Refactoring Sequential Java Code for Concurrency via Concurrent Libraries

Danny Dig, John Marrero, Michael D. Ernst
Massachusetts Institute of Technology
Computer Science and Atrtificial Intelligence Laboratory

{dannydig,marrero,merns@csail.mit.edu

Abstract than to rewrite, and this is often possible.
The dominant paradigm for concurrency in desktop pro-

Parallelizing existing sequential programs to run ef- grams is multithreaded programs where shared-memory ac-
ficiently on multicores is hard. The Java 5 package cesses are protected with locks. However, programming
java.util.concurrent (j.u.c.) supportswritingcon- with locks is very error-prone: too many locks can greatly
current programs: much of the complexity of writing slow down or even deadlock an application, while too few
threads-safe and scalable programs is hidden in the library |ocks result in data races.

To use this package, programmers still need to reengineer jgyva 5'sjava. util.concurrent (j.u.c.) pack-
existing code. This isediousbecause it requires chang- age supports writing concurrent programs. Atoni cx

ing many lines of code, eror-pronebecause programmers classes offer thread-safe, lock-free programming over sin
can use the wrong APls, andasnission-pronéecause pro- gle variables. lIts thread-safe abstract data types (e.g.,
grammers can miss opportunities to use the enhanced APISconcur r ent HashMap) are optimized for scalability.

This paper presents our tookoncurrences which en- Java 7 will contain a frameworlor k/ Joi n Task
ables programmers to refactor sequentig{ _code into par- (FITask) [7, 10] for fine-grained parallelism. Many
allel code that use$. u. c. concurrent utilities. concus- computationally-intensive problems take the form of recur
rencer dOES NOL require any program annotations, although gjye divide-and-conquerClassic examples include sorting
the transformations are very involved: they span multlr (mergesort, quicksort), searching, and many data streictur
ple program statements and use custom program analysisyr image processing algorithms. Divide-and-conquer algo-

A find-and-replace tool can not perform such transforma- (jthms are good candidates for parallelization since tie su
tions. Empirical evaluation shows thaéncurrencerrefac- problems can be solved in parallel.

tors code effectivelyconcurrencercorrectly identifies and However, in order to benefit from Java’s concurrent utili-

applies transformations that some open-source developerqies and frameworks, the Java programmer needs to refactor
overlooked, and the converted code exhibits good speedupexisting code. This isediousbecause it requires chang-
ing many lines of code. For example, the developers of
six widely used open-source projects changed 1019 lines
1 Introduction when converting to use the u. c utilities. Second, man-
ual refactoring isrror-pronebecause the programmer can
Users expect that each new generation of computers runghoose the wrong APIs among slightly similar APIs. In
their programs faster than the previous generation. Thethe above-mentioned projects, the programmers four times
computing hardware industry’s shift to multicore processo mistakenly usedet Andl ncr ement API methods instead
demands that programmers find and exploit parallelism in of i ncr ement AndGet , which can result in off-by-one val-
their programs, if they want to reap the same performanceues. Third, manual refactoring @mission-pronésecause
benefits as in the past. the programmer can miss opportunities to use the new, more
In the multicore era, a major programming task is to efficient API methods. In the same projects, programmers
retrofit parallelism into existing sequential programsisit ~ missed 41 such opportunities.
arguably easier to design a program with concurrency in This paper presents our approach for incrementally
mind than to retrofit concurrency later [8, 12]. However, retrofitting parallelism through a series of behavior-
most desktop programs were not designed to be concurrentpreserving program transformations, namely refactorings
so programmers have to refactor existing sequential pro-Our tool, concurrencer enables Java programmers to
grams for concurrency. It is easier to retrofit concurrency quickly and safely refactor their sequential programs ® us

j-u.c. utilities. Currently, concurrencer SUppOrtS three This paper makes the following contributions:
refactorings: (i) convert INT To ATomicINTEGER, (i) ConverT
HASHMAP TO CONCURRENTHASHM AP, and (iii) CONVERT RECURSION TO
FiaTask. We previously cataloged [4] the transformations that
open-source developers used to parallelize five projeats. W
found that the first two refactorings were among the most
commonly used in practice.

