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Abstract 

 
We analyze the version history of 7 software sys-

tems to predict the most fault prone entities and files. 
The basic assumption is that faults do not occur in 
isolation, but rather in bursts of several related faults. 
Therefore, we cache locations that are likely to have 
faults: starting from the location of a known (fixed) 
fault, we cache the location itself, any locations 
changed together with the fault, recently added loca-
tions, and recently changed locations. By consulting 
the cache at the moment a fault is fixed, a developer 
can detect likely fault-prone locations. This is useful 
for prioritizing verification and validation resources 
on the most fault prone files or entities. In our evalua-
tion of seven open source projects with more than 
200,000 revisions, the cache selects 10% of the source 
code files; these files account for 73%-95% of faults—
a significant advance beyond the state of the art. 
 
1. Introduction 
Software quality assurance is inherently a resource-
constrained activity. In the majority of software pro-
jects, the time and people available are not sufficient 
to eliminate all faults before a release. Any technique 
that allows software engineers to reliably identify the 
most fault-prone software functions provides several 
benefits. It permits available resources to be focused 
on the functions that have the most faults. Addition-
ally, such a list makes it possible to selectively use 
time intensive techniques, such as software inspec-
tions, formal methods, and various kinds of static code 
analysis.  

Two important qualities of software fault predic-
tion algorithms are accuracy and granularity. The 
accuracy is the degree to which the algorithm cor-
rectly identifies future faults. The granularity specifies 
the locality of the prediction. Typical fault prediction 
granularities are the executable binary [19], a module 
(often a directory of source code) [11], or a source 
code file [21]. For example, a directory level of granu-
larity means that predictions indicate a fault will occur 

somewhere within a directory of source code. The 
most difficult granularity for prediction is the entity 
level (or below), where an “entity” is a function or 
method. 

We have developed an algorithm that, in our ex-
perimental assessment on seven open source projects, 
is 73%-95% accurate at predicting future faults at the 
file level and 46%-72% accurate at the entity level 
with optimal options. This accuracy is better than or 
equivalent to other efforts reported in the literature. 
Moreover, we achieve this accuracy at the entity and 
file level, which permits a more targeted allocation of 
available resources because of the greater locality of 
the predictions. 

Our prediction algorithm is executed over the 
change history of a software project, yielding a small 
subset (usually 10%) of the project’s files or func-
tions/methods that are most fault-prone. The key in-
sight that drives our algorithm is the observation that 
most faults are local. Put another way, faults do not 
occur uniformly in time across the history of a func-
tion; they appear in bursts. Specifically, we believe 
bug occurrences have four different kinds of locality:  
Changed-entity locality. If an entity was changed 

recently, it will tend to introduce faults soon.  
New-entity locality. If an entity has been added re-

cently, it will tend to introduce faults soon. 
Temporal locality. If an entity introduced a fault re-

cently, it will tend to introduce other faults soon. 
Spatial locality. If an entity introduced a fault re-

cently, “nearby” entities (in the sense of logical 
coupling) will also tend to introduce faults soon. 

Following Hassan and Holt [11], we borrow the 
notion of a cache from operating systems research, 
and apply it for the purpose of fault prediction. We 
use the cache as a convenient mechanism for holding 
our current list of the most fault-prone entities, and for 
aggregating multiple heuristics for maintaining the 
cache. The switch to a cache involves a subtle but 
important shift: instead of creating mathematical func-
tions that predict future faults, the cache selects and 
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removes entities based on specific criteria—in our 
case the localities specified above. The ideal is to 
minimize the size of cache while at the same time 
maximizing its accuracy. 

Unlike most existing research on fault prediction 
that approximates faults simply with fixes, we use 
bug-introducing changes. Following the definitions in 
[22], a fix is a modification that repairs a software 
fault; it tells us the location where a bug occurred 
(which lines and files), but not the time when the bug 
was introduced. However, the latter information is 
crucial for the localities that we defined before; for 
instance spatial locality requires the time when a fault 
was introduced to identify nearby entities at that time. 
We get the time information from bug-introducing 
changes, the modifications that create faults. Hence, 
the chronology is bug-introducing change(s), bug re-
port, and finally fix. 
 
