressive behaviour models, namely, Modal ,Tr,an'transition orY (denoted\/ _AT M'Yif M = (S, Act, A",
sition Systems (MTSs) [12], which are capable of distin- AP, sb) and(so, £, s) € A”. Similarly, M has a maybe

guishing possible from required behaviour. e ’ ,
transition or¢ (denotedV —,,, M) if (s0,4, s,) € AP —
3 Background A". M —5, M’ meangso, £, s}) € AP.

Definition 1 (Labelled Transition Systent)et States be a
universal set of states, antkt be a universal set of observ-
gble action labels. ALTS is a tupleL = (S, A, A, so),
whereS C States is a finite set of state4,C Act is a set
of labels,A C (S x A x S) is a transition relation, and
so € S is the initial state.

Definition 2 (Modal Transition SystemAn MTS M is
structure (S, Act, A", AP sg), where A™ C AP,
S, Act, A", sg) is an LTS representingquiredtransitions
of the system andS, Act, AP, sq) is an LTS representing

possible(but not necessarily required) transitions.

In this section, we review the notion of and operations Definition 3 (Traces)A tracew = ag,a1,..., Wherea; €
over transition systems, fix the notation and review merging Act is atrue tracan M if there exists an infinite sequence

{M;} suchthatMy = M andM; %, M, foralli € N.
A tracer is amaybe tracén M if 7 is not a true trace, but
there exists an infinite sequenga/;} such thatM, = M
and M; ﬂ>p M, forall i € N. A tracer is apossible
tracein M if w is a maybe or true trace id/. Finally, a
tracer is afalse tracdan M if it is not a possible trace.

M—4. M N 5, N T M-t M N 5 N
M|IN— ., M/ ||NY M|IN—5, M/||N’
MT ML, M, N—5 N
M||N—%,, M'||N"
Figure 5. Rules for parallel composition.

MM

T M—4, M, N—5, N’
Mo N—5 M/ 4., N’

We denote the set of true, maybe, possible, and false traces Figure 6. One of the rules for the +.,. operator.

over a given MTSM by TRUETR(M), MAYBETR(M),
POSTR(M), and FRALSETR(M), respectively. For an LTS
P =(S,L,A, so) we denote by R(P) the set of true traces
of its embedding into MTS, i.e. RUETR((S, L, A, A, s0)).

To capture the notion of elaboration of a partial descrip-
tion into a more comprehensive one, we tsfinementand
say that MTSs arequivalent(=) if they refine each other.

Definition 4 (Refinement)Let p,, be the universe of all
MTSs. An MTSV is arefinementof an MTSM, written
M < N,if (M, N) is contained in some refinement relation
R C par x o for which the following holds? € Act:

1.(M -5, M')= AN'-N -5, N A (M',N') € R)
2. (N -5, N') = 3M'-M -5, M’ A (M',N') € R)

LTSs that refine an MT3/ are complete descriptions of
the system behaviour and thus are calleglementations
of M. So, an MTSM can be thought of as a model that
represents the set of LTSs that implement it, dendted).

Definition 7 (Minimal Common Refinementlet @, M,

and N be MTSs.Q is a common refinement (CR)f M

andN if M < QandN =< Q. @Q is aminimal common
refinemen{MCR) of M and N if Q is a CR ofM and N

and there is no MT®)’ # (Q such that)’ is a CR ofM and
N,andQ’ =< Q.

Given two MTSsM andN that are deterministic ancbn-
sistent(i.e., there exists an MTS that is a common refine-
ment of both),M +., N is their unique minimal common
refinement.

Definition 8 (The +., Operator [1])Let M = (S, Act,
A}QV[, AZJ\)/[, SOM) and N = (SN, Act, AR;, AZ;V’ SQN) be
MTS. Thent., is a symmetric operator and/ +.,. N is
the MTS(Sys x Sn, Act,A", AP, (soar, Son)), WhereA”
and AP are the smallest relations satisfying the MT rule in
Fig. 6, and the TT and MM rules of Fig. 5.

In this paper, we assume that all MTSs (and therefore The 4., differs from parallel composition only when syn-

LTSs) arenfinite-trace

Definition 5 (Infinite-Trace)An MTS M (Sn, Act,
A%y, AL, son) is infinite-traceif for all s € Sy, there
existsa € Act ands’ € Sy such thatM, —, M.

