
 Predicting Faults from Cached History

Sunghun Kim 1
hunkim@csail.mit.edu

Thomas Zimmermann 2
tz @acm.org

E. James Whitehead, Jr. 3
ejw@cs.ucsc.edu

Andreas Zeller 2
zeller@acm.org

1 Massachusetts Institute of
Technology, USA

2 Saarland University,
Saarbrücken, Germany

3 University of California,
Santa Cruz, USA

Abstract

We analyze the version history of 7 software sys-

tems to predict the most fault prone entities and files.
The basic assumption is that faults do not occur in
isolation, but rather in bursts of several related faults.
Therefore, we cache locations that are likely to have
faults: starting from the location of a known (fixed)
fault, we cache the location itself, any locations
changed together with the fault, recently added loca-
tions, and recently changed locations. By consulting
the cache at the moment a fault is fixed, a developer
can detect likely fault-prone locations. This is useful
for prioritizing verification and validation resources
on the most fault prone files or entities. In our evalua-
tion of seven open source projects with more than
200,000 revisions, the cache selects 10% of the source
code files; these files account for 73%-95% of faults—
a significant advance beyond the state of the art.

1. Introduction
Software quality assurance is inherently a resource-
constrained activity. In the majority of software pro-
jects, the time and people available are not sufficient
to eliminate all faults before a release. Any technique
that allows software engineers to reliably identify the
most fault-prone software functions provides several
benefits. It permits available resources to be focused
on the functions that have the most faults. Addition-
ally, such a list makes it possible to selectively use
time intensive techniques, such as software inspec-
tions, formal methods, and various kinds of static code
analysis.

Two important qualities of software fault predic-
tion algorithms are accuracy and granularity. The
accuracy is the degree to which the algorithm cor-
rectly identifies future faults. The granularity specifies
the locality of the prediction. Typical fault prediction
granularities are the executable binary [19], a module
(often a directory of source code) [11], or a source
code file [21]. For example, a directory level of granu-
larity means that predictions indicate a fault will occur

somewhere within a directory of source code. The
most difficult granularity for prediction is the entity
level (or below), where an “entity” is a function or
method.

We have developed an algorithm that, in our ex-
perimental assessment on seven open source projects,
is 73%-95% accurate at predicting future faults at the
file level and 46%-72% accurate at the entity level
with optimal options. This accuracy is better than or
equivalent to other efforts reported in the literature.
Moreover, we achieve this accuracy at the entity and
file level, which permits a more targeted allocation of
available resources because of the greater locality of
the predictions.

Our prediction algorithm is executed over the
change history of a software project, yielding a small
subset (usually 10%) of the project’s files or func-
tions/methods that are most fault-prone. The key in-
sight that drives our algorithm is the observation that
most faults are local. Put another way, faults do not
occur uniformly in time across the history of a func-
tion; they appear in bursts. Specifically, we believe
bug occurrences have four different kinds of locality:
Changed-entity locality. If an entity was changed

recently, it will tend to introduce faults soon.
New-entity locality. If an entity has been added re-

cently, it will tend to introduce faults soon.
Temporal locality. If an entity introduced a fault re-

cently, it will tend to introduce other faults soon.
Spatial locality. If an entity introduced a fault re-

cently, “nearby” entities (in the sense of logical
coupling) will also tend to introduce faults soon.

Following Hassan and Holt [11], we borrow the
notion of a cache from operating systems research,
and apply it for the purpose of fault prediction. We
use the cache as a convenient mechanism for holding
our current list of the most fault-prone entities, and for
aggregating multiple heuristics for maintaining the
cache. The switch to a cache involves a subtle but
important shift: instead of creating mathematical func-
tions that predict future faults, the cache selects and

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

removes entities based on specific criteria—in our
case the localities specified above. The ideal is to
minimize the size of cache while at the same time
maximizing its accuracy.

Unlike most existing research on fault prediction
that approximates faults simply with fixes, we use
bug-introducing changes. Following the definitions in
[22], a fix is a modification that repairs a software
fault; it tells us the location where a bug occurred
(which lines and files), but not the time when the bug
was introduced. However, the latter information is
crucial for the localities that we defined before; for
instance spatial locality requires the time when a fault
was introduced to identify nearby entities at that time.
We get the time information from bug-introducing
changes, the modifications that create faults. Hence,
the chronology is bug-introducing change(s), bug re-
port, and finally fix.

BugCache vs. FixCache. This paper describes and
evaluates algorithms for maintaining a cache based on
fault localities. There are two variants:
BugCache updates the cache at the moment a fault is
missed, that is, not found in the cache. We will use
BugCache to empirically show the presence of fault
localities. Since in practice, a change is not known to
be bug-introducing until the corresponding fix, Bug-
Cache is a theoretical model.
FixCache shows how to turn localities into a practical
fault prediction model. In contrast to BugCache, it has
a delayed update: when a fault is fixed, the algorithm
traces back to the corresponding bug-introducing
change, and only then is the cache updated based on
the bug-introducing localities.

This paper makes the following contributions:
Empirical evidence of fault localities. Evaluation of

the BugCache algorithm provides empirical evi-
dence that fault localities actually exist.

Very accurate fault prediction. By combining a
cache model with different heuristics for fault pre-
diction, the FixCache algorithm has an accuracy of
73%-95% using files and 46%-72% using meth-
ods/functions.

