
Refactoring Sequential Java Code for Concurrency via Concurrent Libraries

Danny Dig, John Marrero, Michael D. Ernst
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
{dannydig,marrero,mernst}@csail.mit.edu

Abstract

Parallelizing existing sequential programs to run ef-
ficiently on multicores is hard. The Java 5 package
java.util.concurrent (j.u.c.) supports writing con-
current programs: much of the complexity of writing
threads-safe and scalable programs is hidden in the library.
To use this package, programmers still need to reengineer
existing code. This istediousbecause it requires chang-
ing many lines of code, iserror-pronebecause programmers
can use the wrong APIs, and isomission-pronebecause pro-
grammers can miss opportunities to use the enhanced APIs.

This paper presents our tool,CONCURRENCER, which en-
ables programmers to refactor sequential code into par-
allel code that usesj.u.c. concurrent utilities. CONCUR-

RENCER does not require any program annotations, although
the transformations are very involved: they span multi-
ple program statements and use custom program analysis.
A find-and-replace tool can not perform such transforma-
tions. Empirical evaluation shows thatCONCURRENCERrefac-
tors code effectively:CONCURRENCER correctly identifies and
applies transformations that some open-source developers
overlooked, and the converted code exhibits good speedup.

1 Introduction

Users expect that each new generation of computers runs
their programs faster than the previous generation. The
computing hardware industry’s shift to multicore processors
demands that programmers find and exploit parallelism in
their programs, if they want to reap the same performance
benefits as in the past.

In the multicore era, a major programming task is to
retrofit parallelism into existing sequential programs. Itis
arguably easier to design a program with concurrency in
mind than to retrofit concurrency later [8, 12]. However,
most desktop programs were not designed to be concurrent,
so programmers have to refactor existing sequential pro-
grams for concurrency. It is easier to retrofit concurrency

than to rewrite, and this is often possible.
The dominant paradigm for concurrency in desktop pro-

grams is multithreaded programs where shared-memory ac-
cesses are protected with locks. However, programming
with locks is very error-prone: too many locks can greatly
slow down or even deadlock an application, while too few
locks result in data races.

Java 5’sjava.util.concurrent (j.u.c.) pack-
age supports writing concurrent programs. ItsAtomic*
classes offer thread-safe, lock-free programming over sin-
gle variables. Its thread-safe abstract data types (e.g.,
ConcurrentHashMap) are optimized for scalability.

Java 7 will contain a frameworkFork/Join Task

(FJTask) [7, 10] for fine-grained parallelism. Many
computationally-intensive problems take the form of recur-
sivedivide-and-conquer. Classic examples include sorting
(mergesort, quicksort), searching, and many data structure
or image processing algorithms. Divide-and-conquer algo-
rithms are good candidates for parallelization since the sub-
problems can be solved in parallel.

However, in order to benefit from Java’s concurrent utili-
ties and frameworks, the Java programmer needs to refactor
existing code. This istediousbecause it requires chang-
ing many lines of code. For example, the developers of
six widely used open-source projects changed 1019 lines
when converting to use thej.u.c utilities. Second, man-
ual refactoring iserror-pronebecause the programmer can
choose the wrong APIs among slightly similar APIs. In
the above-mentioned projects, the programmers four times
mistakenly usedgetAndIncrement API methods instead
of incrementAndGet, which can result in off-by-one val-
ues. Third, manual refactoring isomission-pronebecause
the programmer can miss opportunities to use the new, more
efficient API methods. In the same projects, programmers
missed 41 such opportunities.

This paper presents our approach for incrementally
retrofitting parallelism through a series of behavior-
preserving program transformations, namely refactorings.
Our tool, CONCURRENCER, enables Java programmers to
quickly and safely refactor their sequential programs to use



j.u.c. utilities. Currently, CONCURRENCER supports three
refactorings: (i)CONVERT INT TO ATOMICINTEGER, (ii) CONVERT

HASHMAP TO CONCURRENTHASHMAP, and (iii) CONVERT RECURSION TO

FJTASK. We previously cataloged [4] the transformations that
open-source developers used to parallelize five projects. We
found that the first two refactorings were among the most
commonly used in practice.

The first refactoring,CONVERT INT TO ATOMICINTEGER, en-
ables a programmer to convert anint field to an
AtomicInteger, a utility class that encapsulates anint
value. The encapsulated field can be safely accessed from
multiple threads, without requiring any synchronization
code. Our refactoring replaces all field accesses with calls
to AtomicInteger’s thread-safe APIs. For example, it
replaces expressionf = f + 3 with f.addAndGet(3)

which executes atomically.
The second refactoring,CONVERT HASHMAP TO CONCURREN-

THASHMAP, enables a programmer to convert aHashMap
field to ConcurrentHashMap, a thread-safe, highly scal-
able implementation for hash maps. Our refactoring re-
places map updates with calls to the APIs provided by
ConcurrentHashMap. For example, a common update
operation is (i) check whether a map contains a certain
key, (ii) if not present, create the value object, and (iii)
place the value in the map.CONCURRENCER replaces such
an updating pattern with a call toConcurrentHashMap’s
putIfAbsent whichatomicallyexecutes the update, with-
out locking the entire map. The alternative is for program-
mer to place a lock around the updating code, but this is
error-prone and the map’s lock degrades the map’s perfor-
mance under heavy lock-contention.

The third refactoring,CONVERT RECURSION TOFJTASK, enables
a programmer to convert a sequential divide-and-conquer
algorithm to a parallel algorithm. The parallel algorithm
solves the subproblems in parallel using theFJTask frame-
work. Using the skeleton of the sequential algorithm,CON-

CURRENCER extracts the sequential computation into tasks
which run in parallel and dispatches these tasks to the
FJTask framework.

Typically a user would first make a program thread-safe,
i.e., the program has the same semantics as the sequen-
tial program even when executed under multiple threads,
and then make the program run concurrently under multi-
ple threads.CONCURRENCER supports both kinds of refactor-
ings: the first two refactorings are “enabling transforma-
tions”: they make a program thread-safe. The third refac-
toring makes a sequential program run concurrently.