The first refactoring,convert INT To ATOMICINTEGER, €N-

e Approach. We present an approach for retrofitting
parallelism into sequential applications through auto-
mated, but human-initiated, program transformations.
Since the programmer is expert in the problem domain,
she is the one most qualified to choose the code and the
program transformation for parallelizing the code.

ables a programmer to convert amt field to an e Tool. We implemented three transformations for using
Atomi clnteger, a utility class that encapsulates iant thread-safe, highly scalable concurrent utilities and
value. The encapsulated field can be safely accessed from frameworks. Our toolgoncurrencer is conveniently
multiple threads, without requiring any synchronization integrated within Eclipse’s refactoring engirgcur
code. Our refactoring replaces all field accesses with calls rencer Can be downloaded from:
to Atomi cl nteger’s thread-safe APIs. For example, it http://refactoring.infol/tool s/ Concurrencer
replaces expressioh = f + 3 with f. addAndGet (3)
which executes atomically. e Empirical Results. We usedconcurrencerto refac-
The second refactoringsonverT HASHMAP To CONCURREN tor the same _COde that the open-source developers of
THasHMap, €nables a programmer to convertHashMap 6 popular projects converted £ ori cl nt eger and
field to Concur r ent HashMap, a thread-safe, highly scal- Concur rent HashMap. By comparing the manually
able implementation for hash maps. Our refactoring re- ~ VS- automatically refactored output, we found tbat
places map updates with calls to the APIs provided by CURRENCER appll_ed all the transformations that t_he de-
Concur r ent HashMap. For example, a common update velopers app_hed. Even mor&pncurrencer avq|ded
operation is (i) check whether a map contains a certain the errors which the open-source developeEmmitted
key, (ii) if not present, create the value object, and (iii) and_cONCURRENCEmdentmed and applied some transfor-
place the value in the mapconcurrencer replaces such mations that the open-source developarstted We
an updating pattern with a call @ncur r ent HashMap’s also usechNCURREN_CER to parallelize sgveral d|V|_de-
put | f Absent which atomicallyexecutes the update, with- and-conquer algorithms. The parallelized algorithms
out locking the entire map. The alternative is for program- perform well and exhibit good speedup. These experi-
mer to place a lock around the updating code, but this is ences show thatoncurrenceris useful.
error-prone and the map’s lock degrades the map’s perfor-
mance under heavy lock-contention. 2 Convert Int to Atomicl nteger

The third refactoringgonvert Recursion ToFJTask, enables
a programmer to convert a sequential divide-and-conquer2.1 ~ AtomicInteger in Java
algorithm to a parallel algorithm. The parallel algorithm
solves the subproblems in parallel using Hi&ask frame- The Java 5 class library offers a package. c. at oni ¢
work. Using the skeleton of the sequential algorithuzy- that support$ock-freeprogramming orsinglevariables.
currencer €Xtracts the sequential computation into tasks The package contains wrapper classes over primitive
which run in parallel and dispatches these tasks to thevariables, for example, aft oni cl nt eger wraps ani nt
FJTask framework. value. The main advantage is that update operations execute
Typically a user would first make a program thread-safe, atomically, without blocking. Internallyat omi ci nt eger
i.e., the program has the same semantics as the sequeremploys efficient machine-level atomic instructions like
tial program even when executed under multiple threads,Compare-and-Swaihat are available on contemporary pro-
and then make the program run concurrently under multi- cessors. Usingt oni cl nt eger , the programmer gets both
ple threads.concurrencer supports both kinds of refactor- thread-safety(built-in the At oni ¢ classes) andcalabil-
ings: the first two refactorings are “enabling transforma- ity (the lock-free updates eliminate lock-contention under
tions”: they make a program thread-safe. The third refac- heavy accesses [8]).
toring makes a sequential program run concurrently.
The transformations performed by these refactorings are2.2 Code Transformations
involved: they require matching certain code patterns fwhic
can span several non-adjacent program statements, and they A programmer who wanted to usencurrencerto make
require program analysis which uses data-flow information. all accesses to amt thread-safe would start by selecting
Such transformations can not be safely executed by a find-the field and invoking theonver inT To ATomicinTecER refac-
and-replace tool. toring. concurrencerchanges the declaration type of ihe