Validation of adaptive fault prediction. FixCache is
an online learning approach [1], learning from
cache hits and misses. Thus it can easily adapt when
a system’s fault distribution changes. FixCache’s
high accuracy, equivalent in accuracy to the best
approaches in the literature, with smaller granularity,
demonstrates the utility of adaptive fault prediction
algorithms.

In the remainder of this paper, we discuss fault locali-
ties (Section 2) and then proceed to the caching algo-
rithms (Section 3). We also present details on the data
collection for our experiments (Section 4). The results
of experiments on seven projects at the file and entity
level are presented in two sections: one for empirical
evidence of localities (BugCache, Section 5) and one
for predicting future faults (FixCache, Section 6). We
discuss our results and list threats to validity (Section
7), before we close the paper with related work and
consequences (Sections 8 and 9).

2. Bug localities
Software engineering does not yet have a widely ac-
cepted model for why programmers create software
faults. Ko et al. [16] summarizes possible causes for
programming errors, using a model of chains of cogni-
tive breakdowns. (Note that “breakdowns” comes as a
plural; for many errors, there is more than one cause.)

Like Ko et al., we also consider cognitive break-
down as the source for faults. In particular, we assume
that faults do not appear individually, but rather in
bursts: either in the same entity (temporal locality) or
nearby entities (spatial locality). Furthermore, we as-
sume any code modification as risky, since the pro-
grammer might suffer a cognitive breakdown
(changed-entity and new-entity localities). We de-
scribe temporal and spatial locality in more detail be-
low.

2.1. Temporal locality
The intuition behind temporal locality is that faults are
not introduced individually and uniformly over time.
They rather appear in bursts within the same entities.
In other words, when a fault is introduced to an entity,
another fault will likely be introduced to the same
entity soon. An explanation for such bursts that pro-
grammers make their changes based on a poor or in-
correct understanding, thus injecting multiple faults.

Using temporal locality significantly differs from
using cumulative numbers of faults (or changes) to
predict future faults. Accumulated numbers result in
sluggish predictors that cannot adapt to new fault dis-
tributions. In particular, they would miss entities with
few, but recent faults. Such entities are more likely
exposed to new faults than entities with many old
faults.

The weighted time damp model by Graves et al. is
similar in spirit to temporal locality [10]. It more heav-
ily weights recent faults to predict future ones and was
one of the best models they observed. Compared to
the math heavy model in [10], temporal locality has a

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

simpler description and relies on bug-introducing
changes rather than on fixes.

Temporal locality also guides cache replacement
strategies for our algorithms. If there were no faults
for an entity in a long time, it is removed from the
cache (see Section 3.5).

2.2. Spatial locality
When programmers make changes based on incorrect
or incomplete knowledge, they likely cannot assess
the impact of their modifications as well. Thus, when
an entity has a fault, there is a good chance of other,
nearby entities also having faults. But what are nearby
entities? There are several ways to define distance in
software. One way is using physical distances among
entities. In this case, the entities in the same file or
directory would be nearby entities. Another way is
using logical coupling among software entities [3, 8]:
two entities are close to each other (logically coupled)
when they are frequently changed together.

We compute the distance between two entities us-
ing logical coupling. If two entities are changed to-
gether many times, we give them a short distance,
reflecting their logical “closeness”. We compute the
distance between any two entities e1 and e2 as follows:

distance(e1,e2) =
1

count({e1,e2})
count({e1,e2}) > 0

∞ otherwise

⎧
⎨
⎪

⎩ ⎪
where count({e1,e2}) is the number of times e1 and e2
have been changed together.

2.3. Changed-entity and new-entity locality
Research shows that entities that changed recently are
more likely to be fault-prone than others. This has
been leveraged for fault prediction by using code
churn [19] and the “most recently modified/fixed”
heuristics [11]. In a similar fashion, new entities are
more likely to contain faults than existing ones [10].
We use these results to define additional localities:
• An entity that was changed recently likely contains

a fault (changed-entity locality).
• An entity that was added to a system recently likely

contains a fault (new-entity locality).
These two localities are used to pre-fetch changed and
added entities into the cache on the assumption they
will tend to introduce faults soon.

3. Operation of the cache
Our algorithm maintains a list (cache) of what it has
chosen as the most fault-prone software entities. The
cache size can be adjusted based on the resources that

are available for testing or verification. A typical
cache size is 10% of the total number of entities, since
this provides a reasonable tradeoff between size and
accuracy. Larger cache sizes result in higher hit rates
(better recall), but with the faults spread out over a
greater number of entities (lower precision).

3.1. Basic operation
The basic process of the cache algorithm is as follows:

Initialization:
1. Bug fix changes are extracted by mining a pro-

ject’s version archive and bug database.
2. Bug-introducing changes are identified at the file

and entity level, using the approach in [22].
3. Pre-load the cache with the largest entities (LOC)

in the initial project revision, creating the initial
state of the cache. (Optional)

Cache operation:
4. BugCache: If revision n introduces a fault in an

entity, the cache is probed to see if it is present. If
yes, count a hit, otherwise a miss.
FixCache: If revision n fixes a fault in an entity,
probe the cache to see whether the corresponding
entity is present. If yes, count a hit, otherwise a
miss.