BugCache vs. FixCache. This paper describes and 
evaluates algorithms for maintaining a cache based on 
fault localities. There are two variants:  
BugCache updates the cache at the moment a fault is 
missed, that is, not found in the cache. We will use 
BugCache to empirically show the presence of fault 
localities. Since in practice, a change is not known to 
be bug-introducing until the corresponding fix, Bug-
Cache is a theoretical model. 
FixCache shows how to turn localities into a practical 
fault prediction model. In contrast to BugCache, it has 
a delayed update: when a fault is fixed, the algorithm 
traces back to the corresponding bug-introducing 
change, and only then is the cache updated based on 
the bug-introducing localities.  
 
This paper makes the following contributions: 
Empirical evidence of fault localities. Evaluation of 

the BugCache algorithm provides empirical evi-
dence that fault localities actually exist.  

Very accurate fault prediction. By combining a 
cache model with different heuristics for fault pre-
diction, the FixCache algorithm has an accuracy of 
73%-95% using files and 46%-72% using meth-
ods/functions.  

Validation of adaptive fault prediction. FixCache is 
an online learning approach [1], learning from 
cache hits and misses. Thus it can easily adapt when 
a system’s fault distribution changes. FixCache’s 
high accuracy, equivalent in accuracy to the best 
approaches in the literature, with smaller granularity, 
demonstrates the utility of adaptive fault prediction 
algorithms. 

In the remainder of this paper, we discuss fault locali-
ties (Section 2) and then proceed to the caching algo-
rithms (Section 3). We also present details on the data 
collection for our experiments (Section 4). The results 
of experiments on seven projects at the file and entity 
level are presented in two sections: one for empirical 
evidence of localities (BugCache, Section 5) and one 
for predicting future faults (FixCache, Section 6). We 
discuss our results and list threats to validity (Section 
7), before we close the paper with related work and 
consequences (Sections 8 and 9). 
 
2. Bug localities 
Software engineering does not yet have a widely ac-
cepted model for why programmers create software 
faults. Ko et al. [16] summarizes possible causes for 
programming errors, using a model of chains of cogni-
tive breakdowns. (Note that “breakdowns” comes as a 
plural; for many errors, there is more than one cause.)  

Like Ko et al., we also consider cognitive break-
down as the source for faults. In particular, we assume 
that faults do not appear individually, but rather in 
bursts: either in the same entity (temporal locality) or 
nearby entities (spatial locality). Furthermore, we as-
sume any code modification as risky, since the pro-
grammer might suffer a cognitive breakdown 
(changed-entity and new-entity localities). We de-
scribe temporal and spatial locality in more detail be-
low. 

 
2.1. Temporal locality 
The intuition behind temporal locality is that faults are 
not introduced individually and uniformly over time. 
They rather appear in bursts within the same entities. 
In other words, when a fault is introduced to an entity, 
another fault will likely be introduced to the same 
entity soon. An explanation for such bursts that pro-
grammers make their changes based on a poor or in-
correct understanding, thus injecting multiple faults. 

Using temporal locality significantly differs from 
using cumulative numbers of faults (or changes) to 
predict future faults. Accumulated numbers result in 
sluggish predictors that cannot adapt to new fault dis-
tributions. In particular, they would miss entities with 
few, but recent faults. Such entities are more likely 
exposed to new faults than entities with many old 
faults.  

The weighted time damp model by Graves et al. is 
similar in spirit to temporal locality [10]. It more heav-
ily weights recent faults to predict future ones and was 
one of the best models they observed. Compared to 
the math heavy model in [10], temporal locality has a 
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simpler description and relies on bug-introducing 
changes rather than on fixes. 

Temporal locality also guides cache replacement 
strategies for our algorithms. If there were no faults 
for an entity in a long time, it is removed from the 
cache (see Section 3.5). 

 
2.2. Spatial locality 
When programmers make changes based on incorrect 
or incomplete knowledge, they likely cannot assess 
the impact of their modifications as well. Thus, when 
an entity has a fault, there is a good chance of other, 
nearby entities also having faults. But what are nearby 
entities? There are several ways to define distance in 
software. One way is using physical distances among 
entities. In this case, the entities in the same file or 
directory would be nearby entities. Another way is 
using logical coupling among software entities [3, 8]: 
two entities are close to each other (logically coupled) 
when they are frequently changed together. 

We compute the distance between two entities us-
ing logical coupling. If two entities are changed to-
gether many times, we give them a short distance, 
reflecting their logical “closeness”. We compute the 
distance between any two entities e1 and e2 as follows: 

distance(e1,e2) =
1

count({e1,e2})
count({e1,e2}) > 0

∞ otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
where count({e1,e2}) is the number of times e1 and e2 
have been changed together.
 