The transformations performed by these refactorings are
involved: they require matching certain code patterns which
can span several non-adjacent program statements, and they
require program analysis which uses data-flow information.
Such transformations can not be safely executed by a find-
and-replace tool.

This paper makes the following contributions:

• Approach. We present an approach for retrofitting
parallelism into sequential applications through auto-
mated, but human-initiated, program transformations.
Since the programmer is expert in the problem domain,
she is the one most qualified to choose the code and the
program transformation for parallelizing the code.

• Tool. We implemented three transformations for using
thread-safe, highly scalable concurrent utilities and
frameworks. Our tool,CONCURRENCER, is conveniently
integrated within Eclipse’s refactoring engine.CONCUR-

RENCER can be downloaded from:
http://refactoring.info/tools/Concurrencer

• Empirical Results. We usedCONCURRENCER to refac-
tor the same code that the open-source developers of
6 popular projects converted toAtomicInteger and
ConcurrentHashMap. By comparing the manually
vs. automatically refactored output, we found thatCON-

CURRENCER applied all the transformations that the de-
velopers applied. Even more,CONCURRENCER avoided
the errors which the open-source developercommitted,
andCONCURRENCERidentified and applied some transfor-
mations that the open-source developersomitted. We
also usedCONCURRENCER to parallelize several divide-
and-conquer algorithms. The parallelized algorithms
perform well and exhibit good speedup. These experi-
ences show thatCONCURRENCERis useful.

2 Convert Int to AtomicInteger

2.1 AtomicInteger in Java

The Java 5 class library offers a packagej.u.c.atomic

that supportslock-freeprogramming onsinglevariables.
The package contains wrapper classes over primitive

variables, for example, anAtomicInteger wraps anint
value. The main advantage is that update operations execute
atomically, without blocking. Internally,AtomicInteger
employs efficient machine-level atomic instructions like
Compare-and-Swapthat are available on contemporary pro-
cessors. UsingAtomicInteger, the programmer gets both
thread-safety(built-in the Atomic classes) andscalabil-
ity (the lock-free updates eliminate lock-contention under
heavy accesses [8]).

2.2 Code Transformations

A programmer who wanted to useCONCURRENCERto make
all accesses to anint thread-safe would start by selecting
the field and invoking theCONVERT INT TO ATOMICINTEGER refac-
toring. CONCURRENCERchanges the declaration type of theint

2



Figure 1. Using CONCURRENCERto convert an int

to AtomicInteger in Apache Tomcat. Left/right
shows code before/after refactoring.

field toAtomicInteger and replaces all field updates with
their equivalent atomic API methods inAtomicInteger.

Figure 1 shows howCONCURRENCER refactors some code
from Apache Tomcat. We use this example to illustrate var-
ious code changes.

Initialization. Because the refactoredvalue field is an
AtomicInteger object, CONCURRENCER initializes it in the
field initializer (otherwise aNullPointerException is
thrown the first time that a method is invoked onvalue).
CONCURRENCERuses the field initializer expression or the im-
plicit expression ‘0’.

Read/Write Accesses. CONCURRENCER replaces read ac-
cess (e.g., in methodgetCounter()) with a call to
AtomicInteger’s get(). This has the same typeint
as the expression being replaced, so clients are unaffected.
Since the mutableAtomicInteger does not escape its con-
taining classCounter, a client can mutate the field only
through theCounter’s methods.

CONCURRENCER replaces write accesses (e.g., in method
setCounter) with a call toAtomicInteger’s set().

Update Expressions. There are three kinds of update
expressions: infix (e.g.,f = f + 2), prefix (e.g.,++f),
and postfix (e.g.,f++). CONCURRENCER rewrites an infix up-
date expression using a call to the atomicaddAndGet(int

delta).
CONCURRENCER rewrites a prefix update expression

with a call to the atomicincrementAndGet() (e.g.,
methodinc() in Fig. 1). It rewrites a postfix expres-
sion with a call to the atomicgetAndIncrement().
CONCURRENCERsimilarly rewrites the decrement expressions.

AtomicInteger only provides APIs for replacing in-
fix expressions involving the+ operator. CONCURRENCER

converts an infix expressions that use the- operator to
an addition expression (e.g., it convertsf = f - 5 to
f.addAndGet(-5)). If AtomicInteger had methods

divideAndGet or multiplyAndGet, then CONCURRENCER

could use them. In such cases,CONCURRENCERwarns the user
that the update expression cannot be made thread-safe, other
than by using locks.

Synchronization. CONCURRENCERconverts both a sequen-
tial program into one which is thread-safe, and also an
already-concurrent program into one which is *more* con-
current. If the original code containssynchronized ac-
cesses to theint field, CONCURRENCER tries to remove the
synchronization since this becomes superfluous after the
conversion toAtomicInteger (thread-safety is built-in the
AtomicInteger). CONCURRENCERonly removes the synchro-
nization if the code after refactoring contains exactly one
call to the atomic APIs. Otherwise, a context switch can
still occur between two consecutive calls to atomic APIs,
For example,CONCURRENCERremoves the synchronization in
the code fragment below:

synchronized(lock){
value = value + 3;

}

but does not remove synchronization for the code frag-
ment below:

synchronized(lock){
value = value + 3;
..............
value ++;

}

Similarly, CONCURRENCER only removes the synchroniza-
tion if the synchronized block contains updates to one sin-
gle field. Since theAtomicInteger ensures thread-safety
for only one single field, it is of no help in cases when the
program needs to maintain an invariant over multiple fields.
For example aValueRange object needs to ensure that its
max int field is always greater than itsmin int field. To han-
dle this,CONCURRENCERwould need multivariable thread-safe
container classes, currently not provided byj.u.c.

3 Convert HashMap to Concurren-
tHashMap

3.1 ConcurrentHashMap in Java

Thej.u.c. package contains several concurrent collec-
tion classes.ConcurrentHashMap is a thread-safe imple-
mentation ofHashMap.