In other words, an MTSV is infinite-trace if every state
has at least one outgoing transition. All other MTSs are
calledfinite-trace Since we intend to synthesize models
from temporal logic formulas which are evaluated on infi-
nite traces, from now on, we write “MTS” (“LTS") to mean
an infinite-trace MTS (LTS), unless stated otherwise.
Parallel composition12] captures the notion of MTSs

chronizing a maybe with a required transition. The com-

position of these produces a required transition instead of
a maybe which parallel composition would have produced
(see Fig. 5). The intuition is that knowledge is being added,
so when a transition is required in one of the models, it is

required in the merge.

Theorem 1 (4, Builds the MCR [1])If M and N are de-
terministic MTSs, the®/ +.,. N builds their MCR.

4 3-valued FLTL

In our work, we assume that properties are specified

that run asynchronously but synchronize on shared actionsusing Fluent Linear Temporal Logic (FLTL) [4]. Linear

Definition 6 (Parallel Composition)et A and N be MTSs
whereM = (Sur, Act, Ay, AR, som), N = (Sw, Act,
Ay, AR, son). Thenparallel compositiof||) is a symmet-
ric operator andM || N is the MTS(Sy x Sy, Act, A",
AP, (soar,son)), Where A™ and AP are the smallest rela-
tions that satisfy the rules in Fig. 5.

Merging MTSs [19] is the process of combining what
is known from each partial behaviour description; in other
words, it is the construction of an MTS that includes all the
required and all the prohibited behaviours from each MTS,

temporal logics are widely used to describe behaviour re-
quirements [4, 23, 8]. The motivation for choosing FLTL
is that it provides a uniform framework for specifying and
model-checking state-based temporal properties in event-
based models [4].

In this section, we briefly describe a 3-valued variant of
Fluent Linear Temporal Logic (FLTL) [4] and show that
FLTL properties are preserved in all implementations of a
given MTS.

FLTL [4] is a logic for reasoning about fluents. A flu-
ent Fl is defined by a pair of setf, the set of initiat-

and is as least refined as possible. Formally, merging MTSsing actions, and’F, the set of terminating action$zl =

is the process of finding their minimal common refinement.

(Ir1, Tr) wherelg, Tr C Actandlp N Tr = 0. A fluent

TEF 2 LR ak- 2 o(rke)
TEXé £ k¢ TEGE £ Viz0-mEd
TEOAY 2 (TEGA(TEY)

Figure 7. Semantics of satisfaction operator.

may be initiallytrue or falseas indicated by thénitially g
attribute. Every actiom € Actinduces a fluent, namely,
a = (a,Act\ {a}). Given the set of fluent®, Fl € & is

an FTL formula, and other FTL formulas are defined induc-
tively using the standard boolean connectives and temporal, . «

operatorsX (next), U (strong until), F (eventually), and
G (always). For example, consider the properyfor the
Webmail system described in Fig. 2. It uses fludagpout
andlogoutMsgderived from the actions with the same name
and defined in the standard way.

Let IT be the set of infinite traces ovéct Forz € I,
we write 7’ for the suffix of 7 starting ata;. 7* satisfies a
fluentFl, denotedr |= FI, if and only if one of the following
conditions holds:

o Initially, A (Vj e N-0<j<i=a;¢Tr)
° HjEN'(jSi/\ajEIf)/\(VkIEN'j<k§i:>ak¢TF|)

enable, disable, sendMsg logout

logoutMsg, authenticate i
bnt sg sendMsg?, logoutMsg? logout?
enable?, disable?
authenticate?

logoutMsg

enable, disable, authenticate
logout, sendMsg
a, ’ (b)

4

Figure 8. (a) the property LTS for
MTS M (ps).

ps; (b) the

as an FLTL formula. Safety properties are those that specify
nothing bad can happen” and that can be falsified by a
finite sequence of events. The algorithm is an extension of
an existing algorithm for synthesizing LTSs [4].

5.1 LTS Synthesis

The technique for model-checking an FLTL propetfty
over an LTSL involves constructing a Biichi automaton
B(—¢) that recognizes all infinite traces over the alphabet
Actthat violate¢ and checking that the synchronous prod-
uct of B(—¢) with L is empty [4]. B(—¢) is completedby
adding a sink state, and, for every state, adding a transitio
to the sink state on all actions that are not enabled in that

In other words, a fluent holds at a time instant if and only state. ThusB(—¢) has an execution for every infinite trace

if it holds initially, or some initiating action has occude

overAct

and in both cases, no terminating action has yet occurred. When ¢ is a safety propertyB(—¢) has only one ac-

Fig. 7 shows the satisfaction operater for some FLTL
operators [4]. In classical semantics, a form#lla FLTL
holds in an LTSL (denotedL |= ¢) if Vr € I - 7 |= ¢.