& Convert to Atomic Integer o %

Changes to be performed R E 2
|- @ecounter g
[3] Counterjava £ B

Original Source
public class Counter {

Refactored Source
public class Counter { Y

[—_private int value = 0; private AtomicInteger value = new AtomicInteger(o); |

0
public int getCounter() {
return value.get(); I |0

public int getCounter() {
return value;

1 }

public void setCounter(int counter) {
value = counter;

public void setCounter(int counter) {
value.set(counter);

public int inc() {
return ++value;
} 1

} }

K| 0] K|

public int inc() { il
return value.incrementAndGet(); |

I T T 1

[

[—c—

Cancel

Figure 1. Using CoNCuRRENCERLO convertan int
to Atonicl nteger in Apache Tomcat. Left/right
shows code before/after refactoring.

field toAt omi cl nt eger and replaces all field updates with
their equivalent atomic APl methods At omi cl nt eger .
Figure 1 shows howzoncurrencer refactors some code

di vi deAndGet or nul ti pl yAndGet, then concurrencer
could use them. In such casesycurrencerwarns the user
that the update expression cannot be made thread-safe, othe
than by using locks.

Synchronization. concurrencerconverts both a sequen-
tial program into one which is thread-safe, and also an
already-concurrent program into one which is *more* con-
current. If the original code contairss/nchr oni zed ac-
cesses to thént field, concurrencertries to remove the
synchronization since this becomes superfluous after the
conversion ta\t oni cl nt eger (thread-safety is built-in the
At omi cl nt eger). concurrencerONly removes the synchro-
nization if the code after refactoring contains exactly one
call to the atomic APIs. Otherwise, a context switch can
still occur between two consecutive calls to atomic APIs,
For example concurrencerremoves the synchronization in
the code fragment below:

synchroni zed(| ock) {
val ue = value + 3;

but does not remove synchronization for the code frag-

from Apache Tomcat. We use this example to illustrate var- ment below:

ious code changes.

Initialization. Because the refactoredl ue field is an
At omi cl nt eger object, concurrencerinitializes it in the
field initializer (otherwise a\ul | Poi nt er Excepti on is
thrown the first time that a method is invoked wal ue).
concurrencerUSES the field initializer expression or the im-
plicit expression ‘0’.

Read/Write Accesses. concurrencerreplaces read ac-
cess (e.g., in methodet Counter()) with a call to
Atomi cl nteger’s get(). This has the same typent

as the expression being replaced, so clients are unaffectedma

Since the mutablat oni cl nt eger does not escape its con-
taining classCount er, a client can mutate the field only
through theCount er 's methods.

Concurrencer Feplaces write accesses (e.g., in method
set Count er) with a call toAt oni cl nt eger'sset ().

Update Expressions. There are three kinds of update
expressions: infix (e.gf = f + 2), prefix (e.g.,++f),
and postfix (e.g.f ++). concurrencerrewrites an infix up-
date expression using a call to the atommcAndGet (i nt
del ta).

CoNCURRENCER rewrites a prefix update expression
with a call to the atomici ncrenent AndGet () (e.g.,
methodi nc() in Fig. 1). It rewrites a postfix expres-
sion with a call to the atomigyet Andl ncrement ().
concurrencerSiMilarly rewrites the decrement expressions.

At onmi cl nteger only provides APIs for replacing in-
fix expressions involving ther operator. concurrencer
converts an infix expressions that use theperator to
an addition expression (e.g., it convefts= f - 5 to
f.addAndGet (-5)). If Atoniclnteger had methods

synchroni zed(| ock) {
value = value + 3;

val ue ++;

}

Similarly, concurrencer0nly removes the synchroniza-
tion if the synchronized block contains updates to one sin-
gle field. Since the\t oni cl nt eger ensures thread-safety
for only one single field, it is of no help in cases when the
program needs to maintain an invariant over multiple fields.
For example &/al ueRange object needs to ensure that its
x int field is always greater than its n int field. To han-
dle this,concurrencerwould need multivariable thread-safe
container classes, currently not providedby. c.