5. If a fault is missed, determine the bug-introducing
change and fetch the entity (temporal locality) as
well as nearby entities (spatial locality) into the
cache for use in future fault predictions starting at
revision n+1. The algorithm only uses localities at
the time a fault was introduced, i.e., the revision
of the bug-introducing change.
Parameter: Block size (see Section 3.3)

6. Also at revision n, pre-fetch entities that have
been created (new-entity locality) and modified
(changed-entity locality) since revision n-1.
Parameter: Pre-fetch size (see Section 3.4)

7. Since the size of the cache is fixed, we have to
remove entities, which are selected using a cache
replacement policy such as least recently used.
Parameter: Replacement policy (see Section 3.5)

8. Iterate over steps 4-7 to cover the existing change
and bug history.

Finally, the hit rate is computed by:

hit rate =
of hit

of hit+# of miss

A hit rate close to 1 means, for BugCache, that the
localities described the fault distribution accurately

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

over time and, for FixCache, that it predicted most
future faults.

This approach is similar to on-line machine learn-
ing algorithms [1] in that our algorithm learns from
the fault distributions (hits and misses) and quickly
updates the prediction model (cache).

3.2. Bug cache vs. Fix cache
There are two variants of the caching algorithm.

BugCache updates the cache at the moment when a
fault, in the form of a bug-introducing change, is
missed. However, in practice a change is not known to
be bug-introducing until it is fixed. This means that
the BugCache needs to know the nature of a change in
advance, and hence it is a tool to empirically show the
presence of fault localities rather than a deployable
fault prediction algorithm.

In contrast, FixCache shows how to turn localities
into a practical fault prediction model that can be used
in any software project. FixCache does not update
when a fault (bug-introducing change) is missed—it
waits until the fix. In other words it has a delayed up-
date: when a fault is fixed, the cache is updated based
on the localities that existed when the fault was intro-
duced. The hit rates for FixCache are computed at the
time of the fix, the last moment when the fault was
still alive.

The difference between BugCache and FixCache is
sketched in Figure 1. BugCache computes hit rates
and updates the cache when a fault is introduced tbug;
FixCache waits until a fault is fixed (tfix). Both use the
localities at the time the fault was introduced (tbug).

3.3. Cache update
When we miss a fault in an entity, our cache algorithm
loads nearby entities (spatial locality). We adapt the
notion of block size from cache terminology to de-

scribe the upper bounds on how many entities are
loaded. A block size of b indicates that we load the b-
1 closest entities (i.e., the ones with the shortest dis-
tance) along with the faulty entity itself. In our analy-
sis, we investigate the effect of different block sizes.

3.4. Pre-fetches
We use pre-fetching techniques to improve the hit rate
of the bug cache. Pre-fetching means that we load
entities for which we have not yet encountered a fault.
Our motivation is as follows: assume we would load
entities only when we encounter a fault (or a fix in
case of FixCache). As a consequence, we would have
inevitable misses since we start with an empty cache.
Additionally, it would be impossible to predict faults
for entities that have exactly one fault in their lifetime
(this fault is a mandatory miss). In order to reduce the
miss count, we pre-fetch potential fault-prone entities
in advance by using the algorithms described below.

Initial pre-fetch. Initially the cache is empty, and in
the absence of pre-fetching, this would lead to many
misses. We avoid this and initialize the cache with
entities likely to have faults as predicted by greatest
lines of code (LOC). The relation between faults and
LOC has been revealed in several studies so far [10,
21].

Per-revision pre-fetch. We pre-fetch entities that
were modified or created between two revisions (new-
entity and changed-entity locality). We start with the
entities that have the highest number of LOC. Addi-
tionally, we unload entities that were deleted. The pre-
fetch size parameter controls the maximum number
pre-fetches per revision.

3.5. Cache replacement policies
When the cache is full, our algorithm has to unload
entities before it can load new ones. Ideally, we would
keep the entities with greatest potential for new faults.
A replacement policy describes which entities to
unload first. In operating systems a frequently used
policy is least recently used (LRU), which first re-
places the element used the longest time ago. We de-
veloped LRU-like policies for our fault-caching algo-
rithms. Specifically, we used the observation that enti-
ties with many changes or prior faults are likely to

Table 1. Cache replacement policies.

Id Last found
fault/hit (ago)

Cumulative
changes

Cumulative
faults

1 1 day 30 1
2 10 days 20 5
3 9 days 10 7
4 2 days 5 4

tbug

BugCache

1. Check:
 in cache?

2. If miss, update
with localities

tbug

FixCache

1. Check:
 in cache?

3. If miss, update
with localities at tbug

tfix

2. Identify bug-introducing change

Figure 1. BugCache vs. FixCache

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

have further faults [10, 11, 21] to create weighted
LRU algorithms based on previous changes and faults.

Least recently used (LRU). This algorithm unloads
the entity that has the least recently found fault (hit).
Consider a cache with the entities shown in Table 1.
Based on the classical LRU algorithm, Entity 2 would
be unloaded, since it is the least recently used entity.

LRU weighted by number of changes (CHANGE).
When an entity has changed many times in the past, it
is more likely to have faults in the future [10]. We
want to keep such entities in the cache as long as pos-
sible. Consequently, we unload the entity with the
least number of changes. According to this policy,
Entity 4 in Table 1 would be unloaded.

LRU weighted by number of previous faults (BUG).
This policy is similar to the change-weighted LRU. It
removes the entity with the least number of observed
faults. The intuition here is that when an entity has
had many faults, it will likely continue to have faults.
With this policy, Entity 1 in Table 1 would be
unloaded.