The 3-valued semantics of FLTL over an MTH re-
turns the value of each formulae FLTL in M. ¢ is true
in M (denotedV = ¢) if every trace in RUETR(M) sat-
isfies¢, andfalsein M (denotedV/ [~ ¢) if there is a trace
in TRUETR(M) that refutesp. Otherwisep evaluates to
mayben M if and only if no traces in RUETR(M) refute
¢, and there is at least one trace in$TR(M) that satisfies
¢ and one that refutes. WhenM is an LTS, this semantics
reduces to classical.

The most important property of this variant of FLTL is
that refinement preservésie andfalseproperties:

Theorem 2 (Preservation of FLTLLet M and N be MTSs
st. M < N. Then¥V¢ € FLTL, M = ¢ = N E ¢ and

MW ¢ = N ¢.

Therefore, if a property evaluates tiwe in M, it is true
in all implementations oft/, and if a property evaluates to
falsein M, itis falsein all implementations oft/. Further-
more, if a property evaluates tnaybein M, it is true in
some implementations dff andfalsein others.

Finally, an FLTL formula¢ is satisfiableif and only if
there exists an LTS, such thatl = ¢; otherwise,s is
unsatisfiable For example, no LTS satisfi@sA —a.

5 Synthesis from Properties

In this section, we describe and prove correct an algo-

rithm for synthesizing an MTS for a safety property given

cepting state with only self-loop transitions, becausetyaf
properties are violated by a finite sequence of actions, and a
violation cannot be remedied. Thu8(—¢) can be viewed

as aproperty LTS for ¢, i.e., an LTS with an error state
which corresponds to the accepting stateRif-¢). All
traces that reach the error state correspond to undesired be
haviours, i.e., no infinite trace with a finite suffix that Isad

to the error state satisfies For example, the property LTS
for p3 of the Webmail system is shown in Fig. 8(a), where
the error state is denoted byl. In this LTS, the tracdo-

gout authenticatas illegal (it leads to state-1), so no infi-

nite trace starting withogout, authenticatesatisfies. For
details on constructing a property LTS, see [4].

The synthesis algorithm for LTSs, developed in [13], ex-
tends [4] by firstly removing all transitions not correspend
ing to an infinite trace and then by removing all states that
are unreachable from the initial state (which always in-
cludes the error state). The resulting model is a LTS that
captures all infinite traces on the system alphabet that sat-
isfy ¢. We denote by.(¢) the LTS generated by this pro-
cedure (e.g.L(ps) is the LTS in Fig. 8(a) with state-1 re-
moved). By constructior,(¢) is deterministicand infinite-
trace. Note that for an unsatisfiable propeftty(¢) is the
empty LTS.

5.2 MTS Synthesis

In order to overcome the limitations described in Sec-
tion 2, we extend the synthesis procedure for LTSs to syn-
thesize an MTS from a safety propergy expressed in
FLTL. The algorithm is calleTSprop:

6 Synthesis from Scenarios

In this section, we describe an algorithm for synthesizing
MTS models from scenario-based specifications. A number
of alternative scenario notations, semantics and syrghesi
techniques exist [20, 10, 9], each with its own advantages
and disadvantages. However, the discussion and results pre

? enable?
— logoutMsg?

logoutMsg sented in this section are not specific to any particular ex-
Figure 9. The MTS for property P. i§ting approach, apd the. MTS_ synt.hesis algorithm we pro-
o . vide can be used in conjunction with many of the existing
1. letL = L(¢) (constructed as described in Section 5.1); LTS synthesis approaches. The only requirement is that the
2. returnM (¢), whereM (¢) is the MTS obtained froni by semantics for the scenario-based description be exiatenti
converting all outgoing transitions for eagke Sz, to maybe i.e., that scenarios describe behaviour that the systers is e
transitions, wheneves has more than one outgoing transi- pected to exhibit, as opposed to universal properties that a
tion. system traces are expected to satisfy. To ground our presen-

tation and provide concrete examples, we use a syntactic
subset of the Message Sequence Charts from the ITU stan-
dard [7] and the synthesis algorithm presented in [20].