Before the introduction of j.u.c., a program-
mer could create a thread-safeHashMap using
a synchronized wrapper over aHashMap (e.g.,
Collections.synchronizedMap(aMap)). The syn-
chronizedHashMap achieves its thread-safety by protecting
all accesses to themap with a commonlock. This results
in poor concurrency when multiple threads contend for the
lock.

3



ConcurrentHashMap uses a more scalable locking
strategy.All readers run concurrently, andlock-stripingal-
lows alimited number of writers to update the map concur-
rently. The implementation usesN locks (the default value
is 16), each of them guarding a part of the hash buckets. As-
suming that the hash function spreads the values well, and
that keys are accessed randomly, this reduces the contention
for any given lock by a factor ofN.

ConcurrentHashMap implements the Map inter-
face, therefore it includes the API methods offered
by HashMap. In addition, it contains three new
APIs putIfAbsent(key, value), replace(key,

oldValue, newValue), and a conditionalremove(key,
value). Each of these new APIs:

• supersedes several calls toMap operations, and

• executes atomically.

For exampleputIfAbsent (i) checks whether the map
contains a givenkey, and (ii) if absent, inserts the
〈key, value〉 entry.

Replacing a synchronized HashMap with
ConcurrentHashMap offers dramatic scalability im-
provements [8].

3.2 Code Transformations

A programmer who wanted to useCONCURRENCERto make
all accesses to anHashMap thread-safe would start by se-
lecting the field and invoking theCONVERT HASHMAP TO CONCUR-

RENTHASHMAP refactoring.
Initialization and Accesses. CONCURRENCER changes the

declaration and the initialization of the field. Because
HashMap andConcurrentHashMap implement the same
interface (Map), initialization and map accesses remain
largely the same.

Map Updates. CONCURRENCER detects update code
patterns and replaces them with the appropriate
ConcurrentHashMap API method.

The patterns have a similar structure: (i) check whether
the map contains a certain key, and (ii) depending on the re-
sult, invoke one ofput(key, value) or remove(key).
This structure can have small variations. For instance, the
check can invokecontainsKey, get, or an equality check
usingget. A temporary variable might hold the result of
the check (like in Fig. 2).CONCURRENCERhandles all combi-
nations among these map update variations. Although these
are the most common variations we have seen in real code,
there might be other variations. Failing to convert those up-
dates does not break user code; it only misses the opportu-
nity to eliminate synchronization.

Fig. 2 illustrates one of the simplest transformations for
usingputifAbsent. In order to identify the potential us-
age ofputIfAbsent, CONCURRENCERsearches for conditional

code which checks whether a certain key is not present in
thecache Map field. If a put method call in the same con-
ditional body uses the same key,CONCURRENCERhas identified
a potential usage ofputIfAbsent. Next, CONCURRENCERre-
places the two calls to the older APIs (get andput) with
one call toputIfAbsent which executes atomically, with-
out locking the entire map. The alternative is to protect
the pairget/put with one global lock, but this alternative
greatly reduces the application’s scalability since the lock
would prevent any other concurrent access to the map.

In the example in Fig. 2, thevalue to be placed
in the 〈key, value〉 map entry is simply created by in-
voking a constructor. However, in many cases the cre-
ational code for the newly inserted value is much more
involved. Since the value to be inserted must be avail-
able before invokingputIfAbsent, in Fig. 3, CONCUR-

RENCER extracts the creational code into a creational method
(createTimeZoneList) and calls it to compute the value.

CONCURRENCERperforms a data-flow analysis to find out if
the created value is read after the call toput. If so, the
created value is stored so that it can be accessed later. The
example in Fig. 3 shows another trait: thetimeZoneList
value is also written in the conditional code. The original
getTimeZoneList method returns either the null value,
or the new value created in the conditional code. To pre-
serve these semantics,CONCURRENCER conditionally assigns
the newly created value to thetimeZoneLists variable.
The new conditional expression checks whether the call
to putIfAbsent was successful: if the call succeeded,
putIfAbsent returns null, otherwise it returns the previ-
ous value associated with the key. The refactored code uses
the return status to decide whether to store the newly created
value into thetimeZoneList variable.

Before calling theputIfAbsent method, the value to
be inserted must be available. Therefore, in the refactored
code, the creational code is executed regardless of whether
the new value is placed into the map. The refactored method
has different semantics if the creational code has side effects
(e.g., logging).CONCURRENCERchecks whether the creational
method has side effects, and if so, it warns the user.

We implemented a conservative analysis for determin-
ing side-effects.CONCURRENCERwarns the user when the cre-
ational method assigns to fields or method arguments and
when a method is called on a field or local variable. A con-
structor call is a special case of method call because fields
nay be assigned inside the constructor.

An alternative to calling the creational method before
putIfAbsent is to extract the creational code into a
Future object, aj.u.c. utility class which represents
the result of a future computation. In this case, the re-
sult of creational code will be retrieved only the first time
when the programmer callsget on theFuture object.CON-

CURRENCER could change allmap.get(value) accesses to

4



// before refactoring
HashMap<String,File> cache = new HashMap<String,File>();

File rootFolderF;

public void service(Request req, final Response res){
...
String uri = req.requestURI().toString();
...
File resource = cache.get(uri);
if (resource == null){

resource = new File(rootFolderF, uri);
cache.put(uri,resource);

}
...

}

// after refactoring
ConcurrentHashMap<String,File> cache = new ConcurrentHashMap<String,File>();

File rootFolderF;

public void service(Request req, final Response res){
...
String uri = req.requestURI().toString();
...
cache.putIfAbsent(uri, new File(rootFolderF, uri));
...

}

Figure 2. Example of ConvertToConcurrentHashMap refactor ing from GlassFish using the
putIfAbsent pattern. Changes are underlined.