2.3. Changed-entity and new-entity locality 
Research shows that entities that changed recently are 
more likely to be fault-prone than others. This has 
been leveraged for fault prediction by using code 
churn [19] and the “most recently modified/fixed” 
heuristics [11]. In a similar fashion, new entities are 
more likely to contain faults than existing ones [10]. 
We use these results to define additional localities:  
• An entity that was changed recently likely contains 

a fault (changed-entity locality). 
• An entity that was added to a system recently likely 

contains a fault (new-entity locality). 
These two localities are used to pre-fetch changed and 
added entities into the cache on the assumption they 
will tend to introduce faults soon. 
 
3. Operation of the cache 
Our algorithm maintains a list (cache) of what it has 
chosen as the most fault-prone software entities. The 
cache size can be adjusted based on the resources that 

are available for testing or verification. A typical 
cache size is 10% of the total number of entities, since 
this provides a reasonable tradeoff between size and 
accuracy. Larger cache sizes result in higher hit rates 
(better recall), but with the faults spread out over a 
greater number of entities (lower precision).  
 
3.1. Basic operation 
The basic process of the cache algorithm is as follows: 

Initialization: 
1. Bug fix changes are extracted by mining a pro-

ject’s version archive and bug database.  
2. Bug-introducing changes are identified at the file 

and entity level, using the approach in [22].  
3. Pre-load the cache with the largest entities (LOC) 

in the initial project revision, creating the initial 
state of the cache. (Optional) 

Cache operation: 
4. BugCache: If revision n introduces a fault in an 

entity, the cache is probed to see if it is present. If 
yes, count a hit, otherwise a miss. 
FixCache: If revision n fixes a fault in an entity, 
probe the cache to see whether the corresponding 
entity is present. If yes, count a hit, otherwise a 
miss. 

5. If a fault is missed, determine the bug-introducing 
change and fetch the entity (temporal locality) as 
well as nearby entities (spatial locality) into the 
cache for use in future fault predictions starting at 
revision n+1. The algorithm only uses localities at 
the time a fault was introduced, i.e., the revision 
of the bug-introducing change. 
Parameter: Block size (see Section 3.3) 

6. Also at revision n, pre-fetch entities that have 
been created (new-entity locality) and modified 
(changed-entity locality) since revision n-1.  
Parameter: Pre-fetch size (see Section 3.4) 

7. Since the size of the cache is fixed, we have to 
remove entities, which are selected using a cache 
replacement policy such as least recently used.  
Parameter: Replacement policy (see Section 3.5) 

8. Iterate over steps 4-7 to cover the existing change 
and bug history.  

Finally, the hit rate is computed by: 

hit rate =
# of hit

# of hit+# of miss
 

A hit rate close to 1 means, for BugCache, that the 
localities described the fault distribution accurately 
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over time and, for FixCache, that it predicted most 
future faults. 

This approach is similar to on-line machine learn-
ing algorithms [1] in that our algorithm learns from 
the fault distributions (hits and misses) and quickly 
updates the prediction model (cache). 

 
3.2. Bug cache vs. Fix cache 
There are two variants of the caching algorithm. 

BugCache updates the cache at the moment when a 
fault, in the form of a bug-introducing change, is 
missed. However, in practice a change is not known to 
be bug-introducing until it is fixed. This means that 
the BugCache needs to know the nature of a change in 
advance, and hence it is a tool to empirically show the 
presence of fault localities rather than a deployable 
fault prediction algorithm. 

In contrast, FixCache shows how to turn localities 
into a practical fault prediction model that can be used 
in any software project. FixCache does not update 
when a fault (bug-introducing change) is missed—it 
waits until the fix. In other words it has a delayed up-
date: when a fault is fixed, the cache is updated based 
on the localities that existed when the fault was intro-
duced. The hit rates for FixCache are computed at the 
time of the fix, the last moment when the fault was 
still alive. 

The difference between BugCache and FixCache is 
sketched in Figure 1. BugCache computes hit rates 
and updates the cache when a fault is introduced tbug; 
FixCache waits until a fault is fixed (tfix). Both use the 
localities at the time the fault was introduced (tbug). 
 