For a satisfiable safety propekty L(¢) contains all infinite
traces that satisfy and no traces that refuge When a state

in L(¢) has more than one outgoing transition, there is more
than one way to satisfy at that point in the trace. Thus, 6.1 LTS Synthesis

not all such transitions are necessary to satigffput any i i e

LTS that satisfieg must contain at least one of them. Such The semantics of a scenarlo-based specificatioan be
choices should be modelled with maybe instead of requiredt’0ughtof as a setof traces, i.e., sequences of messages tha
behaviour, as in stepof MTSprop. Also, if a state has only system components exchange, referred torRE]l

one outgoing transition, then because any implementation 1 N€ requirements for LTS synthesis from a scenario-
must be infinite-trace, this transition must be presentlin al P@sed specification can vary depending on the assumptions
implementations, and therefore should be required. that are made. However, a basic requirement is that the syn-

For example)M (ps) is shown in Fig. 8(b). The only re- thesized LTS must be capable of exhibiting the set of traces

quired behaviour in this system is from statto state) on that are described by the scenarios.

actionlogoutMsg because this is the only event required by pefinition 9 (Consistency of LTS Synthesis from Scenar-
this property. A possible refinementf (ps) is M (P) de- joq) An LTSL (o) is consistentvith a scenario specification
picted in Fig. 9 (i.e. M (p3) = M(P) via the refinement - only if TR() C TR(L(c)).
relation{(0,0), (0,1), (0,2), (1, 3), (1,4)}). Following the -
discussion of Section 2, note thaf(P) distinguishes re- For example, the synthesis algorithm described in [20] con-
quired from maybdogoutMsgtransitions whileL(P) of structs a deterministic LTS model for each component ap-
Fig. 3 does not. pearing in the scenarios. Each LTS is capable of exhibiting
The MTSM (¢) constructed byTSprop is not only cor- exactly the sequence of message exchanges that occur by
rect, but also characterizes all MTS models that satisfy following the vertical line of the component modelled by
with the 3-valued interpretation of FLTL. this LTS. For example, the LTS for the Server component
synthesized from scenarke in Fig. 1 is shown in Fig. 4.
Theorem 3 (Characterization ofp) If ¢ is a satisfiable Finally, once LTSs for all components have been synthe-
safety property, theWM € gy - M = ¢ < M(¢) < M. sized, an LTS for the entire system is obtained by compos-
In particular, for all LTSSL, L |= ¢ < L € Z(M(¢)). ing them in parallel. In the Webmail example, the System

LTS is equivalent to that of the Server component.
The practical implication of this theorem is that the synthe .
sis procedure effectively constructs an MTS from whadih 6.2 MTS Synthesis
possible system models that satisfy the given propertiessca We now provide a synthesis algorithTSscen that
be reached through the elaboration of the maybe behaviourconstructs an MT8/ (o) from a scenario specificatian A
For example, recall from Section 2 that the LTS model, precondition for this algorithm is the existence of a synthe
L(P), of the Webmail system cannot be refined to model Sis algorithm that constructs an LTS o) that is consistent

that the tracesc, is required. In contrast, the MTS/ (P) with a scenario specificatian
supports this refinement by replacing the maybe transitions 1. letM (o) = L(0);
henti M disabl logoutM .
o dmenratey q TN, 1 BT 2, 2 T, with the 2. add a new stateink to M (o) and looping transitions
required transitions. sink—2,,, sinkfor every labek, € Act;

logout?

disable?, enable?, logout?

IogoutMsg?, sendMsg? disable

authenticate? authenticate?

disable?, enable?
logout?, sendMsg? logoutMsg
) logoutMsg?

enable?
logoutMsg?

authenticate

authenticate?
disable?
enable?

logout?
sendMsg? disable?, enable?, logout?
sendMsg?

disable?

NlogoutMsg?
TogoutMisg?
ek? logoutMsg

logoutMsg sendMsg?, disable?, logout?

logoutMsg?, authenticate?

logoutMsg

Figure 10. MTS M (sc).

Figure 11. MTS Mpoip.
scs enable?. ..
sce authenticatelogout enable?. ..
4. returnM (o). scy disable? enable?authenticate?. . .

MTSscen extendsL(c) by turning all traces not explic- scs disable?logoutMsg. ..
itly described by into maybe traces. Itdoes so by addinga |o_gout?,7. i, ”
sink state to which all events disallowed byo) lead. For e disable? disable?....
instance L (sc) of Fig. 1 is converted intd/ (sc) of Fig. 10, Figure 12. Maybe traces of Myoun +cr M (pa).
where state is the sink state.

