
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
OPIUM : optimal package install/ uninstall manager

Permalink
https://escholarship.org/uc/item/1k07h5vk

Author
Tucker, Christopher James

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1k07h5vk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

OPIUM: Optimal Package Install/Uninstall Manager

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Christopher James Tucker

Committee in charge:

Professor Sorin Lerner, Chair
Professor William Griswold
Professor Ranjit Jhala

2008

Copyright

Christopher James Tucker, 2008

All rights reserved.

The thesis of Christopher James Tucker is approved, and

it is acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . v

Acknowledgements . vi

Abstract of the Thesis . vii

1 Introduction . 1

2 Overview . 6
2.1 The Install Problem . 9
2.2 The Minimum Install Problem . 10
2.3 The Uninstall Problem . 12

3 Details . 14
3.1 The Install Problem . 16
3.2 The Minimum Install Problem . 18
3.3 The Uninstall Problem . 19

3.3.1 An alternative approach . 22
3.4 Putting it all together: Opium . 23

4 Evaluation . 25
4.1 Runtime . 26
4.2 Completeness . 28
4.3 Minimization . 29

5 Related Work . 31

Bibliography . 33

iv

LIST OF FIGURES

Figure 2.1: Metadata for apache . 7
Figure 2.2: Fragment of Distribution Metadata and Corresponding Con-

straints . 8
Figure 2.3: Distribution Graph . 8
Figure 2.4: Resolution Proof of Contradiction of Distrib(R)∧(xz∧xe)∧xa.

Each leaf is a clause of the formula: the right-most literal is from
a, the package to be installed, the left-most literal is from the pre-
existing (conflicting) package e, the white boxes are clauses from
the distribution constraints. Each internal clause is generated by a
resolution deduction of the form: (A ∨ x) ∧ (¬x ∨B) implies (A ∨B) 12

Figure 3.1: Propositional Distribution Constraints 17

Figure 4.1: Runtime of apt-get vs. Opium 26

v

ACKNOWLEDGEMENTS

My thanks to my wife, Karla, who coerced me into finally completing this

thesis. I owe a debt to Sorin Lerner and Ranjit Jhala, whose guidance, assistance,

and diligence have shown me just how much I have yet to learn, and without whom

neither this thesis nor its companion paper could have come into being. Similarly,

I must thank David Shuffelton for his tireless work on the Opium paper, dealing

with the horrendous practicalities of evaluating Opium, and for knowing far more

about Debian than any man should ever have to know. Finally, thanks to the

many people involved with the FWGrid project, and to the people at Linspire who

graciously allowed us to use their data in our evaluation.

vi

ABSTRACT OF THE THESIS

OPIUM: Optimal Package Install/Uninstall Manager

by

Christopher James Tucker

Master of Science in Computer Science

University of California San Diego, 2008

Professor Sorin Lerner, Chair

Linux distributions often include package management tools such as apt-get

in Debian or yum in RedHat. Using information about package dependencies and

conflicts, such tools can determine how to install a new package (and its depen-

dencies) on a system of already installed packages. Using off-the-shelf SAT solvers,

pseudo-boolean solvers, and Integer Linear Programming solvers, we have devel-

oped a new package-management tool, called Opium, that improves on current

tools in two ways: (1) Opium is complete, in that if there is a solution, Opium

is guaranteed to find it, and (2) Opium can optimize a user-provided objective

function, which could for example state that smaller packages should be preferred

over larger ones. We performed a comparative study of our tool against Debian’s

apt-get on 600 traces of real-world package installations. We show that Opium

runs fast enough to be usable, and that its completeness and optimality guarantees

provide concrete benefits to end users.

vii

1

Introduction

Dynamic software linking is pervasive, ranging from dynamic linking of

libraries at runtime to inter-process invocation. Dynamic linking has numerous

benefits, including saving memory both on disk and in RAM (since one copy of

a library/package can be shared across many different applications), and allowing

installed applications to easily benefit from updated libraries/packages. With these

benefits, however, comes a configuration management problem that is difficult to

solve. Libraries and software packages have dependencies that must be satisfied,

and conflicts that must be avoided. Otherwise the entire system, not just a single

application, may become unstable.

In the context of Windows, this configuration management problem has

led to what is called “DLL hell”: an application is installed with a variety of

dynamically linked libraries, some of which override older versions of those libraries.

Previously installed applications then break, because they were not meant to work

with the new libraries. Users must typically intervene manually in order to bring

the system back to a stable state.

In the context of Linux- and Unix-based systems, a variety of automated

tools have been developed to address this configuration management problem, for

example apt-get [14] on Debian, yum [4] on RedHat, and fink [1] on Mac OS.

Using information about package dependencies and conflicts, such tools can de-

1

2

termine how to install a new package along with all its dependencies on a system

of already installed packages. However, the complexity of the dependencies and

conflicts mean that such tools typically use heuristics and are therefore incom-

plete, in that even if a package is installable the tool may fail to find a solution.

Furthermore, if there are multiple ways of installing a given package then current

tools will arbitrarily pick between them without taking any user preferences into

account. Such preferences could, for example, include selecting smaller packages if

the user has limited download bandwidth, or newer packages if the user wants the

newest possible system.

Our goal in this work is to develop a uniform and complete solution to the

configuration management problem that arises from having various inter-depending

packages installed on the same system. In particular, using off-the-shelf SAT

solvers, pseudo-boolean solvers, and Integer Linear Programming solvers we have

designed a tool called Opium that solves the configuration management problem,

and addresses the above limitations of existing package installers: it is complete (in

that if there is a solution, it will find it) and it also allows one to optimize a given

objective function. In addressing these limitations, Opium provides the following

benefits:

• It improves on the reliability of apt-get. Our measurements on 600 traces of

real-world install attempts suggest that about 23.3% of Debian users will be

affected by apt-get’s incompleteness at some point in the lifetime of their sys-

tem. This is especially concerning for companies like Linspire (where two of the

authors worked) and distributions like Ubuntu, which are trying to make Linux

usable by non-experts who don’t have the sophistication to manually install

packages if apt-get fails. The Opium tool entirely removes these incomplete-

ness failures.