3.3. Cache update 
When we miss a fault in an entity, our cache algorithm 
loads nearby entities (spatial locality). We adapt the 
notion of block size from cache terminology to de-

scribe the upper bounds on how many entities are 
loaded. A block size of b indicates that we load the b-
1 closest entities (i.e., the ones with the shortest dis-
tance) along with the faulty entity itself. In our analy-
sis, we investigate the effect of different block sizes. 
 
3.4. Pre-fetches 
We use pre-fetching techniques to improve the hit rate 
of the bug cache. Pre-fetching means that we load 
entities for which we have not yet encountered a fault. 
Our motivation is as follows: assume we would load 
entities only when we encounter a fault (or a fix in 
case of FixCache). As a consequence, we would have 
inevitable misses since we start with an empty cache. 
Additionally, it would be impossible to predict faults 
for entities that have exactly one fault in their lifetime 
(this fault is a mandatory miss). In order to reduce the 
miss count, we pre-fetch potential fault-prone entities 
in advance by using the algorithms described below. 

Initial pre-fetch. Initially the cache is empty, and in 
the absence of pre-fetching, this would lead to many 
misses. We avoid this and initialize the cache with 
entities likely to have faults as predicted by greatest 
lines of code (LOC). The relation between faults and 
LOC has been revealed in several studies so far [10, 
21]. 

Per-revision pre-fetch. We pre-fetch entities that 
were modified or created between two revisions (new-
entity and changed-entity locality). We start with the 
entities that have the highest number of LOC. Addi-
tionally, we unload entities that were deleted. The pre-
fetch size parameter controls the maximum number 
pre-fetches per revision. 
 
3.5. Cache replacement policies 
When the cache is full, our algorithm has to unload 
entities before it can load new ones. Ideally, we would 
keep the entities with greatest potential for new faults. 
A replacement policy describes which entities to 
unload first. In operating systems a frequently used 
policy is least recently used (LRU), which first re-
places the element used the longest time ago. We de-
veloped LRU-like policies for our fault-caching algo-
rithms. Specifically, we used the observation that enti-
ties with many changes or prior faults are likely to 

Table 1. Cache replacement policies. 

Id Last found 
fault/hit (ago) 

Cumulative 
changes 

Cumulative 
faults 

1 1 day 30 1 
2 10 days 20 5 
3 9 days 10 7 
4 2 days 5 4 

tbug

BugCache

1. Check:
    in cache?

2. If miss, update 
with localities

tbug

FixCache

1. Check:
    in cache?

3. If miss, update 
with localities at tbug

tfix

2. Identify bug-introducing change

Figure 1. BugCache vs. FixCache 
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have further faults [10, 11, 21] to create weighted 
LRU algorithms based on previous changes and faults. 

Least recently used (LRU). This algorithm unloads 
the entity that has the least recently found fault (hit). 
Consider a cache with the entities shown in Table 1. 
Based on the classical LRU algorithm, Entity 2 would 
be unloaded, since it is the least recently used entity.  

LRU weighted by number of changes (CHANGE). 
When an entity has changed many times in the past, it 
is more likely to have faults in the future [10]. We 
want to keep such entities in the cache as long as pos-
sible. Consequently, we unload the entity with the 
least number of changes. According to this policy, 
Entity 4 in Table 1 would be unloaded.  

LRU weighted by number of previous faults (BUG). 
This policy is similar to the change-weighted LRU. It 
removes the entity with the least number of observed 
faults. The intuition here is that when an entity has 
had many faults, it will likely continue to have faults. 
With this policy, Entity 1 in Table 1 would be 
unloaded. 
 
4. Data collection and fact extraction 
Data used in the evaluation of the BugCache and Fix-
Cache was collected using the Kenyon infrastructure 
[4] (Apache 1.3, JEdit, Subversion, and PostgreSQL) 
and APFEL [6] (Columba, Eclipse, and Mozilla). 
Analyzed open source projects are shown in Error! 
Reference source not found.. Details of the data col-
lection process are described below.  
 
4.1. Transaction recovery 
In order to measure the impact of co-change for spa-
tial locality, we need transactions that alter the entire 
product rather than just single files. In Subversion [2], 
such transactions are directly available. CVS, however, 
provides only versioning at file level, disregarding co-
change information between files. To recover per-
product transactions from CVS archives, we group the 

individual per-file changes using a sliding window 
approach [25]: two subsequent changes by the same 
author and with the same log message are part of one 
transaction if they are at most 200 seconds apart. 
 