3 Convert HashMap to Concurren-
tHashMap
3.1 ConcurrentHashMap in Java

Thej . u. c. package contains several concurrent collec-
tion classesConcur r ent HashMap is a thread-safe imple-
mentation ofHashMap.

Before the introduction ofj.u.c., a program-
mer could create a thread-saféedashMap using
a synchronized wrapper over aHashMap (e.g.,

Col | ecti ons. synchroni zedVap(aMap)). The syn-
chronizedHashMap achieves its thread-safety by protecting
all accesses to theap with a commonlock. This results

in poor concurrency when multiple threads contend for the
lock.

Concur rent HashMap uses a more scalable locking
strategy.All readers run concurrently, atack-stripingal-
lows alimited number of writers to update the map concur-
rently. The implementation useé locks (the default value

code which checks whether a certain key is not present in
thecache Map field. If aput method call in the same con-
ditional body uses the same keyncurrencerhas identified

a potential usage gfut | f Absent . Next, concurrencerre-

is 16), each of them guarding a part of the hash buckets. As-places the two calls to the older APIge¢ andput) with
suming that the hash function spreads the values well, andone call toput | f Absent which executes atomically, with-
that keys are accessed randomly, this reduces the comtentioout locking the entire map. The alternative is to protect

for any given lock by a factor af.

Concurrent HashMap implements the Map inter-
face, therefore it includes the API methods offered
by HashMap. In addition, it contains three new
APIs putlfAbsent (key, value), replace(key,

ol dval ue, newval ue), and a conditionalenove(key,
val ue) . Each of these new APIs:

e supersedes several callsMap operations, and
e executes atomically.

For exampleput | f Absent (i) checks whether the map
contains a givenkey, and (ii) if absent, inserts the
(key,value) entry.

Replacing a synchronized HashMap with
Concurrent HashMap offers dramatic scalability im-
provements [8].

3.2 Code Transformations

A programmer who wanted to usencurrencerto make
all accesses to arashMap thread-safe would start by se-
lecting the field and invoking théonvert HasHMAP To Concur-
RenTHASHMAP Fefactoring.

Initialization and Accesses. concurrencerChanges the
declaration and the initialization of the field. Because
HashMap and Concur r ent HashMap implement the same
interface {(&p), initialization and map accesses remain
largely the same.

Map Updates. concurrencer detects update code

the pairget /put with one global lock, but this alternative
greatly reduces the application’s scalability since theklo
would prevent any other concurrent access to the map.

In the example in Fig. 2, thealue to be placed
in the (key,value) map entry is simply created by in-
voking a constructor. However, in many cases the cre-
ational code for the newly inserted value is much more
involved. Since the value to be inserted must be avail-
able before invokingput | f Absent, in Fig. 3, concur-
rencer €Xtracts the creational code into a creational method
(cr eat eTi meZoneli st) and calls it to compute the value.

concurrencerperforms a data-flow analysis to find out if
the created value is read after the callptat . If so, the
created value is stored so that it can be accessed later. The
example in Fig. 3 shows another trait: thieneZoneLi st
value is also written in the conditional code. The original
get Ti meZonelLi st method returns either the null value,
or the new value created in the conditional code. To pre-
serve these semanticsoncurrencer conditionally assigns
the newly created value to the nezonelLi st s variable.
The new conditional expression checks whether the call
to put | f Absent was successful: if the call succeeded,
put | f Absent returns null, otherwise it returns the previ-
ous value associated with the key. The refactored code uses
the return status to decide whether to store the newly adeate
value into thet i meZonelLi st variable.

Before calling theput | f Absent method, the value to
be inserted must be available. Therefore, in the refactored
code, the creational code is executed regardless of whether

Concur r ent Hashivap APl method.

has different semantics if the creational code has sidetsffe

The patterns have a similar structure: (i) check whether (€-9-, 109ging).concurrencerchecks whether the creational
the map contains a certain key, and (i) depending on the re-method has side effects, and if so, it warns the user.

sult, invoke one oput (key, val ue) or renmove(key).