• Opium allows users to state their preferences through an objective function,

and guarantees that this objective function will be minimized. This can in

turn have real economic impact for Linux distributors. For example, Linspire

3

provides a Linux distribution that is a low-cost alternative to platforms like

Microsoft’s Windows and Apple’s OS X. Their Linux distribution is therefore

popular in many environments where bandwidth is at a premium (and even

charged for per-byte). In order to provide the best experience at the lowest

cost for the end user it is important that bandwidth not be wasted. In this

context, minimizing the size of packages delivered has the potential to offer a

real economic benefit while simultaneously reducing wait times for users. In

our measurements, for example, we found a real-world install attempt where

apt-get’s solution requires downloading 129MB more than Opium’s optimal

solution.

• There are cases where some packages need to be removed from the system

before a new package is installed. Because Opium minimizes the number of

packages being removed it can find solutions that remove far fewer packages

than existing package managers. In our experiments, we discovered a real user

trace where an install attempt for OCaml using apt-get caused 61 packages

to be removed, including the Linux kernel. This poor user would not be able

to reboot their machine after installing OCaml. Because Opium minimizes the

number of packages being removed it was able to find a solution that removed

only 22 packages, none of which were the kernel.

• By providing a completeness guarantee, Opium allows Linux providers like Lin-

spire to make quality of service claims regarding the predictability of user sys-

tems. In particular, if Linspire uses a tool like debcheck [10] to check the con-

sistency of a given distribution (which essentially involves making sure that all

packages in the distribution are installable), then they can provide the guaran-

tee that all install attempts using Opium from that distribution will succeed on

any user system.

Concretely, in this paper we investigate three problems in the context of

package management. In particular, given a set of installed packages, and infor-

mation about package dependencies and conflicts, the three problems are:

4

Install Problem : Determine if a new package can be installed and, if so, deter-

mine how.

Minimum Install Problem : Determine the optimal way to install a new pack-

age, where optimality is determined by an objective function whose value is

to be minimized.

Uninstall Problem : Given a new package to install, determine the minimal

number of packages (possibly none) that must be removed from the system

in order to make the package installable.

The main contribution of this paper is a solution to the above three prob-

lems. We solve the Install Problem by running a SAT solver on a propositional

encoding of the distribution (Section 3.1). This encoding is similar to, but inde-

pendently developed from, the one presented in a forthcoming paper [10]. Fur-

ther, we show how the SAT problem can be extended with an objective function,

thus becoming a so-called pseudo-boolean problem that solves the Minimum Install

Problem (Section 3.2). We also show how a well-known translation can be used to

generate an Integer Linear Programming (ILP) problem from the pseudo-boolean

problem [8]. Highly tuned solvers exist for both pseudo-boolean problems and ILP

problems. Finally, we show how a SAT solver that produces a proof of unsat-

isfiability can be used to solve the Uninstall Problem (Section 3.3). Intuitively,

if a package is not installable, then from the proof of unsatisfiability of the SAT

problem we can determine what packages caused the conflicts and therefore need

to be removed.

We have implemented all of the above techniques in a tool called Opium

(Optimal Package Install/Uninstall Manager) for installing packages on the Debian

system. Opium uses Pueblo [13] for the pseudo-boolean solver, the GNU Linear

Programming Kit (GLPK) [3] for the ILP solver, and the foci [11] theorem prover

for producing unsatisfiability proofs. To evaluate the practicality and benefits of

our algorithms we perform a comparative study of Opium versus Debian’s installer,

apt-get, using 600 traces of real world installations (Section 4). Gathering infor-

5

mation about the runtime and results of apt-get versus various configurations of

Opium, we quantify the benefits that Opium’s completeness and optimality provide,

as well as show that it runs well within the limits of usability.

2

Overview

We begin with an overview of the install and uninstall problems and our

solutions. A typical Linux distribution comprises a set of packages, each of which

has a name and a version, distributed either on disk or stored in online repositories.

Each user has a subset of these packages installed on his machine. Many pack-

ages depend on other packages for some functionality. For example, the apache

webserver may require the system to also have a perl interpreter. Thus, each dis-

tribution contains a metadata file that describes the requirements of each package

of the distribution. For example, metadata for the apache package in the Debian

distribution sid is shown in Figure 2.1.

The metadata contains details like the name, version, size, a description

of the functionality provided by the package, etc. More importantly, it contains

depends and conflicts clauses that stipulate which other packages should be on the

system. The depends clauses stipulate which other packages must be present. Thus,

in order to install apache, several other packages including perl, libc6, libdb

and apache-common must be installed. Sometimes, a package requires any of a set

of packages to be installed, possibly because each package in the set provides the

required functionality. For example, the third depends clause is a disjunction that

6

7

Package: apache

Architecture: i386

Version: 1.3.34-2

Provides: httpd-cgi, httpd

Depends: libc6(>=2.3.5-1), libdb4.3(>=4.3.28-1),

debconf(>=0.5) | debconf-2.0, apache-common(>=1.3.34-2),

perl(>=5.8.4-2)

Conflicts: apache-modules, jserv(<=1.1-3), libapache-mod-perl

Description: HTTP server.

Figure 2.1: Metadata for apache

stipulates that either debconf (with a version greater than 0.5) or debconf-2.0

must be present. The conflicts clauses stipulate which other packages must not be

present. Thus, the apache package should only be installed on a system that does

not also have the apache-modules package, any instance of the jserv package with

version less then 1.1.3 and so on. Thus, to install apache, the package manager

must find out which other packages must be installed such that ultimately the

system contains a set of packages that meet all the requirements specified in the

distribution metadata file.