// before refactoring
private Map<Locale, String[]> timeZoneLists;
private String[] timeZoneIds;

public String[] getTimeZoneList() {
Locale jiveLocale = JiveGlobals.getLocale();

String[] timeZoneList = timeZoneLists.get(jiveLocale);
if (timeZoneList == null) {

timeZoneList = new String[timeZoneIds.length];
for (int i = 0; i < timeZoneList.length; i++) {

. . . // populate timeZoneList
}

// Add the new list to the map of locales to lists
timeZoneLists.put(jiveLocale, timeZoneList);

}

return timeZoneList;
}

// after refactoring
private ConcurrentHashMap<Locale, String[]> timeZoneLists;
private String[] timeZoneIds;

public String[] getTimeZoneList() {
Locale jiveLocale = JiveGlobals.getLocale();

String[] timeZoneList = timeZoneLists.get(jiveLocale);
String[] createdTimeZoneList = createTimeZoneList(jiveLocale);
if (timeZoneLists.putIfAbsent(jiveLocale, createdTimeZoneList) == null

timeZoneList = createdTimeZoneList;
}
return timeZoneList;

}

private String[] createTimeZoneList(Locale jiveLocale) {
String[] timeZoneList;
timeZoneList = new String[timeZoneIds.length];
for (int i = 0; i < timeZoneList.length; i++) {

. . . // populate timeZoneList
}
return timeZoneList;

}

Figure 3. The user selects the HashMap field to be made thread-safe, and Concurrencer performs all
the transformations. The figure shows an example from Zimbra using the putIfAbsent pattern with
creational method (changes are underlined).

map.get(value).get(), which would force the execu-
tion of the creational code. However, this alternative does
not solve the problem of side-effects either: the user code
might rely on the side effect to happen when placing the
value in the map, and now the side-effect only happens the
first time the created value is retrieved from the map.

Synchronization. If the original method con-
tained synchronization locks around map updates,CON-

CURRENCER removes them when they are superfluous
(ConcurrentHashMap has thread-safety built in). Conser-
vatively, CONCURRENCERonly removes the locks if the refac-
tored code corresponding to the original synchronized block
contains only one call toConcurrentHashMap’s APIs, and
the original synchronization block only contains accessesto
one single field. This latter check ensures the invariants over
multiple variables are still preserved.

4 Convert Recursion to FJTask

4.1 FJTask Framework in Java 7

Java 7 will contain a framework,FJTask, for fine-
grained parallelism in computationally-intensive problems.
Divide-and-conquer algorithms are natural candidates for
such parallelization when the recursion tasks are completely
independent, i.e., they operate on different parts of the
data or they solve different subproblems. Many recur-
sive divide-and-conquer algorithms display such properties,
even though they were never designed with parallelism in
mind. Furthermore, static analyses (e.g., [15]) can deter-
mine whether there is any data dependency between the re-
cursive tasks, e.g., the recursive tasks write within the same
ranges of an array.

Fig. 4 shows the sequential and parallel version of a gen-

5



// Sequential version

solve (Problem problem) {
if (problem.size <= BASE_CASE )

solve problem DIRECTLY
else {

split problem into independent tasks

solve each task

compose result from subresults
}

}

// Parallel version

solve (Problem problem) {
if (problem.size <= SEQ_TTHRESHOLD )

solve problem SEQUENTIALLY
else {

split problem into independent tasks
IN_PARALLEL{ (fork)

solve each task
}
wait for all tasks to complete (join)
compose result from subresults

}
}

Figure 4. Pseudocode for divide-and-conquer algorithm. Le ft hand side shows the sequential ver-
sion, right hand side shows the parallel version.

eral divide-and-conquer algorithm. In the parallel version,
if the problem size is smaller than a threshold, the prob-
lem is solved using the sequential algorithm. Otherwise,
the problem is split into independent parts, these are solved
in parallel, then the algorithm waits for all computations to
finish and composes the result from the subresults.

Given the nature of divide-and-conquer algorithms, tasks
that run in parallel should have the following characteris-
tics:

• they are CPU-bound not I/O-bound, thus they do not
block on I/O

• depending on the sequential threshold, many tasks
(e.g. tens of thousands) can be spawned by the recur-
sion branches

• they only need to synchronize when waiting for sub-
tasks to complete

Given these properties, threads are not a good vehicle for
running such tasks. Threads have high overhead (creating,
scheduling, destroying) which might outperform the useful
computation. Therefore Java 7 introducesForkJoinTask,
a lighter-weight thread-like entity. A large number of such
tasks may be hosted by a pool containing a small number
of actual threads. The task scheduling is based onwork-
stealing[6,13]: idle worker threads “steal” work from busy
threads. The framework avoids contention for the data
structures that hold the scheduling and ensures that each
theft acquires a large chunk of work, thus making stealing
infrequent. It is this effective scheduling that keeps all the
cores busy with useful computation.

The most important API methods inForkJoinTask
are: fork(Task) which spawns the execution of a new
task in parallel,join(Task) which blocks the current
computation until the task passed as an argument finished,
forkJoin(Tasks) which is syntactic sugar for calling
fork and thenjoin, andcompute which is the hook-up
method invoked by the framework when executing each
task. compute implements the main computation per-
formed by the task.

ForkJoinTask has several subclasses for different
patterns of computation. RecursiveAction is the
proper choice for the recursive tasks used in divide-
and-conquer computations. The framework also de-
fines ForkJoinExecutor, an object which executes
ForkJoinTask computations using a pool of worker
threads.

4.2 Code Transformations

CONCURRENCERconverts a recursive divide-and-conquer al-
gorithm to one which runs in parallel using theFJTask
framework. The programmer need only select the
divide-and-conquer method and supply theSEQUENTIAL
THRESHOLD parameter that determines when to run the se-
quential version of the algorithm. Using this user-supplied
information,CONCURRENCERautomatically performs all trans-
formations.

We made a design choice to keep the original interface
of the recursive method unchanged, so that an outside client
would still invoke the method as before. The fact that the
refactored method uses theFJTask framework is an imple-
mentation detail, hidden from the outside client.

We illustrate the transformations thatCONCURRENCER per-
forms on a classic merge sort algorithm. The left-hand side
of Fig. 5 shows the original, sequential version of the merge
sort algorithm. Thesort method takes as input the array to
be sorted and returns the sorted array. The algorithm starts
with the base case. In the recursion case, it copies the first
half of the array and the second half of the array, sorts both
halves, and merges them (code formerge not shown).