It is easy to show that the MTS synthesized from a sce- a model synthesized from scenarios, described in Section 6.
nario specificatiom is refined by the LTS synthesized from Key to this process is Theorem 1: model merging preserves
o,i.e.,M(o) < L(o), and that its required traces subsume the required and the proscribed behaviour of the MTSs be-
the traces specified hy. ing composed. Consequently, the behaviour proscribed by
properties and the behaviour required by scenarios will be
preserved. Intuitively, both the upper and the lower bounds
of the intended system behaviour are preserved by merge;
furthermore, both bounds are captured in the same merged
More importanﬂy, we can show thm(g) character- MTS model. Note that Theorem 1 is applicable since the

3. for every state in M (o) such that there is no outgoing tran-
sitions —%,., adds —%,, sinkto M (o);

Theorem 4 (Correctness ofiTSscen) If o is a scenario
specification and.(c) is consistent withr, thenTR(c) C
TRUETR(M (0)).

izes all models that require at least the traces RfIT). synthesis procedures described in Sections 5 and 6 result in
Clearly, the degree to which the synthesized MTS character-deterministic models that have the same alphabet.
izes the models that are consistent wittlepends on the un- For our Webmail system example, the MT&,.;;, =

derlying LTS synthesis algorithm. However, if the LTS syn- M (P)+.. M (sc) is depicted in Fig. 11. This MTS captures
thesis algorithm guarantees thak(f) = TR(L (o)), then the information provided by both scenarios and properties.
refining M (o) guarantees preservation of the scenarios, andFurther, it can be used to reason about maybe behaviour,
everymodel that preserves the scenarios can be reached byhat is, behaviour that does not violate safety propertigs b
refining M (o). has not been explored in the scenario specification. Con-
sider the maybe trace:, = authenticatelogout, authenti-
cate? ... of My.,. This behaviour is not included in the
Webmail scenario specificatiore but does not violate the
system property’ either. Scenariec, may prompt a miss-

Returning to the Webmail system, the MTS of Fig. 10 char- INd Precondition for theauthenticateaction: “A user can
acterizes all LTS models that are capable of exhibiting at ©NlY b€ authenticated if he is not already logged in” (for-
least the scenarisc. All other system behaviours are pos- Malized aps = G (X authenticate=- !LoggedIn).

sible. The addition of safety properties would result in the ~ By construction, the result of merging deterministic
removal of some of the possible transitions of the MTS, to MTSs is deterministic, and thus we can apply Theorem 1
capture the fact that such behaviours are not allowed, as w0 build the minimal common refinement af/s,:, and
show in Section 7. M (p4). Furthermore, this reasoning can be used to itera-

. . . tively merge in new MTSs synthesized from elicited sce-
7 Synthesis From Properties and Scenarios narios and properties.

In this section, we discuss how to synthesize behaviour Consider the maybe tracesif, s, +.- M (p4) shown in
models both from safety properties and from scenarios. TheFig. 12. These traces are not included in the Webmail sce-
synthesis process consists of merging together a model synnario specificatiosc and do not violate the system proper-
thesized from safety properties, described in Section®, an ties P or p,. We now hypothesize the decisions that may

Theorem 5 (Characterization of) If o is a scenario spec-
ification andTR(c) = TR(L(0)), thenvM € pu, M (o) <
M if and only if M is consistent witly.

disable

User Server Admin

disable

ﬁu 1 1 1 g disable™_
= E T T E E authenticate logmlt logoutMsg logoutMsg
S R D@ @B
E‘Mg_i E authenticate cnal
| logout j E e >
— Figure 14. Final model for Webmail: ~ Mp +.,
|_authenticate ; | M(py) +er M(ps A ... Apg) +er M(sc).
re : ¢SendMsg : i . .
|_p_’ : pTerr— ments may support behaviour model elaboration and sce-
rqlogousg S nario and requirements elicitation.
! T dsablo | 8 Case Study: the Mine Pump
i i ble
| ;‘—'ena § : In this section, we briefly report on a mine pump case

study to which we applied the synthesis techniques de-
scribed in this paper. In this system, a pump controller is
Figure 13. Extended Webmail scenarios (sc’). used to prevent the water in a mine sump from passing some
threshold and hence flooding the mine. To avoid the risk of
Pxplosion, the pump may only be active when there is no
methane gas presentin the mine. The pump controller mon-
itors the water and methane levels by communicating with
two sensors, and controls the pump in order to guarantee
safety of the pump system.