We now illustrate our approach using a small distribution with the 9 pack-

ages a, b, c, d, e, f, g, y, and z. A distilled version of the metadata rules for

this distribution is shown on the left in Figure 2.2. In order for the package a to

be installed on the system, packages b, c and z must also be installed, while for

package c to be installed, one of d, e must be installed and one of f, g must be

installed. The conflicts clause for d says that e must not be present on the same

system as d.

Figure 2.3 shows a graph representation of the depends and conflicts clauses.

Each package is shown in a square vertex, and there are directed edges to the other

packages that must also be present. Whenever there is a disjunction in the depends,

we represent it with a circle vertex which has directed edges to each package in the

disjunction. Finally, there is a dotted edge between pairs of conflicting packages.

8

Distribution Rules Constraints
Package: a

Depends: b, (¬xa ∨ xb)
c, (¬xa ∨ xc)
z (¬xa ∨ xz)

Package: b

Depends: d (¬xb ∨ xd)

Package: c

Depends: d | e, (¬xc ∨ xd ∨ xe)
f | g (¬xc ∨ xf ∨ xg)

Package: d

Conflicts: e (¬xd ∨ ¬xe)

Figure 2.2: Fragment of Distribution Metadata and Corresponding Constraints

Figure 2.3: Distribution Graph

9

Installation Profiles. We call the set of packages installed on a machine the

installation profile of that machine. A valid installation profile is one which meets

all the depends and conflicts clauses of all the packages. Thus, the profiles {}, {y, z}
and {a, b, c, d, f, z} are all valid installation profiles, as each package’s depends and

conflict clauses are satisfied. On the other hand, {a, b, c, d, z} is not a valid profile,

as c requires one of f or g to be present, but both are absent from the profile.

Similarly, the profile {a, b, c, d, e, f, z} is not a valid profile as it contains both d

and the conflicting package e.

2.1 The Install Problem

Consider a user with the installation profile {z} who wishes to install the

package a. The install problem is to determine whether there is some set of new

packages including a that can be added to the machine, such that the resulting set

of packages is a valid installation profile.

A tool like apt-get proceeds by traversing the dependency graph and build-

ing up the set of other packages that must be installed before a. To be efficient

it restricts the number of backtracks performed due to conflicts and thus loses

completeness, in the sense that apt-get may incorrectly report that there is no

suitable set of new packages even though one exists.

Encoding Distributions as Constraints. Our approach to the problem is to

encode it as a system of propositional constraints over variables representing the

packages of the distribution. We create propositional variables for each package

of the distribution and then create propositional constraints over the variables for

each rule in the distribution. Every satisfying assignment to the constraints is such

that the variables that are assigned True form a valid installation profile for the

distribution.

We create a variable xp for each package p in the distribution. Next, we

create constraints for each clause of the distribution, including those for currently

10

installed packages. For instance, the first depends clause for a is encoded as (¬xa∨
xb) which stipulates that either xa is False, i.e., a is not in the profile or, if it is,

then xb is True, i.e., b is in the profile. The first disjunctive depends clause for

c is translated to: (¬xc ∨ xd ∨ xe) which ensures that either xc is False, i.e., c is

not in the profile or, if it is, then one of xd or xe must be True, i.e., one of the

packages d or e must also be in the profile. The conflicts clause for d is translated

to: (¬xd ∨ ¬xe) which ensures that both xd and xe are not True, i.e., that both

are not in the profile. In Figure 2.2, each row has a distribution rule in the left

column and its propositional encoding in the right column.

SAT-based Installation Checking. To determine whether there is some set of

new packages including a that the user can install that results in a valid installa-

tion profile, we use a SAT solver to find a satisfying assignment to the following

install formula: (Distrib(R)∧xz∧xa) where Distrib(R) is the conjunction of all the

constraints generated by the distribution (the right column in Figure 2.2). The

formula, then, is the conjunction of Distrib(R) with the literals corresponding to

the currently installed packages and the package to be installed.

For every satisfying assignment to the above formula, the set of packages

corresponding to variables assigned True is a set of packages including a that is

a valid installation profile. It is easy to check that the assignment xa = xb = xc =

xz = xd = xf = True satisfies the formula, and from it we obtain a set of new

packages including a that the user can download and safely install.

2.2 The Minimum Install Problem

In our example, there are actually four distinct satisfying assignments for

the formula and thus four ways to safely install a, corresponding to the sets:

{a, b, c, z, d, f}, {a, b, c, z, d, g}, {a, b, c, z, d, f, y}, and {a, b, c, z, d, g, y}. In gen-

eral the SAT solver will return any one of exponentially many satisfying assign-

ments for the formula, many of which will include irrelevant packages (such as y

11

in the example above). In the example, we may install g instead of f as either

one satisfies the depends clause for c. There are many situations in which we

would like to bias the package manager towards a particular choice – for example,

towards the fewest number of new packages or the packages with the smallest total

size. The minimum install problem is to find, given a cost for each package of the

distribution, the set of new packages that must be installed with the smallest total

cost.

The incompleteness of previous techniques makes it impossible to exhaus-

tively search the solution space to find the set of packages with the minimum total

cost. We extend our technique to the minimizing problem, by using pseudo-boolean

(or equivalently, integer linear) constraints to encode the problem, and then using

an appropriate solver to find the best solution.

Suppose that packages f and g have sizes of 5MB and 2MB respectively

and all the other packages have size 1MB. Consider a user with the profile {z}
who wishes to download the fewest total number of bytes required to install the

package a. To find the set of packages that the user should install, we generate

and solve the pseudo-boolean constraint:

min xa + xb + xc + xd + xe + 5xf + 2xg + xy + 0xz

s. t. Distrib(R) ∧ xz ∧ xa

which specifies the satisfying assignment to the install formula, with the minimum

total sizes (where we interpret True as 1 and False as 0). It is easy to check that

the minimum assignment is the one that assigns True to all variables except e, f

and y, thereby resulting in the installation of all the other packages.