We implemented a conservative analysis for determin-

This structure can have small variations. For instance, theing side-effects concurrencerwarns the user when the cre-

check can invokeont ai nsKey, get , or an equality check
usingget . A temporary variable might hold the result of
the check (like in Fig. 2).concurrencerhandles all combi-

ational method assigns to fields or method arguments and
when a method is called on a field or local variable. A con-
structor call is a special case of method call because fields

nations among these map update variations. Although theséay be assigned inside the constructor.

are the most common variations we have seen in real code,

there might be other variations. Failing to convert those up

dates does not break user code; it only misses the opportuFut ur e object, aj . u. c.

nity to eliminate synchronization.

An alternative to calling the creational method before
put | f Absent is to extract the creational code into a
utility class which represents

the result of a future computation. In this case, the re-

Fig. 2 illustrates one of the simplest transformations for sult of creational code will be retrieved only the first time

usingput i f Absent . In order to identify the potential us-
age ofput | f Absent , concurrencersearches for conditional

when the programmer caligt on theFut ur e object.con-
currencer could change alhap. get (val ue) accesses to

/1 before refactoring
HashMap<String, Fi |l e> cache = new HashMap<String, Fil e>();

Fil e root Fol der F;

public void service(Request req, final Response res){
Strl ng uri = req.requestURI ().toString();
F| I e resource = cache.get(uri);
if (resource == null){

resource = new Fil e(rootFolderF, uri);
cache. put (uri, resource);

Figure 2. Example of ConvertToConcurrentHashMap refactor

put | f Absent pattern. Changes are underlined.

/'l before refactoring
private Map<Local e, String[]> tinmeZonelLists;
private String[] tineZonelds;

public String[] getTineZoneList() {
Local e jivelLocale = Jived obal s. getLocal e();

String[] timeZonelist = timeZonelists.get(jivelLocale);

if (tinmeZoneList == null) {
ti meZoneli st = new String[timeZonelds.|ength];
for (int i =0; i < timeZonelList.length; i++) {

. /] popul ate tinmeZonelLi st

}

/1 Add the new list to the map of locales to lists
timeZonelLi sts. put(jiveLocal e, tineZonelList);

}

return timeZoneli st;

Figure 3. The user selects the

creational method (changes are underlined).

map. get (val ue) . get (), which would force the execu-

I/ after refactoring
Concur rent HashMap<Stri ng, Fi | e> cache = new Concurrent HashMap<Stri ng, Fi |

Fi |l e root Fol derF;

public void service(Request req, final Response res){

.Si.ring uri = req.requestURI().toString();

‘cé;:he. put | f Absent (uri, new Fil e(rootFolderF, wuri));

ing from GlassFish using the

/'l after refactoring
private Concurrent HashMap<Local e, String[]> tineZoneli sts;
private String[] tineZonelds;

public String[] getTi neZoneList() {

}

Local e jivelLocal e = Jived obal s. get Local e();

String[] timeZonelist = tinmeZonelists.get(jivelLocale);

String[] createdTi neZoneli st = createTi mneZonelLi st (jivelLocal e);

if (tinmeZoneLists.putlfAbsent(jivelLocale, createdTi mreZoneli st)

== nul

ti meZonelLi st = creat edTi neZoneli st ;

}

return timeZoneli st;

private String[] createTi neZonelLi st(Locale jivelLocale) {

}

String[] tinmeZonelist;

ti meZonelLi st = new String[tinmeZonelds.|ength];

for (int i =0; i < tinmeZoneList.length; i++) {
. Il popul ate tinmeZonelLi st

return tinmeZoneli st;

HashMap field to be made thread-safe, and Concurrencer performs all
the transformations. The figure shows an example from Zimbra

using the put | f Absent pattern with

4 Convert Recursion to FJTask

tion of the creational code. However, this alternative does
not solve the problem of side-effects either: the user code4.1 FJTask Framework in Java 7

might rely on the side effect to happen when placing the

value in the map, and now the side-effect only happens the Java 7 will contain a frameworkEJTask, for fine-
grained parallelism in computationally-intensive prabte
Divide-and-conquer algorithms are natural candidates for
such parallelization when the recursion tasks are coniplete
independent, i.e., they operate on different parts of the
Many recur-

first time the created value is retrieved from the map.