The case study presents a number of challenges when
compared to the running example used throughout the pa-

. - . e . . Firstly, th i t i ti |
rently disabled”, whilesc; may be identified as a required per. Firstly, the mine pump system requires a timed mode

behavi e th : hould b ble of allowi in order to capture the urgency of actions such as switching
€ avLout:, Lde'” bleds%sfem fh ou ¢ € iﬁpat. € to da O(\jN'ngthe pump off when there is methane present to avoid an ex-
users 1o be disabled belore hey get authenticated and gaify, g, Consequently, properties must make use of an ex-

algcisg to ;hedso)l/s;etm.ﬂ:n th|§ tgase, anew scengpo C,OUId bIElicit tick event, signalling the successive ticks of a global
elcite an/ added to the existing scenario specification — ¢,0\ 14 \which components with timed requirements syn-
yieldingsc’ (Fig. 13)1 - Note that hqvmg an opgratlonal MO~ chronize. Secondly, in the running example the only com-
del allows us to elicit such scenarios .by wglkmg the m_odgl ponent with non-trivial behaviour is the Server; there are
and guarantegs that the new scenarios will sgﬂs'fy eXISft'ngno constraints on the behaviour of the User and the Admin.
safety properties. In our example, the scenario is obtalnedIn contrast, the case study requires eliciting assumptians

from the merged MTS by walking through stats’, 5, 6, the environment such as how the water and methane level
. change. Finally,the initial requirements, described rinfo
On the other hand, scenario; may prompta more com- mgajly above, are sufficiently weak, so a number of signifi-
plex property requiringpgoutMsgo be sent only if the user cant decisions (in terms of the problem domain) need to be
logs out or is disabled while being logged i), whereas made in order to elaborate the synthesized MTS.
scg @ndsciy may prompt missing preconditions for actions e first MTS was synthesized from a formalization of
disable(p;) andauthenticatdps), respectively. the two key safety properties of the mine pump system: pre-
If a new MTS is synthesized from the existing and the vent flooding and prevent an explosion. Subsequently, the
newly elicited propertiespq — ps) and the new scenario resulting MTS was used to validate scenarios and properties
specificationsc’, the resulting MTS has no transitions that and to explore maybe behaviours. Such exploration led to
are possible but notrequired, soitis an LTS. Thus, the givenelicitation of new scenarios and properties and synthdsis o
scenarios and properties cover the complete behaviour ofy more refined MTS. This process continued until the syn-
the system up to the alphabftt,.;. In practice, it may not thesis yielded an implementation —an LTS.
be necessary or even desirable to refine the MTS to a single validation and exploration of the synthesized models
LTS, and instead, certain aspects of behaviour may be leftywas performed by combining three different techniques:
open to decisions further down the development process. spection(however, due to the number of states and tran-
In summary, we have shown how to synthesize modelssitions, this was only practical for small portions of the
from safety properties and scenarios by using the mergeMTS), animation which exploits the executable nature of
operation on MTSs. In addition, we have illustrated how behaviour models, anthodel checkingusing a modified
a merged model that captures both scenarios and requireversion of LTSA (see Section 9). Model checking can be

be made when validating these scenarios with a stakeholde
to illustrate how explicit modeling of possible but not re-
quired behaviour can help elicit requirements and reason
about system behaviour. We omit formalization of proper-
tiesps to ps due to space restrictions.

Scenariosics andscg may elicit a precondition(z) for
actionenable “A user can only be enabled if he was cur-

used for elaboration as follows. When formulas constructedcan be easily generalized to deal with alphabet extensions.
to query the synthesized model evaluate to maybe, they cor-Specifically, our previous study of merge handles different
respond to cases where the property may not hold in all re-alphabets, as reported in [19, 1]; furthermore, we have con-
finements of the MTS. Further, the analysis yields a coun- ducted a version of the mine pump case study that included
terexample — a maybe trace which provides an opportunityalphabet refinement.
for prompting elaboration and can be presented to stake-On Tool Support. We have created prototype implementa-
holders for validation. For instance, a property “The pump tions of the synthesis algorithms and the analyses destribe
is on only if the water is above the high water level mark” in this paper. In particular, we have implemented the MTS
evaluates to maybe in the model synthesized in the first iter-synthesis algorithm which builds on existing LTS imple-
ation of the case study. A counterexample for this property mentations developed for the LTSA tool [15], as well as
highlights the fact that the pump controller may turn the algorithms for checking refinement and computing merge.
pump on even when the mine sump is completely drained.We have also built on the LTSA tool for model-checking:
This counterexample raised a number of questions about then [1], we show that model-checking of 3-valued FLTL
policy for operating the pump, for example: should it only properties on MTSs reduces to two classical FLTL model-
be turned on when the water is high? and once on, should itchecking runs on LTS models and thus can be easily sup-
stay on until the mine has been drained? ported by LTSA. Ongoing work is aimed at building an
Other interesting issues that were raised during the elab-integrated environment for behaviour elaboration based on
oration process were regarding assumptions on the be{MTSs.