We can similarly perform a maximization by converting the problem of

maximization to one of minimization. For example, we might measure the popu-

larity of a package by the number of times it has been installed by an end user:

thus, our least popular packages may have a weight of zero (they have never been

installed), while our most popular packages may have weights well into the hun-

dreds or even thousands. We produce a minimization problem by minimizing the

12

Figure 2.4: Resolution Proof of Contradiction of Distrib(R) ∧ (xz ∧ xe) ∧ xa. Each
leaf is a clause of the formula: the right-most literal is from a, the package to be
installed, the left-most literal is from the pre-existing (conflicting) package e, the
white boxes are clauses from the distribution constraints. Each internal clause is
generated by a resolution deduction of the form: (A∨x)∧(¬x∨B) implies (A∨B)

sum of the reciprocals of the weights.

Reusing our example from before, if we see that packages f and g have been

installed 3 and 9 times respectively and all other packages have been installed once

we will attempt to optimize the pseudo-boolean constraint:

max xa + xb + xc + xd + xe + 3xf + 9xg + xy + 0xz

s. t. Distrib(R) ∧ xz ∧ xa

To submit this to a solver it is necessary to convert it to the equivalent minimization

problem:

min xa + xb + xc + xd + xe +
1

3
xf +

1

9
xg + xy + 0xz

s. t. Distrib(R) ∧ xz ∧ xa

As the solver only accepts integral coefficients we must scale these fractions; we

do so by simply multiplying by the largest denominator and rounding. If more

accuracy is desired alternate scaling approaches may be used.

2.3 The Uninstall Problem

Suppose that another user with the installation profile {z, e} wishes to

install the package a. To do so, we must install b, and therefore d. Unfortunately,

13

d is in conflict with a package e that is already installed. So, to install a we must

first uninstall the previously installed package e that transitively conflicts with

a. The uninstall problem is to find the set of packages currently installed on the

system that must be removed in order to install some new package.

Using our technique, to determine if a could be installed we would query a

SAT solver with the install formula: (Distrib(R) ∧ xz ∧ xe ∧ xa) The solver would

report that the install formula was unsatisfiable, and would in addition return a

resolution proof tree, such as that in Figure 2.4, which explained why the formula

implied a contradiction and thus had no satisfying assignment.

The leaves of the proof tree correspond to clauses from the install formula.

The leaf clauses that are the single variables obtained from previously installed

packages yield the transitively conflicting packages that must be removed from

the system to install the new package. Thus, in our example, the only leaf in the

proof tree corresponding to a previously installed package is the xe which reveals

that e must be removed in order to install a. As with installation, there may be

multiple sets of transitively conflicting packages, and so we show how to extend

our technique to find the set that minimizes a given cost function.

3

Details

This section describes the details of our technique for solving package man-

agement problems using SAT solvers, pseudo-boolean solvers and ILP solvers.

After first formalizing distributions and valid installation profiles, we for-

malize and present solutions to the three package management problems: the

Install Problem (Section 3.1), the Minimum Install Problem (Section 3.2), and the

Uninstall Problem (Section 3.3). Finally, we show how our solutions are combined

in the tool Opium (Section 3.4).

Distributions A distribution R is a finite set of package rules, where each package

rule is a tuple of the form (p,D ,C), where p is a package and:

• D is a set of dependency clauses for p that stipulate which packages must be

present in order to install the package p. Each dependency clause is a disjunction

of packages p1 | . . . | pk. Intuitively, a dependency clause stipulates that some

package from the set p1, . . . , pk must be present in order for the package p to

work properly.

• C is a set of conflict clauses for p that stipulate which packages must not be

present on the same system as p. Each conflict clause is a package p ′ whose

presence on the same system as p will cause problems.

For example, we formalize the distribution from Chapter 2 as the set of rules:

(a, {b, c, z}, ∅), (b, {d}, ∅), (c, {d | e, f | g}, ∅)

14

15

(d, ∅, {e}), (e, ∅, {d}), (f, ∅, ∅), (g, ∅, ∅), (y, {z}, ∅), (z, ∅, ∅).

Valid Installation Profiles

An installation profile for a distribution is a subset of the packages of the dis-

tribution, which could, for example, be the set of packages from the distribution

installed on a particular machine. To ensure the proper functioning of the machine

we require the installation profile of the machine to be valid, meaning that it meets

the requirements of each package in the profile.

To formalize this notion of validity we start by defining when dependency

clauses and conflict clauses are satisfied. An installation profile satisfies a depen-

dency clause p1 | . . . | pk for p iff either p is not present in the profile or some

package in the set {p1, . . . , pk} is present in the profile. An installation profile

satisfies a conflict clause p ′ for p iff either p is not present in the profile, or p ′ is

not present in the profile. A valid installation profile for a distribution is one that

satisfies the dependency and conflict clauses of each package rule of the distribu-

tion.

Readers familiar with Debian may note that we have simplified the defini-

tion of a distribution in several ways. First, our distributions contain both the rules

from a central repository, and the actual packages installed on the user’s machine.

Second, packages in an actual Debian distribution have version numbers, which

can be referred to by depends and conflicts clauses. We assume for simplicity that

the clauses have been expanded to include all the versions of a particular package

that are included in a distribution. Third, the Debian metadata may also contain

provides clauses, which can be expanded in a way similar to version numbers. We

make these simplifications for brevity – our implementation in Opium handles all

these features.

16

3.1 The Install Problem

We now turn our attention to the problem of determining whether (and

how) a new package can be installed on a machine upon which some set of packages

is already installed. This problem is formalized as follows:

Problem 1 (Install Problem) Given a distribution R, an installation profile

P, and a new package p, does there exist a set of packages P ′ containing p such

that P ∪ P ′ is a valid installation profile for R.

If such a P ′ exists, we say that p can be installed on P – by adding the

packages in P ′ we get a valid installation profile containing the new package p. If

instead no such P ′ exists then it is impossible to safely install p on the machine

already containing P .