4. Data collection and fact extraction
Data used in the evaluation of the BugCache and Fix-
Cache was collected using the Kenyon infrastructure
[4] (Apache 1.3, JEdit, Subversion, and PostgreSQL)
and APFEL [6] (Columba, Eclipse, and Mozilla).
Analyzed open source projects are shown in Error!
Reference source not found.. Details of the data col-
lection process are described below.

4.1. Transaction recovery
In order to measure the impact of co-change for spa-
tial locality, we need transactions that alter the entire
product rather than just single files. In Subversion [2],
such transactions are directly available. CVS, however,
provides only versioning at file level, disregarding co-
change information between files. To recover per-
product transactions from CVS archives, we group the

individual per-file changes using a sliding window
approach [25]: two subsequent changes by the same
author and with the same log message are part of one
transaction if they are at most 200 seconds apart.

4.2. Finding fixes and bug-introducing changes
In order to find bug-introducing changes, bug fixes
must first be identified by mining change log mes-
sages. We use two approaches: searching for key-
words such as "Fixed" or "Bug" [17] and searching for
references to bug reports like “#42233” [5, 7, 22].
This allows us to identify whether an entire transac-
tion contains a bug fix. If it does, we then need to
identify the specific file change that introduced the
bug.

Once we know that a transaction contains a fix, we
first list files changed in the transaction and then use
the annotation features of CVS and Subversion to
identify bug-introducing changes [22]. In the example
below revision 1.42 fixes a fault in line 36. This line
was introduced in revision 1.23 (when it was line 15).
Thus revision 1.23 contains a bug-introducing change.

1.23: Bug-introducing 1.42: Fix
 … …

15: If (foo==null) { 36: if (foo!=null) {
16: foo.bar(); 37: foo.bar();

 … …

Additionally, bug databases are used (if available) to
eliminate false positives. For example, bug-
introducing changes that were made after the bug was
reported cannot be bug-introducing changes for that
particular bug. More details on how to locate bug-
introducing changes are presented in previous work,
including techniques that reduce the number of false
positives [15, 22].

Table 1. Analyzed open source projects. The period shows the analyzed project timespan. The number of revisions
indicates the num ber of revisions we extracted. The num ber of entities indicates number of functions or methods in the last
revision. The number of bugs indicates the number of bug-introducing changes we extracted by mining the change logs and
change histories of each project. For the Eclipse project we use only the core.jdt module due to the large size of the entire project.
Similarly, we use only the mozilla/content/ module for the Mozilla project.

 Number of
Project Lang. Software type SCM Period Revisions Entities Files Bugs

Apache HTTP 1.3 C HTTP server Subversion 01/1996 ~ 07/2005 7,747 2,113 154 1,954
Subversion C SCM software Subversion 08/2001 ~ 07/2005 6,029 3,693 255 1,566
PostgreSQL C DBMS CVS 04/1996 ~ 08/2005 14,650 8659 598 19,902
Mozilla C/C++ Web browser CVS 03/1998 ~ 01/2005 109,636 8203 396 52,265
JEdit Java Editor CVS 09/2001 ~ 06/2005 1,386 5429 420 3,060
Columba Java Mail Client CVS 11/2002 ~ 07/2005 2,848 8428 1428 720
Eclipse Java IDE CVS 04/2001 ~ 01/ 2005 78,948 33214 3330 15,217

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

4.3. Fine-grained changes
In addition to bug-introducing changes, we need a list
of co-changed entities for computing spatial locality.
From CVS and Subversion we get a list of co-changed
files. For method co-changes we perform an additional
analysis. First, compute a text diff between revisions.
From this diff, determine modified line numbers,
which are then mapped to the surrounding methods.
This approach is described in detail in [25]. Similarly,
we obtain the methods that were added or deleted be-
tween revisions (needed for pre-fetching new entities
and removing deleted ones).
5. Bug Cache Evaluation
The BugCache algorithm has multiple parameters that
can be modified, all of which affect its hit rate. It is
possible to modify the cache size, block size, pre-fetch
size, and cache replacement policy. To determine
which combination of parameters yields the highest hit
rate, we literally tried them all. We performed a brute
force cache analysis that iterated through multiple
option combinations, and compared the results to rea-
son about fault localities (Section 5.1). We also meas-
ured the impact of cache replacement policies (Section

5.2) and the relative contributions of each fault local-
ity (Section 5.3).

5.1. Hit rates
The first experiment used constant cache options: a
cache size of 10%, block size of 5%, and a pre-fetch
size of 1% of the total number of elements (depending
on the granularity, either files or entities). For example
for Subversion with 3,693 functions, the cache size is
369, block size is 184, and pre-fetch size is 36. Fig-
ures 2 and 3 show the hit rates at the file and entity
(method/function) level. The file level hit rates are
57%-93%, and entity level hit rates are 28%-68% de-
pending on the cache replacement policy. These re-
sults provide initial empirical evidence for the pres-
ence of fault localities, especially at the file level.