haviour of the pump controller environment. For exam- Re|ated Work. A number of approaches to building event-
ple, having modeled discrete water levels, we are faced withpased models from properties exist [11, 21, 16, 8, 13, 14].
making assumptions on how fast the water level can changeror instance, [11] proposed a technique for automatically
Is the sensor fast enough to catch all discrete water legels aransjating a goal-oriented requirements model into a tab-
it rises? For instance, can the sensor fail to detect waterle yjar event-based specification in the form of SCR [6].
els 4, 5, and 6 when the water rises from level 3 to 82 And [21, 16] developed behaviour model synthesis techniques
if the high water mark is at level 5, how would this affect t support animation and validation of property-based-spec
the operation of the pump controller? ifications. In [8], Formal Tropos goal models are translated
In summary, at each iteration, by synthesizing opera- into the event-based specification language Promela for ver
tional models in the form of MTSs, we were able to rea- ification using the SPIN tool. All of these approaches, as
son about and explore behaviour that is between the boundsgyell as [13], buildone of the many possible event-based
of the safety properties and the scenarios elicited up to tha models that satisfy the given properties. We addresses limi
point. This analysis raised relevant issues and led to iden-ations of such approaches in Section 2. An alternative, pre
tifying new requirements which in turn helped produce a sented in [14], requires that the set of properties be strong
more refined deSCfiption of the intended system behaviour. enough to allow for wniqueoperationa| model that satis-
fies them. Our work aims at supporting elaboration so as to
potentially achieve such a strong set of properties.

In this section, we discuss our results and decisions we Operational models have also been built from scenario
have made, comparing our approach to related work. descriptions [20, 10, 9]. These approaches benefit from
On Safety Properties. In this paper, we limit our analy- ~ simple, intuitive notations that are widely used and well-
sis just to safety properties. Instead of handling livenesssuited for developing first approximations of the intended
properties, we assume that if the system is required to dosystem behaviour. The operational nature of scenarios and
something eventually, surely there is a bound on the acceptihe describe-by-example philosophy they embody are both
able time in which this must occur. Thus, it suffices to use an advantage, in terms of ease of use and adoption, and a
bounded operators, such Bs,, which means “eventually disadvantage, in terms of having a generative semantics in
but in less thamg time units”, for capturing requirements via Which all behaviours must be explicitly described, and in
safety properties. This assumption is standard in require-terms of the number of scenarios that may be required to
ments engineering approaches such as [22]. describe complex behaviours. We discussed limitations of
Alphabet Extension. In this paper, we have ignored the Such approaches previously.
issue of alphabet extension, assuming instead that alkprop The work by van Lamsweerde et al. [3] is related to
erties are defined over the same alphalet, In practice, ours in that it also consider scenarios and safety progertie
fixing Act may not be possible, as the process of elaborationas an input to synthesis. A learning algorithm is used to
involves discovery of new relevant actions. Hence, elabora synthesize an LTS model from examples of intended and
tion should support augmenting the universe of known ac- proscribed system behaviour. The algorithm also provides
tions with new ones. The results we presented in this paperfeedback in terms of what-if questions in order to avoid

9 Discussion and Related Work

over-generalization while learning. Safety properties ar

used to prune the number of what-if questions that are pre-

sented to the user. The difference with our work, however,

is that the resulting LTS does not model the safety proper-
ties;
safety properties. Hence, the LTS is a lower bound on the
intended behaviour of the system and as such has the limi-

it is simply constructed from scenarios that satikfy t

tations discussed previously in the paper.

Live Sequence Charts (LSCs) [5] augment sequence

charts with the goal of describing existential and univiersa

behaviour. We consider that there is substantial benefit in [9]

keeping universal and existential behaviour separatean th

form of scenarios and properties. Synthesis approaches tha
produce LSC, e.g., [17], require a more expressive synthe-[

sis target (Blichi automata) but still do not support madeli

and reasoning about possible yet not required system be'[ll]

havior. Extending LSC synthesis to modal-Biichi automata
would address this.