Synchronization. If the original

method con-
tained synchronization locks around map updates
currencer femoves them when they are superfluous

(Concur r ent HashMap has thread-safety built in). Conser-

vatively, concurrencerONly removes the locks if the refac-
tored code corresponding to the original synchronizedibloc
contains only one call tGoncur r ent HashMap’'s APIs, and
the original synchronization block only contains acce$ses

one single field. This latter check ensures the invariargs ov

multiple variables are still preserved.

data or they solve different subproblems.

sive divide-and-conquer algorithms display such propsrti
even though they were never designed with parallelism in
mind. Furthermore, static analyses (e.g., [15]) can deter-

mine whether there is any data dependency between the re-

cursive tasks, e.g., the recursive tasks write within timeesa

ranges of an array.

Fig. 4 shows the sequential and parallel version of a gen-

/| Sequential version // Parallel version
sol ve (Problem problem ({ sol ve (Problem problenm {
if (problemsize <= BASE_CASE) if (problemsize <= SEQ TTHRESHOLD)
sol ve probl em DI RECTLY sol ve probl em SEQUENTI ALLY
el se { el se {
split probleminto independent tasks split probleminto independent tasks
I N_PARALLEL{ (fork)
sol ve each task sol ve each task
wait for all tasks to conplete (join)
conpose result from subresults conpose result fromsubresults
} }
} }

Figure 4. Pseudocode for divide-and-conquer algorithm. Le ft hand side shows the sequential ver-
sion, right hand side shows the parallel version.

eral divide-and-conquer algorithm. In the parallel vensio ForkJoi nTask has several subclasses for different

if the problem size is smaller than a threshold, the prob- patterns of computation. RecursiveAction is the

lem is solved using the sequential algorithm. Otherwise, proper choice for the recursive tasks used in divide-

the problem is split into independent parts, these are dolve and-conquer computations. The framework also de-

in parallel, then the algorithm waits for all computationst fines For kJoi nExecut or, an object which executes

finish and composes the result from the subresults. For kJoi nTask computations using a pool of worker
Given the nature of divide-and-conquer algorithms, tasks threads.

that run in parallel should have the following characteris-

tics: 4.2 Code Transformations

e they are CPU-bound not I/0-bound, thus they do not

block on /0 ConcurreNcERCONVETtS a recursive divide-and-conquer al-

gorithm to one which runs in parallel using tiFgTask
« depending on the sequential threshold, many tasks/@mework. — The programmer need only select the
(e.g. tens of thousands) can be spawned by the recurdivide-and-conquer method and supply HEQUENTI AL
sion branches THRESHOLD parameter that determines when to run the se-

guential version of the algorithm. Using this user-supplie
o they only need to synchronize when waiting for sub- information,concurrencerautomatically performs all trans-

tasks to complete formations. . ' o
We made a design choice to keep the original interface

Given these properties, threads are not a good vehicle forof the recursive method unchanged, so that an outside client
running such tasks. Threads have high overhead (creatingyvould still invoke the method as before. The fact that the
scheduling, destroying) which might outperform the useful refactored method uses th@Task framework is an imple-
computation. Therefore Java 7 introdues kJoi nTask, mentation detail, hidden from the outside client.

a lighter-weight thread-like entity. A large number of such ~ We illustrate the transformations thedncurrencer per-
tasks may be hosted by a pool containing a small numberforms on a classic merge sort algorithm. The left-hand side
of actual threads. The task scheduling is baseavork- of Fig. 5 shows the original, sequential version of the merge
stealing[6, 13]: idle worker threads “steal” work from busy sort algorithm. Theort method takes as input the array to
threads. The framework avoids contention for the data be sorted and returns the sorted array. The algorithm starts
structures that hold the scheduling and ensures that eachvith the base case. In the recursion case, it copies the first
theft acquires a large chunk of work, thus making stealing half of the array and the second half of the array, sorts both
infrequent. It is this effective scheduling that keepslaéit halves, and merges them (code fier ge not shown).

cores busy with useful computation. Creating the ForkJoinTask. concurrencer Creates