The BugCache hit rates describe how well it mod-
els the fault distribution within a project. In order to
obtain the optimal “fit”, we identified the options that
describe the fault distribution most accurately by run-
ning a brute force analysis. The cache size was fixed
at 10% of the total number of entities or files. Then we
changed the block size, pre-fetch sizes, and cache re-
placement policy, and observed the resulting hit rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
pa

ch
e

1.
3

(1
5/

7/
1)

S
ub

ve
rs

io
n

(2
6/

13
/2

)

P
os

tg
re

S
Q

L
(6

0/
30

/6
)

M
oz

ill
a

(4
0/

20
/4

)

JE
di

t
(4

2/
21

/4
)

C
ol

um
ba

(1
43

/7
1/

14
)

E
cl

ip
se

(3
33

/1
66

/3
3)

LRU
BUG
CHANGE

Figure 2. Hit rates, file level. We varied the cache
replacement policies. The cache size is 10%, block size is
5%, and pre-fetch size is 1% of the total number of files.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
pa

ch
e

1.
3

(2
11

/1
05

/2
1)

S
ub

ve
rs

io
n

(3
69

/1
84

/3
6)

P
os

tg
re

S
Q

L
(8

66
/4

33
/8

6)

M
oz

ill
a

(8
02

/4
01

/8
0) JE

di
t

(5
43

/2
71

/5
4)

C
ol

um
ba

(8
42

/4
21

/8
4)

E
cl

ip
se

(3
32

1/
16

60
/3

32
)

LRU
BUG
CHANG

Figure 3. Hit rates, method level. We varied the
cache replacement policies. Cache size is 10%, block size is
5%, and pre-fetch size is 1% of the total number of methods.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
pa

ch
e

1.
3

(1
5/

7/
0/

LR
U

)

S
ub

ve
rs

io
n

(2
6/

6/
0/

LR
U

)

P
os

tg
re

S
Q

L
(6

0/
1/

0/
LR

U
)

M
oz

illa
(4

0/
17

/0
/L

R
U

)

Je
di

t
(4

2/
17

/0
/L

R
U

)

C
ol

um
ba

(1
43

/4
6/

0/
B

U
G

)

E
cl

ip
se

(3
33

/3
31

/0
.B

U
G

)

Projects wih (cache size/block size/pre-fetch size/cache replacement policy)

Figure 4. Optimal hit rates, file level. We set the
cache size to 10% of the total number of files and determined
the optimal parameter combination (block size, pre-fetch
size, cache replacement policy) via brute force analysis.

0
0.1

0.2
0.3
0.4

0.5
0.6

0.7
0.8

A
pa

ch
e

1.
3

(2
11

/1
27

/2
4/

B
U

G
)

S
ub

ve
rs

io
n

(3
69

/3
66

/5
4/

B
U

G
)

P
os

tg
re

S
Q

L
(8

66
/3

47
/1

02
/B

U
G

)

M
oz

ill
a

(8
02

/6
41

/9
6/

LR
U

) Je
di

t
(5

43
/1

/4
2/

B
U

G
)

C
ol

um
ba

(8
42

/8
41

/1
32

/B
U

G
)

E
cl

ip
se

(3
32

1/
66

5/
0/

B
U

G
)

Projects wih (cache size/block size/pre-fetch size/cache replacement policy)

Figure 5. Optimal hit rates, method level. We set
the cache size to 10% of the total number of methods and
determined the optimal parameter combination (block size,
pre-fetch size, cache replacement policy) using brute force.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Block sizes and pre-fetch sizes were varied from 0 to
100% of the cache size with a step of 5%.

The best option combinations for each project and
the resulting hit rates are shown in Figures 4 (file
level) and 5 (entity level). At the file level, all projects
have a pre-fetch size of 0. This indicates that changed
and new-entity localities are not very common at the
file level. This changes when the granularity is func-
tions/methods: except for Eclipse, all projects show
empirical evidence for changed and new-entity locali-
ties.

The projects also differ in the block size: while
JEdit has a block size of one method, Columba has a
block size of 841 methods. Having a small block size
indicates that temporal locality dominates over spatial
locality (not many nearby entities have to be loaded
and most errors are local). Having a big block size
means that some events in the history changed the
fault distribution dramatically, causing most of the
cache to be replaced in one operation. However, such
events are the exception; typically only a small part of
the cache is replaced. Recall that block size is the
maximum number of elements to be replaced, not the
average number.

An important implication of these results is that
fault distributions vary across projects and thus fault
prediction algorithms need to be adapted to a specific
project [20].

5.2. Cache Replacement Policy
We implemented three cache replacement policies
(LRU, BUG, and CHANGE) to unload elements from
the cache. To see which algorithm works best for a
given set of cache parameters, we performed an ex-
periment using the same values for the cache size,
block size, and pre-fetch size, varying only the cache
replacement policy.

Figures 2 and 3 show the resulting hit rates. At the
file level, the LRU policy has the best results for 4 out
of the 7 projects, with BUG having the best results for
the remaining 3. At the function/method level, BUG
has the best results for all projects, except for Mozilla
(LRU). Interestingly, the CHANGE policy works
poorly at both granularities. This is somewhat contrary
to the results of Hassan and Holt [11], where the most-
frequently-modified heuristic was one of the best fault
predictors.

5.3. Bug Localities
BugCache combines four fault localities for its model.
But are the contributions of the localities the same? To
measure the relative predictive strength of each local-
ity, each entity was marked with the reason (initial

prefetch, or kind of locality) that caused it to be
loaded. Figure 6 shows for the Apache 1.3 project the
ratio of reasons why hit entities were loaded into the
cache. The results show that faults have strong tempo-
ral (59%) and spatial (18%) locality, and weak
changed entity (4%) and new entity (1%) locality. The
initial pre-fetch is surprisingly effective, accounting
for 18% of the total hits.