10

In this paper, we have presented an automated techniqud13]

Summary and Future Work

for constructing behavioural models frdmthsafety prop-

erties and scenario-based specifications. We have argued
that classical state machine models such as LTSs are in-

sufficiently expressive to adequately support this prooedu

and presented synthesis algorithms that produce modelsin a
more expressive formalism, namely MTS. We have shown [15]

how synthesis of MTS models supports behaviour model
elaboration in addition to requirements and scenariotalici

tion.
approaches such as goal [2, 22] and scenario-based [18] re-
[

The approach we present integrates well with existing

quirements engineering.

Key to success of the approach presented here is in

providing adequate support for model elaboration, stgrtin

from partial models synthesized from a few scenarios and

properties. To this end, we plan to further develop and im-

plement methodologies and tools for model elaboration, to [19]

further include visualization strategies and support for e

itation and application of domain assumptions and require- [20]
ments. We also intend to conduct larger case studies to con-

tinue to validate our techniques.

References

(1]
(2]

(3]

(4]

G. Brunet. “A Characterization of Merging Partial Be-
havioural Models”. Master’s thesis, Univ. of Toronto, 2006
J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering th
tropos projectinf. Syst, 27(6):365—-389, 2002.

C. Damas, B. Lambeau, and A. van Lamsweerde. “Scenar-
ios, Goals, and State Machines: A Win-Win Partnership for
Model Synthesis”. IfFFoundations on Software Engineering
2006.

D. Giannakopoulou and J. Magee. “Fluent Model Checking
for Event-Based Systems”. BSEC/FSE’'032003.

10

[22] A. van Lamsweerde.

[23] A. van Lamsweerde and E. Letier.

[5] D. Harel and R. MarellyCome, Let's Play: Scenario-Based

Programming Using LSCs and the Play-Engingpringer,
2003.

6] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. “Au-

tomated Consistency Checking of Requirements Specifica-
tions”. ACM TOSEM5(3):231-261, July 1996.

ITU. Recommendation z.120: Message sequence charts.
ITU, 2000.

R. Kazhamiakin, M. Pistore, and M. Roveri. “Formal Veri-
fication of Requirements using SPIN: A Case Study on Web
Services”. INSEFM'04 pages 406—415, 2004.

K. Koskimies and E. Mtkinen. Automatic synthesis of stat
machines from trace diagramSoftware Practice and Expe-
rience 24(7):643—-658, 1994.

I. Kriiger, R. Grosu, P. Scholz, and M. Broy. From mscs to
statecharts. IDistributed and Parallel Embedded Systems
Kluwer Academic Publishers, 1999.

R. D. Landtsheer, E. Letier, and A. van Lamsweerde.
“Deriving Tabular Event-Based Specifications from Goal-
Oriented Requirements Models”. RE’03 2003.

K. Larsen and B. Thomsen. “A Modal Process Logic”. In
LICS'88 pages 203-210, 1988.

E. Letier, J. Kramer, J. Magee, and S. Uchitel. “Deryin
Event-Based Transition Systems from Goal-Oriented Re-
quirements Models”. Technical Report 02/2006, Imperial
College.

E. Letier and A. van Lamsweerde. “Deriving Operational
Software Specifications from System Goals”. ASE’02
pages 119-128, 2002.

J. Magee and J. KrametConcurrency - State Models and
Java Programs” John Wiley, 1999.

C. Ponsard, P. Massonet, A. Rifaut, J. Molderez, A. van
Lamsweerde, and H. T. Van. “Early Verification and Vali-
dation of Mission-Critical Systems”. IRMICS’04, 2004.

17] J. Sun andJ. S. Dong. Design synthesis from interaetioh

state-based specificationdEEE Trans. Soft. Eng.32(6),
2006.

[18] A. G. Sutcliffe, N. A. Maiden, S. Minocha, and D. Manuel.

Supporting scenario-based requirements engineelfigE
TSE 24(12):1072-1088, 1998.

S. Uchitel and M. Chechik. “Merging Partial Behavioura
Models”. INFSE’04 pages 43-52, 2004.

S. Uchitel, J. Kramer, and J. Magee. “Incremental Efabo
tion of Scenario-Based Specifications and Behaviour Mod-
els using Implied ScenariosACM TOSEM13(1), 2004.

H. T. Van, A. van Lamsweerde, P. Massonet, and C. Ponsard
“Goal-Oriented Requirements Animation”. RE'04, pages
218-228, 2004.

“Goal-Oriented Requirments Engi-
neering: From System Objectives to UML Models to Precise
Software Specifications”. IlCSE’03 2003.

“Handling Obstacles
in Goal-Oriented Requirements EngineeringEEE TSE
26(10):978-1005, 2000.