Creating the ForkJoinTask. CONCURRENCER creates
a RecursiveAction class, which is a subclass of
ForkJoinTask. This class encapsulates the parallel com-
putation of the original recursive method, thusCONCURRENCER

names this class by adding the “Impl” suffix to the name of
the original recursive method.

Since thecompute hook-up method neither takes any
arguments, nor returns a value, theSortImpl has fields
for the input arguments and the result of the computation.
For each formal parameter of the original recursive method,

6



// Sequential version

public class MergeSort {

public int[] sort(int[] whole) {
if (whole.length == 1) {

return whole;
} else {

int[] left = new int[whole.length / 2];
System.arraycopy(whole, 0, left, 0, left.length);
int[] right = new int[whole.length - left.length];
System.arraycopy(whole, left.length,

right, 0, right.length);

left = sort(left);
right = sort(right);
merge(left, right, whole);
return whole;

}
}

private void merge(int[] left, int[] right,
int[] whole) {

. . . . merge left and right array into whole array
}

}

1 // Parallel version
2

3 import jsr166y.forkjoin.ForkJoinExecutor;
4 import jsr166y.forkjoin.ForkJoinPool;
5 import jsr166y.forkjoin.RecursiveAction;
6

7 public class MergeSort {
8

9 public int[] sort(int[] whole) {
10 int processorCount = Runtime.getRuntime().availableProcessors();
11 ForkJoinExecutor pool = new ForkJoinPool(processorCount);
12 SortImpl aSortImpl = new SortImpl(whole);
13 pool.invoke(aSortImpl);
14 return aSortImpl.result;
15 }
16

17 private class SortImpl extends RecursiveAction {
18 private int[] whole;
19 private int[] result;
20

21 private SortImpl(int[] whole) {
22 this.whole = whole;
23 }
24

25 protected void compute() {
26 if ((whole.length < 10)) {
27 result = sort(whole);
28 return;
29 } else {
30 int[] left = new int[whole.length / 2];
31 System.arraycopy(whole, 0, left, 0, left.length);
32 int[] right = new int[whole.length - left.length];
33 System.arraycopy(whole, left.length,
34 right, 0, right.length);
35 SortImpl task1 = new SortImpl(left);
36 SortImpl task2 = new SortImpl(right);
37 forkJoin(task1, task2);
38 left = task1.result;
39 right = task2.result;
40 merge(left, right, whole);
41 result = whole;
42 }
43 }
44

45 private int[] sort(int[] whole) {
46 . . . copy the original, sequential implementation
47 }
48 }
49

50 private void merge(int[] left, int[] right,
51 int[] whole) {
52 . . . . merge left and right array into whole array
53 }
54 }

Figure 5. The programmer selects the divide-and-conquer me thod and provides the sequential
threshold ( whole.length < 10). Concurrencer converts the sequential divide-and-conqu er into
a parallel one using the FJTask framework. The left-hand sid e shows the sequential version, the
right-hand side shows the parallel version (changes are und erlined).

CONCURRENCERcreates corresponding fields. In addition, if the
recursive method has a non-void return type,CONCURRENCER

creates aresult field having the same declared type as the
return type of the method. This field holds the result of the
computation.

CONCURRENCER also generates a constructor having the
same formal parameters as the original recursive method.
A call to the original method is replaced with a call to this
constructor, passing the actual parameters to the construc-
tor. The constructor uses these parameters to initialize the
class fields.

Implementing the compute method. The compute

method is a hook-up method called by the framework when
it executes aForkJoinTask. CONCURRENCERimplements this

method using the original recursive method as the model
for computation. CONCURRENCER performs three main trans-
formations on the original recursive method: (i) it changes
the base case of the recursion, (ii) it replaces recursive calls
with RecursiveAction instantiations, and (iii) it executes
the parallel tasks and then gathers the results of the subtasks.

First,CONCURRENCERinfers thebase-caseused in the recur-
sion: the base case is a conditional statement which does not
contain any recursive calls and which ends up with a return
statement. ThenCONCURRENCER replaces the base-case con-
ditional expression with theSEQUENTIAL THRESHOLD ex-
pression provided by the user (line 26). Next,CONCURRENCER

replaces the return statement in the base case of the original
recursive method with a call to the sequential method (line

7



27). If the original method returned a value,CONCURRENCER

saves this value in theresult field.
Second,CONCURRENCER replaces the recursive calls with

creation of newRecursiveAction objects (lines 35, 36).
The arguments of the recursive call are passed as arguments
to the constructor of theRecursiveAction. CONCURRENCER

stores the newly created tasks into local variables, named
task1, task2, etc.

Third, CONCURRENCERexecutes the parallel tasks and then
assembles the result from the subresults of the tasks.CON-

CURRENCER invokes theforkJoin method while passing
the previously created tasks as arguments.CONCURRENCER

places theforkJoin method after the last creation of
RecursiveAction (line 37). ThenCONCURRENCERsaves the
subresults of the parallel tasks into local variables. If the
original recursive method used local variables to store the
results of the recursive calls,CONCURRENCERreuses the same
variables (lines 38, 39). Subsequent code can thus use the
subresults to assemble the final result (line 40). Lastly,CON-

CURRENCER assigns to theresult field the combined subre-
sults (line 41).

Reimplementing the recursive method. CONCURRENCER

changes the implementation of the original recursive
method to invoke theFJTask framework (lines 10-13).CON-

CURRENCER creates an executor object and initializes it with
the number of threads to be used by the worker thread pool.
The number of threads is equal with the number of avail-
able processors (found at runtime). The Java runtime sys-
tem ensures that each processor will be assigned one worker
thread. Since the divide-and-conquer algorithm is CPU-
bound, creating more threads will not speed up the execu-
tion; on the contrary, it might slow the execution due to
thread scheduling overhead.CONCURRENCER creates a new
task and initializes it with the array to be sorted, then it
passes the task to the executor.invoke blocks until the
computation finishes. Once the computation finished, the
sorted array available in theresult field is returned (line
14).