4.2. Finding fixes and bug-introducing changes 
In order to find bug-introducing changes, bug fixes 
must first be identified by mining change log mes-
sages. We use two approaches: searching for key-
words such as "Fixed" or "Bug" [17] and searching for 
references to bug reports like “#42233” [5, 7, 22]. 
This allows us to identify whether an entire transac-
tion contains a bug fix. If it does, we then need to 
identify the specific file change that introduced the 
bug. 

Once we know that a transaction contains a fix, we 
first list files changed in the transaction and then use 
the annotation features of CVS and Subversion to 
identify bug-introducing changes [22]. In the example 
below revision 1.42 fixes a fault in line 36. This line 
was introduced in revision 1.23 (when it was line 15). 
Thus revision 1.23 contains a bug-introducing change. 

 

1.23: Bug-introducing 1.42: Fix  
 …  … 

15: If (foo==null) { 36: if (foo!=null) { 
16:     foo.bar(); 37:     foo.bar(); 

 …  … 
 

Additionally, bug databases are used (if available) to 
eliminate false positives. For example, bug-
introducing changes that were made after the bug was 
reported cannot be bug-introducing changes for that 
particular bug. More details on how to locate bug-
introducing changes are presented in previous work, 
including techniques that reduce the number of false 
positives [15, 22]. 
 

Table 1. Analyzed open source projects. The period shows the analyzed project timespan. The number of revisions 
indicates the num ber of revisions we extracted. The num ber of entities indicates number of functions or methods in the last
revision. The number of bugs indicates the number of bug-introducing changes we extracted by mining the change logs and
change histories of each project. For the Eclipse project we use only the core.jdt module due to the large size of the entire project. 
Similarly, we use only the mozilla/content/ module for the Mozilla project. 

     Number of 
Project Lang. Software type SCM Period Revisions Entities Files Bugs 

Apache HTTP 1.3 C HTTP server Subversion 01/1996 ~ 07/2005 7,747 2,113 154 1,954
Subversion  C SCM software Subversion 08/2001 ~ 07/2005 6,029 3,693 255 1,566
PostgreSQL C DBMS CVS 04/1996 ~ 08/2005 14,650 8659 598 19,902
Mozilla C/C++ Web browser CVS 03/1998 ~ 01/2005 109,636 8203 396 52,265
JEdit Java Editor CVS 09/2001 ~ 06/2005 1,386 5429 420 3,060
Columba Java Mail Client CVS 11/2002 ~ 07/2005 2,848 8428 1428 720
Eclipse Java IDE CVS 04/2001 ~ 01/ 2005 78,948 33214 3330 15,217
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4.3. Fine-grained changes 
In addition to bug-introducing changes, we need a list 
of co-changed entities for computing spatial locality. 
From CVS and Subversion we get a list of co-changed 
files. For method co-changes we perform an additional 
analysis. First, compute a text diff between revisions. 
From this diff, determine modified line numbers, 
which are then mapped to the surrounding methods. 
This approach is described in detail in [25]. Similarly, 
we obtain the methods that were added or deleted be-
tween revisions (needed for pre-fetching new entities 
and removing deleted ones). 
5. Bug Cache Evaluation  
The BugCache algorithm has multiple parameters that 
can be modified, all of which affect its hit rate. It is 
possible to modify the cache size, block size, pre-fetch 
size, and cache replacement policy. To determine 
which combination of parameters yields the highest hit 
rate, we literally tried them all. We performed a brute 
force cache analysis that iterated through multiple 
option combinations, and compared the results to rea-
son about fault localities (Section 5.1). We also meas-
ured the impact of cache replacement policies (Section 

5.2) and the relative contributions of each fault local-
ity (Section 5.3). 
 
5.1. Hit rates 
The first experiment used constant cache options: a 
cache size of 10%, block size of 5%, and a pre-fetch 
size of 1% of the total number of elements (depending 
on the granularity, either files or entities). For example 
for Subversion with 3,693 functions, the cache size is 
369, block size is 184, and pre-fetch size is 36. Fig-
ures 2 and 3 show the hit rates at the file and entity 
(method/function) level. The file level hit rates are 
57%-93%, and entity level hit rates are 28%-68% de-
pending on the cache replacement policy. These re-
sults provide initial empirical evidence for the pres-
ence of fault localities, especially at the file level. 