The most important APl methods iRor kJoi nTask a RecursiveAction class, which is a subclass of
are: fork(Task) which spawns the execution of a new ForkJoi nTask. This class encapsulates the parallel com-
task in parallel,j oi n(Task) which blocks the current putation of the original recursive method, thisicurrencer
computation until the task passed as an argument finishednames this class by adding the “Impl” suffix to the name of
forkJoi n(Tasks) which is syntactic sugar for calling the original recursive method.
for k and thenj oi n, andconput e which is the hook-up Since theconput e hook-up method neither takes any
method invoked by the framework when executing each arguments, nor returns a value, tBert | npl has fields
task. conpute implements the main computation per- for the input arguments and the result of the computation.
formed by the task. For each formal parameter of the original recursive method,

/| Sequential version // Parallel version

i mport jsr166y. forkjoin.ForkJoi nExecutor;
i mport jsr166y. forkjoin.ForkJoi nPool ;

i nport jsri166y.forkjoin. RecursiveAction;

public class MergeSort { public class MergeSort {

public int[] sort(int[] whole) {
i nt processor Count = Runtine. getRuntine().avail abl eProcessors();

For kJoi nExecut or pool = new For kJoi nPool (processor Count) ;
Sortlnpl aSortlnpl = new Sortlnpl (whole);

pool . i nvoke(aSort!Inpl);

return aSortlnpl.result;

}

private class Sortlnpl extends RecursiveAction {
private int[] whole;
private int[] result;

private Sortlnpl (int[] whole) {
t hi s. whol e = whol e;

}

protected void conpute() {

if ((whole.length < 10)) {
result = sort(whole);
return;

} else {
int[] left = newint[whole.length / 2];
System arraycopy(whole, 0, left, 0, left.length);
int[] right = newint[whole.length - left.length];
System arraycopy(whol e, left.length,

right, 0, right.length);

Sortlnpl taskl = new Sortlnpl (left);
Sortlnpl task2 = new SortlInpl (right);
forkJoi n(taskl, task2);
left = taskl.result;
right = task2.result;
nmerge(left, right, whole);
result = whole;

public int[] sort(int[] whole) {
if (whole.length == 1) {

return whol e;
} else {
int[] left = newint[whole.length / 2];
System arraycopy(whole, 0, left, 0, left.length);
int[] right = newint[whole.length - left.length];
System arraycopy(whol e, left.length,
right, 0, right.length);

left = sort(left);

right = sort(right);
nmerge(left, right, whole);
return whol e;

private int[] sort(int[] whole) {
copy the original, sequential inplenentation

private void nerge(int[] left, int[] right,
int[] whole) {5
nerge left and right array into whole array

private void nerge(int[] left, int[] right,
int[] whole) {
nerge left and right array into whole array

Figure 5. The programmer selects the divide-and-conquer me thod and provides the sequential
threshold (whol e. | engt h < 10). Concurrencer converts the sequential divide-and-conqu er into
a parallel one using the FJTask framework. The left-hand sid e shows the sequential version, the
right-hand side shows the parallel version (changes are und erlined).

concurrencerCreates corresponding fields. In addition, if the method using the original recursive method as the model
recursive method has a non-void return typ@ycurrencer for computation. concurrencer performs three main trans-
creates aesul t field having the same declared type as the formations on the original recursive method: (i) it changes
return type of the method. This field holds the result of the the base case of the recursion, (ii) it replaces recursiie ca
computation. with Recur si veAct i on instantiations, and (iii) it executes

Concurrencer alsO generates a constructor having the the parallel tasks and then gathers the results of the ssbtas

same formal p_ar_ameters as _the original rgcursive method. First, concurrencerinfers thebase-casesed in the recur-

A call to the orlglr_1al method is replaced with a call to this sion: the base case is a conditional statement which does not
constructor, passing the actual parameters to the CORSIUC,,htain any recursive calls and which ends up with a return
tor. The constructor uses these parameters to initialige th g0 o0t ” Theroncurrencer replaces the base-case con-

class fields. ditional expression with thBEQUENTI AL THRESHOLD ex-
Implementing the conput e method. The conput e pression provided by the user (line 26). Nexdycurrencer

method is a hook-up method called by the framework when replaces the return statement in the base case of the drigina

it executes &or kJoi nTask. concurrencerimplements this recursive method with a call to the sequential method (line

27). If the original method returned a valugncurrencer mutate at least one of the arguments to hold the result of the
saves this value in theesul t field. computation.