Discussion. CONCURRENCER handles several variations on
how the subresults are combined to form the end result. For
example, the subresults of the recursive calls might not be
stored in temporary variables, but they might be combined
directly in expressions. For example, afibonacci func-
tion returns:
return fibonacci(n-1) + fibonacci(n-2).

CONCURRENCER creates and executes the parallel tasks as
before, and during the subresult combination phase it uses
the same expression to combine the subresults:
result = task1.result + task2.result

With respect to where the recursive method stores the
result, there can be two kinds of recursive methods: (i) re-
cursive methods which return a value, the result, and (ii)
recursive methods which do not return any value, but they

mutate at least one of the arguments to hold the result of the
computation.

Fig. 5 is an example of the first kind of computation.
The transformations for recursive methods which mutate
one of their arguments to store the result are similar with
the ones presented above, even slightly simpler, i.e.,CON-

CURRENCERdoes not generate the code involving theresult

field.

5 Evaluation

Research Questions. To evaluate the effectiveness of
CONCURRENCER, we answered the following questions:

• Q1: Is CONCURRENCER useful? More precisely, does it
ease the burden of making sequential code thread-safe
and of running concurrent tasks in parallel?

• Q2: With respect to thread-safety, how does the manu-
ally refactored code compare with code refactored with
CONCURRENCER in terms of using the correct APIs and
identifying all opportunities to replace field accesses
with thread-safe API calls?

• Q3: With respect to running concurrent tasks in par-
allel, is the refactored more efficient than the original
sequential code?

We evaluatedCONCURRENCER’s refactorings in two ways.
For code that had already been refactored to use Java 5’s
AtomicInteger andConcurrentHashMap we compared
the manual refactoring with whatCONCURRENCERwould have
done. This answers the first two questions. ForCON-

VERT RECURSION TOFJTASK, sinceFJTask is scheduled for Java
7’s release, we could not find existing codebases using
FJTask. We usedCONCURRENCER to refactor several divide-
and-conquer algorithms, and we answer first and third ques-
tion.

5.1 Methodology

Setup for CONVERT INT TO ATOMICINTEGER and CONVERT

HASHMAP TO CONCURRENTHASHMAP.
Table 1 lists 6 popular, mature open-source projects that

useAtomicInteger andConcurrentHashMap. We used
the head versions available in their version control system
as of June 1, 2008.

We usedCONCURRENCER to refactor the samefields that
open-source developers refactored toAtomicInteger or
ConcurrentHashMap. We compare the code refactored
with CONCURRENCERagainst code refactored by hand. We look
at places where the two refactoring outputs differ, and quan-
tify the number oferrors (i.e., one of the outputs uses the
wrong concurrent APIs) and the number ofomissions(i.e.,

8



refactoring in project # of LOC LOC CONCURRENCER

refactorings changed can handle

Convert Int MINA 5 21 21

To AtomicInteger Tomcat 5 26 26

Struts 0 0 0

GlassFish 15 60 60

JaxLib 29 240 240

Zimbra 10 54 54

Convert HashMap MINA 6 14 14

To ConcurrentHashMap Tomcat 0 0 0

Struts 6 68 64

GlassFish 14 86 86

JaxLib 7 62 62

Zimbra 44 388 377

Total for AtomicInteger 141 1019 968

and ConcurrentHashMap

Convert Recursion mergeSort( [15]) 1 36 36

to FJTask fibonacci( [13]) 1 25 25

maxSumConsecutive( [13]) 1 68 68

matrixMultiply ( [5,13,15]) 1 108 108

quickSort(Zimbra) 1 35 35

maxTreeDepth(Eclipse) 1 30 30

Total for FJTask 6 302 302

Table 1. Programs used as case studies for CONVERT INT TO ATOMICINTEGER, CONVERT HASHMAP TO CONCURRENTHASHMAP,
and CONVERT RECURSION TOFJTASK refactorings. Last two columns show LOC changed due to refac toring,
and how many LOC can be changed by CONCURRENCER.

the refactored output could have used a concurrent API, but
it instead uses the obsolete, lock-protected APIs).

For AtomicInteger we were able to find both
the version with theint field and the version with
AtomicInteger field, thus we use the version withint
as the input forCONCURRENCER. For CONVERT HASHMAP TO CON-

CURRENTHASHMAP we were not able to find the versions which
containedHashMap. It seems that those projects were us-
ing ConcurrentHashMap from the first version of the file.
In those cases we manually replacedonly the type declara-
tion of theConcurrentHashMap field with HashMap; then
we ranCONCURRENCER to replaceHashMap updates with the
thread-safe APIs (putIfAbsent, replace, anddelete)
in ConcurrentHashMap.

Setup for CONVERT RECURSION TOFJTASK.
We usedCONCURRENCER to parallelize several divide-and-

conquer algorithms. We use two sets of inputs: (i) clas-
sic divide-and-conquer algorithms used in others’ evalu-
ations [5, 13, 15], and (ii) divide-and-conquer algorithms
from real projects.

Table 1 shows the input programs.
maxSumConsecutive takes an array of positive and nega-
tive numbers and computes the subsequence of consecutive
numbers whose sum is maximum.matrixMultiply
multiplies two matrices. maxTreeDepth computes the
depth of a binary tree.

The interested reader can find the input and the refac-
tored programs onCONCURRENCER’s webpage.

5.2 Q1: Is CONCURRENCER useful?

The top part of Table 1 show the number of refactor-
ings that open-source developers performed in the selected
real world projects. The penultimate column shows how
many lines of code were manually changed during refactor-
ing. UsingCONCURRENCER, the developers would have saved
editing 968 lines of code; instead they would have had to
only change 51 lines not currently handled byCONCURRENCER.

The bottom part of Table 1 show the LOC changed when
converting the original recursive algorithm to one which
uses theFJTask framework. To do the manual conversion,
it took the first author an average of 30 minutes for each
conversion. This includes also the debug time to make the
parallelized algorithm work correctly. UsingCONCURRENCER,
the conversion was both correct and took less than 10 sec-
onds. Doing the conversion withCONCURRENCERsaves the pro-
grammer from changing 302 LOC.