The BugCache hit rates describe how well it mod-
els the fault distribution within a project. In order to 
obtain the optimal “fit”, we identified the options that 
describe the fault distribution most accurately by run-
ning a brute force analysis. The cache size was fixed 
at 10% of the total number of entities or files. Then we 
changed the block size, pre-fetch sizes, and cache re-
placement policy, and observed the resulting hit rate. 
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Block sizes and pre-fetch sizes were varied from 0 to 
100% of the cache size with a step of 5%.  

The best option combinations for each project and 
the resulting hit rates are shown in Figures 4 (file 
level) and 5 (entity level). At the file level, all projects 
have a pre-fetch size of 0. This indicates that changed 
and new-entity localities are not very common at the 
file level. This changes when the granularity is func-
tions/methods: except for Eclipse, all projects show 
empirical evidence for changed and new-entity locali-
ties.  

The projects also differ in the block size: while 
JEdit has a block size of one method, Columba has a 
block size of 841 methods. Having a small block size 
indicates that temporal locality dominates over spatial 
locality (not many nearby entities have to be loaded 
and most errors are local). Having a big block size 
means that some events in the history changed the 
fault distribution dramatically, causing most of the 
cache to be replaced in one operation. However, such 
events are the exception; typically only a small part of 
the cache is replaced. Recall that block size is the 
maximum number of elements to be replaced, not the 
average number. 

An important implication of these results is that 
fault distributions vary across projects and thus fault 
prediction algorithms need to be adapted to a specific 
project [20]. 
 
5.2. Cache Replacement Policy 
We implemented three cache replacement policies 
(LRU, BUG, and CHANGE) to unload elements from 
the cache. To see which algorithm works best for a 
given set of cache parameters, we performed an ex-
periment using the same values for the cache size, 
block size, and pre-fetch size, varying only the cache 
replacement policy.  

Figures 2 and 3 show the resulting hit rates. At the 
file level, the LRU policy has the best results for 4 out 
of the 7 projects, with BUG having the best results for 
the remaining 3. At the function/method level, BUG 
has the best results for all projects, except for Mozilla 
(LRU). Interestingly, the CHANGE policy works 
poorly at both granularities. This is somewhat contrary 
to the results of Hassan and Holt [11], where the most-
frequently-modified heuristic was one of the best fault 
predictors. 
 
5.3. Bug Localities 
BugCache combines four fault localities for its model. 
But are the contributions of the localities the same? To 
measure the relative predictive strength of each local-
ity, each entity was marked with the reason (initial 

prefetch, or kind of locality) that caused it to be 
loaded. Figure 6 shows for the Apache 1.3 project the 
ratio of reasons why hit entities were loaded into the 
cache. The results show that faults have strong tempo-
ral (59%) and spatial (18%) locality, and weak 
changed entity (4%) and new entity (1%) locality. The 
initial pre-fetch is surprisingly effective, accounting 
for 18% of the total hits. 

One possible explanation for these results is that 
faults indeed occur in bursts, in most cases locally 
within one single entity. However, there are enough 
cases where errors affect multiple entities, and hence 
spatial locality succeeds in predicting them. When no 
data is available, code complexity (as represented by 
LOC) acts as a strong predictor of faults. Changed and 
new-entity locality predicted only small portions of 
faults. 
 
6. Fix Cache Evaluation 
The previous section provided empirical evidence for 
the presence of fault localities in software projects. 
But how can we leverage fault localities for predic-
tion?  

A typical application of the FixCache prediction 
algorithm is as follows: Whenever a fault is found and 
fixed, our algorithm automatically identifies the 
change to the original code that introduced the fault. 
Then it updates the cache using the localities from the 
moment this bug-introducing change was applied. A 
manager then can use the list for quality assurance—
for example, she can test or review the entities in the 
bug cache with increased priority. Developers can also 
directly benefit from FixCache. If a developer is 
working on entities in the cache, he can be made 
aware that he is working on a potentially instable or 
fault-prone part of the software. 

While faults can only become part of the cache as 
soon as they are fixed, the cache still contains suspi-
cious locations based on recent changes. In particular, 
the cache would also direct resources to newly added 

Changed entity 
locality

4% Spatial locality
18%

Temporal 
locality

59%

New entity 
locality

1%

Initial prefetch
18%

 
Figure 6. Contribution of initial pre-fetch and 
fault localities on method level for Apache 1.3.
Cache size is 211, block size is 127, pre-fetch size is 
24, replacement policy is BUG. The hit rate is 59.6%.
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or changed locations. All in all, we expect that a cache 
will help directing efforts to those entities, which are 
most likely to contain errors—thus FixCache can as-
sist in increasing quality and reducing effort. 
 