Recall that our algorithm for solving the install problem is to reduce it to

a system of propositional constraints whose satisfying assignments correspond di-

rectly to valid installation profiles. We introduce one boolean variable xp for each

package p to represent the presence of p. Truth assignments for the variables then

correspond to installation profiles: xp is assigned True iff p is in the corresponding

installation profile. Once the problem has been converted to a system of propo-

sitional constraints we use a SAT solver to determine whether the constraints are

satisfiable – if so, we can directly extract the P ′ from the assignment returned by

the solver. If not, we conclude that the installation is not possible.

The first step in our algorithm is to generate the propositional constraints

for a distribution R. Our procedure for doing so is shown in Figure 3.1. Given a

distribution R, Distrib(R) returns a boolean formula corresponding to valid instal-

lation profiles for R, where:

• Rule(p,D ,C) returns a boolean formula corresponding to installation profiles

that satisfy the package rule (p,D ,C). The first and second conjuncts respec-

tively ensure that each of the dependency and conflict rules are satisfied by the

installation profile.

17

Distrib(R) ≡
∧

r∈R Rule(r)

Rule(p,D ,C) ≡
∧

d∈D Depend(p, d) ∧∧
c∈C Conflict(p, c)

Depend(p, p1 | . . . | pk) ≡ ¬xp ∨
∨

i=1...k pi

Conflict(p, p ′) ≡ ¬xp ∨ ¬p ′

Figure 3.1: Propositional Distribution Constraints

Algorithm 1 Install(R,P , p)

f := Distrib(R) ∧
∧

p′∈P xp′ ∧ xp

match SatSolve(f) with

| UNSAT −→ return Impossible

| SAT (A) −→ return {p ′ | A(xp′) = True} − P

• Depend(p, p1 | . . . | pk) returns a boolean formula that ensures that if the

package p is in the profile, then some package from the set p1, . . . , pk is also in

the profile.

• Conflict(p, p ′) returns a boolean formula that ensures that either p or p ′ is not

in the profile.

Our algorithm Install for solving the Install Problem is shown in Algorithm 1.

Making use of the above Distrib procedure, it creates a boolean formula capturing

valid installation profiles including packages P and p, and then invokes a SAT

solver to find a satisfying assignment. If a satisfying assignment A mapping boolean

variables to truth values is found, we return the set of packages whose variables

are assigned to True (minus those packages in P). Otherwise, we conclude that

it is not possible to safely install the package p.

18

3.2 The Minimum Install Problem

Owing to the disjunctions in the dependency rules there are often many

ways to install a new package. In these situations we would like a way to select

the “best” possible installation path. One may for example want to find the

installation path in which the fewest number of new packages are added or, if the

user is connected via a low-bandwidth link, one may want to find the installation

path with the least number of downloaded bytes. We generalize these problems as

follows:

Problem 2 (Minimum Install Problem) Given a distribution R, an instal-

lation profile P, a new package p, and a cost function Cost mapping packages to

an integer cost, find a set of packages P ′ containing p with a minimum value of∑
p′∈P ′ Cost(p ′), such that P ∪ P ′ is a valid installation profile for R.

The cost function above encodes the requirements for the “best” install.

Once we find the P ′ with the minimum cost, the user can install the additional

packages in P ′, and thereby obtain a valid installation profile containing the new

package p.

Our technique of reducing the installation problem to propositional con-

straints extends to the Minimum Install Problem. In addition to the propositional

constraints, we create a pseudo-boolean constraint representing the linear cost

function and employ a pseudo-boolean solver to find a minimizing assignment.

A pseudo-boolean constraint is a pair (
∑

x∈X cx · x, f) where X is a set of

propositional variables, each cx is an integer, and f is a propositional formula over

X. The cost of a truth assignment A for the variables X is
∑
{cx | A(x) = True}.

A minimum cost satisfying assignment to a pseudo-boolean constraint is an assign-

ment A that satisfies f , whose cost is less than or equal to the cost of every other

satisfying assignment of f .

Our algorithm MinInstall for solving the Minimum Install Problem is shown

in Algorithm 2. Using the cost measure it creates a pseudo-boolean constraint

19

Algorithm 2 MinInstall(R,P , p,Cost)

c :=
∑

Cost(p ′) · xp′

f := Distrib(R) ∧
∧

p′∈P xp′ ∧ xp

match MinPBSolve(c, f) with

| UNSAT −→ return Impossible

| SAT (A) −→ return {p ′ | A(xp′) = True} − P

capturing valid installation profiles including P and p, and then invokes a pseudo-

boolean solver to find a minimum cost satisfying assignment. If one exists it is

returned by the solver, and from it we extract and return the minimum cost valid

installation profile containing P and p. If no such assignment exists we conclude

that it is not possible to safely install p.

An alternative approach to solving the Minimum Install Problem is to re-

duce the pseudo-boolean constraints into an ILP problem using a standard trans-

lation [8]. One can then use an off-the-shelf ILP solver to find the minimum P ′.

3.3 The Uninstall Problem

In many configurations a new package cannot be installed because of con-

flicting dependencies with other packages already installed on the system. In this

case, we must first uninstall the packages prohibiting the installation before at-

tempting to install the new package. We would like to find the optimal set of

packages that must be removed in order to make the new package installable.

Problem 3 (Uninstall Problem) Given a distribution R, an installation pro-

file P, a new package p, and a cost function Cost, find a set of packages P ′ with

a minimum value of
∑

p∈P ′ Cost(p), such that p can be installed on P − P ′.