One possible explanation for these results is that
faults indeed occur in bursts, in most cases locally
within one single entity. However, there are enough
cases where errors affect multiple entities, and hence
spatial locality succeeds in predicting them. When no
data is available, code complexity (as represented by
LOC) acts as a strong predictor of faults. Changed and
new-entity locality predicted only small portions of
faults.

6. Fix Cache Evaluation
The previous section provided empirical evidence for
the presence of fault localities in software projects.
But how can we leverage fault localities for predic-
tion?

A typical application of the FixCache prediction
algorithm is as follows: Whenever a fault is found and
fixed, our algorithm automatically identifies the
change to the original code that introduced the fault.
Then it updates the cache using the localities from the
moment this bug-introducing change was applied. A
manager then can use the list for quality assurance—
for example, she can test or review the entities in the
bug cache with increased priority. Developers can also
directly benefit from FixCache. If a developer is
working on entities in the cache, he can be made
aware that he is working on a potentially instable or
fault-prone part of the software.

While faults can only become part of the cache as
soon as they are fixed, the cache still contains suspi-
cious locations based on recent changes. In particular,
the cache would also direct resources to newly added

Changed entity
locality

4% Spatial locality
18%

Temporal
locality

59%

New entity
locality

1%

Initial prefetch
18%

Figure 6. Contribution of initial pre-fetch and
fault localities on method level for Apache 1.3.
Cache size is 211, block size is 127, pre-fetch size is
24, replacement policy is BUG. The hit rate is 59.6%.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

or changed locations. All in all, we expect that a cache
will help directing efforts to those entities, which are
most likely to contain errors—thus FixCache can as-
sist in increasing quality and reducing effort.

6.1. Evaluation
We performed the FixCache analysis over the same
set of seven projects and again selected the best cache
parameters for each project with brute force. The
cache size was set to 10% of files or entities respec-
tively.

Figure 7 compares the results of FixCache to the
ones of BugCache for files. For most projects there
seems to be a small drop in accuracy (2-4%). Figure 8
shows the comparison for entities. Except for Subver-
sion, the results stay the same or improve. These re-
sults indicate that fault localities and the FixCache
algorithm can predict future faults.

In summary, the hit rates (predictive accuracy) are
73-95% at the file level, with typical performance in
the low to mid 80s. The most directly comparable
work is by Hassan and Holt [11], which also uses a
caching approach, but at the module level. For a cache
size of 10% of all modules, their hit rates vary from
45%-82%. The hit rates we observed for FixCache are
better and more fine-grained, which is typically harder
to predict. Ostrand et al. [21] predicted fault density of
files using negative binomial linear regression. Using
this method and they selected 20% of all files, which
predicted 71-93% of future faults. FixCache achieves
a comparable accuracy, but with only 10% of files,
twice the precision.

On entity level we used again a cache size of 10,
with the cache holding 10% of all project entities. For
FixCache the best hit rates range from 46-72% (see
Figure 8). As expected, predicting bugs at the fine-
grained entity level is more difficult than predicting
bugs at coarser granularity.

6.2. Discussion
Why does the cache model have better predictive ac-
curacy than previous prediction models? Most models
found in the literature use fault correlated factors and
develop a model to predict future faults. Once devel-
oped, the model is static, and incorporates all previous
history and factors. In contrast, the cache model is
dynamic and is able to adapt more quickly to new fault
distributions, since fault occurrences directly affect
the model. This approach is similar to on-line machine
learning algorithms [1] in that the cache learns from
the fault distributions of each project. Even though
projects have different fault distributions, the cache
model adaptively learns from hits and misses to up-

date its prediction model. This adaptation approach
results in better predictive power.

The selection of cache options and replacement
policies affects the hit rate. The options vary across
projects due to differing fault and change distributions.
We observed the following rules of thumb: 7-15% of
the total number of files/entities is a good cache size.
For entities, we suggest a block size of 30-50% and a
pre-fetch size of 10-30% of the cache size. The BUG
cache replacement policy works for most cases. How-
ever, cache options should be periodically optimized
by brute force analysis on past predictions. We are
currently working on building such self-configuring
caches.

7. Threats to Validity
We identify the following threats to validity.

Systems examined might not be representative.
Seven systems were examined in this paper, more than
any other work reported in the literature. In spite of
this, it is still possible that we accidentally chose sys-
tems that have better (or worse) than average cache hit
rates. Since we intentionally chose systems for which
we could identify fixes based on the change descrip-
tion log (required for determination of bug-
introducing changes), we might have a project selec-
tion bias.

Systems are all open source. All systems examined
in this paper are developed as open source. Hence
they might not be representative of closed-source de-
velopment since different development processes
could lead to different fault localities. Despite being

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Apache 1.3 Subversion PostgreSQL Mozilla Jedit Columba Eclipse

Projects (cache options are omitted)

BugCache

FixCache

Figure 7. Optimal hit rates, file level, for Bug-
Cache and FixCache.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Apache 1.3 Subversion PostgreSQL Mozilla Jedit Columba Eclipse

Projects (cache options are omitted)

BugCache
FixCache

Figure 8. Optimal hit rates, entity level, for
BugCache and FixCache.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

open source, several of the analyzed projects have
substantial industrial participation.