5.3 Q2: How does manually and automat-
ically refactored code compare?

CONCURRENCERapplied all the correct transformations that
the open-source developers applied. We noticed several
cases whereCONCURRENCERoutperforms the developers:CON-

CURRENCER produces the correct code, or it identifies more
opportunities for using the new, scalable APIs.

For CONVERT INT TO ATOMICINTEGER, we noticed cases where

9



the developers used the wrong APIs when they refactored
by hand. We noticed that developers erroneously replaced
infix expressions like++f with f.getAndIncrement(),
which is the equivalent API for the postfix expres-
sion f++. They should have replaced++f with
f.incrementAndGet(). Table 2 shows that the open-
source developers made 4 such errors, whereCONCURRENCER

made no error. The erroneous usage of the API can cause
an “off-by-one” value if the result is read in the same state-
ment which performs the update. In the case studies, the
incremented value is not read in the same statement which
performs the update.

For CONVERT HASHMAP TO CONCURRENTHASHMAP we noticed
cases when the open-source developers orCONCURRENCER

omitted to use the new atomicputIfAbsent and condi-
tional delete operations, and instead use the old patterns
involving synchronized, lock-protected access toput and
delete. Although the refactored code is thread-safe, it
is non-optimal for these lines of code because it locks the
whole map for the duration of update operations. In con-
trast,ConcurrentHashMap’s new APIs offers better scal-
ability because they do not lock the whole map.

Table 3 shows the number of such omissions in the
case-study projects. We manually analyzed all the usages
of put or delete and compiled a list of all the places
where those usages could have been replaced with the
newputIfAbsent, replace, or conditionaldelete. We
found that the open-source developers missed many oppor-
tunities to use the new APIs. This intrigued us, since the
studied projects are all developed professionally, and are
known to be of high-quality (e.g., Zimbra was acquired by
Yahoo, Struts is developed by Apache foundation, Glass-
Fish is developed mainly by SUN). Also, we found several
instances when the open-source developers correctly used
the new APIs, so they certainly were aware of the new APIs.

We can hypothesize that the open-source developers did
not convert to the new APIs because the new APIs would
have required creational methods which had side effects.
Therefore, we conservatively only count those cases when
the creational method is guaranteed not to have side-effects
(e.g. the value to be inserted in the map is produced by sim-
ply instantiating a Java collection class). Even so, Table 3
shows that the open-source developers missed several op-
portunities to use the new APIs.CONCURRENCERmissed much
fewer opportunities. These are all rare, intricate patterns
currently not supported byCONCURRENCER, but they could all
be supported by putting more engineering effort in the tool.

5.4 Q3: What is the speedup of the par-
allelized algorithms?

Table 4 shows the speedup of the parallelized algorithms
(speedup = timeseq/timepar). For the sorting algo-

incrementAndGet decrementAndGet
correct erroneous correct erroneous
usages usages usages usages

Tomcat 0 1 0 1
MINA 0 1 0 1

Table 2. Human errors in using
AtomicInteger updates in refactorings
performed by open-source developers.

program speedup

2 cores 4 cores

mergeSort 1.18x 1.6x

fibonacci 1.94x 3.82x

maxSumConsecutive 1.78x 3.16x

matrixMultiply 1.95x 3.77x

quickSort 1.84x 3.12x

maxTreeDepth 1.55x 2.38x

Average 1.7x 2.97x

Table 4. Speedup of the parallelized divide-
and-conquer algorithms.

rithms we use random arrays with 10 million elements. For
fibonacci we compute the fibonacci value for the num-
ber 45. FormaxSumConsecutive we use an array with
100 million random integers. FormatrixMultiplywe use
matrices with 1024x1024 doubles. FormaxTreeDepth we
use a dense tree of depth 50.

6 Related Work

The earliest work on interactive tools for paralleliza-
tion stemmed from the Fortran community and it targets
loop parallelization. Interactive tools like PFC [9], ParaS-
cope [11], and SUIF Explorer [14] rely on the user to spec-
ify what loops to interchange, align, replicate, or expand,
what scalars to vectorize, etc. ParaScope and SUIF Ex-
plorer visually display the data dependences. The user must
either determine that each loop dependence shown is not
valid (due to conservative analysis in the tool), or transform
a loop to eliminate valid dependences.

Freisleben and Kielman [5] present a system that paral-
lelizes divide-and-conquer C programs, similar in spirit to
our CONVERT RECURSION TOFJTASK refactoring. To use their sys-
tem, a programmer annotates (i) what computations are to
be executed in parallel, (ii) the synchronization points af-
ter which the results of the subproblems are expected to be
available, (iii) the input and output parameters of the recur-
sive function, and (iv) the sequential threshold. The anno-
tated program is preprocessed and transformed into a pro-
gram which uses message-passing to communicate between
the slave processes that execute the subproblems. Unlike
their system,CONCURRENCERis not restricted to algorithms that

10



putIfAbsent remove

potential human CONCURRENCER potential human CONCURRENCER

usages omissions omissions usages omissions omissions

MINA 0 0 0 0 0 0

Tomcat 0 0 0 0 0 0

Struts 6 1 0 0 0 0

GlassFish 7 3 1 6 5 0

JaxLib 11 2 0 0 0 0

Zimbra 49 27 9 4 3 0

Total 73 33 10 10 8 0

Table 3. Human and CONCURRENCERomissions in using ConcurrentHashMap’s putIfAbsent and con-
ditional remove.

use only two recursive subdivisions of the problem, and
CONCURRENCERautomatically infers all the parameters of the
transformation (except the sequential threshold).

Bik et al. [2] present Javar, a compiler-based, source-
to-source restructuring system that uses programmer anno-
tations to indicate parallelization of loops and of recursive
algorithms. Javar rewrites the annotated code to run in par-
allel using multiple threads. Javar’s support for parallelizing
recursive functions is not optimal: each recursive call forks
a new thread, whose overhead can be greater than the useful
computation. Unlike Javar, (i)CONCURRENCERdoes not require
any programmer annotations, (ii) the parallel recursion ben-
efits from the efficient scheduling and load-balancing of the
FJTask framework, and (iii) we report on experiences with
usingCONCURRENCERto parallelize several divide-and-conquer
algorithms.