6.1. Evaluation 
We performed the FixCache analysis over the same 
set of seven projects and again selected the best cache 
parameters for each project with brute force. The 
cache size was set to 10% of files or entities respec-
tively.  

Figure 7 compares the results of FixCache to the 
ones of BugCache for files. For most projects there 
seems to be a small drop in accuracy (2-4%). Figure 8 
shows the comparison for entities. Except for Subver-
sion, the results stay the same or improve. These re-
sults indicate that fault localities and the FixCache 
algorithm can predict future faults. 

In summary, the hit rates (predictive accuracy) are 
73-95% at the file level, with typical performance in 
the low to mid 80s. The most directly comparable 
work is by Hassan and Holt [11], which also uses a 
caching approach, but at the module level. For a cache 
size of 10% of all modules, their hit rates vary from 
45%-82%. The hit rates we observed for FixCache are 
better and more fine-grained, which is typically harder 
to predict. Ostrand et al. [21] predicted fault density of 
files using negative binomial linear regression. Using 
this method and they selected 20% of all files, which 
predicted 71-93% of future faults. FixCache achieves 
a comparable accuracy, but with only 10% of files, 
twice the precision.  

On entity level we used again a cache size of 10, 
with the cache holding 10% of all project entities. For 
FixCache the best hit rates range from 46-72% (see 
Figure 8). As expected, predicting bugs at the fine-
grained entity level is more difficult than predicting 
bugs at coarser granularity.  
 
6.2. Discussion 
Why does the cache model have better predictive ac-
curacy than previous prediction models? Most models 
found in the literature use fault correlated factors and 
develop a model to predict future faults. Once devel-
oped, the model is static, and incorporates all previous 
history and factors. In contrast, the cache model is 
dynamic and is able to adapt more quickly to new fault 
distributions, since fault occurrences directly affect 
the model. This approach is similar to on-line machine 
learning algorithms [1] in that the cache learns from 
the fault distributions of each project. Even though 
projects have different fault distributions, the cache 
model adaptively learns from hits and misses to up-

date its prediction model. This adaptation approach 
results in better predictive power. 

The selection of cache options and replacement 
policies affects the hit rate. The options vary across 
projects due to differing fault and change distributions. 
We observed the following rules of thumb: 7-15% of 
the total number of files/entities is a good cache size. 
For entities, we suggest a block size of 30-50% and a 
pre-fetch size of 10-30% of the cache size. The BUG 
cache replacement policy works for most cases. How-
ever, cache options should be periodically optimized 
by brute force analysis on past predictions. We are 
currently working on building such self-configuring 
caches. 
 
7. Threats to Validity 
We identify the following threats to validity. 

Systems examined might not be representative. 
Seven systems were examined in this paper, more than 
any other work reported in the literature. In spite of 
this, it is still possible that we accidentally chose sys-
tems that have better (or worse) than average cache hit 
rates. Since we intentionally chose systems for which 
we could identify fixes based on the change descrip-
tion log (required for determination of bug-
introducing changes), we might have a project selec-
tion bias.  

Systems are all open source. All systems examined 
in this paper are developed as open source. Hence 
they might not be representative of closed-source de-
velopment since different development processes 
could lead to different fault localities. Despite being 
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open source, several of the analyzed projects have 
substantial industrial participation. 

Fault and fix data is incomplete. Even though we 
selected projects with a high quality of historic data, 
we still can only extract a subset of all faults (typically 
40%-60% of those reported in bug tracking systems). 
However, we are confident that the hit rate improves 
with the quality of the dataset.  

Entities change their names. Entities are identified 
by file name, function name, and signature. As a con-
sequence an entity’s history is lost when it is renamed. 
To some extent, this effect is weakened by the new-
entity pre-fetch since renaming entities is captured as 
simultaneous deletion and addition. Origin analysis 
can recognize when elements change their names [9, 
14, 24]. In future work, we will investigate whether 
adopting origin analysis increases the hit rate. 
 
8. Related Work 
Previous work on fault prediction falls into one of the 
following categories: identifying problematic entities, 
usually modules, with software quality metrics [11, 12, 
13, 21] and predicting fault density of entities using  
software change history [10, 19]. 
 