Fault and fix data is incomplete. Even though we
selected projects with a high quality of historic data,
we still can only extract a subset of all faults (typically
40%-60% of those reported in bug tracking systems).
However, we are confident that the hit rate improves
with the quality of the dataset.

Entities change their names. Entities are identified
by file name, function name, and signature. As a con-
sequence an entity’s history is lost when it is renamed.
To some extent, this effect is weakened by the new-
entity pre-fetch since renaming entities is captured as
simultaneous deletion and addition. Origin analysis
can recognize when elements change their names [9,
14, 24]. In future work, we will investigate whether
adopting origin analysis increases the hit rate.

8. Related Work
Previous work on fault prediction falls into one of the
following categories: identifying problematic entities,
usually modules, with software quality metrics [11, 12,
13, 21] and predicting fault density of entities using
software change history [10, 19].

8.1. Identifying problematic entities
Hassan and Holt proposed a caching algorithm for
fault-prone modules, called the top-ten list [11]. They
used four factors separately: modules that were most
frequently modified, most recently modified, most
frequently fixed, and most recently fixed. Like our
cache, their top-ten list is dynamically maintained, i.e.,
changes over time. However, our approach combines
all four factors to derive synergy. Additionally, we use
spatial locality (logical coupling) as a predictor, which
boosts the performance of our approach. Furthermore
Hassan and Holt predicted at the module level of
granularity, where a module is a collection of files. In
contrast, we predict for individual files and methods,
which is of greater benefit for developers and testers.

Ostrand et al. predicted fault density of files with a
negative binomial linear regression model [21]. With
their model, they selected 20% of all files as the most
problematic ones in a project. This list predicted 71-
93% of future faults. This compares most directly to
Figure 7, where we predict 73-95% of future faults,
but with greater precision (10% vs. 20% of all files).

Khoshgoftaar and Allen proposed stepwise multi-
ple regression on software complexity metrics such as
LOC and cyclomatic complexity to predict future fault
density [12, 13]. Their top 10% of modules identified
64% and the top 20% identified 82% of all faults.
Since they rely on complexity metrics (and fixing a

fault does not change them much), their predictions
tend to be static over time and do not easily adapt to
new fault densities.

8.2. Predicting fault density
Graves et al. assumed that modules that were changed
recently are more fault-prone than modules that were
changed a long time ago [10]. They built a weighted
time damp model to predict faults from changes over
where recent changes are weighted over older ones.
This model improved predictive accuracy substantially,
which provides additional empirical evidence for the
locality of faults.

Mockus et al. identified properties of changes,
such as number of changed subsystems, number of
changed lines, whether the change is a fix [18]. They
used these properties to predict the risk of changes
with logistic regression. The most significant factor
was whether the change is a fix, meaning that fixes are
more risky than other changes. To some extent this is
similar to our temporal fault locality.

Śliwerski et al. computed the risk of code locations
by the percentage of bug-introducing changes [23].
However, they did not evaluate whether past risk pre-
dicts future risk. Additionally, their risk concept is
static and does not adapt to new change information.

Nagappan et al. observed that relative code churn
measures such as changed-LOC/LOC predict future
faults better than absolute code churn measures such
as changed-LOC [19]. Nagappan et al. studied Win-
dows binaries, i.e., components. Hence it is unclear
how well their approach works at more fine-grained
levels. Our cache algorithms use absolute measures.
However, relative measures are intriguing, and we
will explore their application to caching in the future.

9. Conclusions and future work
If we know that a fault has occurred, it is useful to
search its vicinity for further faults. Our FixCache
model predicts these further faults with high accuracy:
At the file level, it can cover about 73-95% of future
faults; at the function/method level, it covers 46-72%
of future faults—with a cache size of only 10%. This
is a significantly better accuracy and lower granularity
than found in the previous state of the art. The cache
can serve as a priority list to test and inspect software
whenever resources are limited (i.e., always).

The FixCache is able to adapt more quickly to re-
cent software change history data, since the fault oc-
currences directly affect the model. This is another
significant advantage over static models, which con-
stitute the state of the art. We are the first to use spa-
tial locality as a bug predictor, and the combination of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

four locality concepts again shows significant advan-
tages.

Even so, we still see room for improvement. Our
future work will concentrate on the following topics.
• In our study, option combinations for each project

vary due to the various fault or change distribu-
tions of different projects. We are currently inves-
tigating self-adaptive cache algorithms that will
learn from hits/misses and change cache options
for the next prediction.

• We showed that different levels of software
granularity result in different hit rates. We can de-
sign hierarchical caches that simultaneously fetch
entities at different granularities such as modules,
files, and methods.

• Finally, we are currently working on integrating
FixCache into history-aware programming tools
such as eROSE [26]. This way, whenever a fault
is fixed, the tool can automatically suggest further
locations to be examined for related faults.

Overall, we expect that future approaches will see
software history not only as a series of revisions and
changes, but also as a series of successes and fail-
ures—and as a source for continuous awareness and
improvement. The FixCache is a first step in this di-
rection.

References
[1] E. Alpaydin, Introduction to Machine Learning: The MIT Press,

2004.
[2] B. Behlendorf, C. M. Pilato, G. Stein, K. Fogel, K. Hancock, and

B. Collins-Sussman, "Subversion Project Homepage," 2005.
[3] J. Bevan and E. J. Whitehead, Jr., "Identification of Software

Instabilities," Proc. of 2003 Working Conference on Reverse
Engineering (WCRE 2003), Victoria, Canada, 2003.