Once a minimum P ′ is found we can remove the packages in P ′ and obtain

an installation profile on which p can be installed. We can then apply the algorithm

20

Algorithm 3 UnInstall(R,P , p,Cost)

P0 := P

f := Distrib(R)

X ′ := ∅
repeat

X := {xp} ∪ {xp′ | p ′ ∈ P}
X ′ := ConflictSatSolve(X, f)

P := P − {xp′ | xp′ ∈ X ′}
until X ′ = ∅
Pc := P0 − P

Cost ′(p) := if p ∈ Pc then − Cost(p) else 0

P ′ := MinInstall(R,P , p,Cost ′)

return Pc − P ′

MinInstall to determine the best way to install the new package p on the system.

There are several candidate cost functions for the uninstall problem. By

assigning all installed packages a constant non-zero cost we can ensure that the

least number of installed packages is removed. Another function could assign higher

costs to more important or more popular packages, thereby ensuring that these

packages do not get uninstalled unnecessarily.

To solve the Uninstall Problem, we use an enhanced SAT solver that tells

us which of the currently installed packages in P are prohibiting the installation

of p. This enhanced SAT solver computes an overapproximation of the packages

that must be removed. We then use the previously described MinInstall procedure

to prune the overapproximation to obtain a minimal uninstall set P ′.

The enhanced SAT solver we make use of is implemented by a procedure

called ConflictSatSolve. Given a set X of propositional variables and a propositional

formula f , the procedure ConflictSatSolve(X, f) returns the empty set ∅ if the

formula
∧

x∈X x ∧ f is satisfiable, and otherwise returns a minimal set X ′ ⊆ X

such that
∧

x∈X′ x ∧ f is also unsatisfiable. The ConflictSatSolve procedure can be

21

implemented using well-known algorithms. In particular, one can easily extend

any DPLL-based SAT solver to produce resolution proofs of unsatisfiability [7, 17].

The set X ′ can then be computed from the resolution proof, by collecting the set

of leaves in the proof tree that correspond to literals in X. In our setting, the

literals correspond to packages – the set X will be the set of installed packages

together with the new package p that is to be installed. In this context, the set

X ′ returned by ConflictSatSolve will be the transitive conflict packages prohibiting

the installation of p.

Our algorithm UnInstall for solving the Uninstall Problem is shown in Algo-

rithm 3. First, we save the currently installed packages in P0. Second, we call the

ConflictSatSolve procedure with the constraints generated by the current packages

P and the distribution. If the constraints are not satisfiable, we remove the tran-

sitive conflict packages from the current set P , and repeat until all constraints are

satisfiable (there are no transitive conflict packages), i.e., until p can be installed

with the remaining packages. At this point, all potentially transitively conflicting

packages have been removed from P , and the over-approximated set of conflict

packages is Pc = P0 − P . Third, we call MinInstall starting with the installation

profile P to determine what packages can be “added back” to P (and therefore

were not absolutely necessary to remove). For this step we use a modified cost

function where the transitive conflict packages Pc have the negation of their orig-

inal cost and all other packages have cost 0. The negation causes MinInstall to in

fact maximize the transitive conflict packages that are added back to P . Thus, the

transitive conflict packages not added back by MinInstall are the minimum set of

packages that must be removed.

Another way to approach the uninstall problem is to avoid the loop in

Algorithm 3 by setting Pc to the set of all packages in P0, and then running

MinInstall. However, we choose to use ConflictSatSolve to find the transitively

conflicting packages for two reasons. First, the set is typically quite small, and so

the optimizing problem sent to MinInstall is relatively simple, which may improve

solve time. Second, with our current formulation it is easy to make the algorithm

22

Algorithm 4 UnInstallPB(R,P , p,Cost)

Pc := P

f := Distrib(R)

Cost ′(p) := if p ∈ Pc then − Cost(p) else 0

P ′ := MinInstall(R,P , p,Cost ′)

return Pc − P ′

interactive, where at each iteration of the loop the user can be asked which of the

transitively conflicting packages in X ′ she would like to be removed. We can then

remove only those packages from P in the next line. This approach, which we

leave for future work, allows the user more control over which packages should be

removed, and has the flexibility of not requiring that a suitable cost function be

designed a priori.

3.3.1 An alternative approach

The approach described briefly above, where we set Pc to the set of all

packages in P0, was not used in the formal testing of the system (described later

in Section 4). It does, however, warrant some further discussion as its similarity

to the MinInstall procedure makes it both an elegant alternative and one that will

exhibit common performance properties with that procedure.

We can view this approach as taking the most pessimistic view of the quality

of the overapproximation delivered by ConflictSatSolve possible: in the worst case,

ConflictSatSolve may find that the best it can do is suggest that all packages be

removed. At this point we use the MinInstall procedure to find the precise minimal

set. Eliminating ConflictSatSolve entirely makes this pessimistic view the standard

behavior. Algorithm 4 presents this approach.

23

3.4 Putting it all together: Opium

Algorithm 5 shows how we combine the above algorithms in our Opium

tool, which takes as input a distribution R, an installation profile P , an install

cost function Cost I , an uninstall cost function CostU , and a new package p that

the user wishes to install, and updates the user’s system so that it has a valid

installation profile containing p.

First, we slice the distribution rules with respect to the given installation

profile and the package to be installed. Intuitively, the slicing procedure returns

the subset of the input distribution rules that are relevant to the input packages.

This procedure includes the rules of the input packages and transitively includes

the rules of the packages the input package depends on or conflicts with. For

example, slicing the distribution shown in Figure 2.3 with respect to the package

a, yields the package rules for all the packages except y. Without slicing, the times

taken by Opium are about 15 times greater, taking several minutes to solve one

problem, rather than several seconds.

Then, we call MinInstall to determine whether (without removing any ex-

isting packages) the new package can be installed. If there are no conflicts, i.e.

MinInstall returns a set of new packages with the minimum install cost, we download

and install the new packages and return. If instead MinInstall returns Impossible,

then we call UnInstall to find the set of packages with the minimum uninstall cost,

which are then removed from the system. Finally, we call MinInstall again. This

time it is guaranteed to find a set of new packages including p, which we download

and install on the system. A simpler algorithm is to first call UnInstall as it will

return the empty set if there are no conflicts. We choose to optimistically call

MinInstall first as the majority of install attempts do not require uninstalls.