8.1. Identifying problematic entities 
Hassan and Holt proposed a caching algorithm for 
fault-prone modules, called the top-ten list [11]. They 
used four factors separately: modules that were most 
frequently modified, most recently modified, most 
frequently fixed, and most recently fixed. Like our 
cache, their top-ten list is dynamically maintained, i.e., 
changes over time. However, our approach combines 
all four factors to derive synergy. Additionally, we use 
spatial locality (logical coupling) as a predictor, which 
boosts the performance of our approach. Furthermore 
Hassan and Holt predicted at the module level of 
granularity, where a module is a collection of files. In 
contrast, we predict for individual files and methods, 
which is of greater benefit for developers and testers.  

Ostrand et al. predicted fault density of files with a 
negative binomial linear regression model [21]. With 
their model, they selected 20% of all files as the most 
problematic ones in a project. This list predicted 71-
93% of future faults. This compares most directly to 
Figure 7, where we predict 73-95% of future faults, 
but with greater precision (10% vs. 20% of all files).  

Khoshgoftaar and Allen proposed stepwise multi-
ple regression on software complexity metrics such as 
LOC and cyclomatic complexity to predict future fault 
density [12, 13]. Their top 10% of modules identified 
64% and the top 20% identified 82% of all faults. 
Since they rely on complexity metrics (and fixing a 

fault does not change them much), their predictions 
tend to be static over time and do not easily adapt to 
new fault densities.  
 
8.2. Predicting fault density 
Graves et al. assumed that modules that were changed 
recently are more fault-prone than modules that were 
changed a long time ago [10]. They built a weighted 
time damp model to predict faults from changes over 
where recent changes are weighted over older ones. 
This model improved predictive accuracy substantially, 
which provides additional empirical evidence for the 
locality of faults.  

Mockus et al. identified properties of changes, 
such as number of changed subsystems, number of 
changed lines, whether the change is a fix [18]. They 
used these properties to predict the risk of changes 
with logistic regression. The most significant factor 
was whether the change is a fix, meaning that fixes are 
more risky than other changes. To some extent this is 
similar to our temporal fault locality.  

Śliwerski et al. computed the risk of code locations 
by the percentage of bug-introducing changes [23]. 
However, they did not evaluate whether past risk pre-
dicts future risk. Additionally, their risk concept is 
static and does not adapt to new change information. 

Nagappan et al. observed that relative code churn 
measures such as changed-LOC/LOC predict future 
faults better than absolute code churn measures such 
as changed-LOC [19]. Nagappan et al. studied Win-
dows binaries, i.e., components. Hence it is unclear 
how well their approach works at more fine-grained 
levels. Our cache algorithms use absolute measures. 
However, relative measures are intriguing, and we 
will explore their application to caching in the future. 
 
9. Conclusions and future work 
If we know that a fault has occurred, it is useful to 
search its vicinity for further faults. Our FixCache 
model predicts these further faults with high accuracy: 
At the file level, it can cover about 73-95% of future 
faults; at the function/method level, it covers 46-72% 
of future faults—with a cache size of only 10%. This 
is a significantly better accuracy and lower granularity 
than found in the previous state of the art. The cache 
can serve as a priority list to test and inspect software 
whenever resources are limited (i.e., always). 

The FixCache is able to adapt more quickly to re-
cent software change history data, since the fault oc-
currences directly affect the model. This is another 
significant advantage over static models, which con-
stitute the state of the art. We are the first to use spa-
tial locality as a bug predictor, and the combination of 
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four locality concepts again shows significant advan-
tages. 

Even so, we still see room for improvement. Our 
future work will concentrate on the following topics. 
• In our study, option combinations for each project 

vary due to the various fault or change distribu-
tions of different projects. We are currently inves-
tigating self-adaptive cache algorithms that will 
learn from hits/misses and change cache options 
for the next prediction. 

• We showed that different levels of software 
granularity result in different hit rates. We can de-
sign hierarchical caches that simultaneously fetch 
entities at different granularities such as modules, 
files, and methods.  

• Finally, we are currently working on integrating 
FixCache into history-aware programming tools 
such as eROSE [26]. This way, whenever a fault 
is fixed, the tool can automatically suggest further 
locations to be examined for related faults. 

Overall, we expect that future approaches will see 
software history not only as a series of revisions and 
changes, but also as a series of successes and fail-
ures—and as a source for continuous awareness and 
improvement. The FixCache is a first step in this di-
rection. 
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