[4] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, "Facili-
tating Software Evolution with Kenyon," Proc. of the 2005
European Software Engineering Conference and 2005 Founda-
tions of Software Engineering (ESEC/FSE 2005), Lisbon, Por-
tugal, 2005.

[5] D. Cubranic and G. C. Murphy, "Hipikat: Recommending perti-
nent software development artifacts," Proc. of 25th Interna-
tional Conference on Software Engineering (ICSE), Portland,
Oregon, 2003, pp. 408-418.

[6] V. Dallmeier, P. Weißgerber, and T. Zimmermann, "APFEL: A
Preprocessing Framework For Eclipse," http://www.st.cs.uni-
sb.de/softevo/apfel/, 2005.

[7] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release
History Database from Version Control and Bug Tracking Sys-
tems," Proc. of 2003 Int'l Conference on Software Maintenance
(ICSM'03), 2003, pp. 23-32.

[8] H. Gall, M. Jazayeri, and J. Krajewski, "CVS Release History
Data for Detecting Logical Couplings," Proc. of Sixth Interna-
tional Workshop on Principles of Software Evolution (IW-
PSE'03), Helsinki, Finland, 2003, pp. 13-23.

[9] M. W. Godfrey and L. Zou, "Using Origin Analysis to Detect
Merging and Splitting of Source Code Entities," IEEE Trans. on
Software Engineering, vol. 31, pp. 166- 181, 2005.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting
Fault Incidence Using Software Change History," IEEE Trans-
actions on Software Engineering, vol. 26, pp. 653-661, 2000.

[11] A. E. Hassan and R. C. Holt, "The Top Ten List: Dynamic
Fault Prediction," Proc. of International Conference on Soft-
ware Maintenance (ICSM 2005), Budapest, Hungary, 2005, pp.
263-272.

[12] T. M. Khoshgoftaar and E. B. Allen, "Ordering Fault-Prone
Software Modules," Software Quality Journal, vol. 11, pp. 19-
37, 2003.

[13] T. M. Khoshgoftaar and E. B. Allen, "Predicting the Order of
Fault-Prone Modules in Legacy Software," Proc. of The Ninth
International Symposium on Software Reliability Engineering,
Paderborn, Germany, 1998, pp. 344-353.

[14] S. Kim, K. Pan, and E. J. Whitehead, Jr., "When Functions
Change Their Names: Automatic Detection of Origin Relation-
ships," Proc. of 12th Working Conference on Reverse Engineer-
ing (WCRE 2005), Pittsburgh, PA, USA, 2005, pp. 143-152.

[15] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead, Jr.,
"Automatic Identification of Bug Introducing Changes," Proc.
of International Conference on Automated Software Engineer-
ing (ASE 2006), Tokyo, Japan, 2006.

[16] A. J. Ko and B. A. Myers, "A Framework and Methodology for
Studying the Causes of Software Errors in Programming Sys-
tems," Journal of Visual Languages and Computing, vol. 16, pp.
41-84, 2005.

[17] A. Mockus and L. G. Votta, "Identifying Reasons for Software
Changes Using Historic Databases," Proc. of International Con-
ference on Software Maintenance (ICSM 2000), San Jose, Cali-
fornia, USA, 2000, pp. 120-130.

[18] A. Mockus and D. M. Weiss, "Predicting Risk of Software
Changes," Bell Labs Technical Journal, vol. 5, pp. 169-180,
2002.

[19] N. Nagappan and T. Ball, "Use of Relative Code Churn Meas-
ures to Predict System Defect Density," Proc. of 2005 Int'l Con-
ference on Software Engineering (ICSE 2005), Saint Louis,
Missouri, USA, 2005, pp. 284-292.

[20] N. Nagappan, T. Ball, and A. Zeller, "Mining Metrics to Predict
Component Failures," Proc. of 2006 Int'l Conference on Soft-
ware Engineering (ICSE 2006), Shanghai, China, 2006, pp.
452-461.

[21] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the
Location and Number of Faults in Large Software Systems,"
IEEE Transactions on Software Engineering, vol. 31, pp. 340-
355, 2005.

[22] J. Śliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?," Proc. of Int'l Workshop on Mining
Software Repositories (MSR 2005), Saint Louis, Missouri, USA,
2005.

[23] J. Śliwerski, T. Zimmermann, and A. Zeller, "HATARI: Rais-
ing Risk Awareness. Research Demonstration," Proc. of the
2005 European Software Engineering Conference and 2005
Foundations of Software Engineering (ESEC/FSE 2005), Lis-
bon, Portugal, 2005, pp. 107-110.

[24] P. Weißgerber and S. Diehl, "Identifying Refactorings from
Source-Code Changes," Proc. of International Conference on
Automated Software Engineering (ASE 2006), Tokyo, Japan,
2006, pp. 231-240.

[25] T. Zimmermann and P. Weißgerber, "Preprocessing CVS Data
for Fine-Grained Analysis," Proc. of Proc. Intl. Workshop on
Mining Software Repositories (MSR), Edinburgh, Scotland,
2004.

[26] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, "Min-
ing Version Histories to Guide Software Changes," IEEE Trans.
Software Eng., vol. 31, pp. 429-445, 2005.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