24

Algorithm 5 Opium(R,P ,Cost I ,CostU , p)

R := Slice(R,P ∪ {p})
P ′ := MinInstall(R,P , p,Cost I)

if P ′ 6= Impossible then

Install the packages P ′

else

Uninstall the packages UnInstall(R,P , p,CostU)

Install the packages MinInstall(R,P , p,Cost I)

end if

4

Evaluation

To evaluate the practicality of our algorithms we perform a comparative

study of Opium versus Debian’s package installer, apt-get. The goal of this study

was to quantify three measures: the running time of Opium versus apt-get, the

amount of benefit provided by the completeness of Opium, and the amount of

benefit provided by the minimization capabilities of Opium.

To perform our evaluation we took 600 traces of real world installation

attempts collected by the servers at Linspire, Inc. Each one of the 600 traces

corresponds to a particular end user performing a series of installation attempts.

Each installation attempt is a request to install a given package, which may in

turn install/remove a variety of depending/conflicting packages. The traces were

selected randomly from all available traces where the total number of installation

attempts fell within two standard deviations of the mean. The 600 traces corre-

spond to a total of 52,668 installation attempts, which amounts to an average of

about 87 installation attempts per user.

We ran each installation attempt 5 different ways. First, we used Debian’s

apt-get, which was the baseline for our comparison. Then we ran each instal-

lation attempt using Opium in four different configurations, varying the back-end

(either a pseudo-boolean solver or an ILP solver), and the objective function (ei-

ther minimize download size or maximize the popularity of installed packages).

25

26

















       

        

       








Figure 4.1: Runtime of apt-get vs. Opium

These experiments took about 24 hours to run using 100 nodes of the FWGrid

cluster [2].

4.1 Runtime

Figure 4.1 shows the runtime of Opium normalized to the runtime of apt-get.

To get a sense of the scale, the average runtime of apt-get was 3.14 seconds, and

this shows up as a bar of height 1 in Figure 4.1. The rightmost eight bars of

Figure 4.1 show the runtimes for Opium. The labels for these bars use the follow-

ing abbreviations: (1) NC: no conflicts occurred versus C : conflicts occurred, (2)

ILP: ILP solver was used versus PB: pseudo-boolean solver was used, (3) Pop:

27

the objective function maximized popularity versus Size: the objective function

minimized total download size.

Each bar shows inside of it the various contributors to the runtime: (1)

Distribution read : time to read the distribution from disk into memory, (2) Slicing :

time to perform the slicing optimization described in Section 3.4, (3) Initial solve:

time to perform the first call to MinInstall in the Opium algorithm from Section 3.4,

(4) IO : time to write the pseudo-boolean or ILP problems to disk for the solvers

to read, and time to read the results back from the solvers, (5) Conflict resolution:

time to perform conflict resolution, which is the call to UnInstall in the Opium

algorithm, (6) Second solve: time to run the second call to MinInstall in the Opium

algorithm.

There are several important points to note in Figure 4.1:

• In the cases where there is no conflict resolution, which account for 84.3%

of the install attempts, Opium is about 3.5 times slower than apt-get. In the

remaining cases Opium is about 6 times slower than apt-get. Although this may

seem high, when taking into account the total time to run the installer and to

download the required packages, Opium is on average 34.0% slower than apt-get

assuming a 300kBps cable modem connection, 11.2% slower on a 100kBps DSL

line, and 0.2% faster on a 10kBps dial-up modem (Opium is able to run faster

on a modem because it optimizes for number of bytes downloaded, and so it

downloads less bytes than apt-get).

• The dominant components of the Opium runtime are reading the distribution,

performing the slicing optimization, and performing conflict resolution. The

actual time to run Pueblo or GLPK accounts for only a very small proportion

of the total runtime of Opium.

• The Pueblo solver runs about twice as fast as the GLPK solver, and it even

runs slightly faster than the apt-get backtracking solving algorithm.

• The runtimes of install attempts that optimize size are very similar to the run-

times for attempts that optimize popularity, which is an indicator that runtimes

28

are unlikely to depend significantly on the objective function.

There are further opportunities for optimizing the performance of Opium

that we have not yet explored. One of them is the time it takes to read a distribu-

tion. Because our parser implementation in Opium is naive, Opium takes about 3

times longer than apt-get to read and load a distribution in memory, something

that can be fixed with further tuning. Further, the ConflictSatSolve operation

is currently implemented in a separate theorem prover, which incurs additional

overhead. As ConflictSatSolve is called repeatedly on very similar problems, using

an incremental SAT solver for implementing ConflictSatSolve would likely have a

dramatic impact on the performance of conflict resolution.

Further, initial random tests of sample traces with the alternative conflict

resolution process that isn’t invoking ConflictSatSolve show conflict resolution times

close to the cost for a single invocation of MinInstall. It appears that having to

resolve a conflict and find a working installation solution will cost no more than

twice the current cost to execute MinInstall, as two more invocations of MinInstall

must occur: once to find the optimal set of packages to remove, and again to find

the optimal set of packages to install. Given the consistent performance of the

MinInstall procedure across a broad range of objective functions we have a high

confidence that these costs will bear out in a full trial against all 600 traces.

4.2 Completeness

To quantify the benefit provided by Opium’s completeness we look at the

number of times that apt-get fails to find a way of installing a package when in

fact there is a solution (which Opium is guaranteed to find because it is complete).

Out of the 52,668 install attempts, apt-get was not able to find a solution 357

times, and of these 357 cases, Opium was able to find a solution 322 times. The

remaining 35 cases, on which both apt-get and Opium fail, are indications of bugs

in the distribution (for example, one package in the distribution depending on

29

another one that is not in the distribution).