Vaziri et al. [16] present adata-centric approachto mak-
ing a Java class thread-safe. The programmer writes anno-
tations denotingatomic sets, i.e., sets of class fields that
should be updated atomically, andunits-of-work, i.e., meth-
ods operating on atomic sets that should execute without
interleaving from other threads. Their system automatically
generates one lock for each atomic set and uses the lock to
protect field accesses in the corresponding units-of-work.
Their system eliminates data races involving multiple vari-
ables, whereasCONCURRENCER works with AtomicInteger

andConcurrentHashMap that are designed to protect only
single-variables. However,CONCURRENCER does not require
any programmer annotations.

Balaban et al. [1] present a tool for converting between
obsolete classes and their modern replacements. The pro-
grammer specifies a mapping between the old APIs and
the new APIs, and the tool uses a type-constraint analysis
to determine whether it can replace all usages of the ob-
solete class. Their tool is more general than ours, since
it can work with any API mapping, for example one be-
tweenHashMap andConcurrentHashMap. CONCURRENCER

is less general, since the conversion betweenHashMap

andConcurrentHashMap is custom implemented. How-
ever, such a conversion requires more powerful AST pattern
matching and rewriting than the one used in their tool. Their

tool can replace only a single API call at a time, whereas our
tool replaces a set of related but dispersed API calls (like the
ones in Fig. 2, 3).

Boshernitsan et al. [3] present iXj, a general framework
for code transformations. iXj has an intuitive user interface
that enables the user to quickly sketch a pattern for the code
transformation. Although useful for a broad range of trans-
formations, iXj is not able to transform code where the pat-
tern matching executes against several dispersed statements
(like the ones in Fig. 2, 3, 5). In such scenarios, a user
needs to use a custom implemented transformation tool like
CONCURRENCER.

7 Conclusions and Future Work

Refactoring sequential code to concurrency is not triv-
ial. A good way to introduce concurrency into a program
is via use of a good concurrency library such asj.u.c..
Reengineering existing programs in this way is still tedious
and error-prone.

Even seemingly simple refactorings—like replacing data
types with thread-safe, scalable implementations—is prone
to human errors. In this paper we presentCONCURRENCER,
which automates three refactorings for converting integer
fields to AtomicInteger, for converting hash maps to
ConcurrentHashMap, and for parallelizing divide-and-
conquer algorithms. Our experience withCONCURRENCER

shows that it is more effective than a human developer in
identifying and applying such transformations, and the par-
allelized code exhibits good speedup.

We plan to extendCONCURRENCER to support many other
features provided byj.u.c.. Among others,CONCUR-

RENCER will convert sequential code to use other thread-
safeAtomic* and scalableCollection classes, will ex-
tract other kinds of computations to parallel tasks using the
Executors framework (task parallelism), and will convert
Arrays to ParallelArrays, a construct which enables
parallel execution of loop operations (data parallelism).

As library developers make better concurrent libraries,
the “introduce concurrency” problem will become the “in-

11



troduce a library” problem. Tool support for introducing
such concurrent libraries is crucial for the widespread use
of such libraries, resulting in more thread-safe, more scal-
able programs.

References

[1] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for
class library migration. InOOPSLA ’05: Proceedings of
Object-oriented programming, systems, languages, and ap-
plications, pages 265–279, New York, NY, USA, 2005. ACM
Press.

[2] A. J. C. Bik, J. E. Villacis, and D. Gannon. javar: A proto-
type java restructuring compiler.Concurrency - Practice and
Experience, 9(11):1181–1191, 1997.

[3] M. Boshernitsan, S. L. Graham, and M. A. Hearst. Align-
ing development tools with the way programmers think about
code changes. InCHI ’07: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages
567–576, New York, NY, USA, 2007. ACM.

[4] D. Dig, J. Marrero, and M. D. Ernst. How do programs be-
come more concurrent? A story of program transformations.
Technical Report MIT-CSAIL-TR-2008-053, MIT, Septem-
ber 2008.

[5] B. Freisleben and T. Kielmann. Automated transformation of
sequential divide–and– conquer algorithms into parallel pro-
grams. Computers and Artificial Intelligence, 14:579–596,
1995.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the cilk-5 multithreaded language. InPLDI ’98:
Proceedings of the ACM SIGPLAN 1998 conference on Pro-
gramming language design and implementation, pages 212–
223, New York, NY, USA, 1998. ACM.

[7] B. Goetz. What’s New for Concurrency on the Java Plat-
form. Keynote Talk at JavaOne Conference, 2008.http:
//developers.sun.com/learning/javaoneonline/j1sessn.
jsp?sessn=TS-5515&yr=2008&track=javase.

[8] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison-Wesley,
2006.

[9] J.R.Allen and K. Kennedy. PFC: A program to convert For-
tran to parallel form. InSupercomputers: Design and Appli-
cations, pages 186–205, 1984.

[10] JSR-166y Specification Request for Java 7.
http://g.oswego.edu/dl/concurrency-interest/.

[11] K. Kennedy, K. S. McKinley, and C.-W. Tseng. Analysis
and transformation in the parascope editor. InICS, pages
433–447, 1991.

[12] D. Lea. Concurrent Programming in Java. Second Edition:
Design Principles and Patterns. Addison-Wesley, 1999.

[13] D. Lea. A java fork/join framework. InJAVA ’00: Proceed-
ings of the ACM 2000 conference on Java Grande, pages 36–
43, New York, NY, USA, 2000. ACM.

[14] S.-W. Liao, A. Diwan, J. Robert P. Bosch, A. Ghuloum, and
M. S. Lam. Suif explorer: an interactive and interprocedural
parallelizer.SIGPLAN Not., 34(8):37–48, 1999.

[15] R. Rugina and M. C. Rinard. Automatic parallelization of di-
vide and conquer algorithms. InPPOPP, pages 72–83, 1999.

[16] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. InPOPL
’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
334–345, New York, NY, USA, 2006. ACM.

12