These numbers show that apt-get fails to find a solution when one exists

in about 0.61% of install attempts. This is not a large error rate, but one has to

remember that users perform many install attempts over the lifetime of their sys-

tem. When looking at entire traces, 23.3% of the 600 traces encountered a problem

due to the incompleteness limitation of apt-get. These numbers indicate that the

completeness of Opium has the potential to improve the end-user experience for a

large fraction of Debian users.

4.3 Minimization

We first evaluate the impact of Opium’s ability to minimize the number

of packages that are removed from the system. For our traces, Opium removed

less packages than apt-get in 209 cases out of the 52,311 install attempts where

apt-get succeeded. This is a small percentage of all install attempts but the

impact in those cases can be significant. In 9 cases apt-get removed 10 or more

packages than was necessary, with the worst of these cases being the example

mentioned in the introduction where apt-get removed 61 packages, including the

kernel, whereas Opium only removed 21 packages, none of which was the kernel.

We also evaluate the benefits of Opium’s ability to minimize the number

of downloaded bytes. In about 4.4% of the installation attempts where apt-get

succeeded Opium found a better solution than apt-get. Although this is again

only a small percentage of all install attempts, when there is a difference between

the optimal solution and the apt-get solution that difference is on average about

2MB. There are also 7 install attempts in which Opium beat apt-get by over

100MB, and one case in which Opium beat apt-get by 129MB. In about 0.2%

of the installation attempts apt-get finds a smaller solution than Opium, by an

average of about 1.6MB. This happens despite Opium’s optimality because apt-get

may remove more packages than necessary, and once these additional packages have

been removed apt-get’s solution can be smaller.

30

Another interesting measure to look at is how many downloaded bytes

Opium saves over entire user traces. Summing the downloaded bytes over entire

traces, we find that Opium beats apt-get on 95.9% of the traces by an average of

7.7MB (with a maximum of 185MB), and it matches or does better than apt-get

on 98.4% of all traces. The most apt-get beats Opium by over a full trace is 21MB,

but it does so by removing 12 more packages than necessary.

5

Related Work

One line of work that is related to ours is the research done by the WP2

group inside the EDOS project. The broad goal of this group is to address issues

relating to dependency management on the repository side [10], whereas our focus

has been on the client side. In the context of helping repository builders, the WP2

group has implemented a tool called debcheck [10] that uses a SAT solver to check

that a repository does not contain broken packages (i.e. packages that cannot be

installed).

As the authors of debcheck write in [10], the problem of optimizing the

installation of packages on a user machine, which Opium solves, “is a task radically

different, and in principle much more difficult than verifying that a repository

does not contain broken packages.” In particular, our paper contributes beyond

the work on debcheck in three ways, all of which are motivated by our focus on the

client side of the problem: (1) our work adds the extra dimension of finding optimal

solutions with respect to an objective function, (2) in addition to solving the

Install Problem, we also optimally solve the Uninstall Problem, (3) we perform a

comparative study of our tool against apt-get on real-world installation attempts.

Another project that is related to ours is the Smart Package Manager [12],

which attempts to be complete and to find the best solution given a user policy.

There is little documentation about the techniques used in Smart, and our inves-

31

32

tigation of the source code shows that it enumerates all possible solutions, which,

as pointed out in [10], is prohibitively expensive.

More broadly, our work is also related to research projects that process

dependencies automatically. In the context of static component-based software

linking, tools exist for checking that dependencies between a given set of com-

ponents are met, for example using typed interfaces [6, 5, 9]. Tools also exist for

analyzing dependencies to optimize, debug, and test programs [15, 16]. In contrast

to these projects that check or analyze dependencies, our goal is to discover an

optimal set of components that meet certain dependency requirements.

Bibliography

[1] fink. http://fink.sourceforge.net.

[2] FWGrid Project. http://fwgrid.ucsd.edu.

[3] GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk.

[4] Yum: Yellow dog Updater, Modified. http://linux.duke.edu/projects/yum.

[5] J. Aldrich, C. Chambers, and D. Notkin. Archjava: connecting software ar-
chitecture to implementation. In ICSE, pages 187–197, 2002.

[6] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Ex-
tended static checking for Java. In PLDI 02: Programming Language Design
and Implementation, pages 234–245. ACM, 2002.

[7] A. V. Gelder. Extracting (easily) checkable proofs from a satisfiability solver
that employs both preorder and postorder resolution. In 7th International
Symposium on Artificial Intelligence and Mathematics(AMAI), 2002.

[8] J. N. Hooker. Generalized resolution and cutting planes. Annals of Operations
Research, 12(1):217 – 239, 1988.

[9] D. B. MacQueen. Modules for standard ml. In LISP and Functional Pro-
gramming, pages 198–207, 1984.

[10] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, and
R. Treinen. Managing the complexity of large free and open source package-
based software distributions. In Proceedings of the International Conference
on Automated Software Engineering (ASE 06), 2006.

[11] K. L. McMillan. An interpolating theorem prover. In TACAS: Tools and
Algorithms for the Construction and Analysis of Systems, pages 16–30, 2004.

[12] G. Niemeyer. Smart package manager. http://labix.org/smart, 2006.

33

34

[13] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-boolean sat solver.
Journal on Satisfiability, Boolean Modeling and Computation, 2:61–96, 2006.

[14] G. N. Silva. APT Howto. http://www.debian.org/doc/manuals/apt-howto,
2005.

[15] J. A. Stafford and A. L.Wolf. Architecture-level dependence analysis in sup-
port of software maintenance. In Proceedings of the third international work-
shop on Software architecture (ISAW 98), 1998.

[16] M. Vieira and D. Richardson. Analyzing dependencies in large component-
based systems. In Proceedings of the International Conference of Automated
Software Engineering (ASE 02), 2002.

[17] L. Zhang and S. Malik. Validating sat solvers using an independent resolution-
based checker: Practical implementations and other applications. In DATE:
Design Automation and Test Europe, pages 10880–10885, 2003.