Second,concurrencer replaces the recursive calls with Fig. 5 is an example of the first kind of computation.
creation of newRecur si veAct i on objects (lines 35, 36). The transformations for recursive methods which mutate
The arguments of the recursive call are passed as argumen@ne of their arguments to store the result are similar with
to the constructor of thRecur si veAct i on. Concurrencer the ones presented above, even slightly simpler, d&,
stores the newly created tasks into local variables, namecturrencerdoes not generate the code involving thesul t
taskl,task2, etc. field.

Third, concurrencerexecutes the parallel tasks and then
assembles the result from the subresults of the tasks. 5 Evaluation
currencer iNvVokes thef or kJoi n method while passing
the previously created tasks as argument®ncurrReNceR
places thef or kJoi n method after the last creation of
Recur si veActi on (line 37). Thenconcurrencersaves the
subresults of the parallel tasks into local variables. # th e Q1I1: Is concurrenceruseful? More precisely, does it
original recursive method used local variables to store the ease the burden of making sequential code thread-safe

Research Questions. To evaluate the effectiveness of
concurrencer We answered the following questions:

results of the recursive callspncurrencerreuses the same and of running concurrent tasks in parallel?

variables (lines 38, 39). Subsequent code can thus use the)

subresults to assemble the final result (line 40). Lastly, e Q2: With respect to thread-safety, how does the manu-
cURRENCERASSIGNS t0 theesul t field the combined subre- ally refactored code compare with code refactored with
sults (line 41). concurrencer in terms of using the correct APIs and

identifying all opportunities to replace field accesses

Reimplementing the recursive method. concurrencer)
with thread-safe API calls?

changes the implementation of the original recursive
method to invoke theJTask framework (lines 10-13)con-
cURRENCER Creates an executor object and initializes it with
the number of threads to be used by the worker thread pool.
The number of threads is equal with the number of avail-
able processors (found at runtime). The Java runtime sys- We evaluatectoncurrencers refactorings in two ways.
tem ensures that each processor will be assigned one workefFor code that had already been refactored to use Java 5's
thread. Since the divide-and-conquer algorithm is CPU- At oni cl nt eger andConcur r ent HashMap we compared
bound, creating more threads will not speed up the execu-the manual refactoring with whabncurrencerwould have
tion; on the contrary, it might slow the execution due to done. This answers the first two questions. [Eek-
thread scheduling overhead.concurrencerCreates a NEW vert Recursion ToFJTask, SinceFJTask is scheduled for Java
task and initializes it with the array to be sorted, then it 7's release, we could not find existing codebases using
passes the task to the executdmvoke blocks until the FJTask. We usedconcurrencerto refactor several divide-
computation finishes. Once the computation finished, theand-conquer algorithms, and we answer first and third ques-
sorted array available in theesul t field is returned (line tion.
14).

Discussion. concurrencerhandles several variations on 5.1 Methodology
how the subresults are combined to form the end result. For
example, the subresults of the recursive calls might not be Setup for convert INT To ATomicintEcer and Converr
stored in temporary variables, but they might be combined y,s.map To ConcURRENTHASHM AP.

e Q3: With respect to running concurrent tasks in par-
allel, is the refactored more efficient than the original
sequential code?

directly in expressions. For examplef abonacci func- Table 1 lists 6 popular, mature open-source projects that
tion returns: _ _ _ useAt oni ¢l nt eger andConcur r ent HashMap. We used
return fibonacci(n-1) + fibonacci(n-2). the head versions available in their version control system

concurrencer Creates and executes the parallel tasks asas of June 1, 2008.
before, and during the subresult combination phase it uses \We usedconcurrencer to refactorthe samefields that
the same expression to combine the subresults: open-source developers refactoredAtmni cl nt eger or
result = taskl.result + task2.result Concurr ent HashMap. We compare the code refactored

With respect to where the recursive method stores thewith concurrenceragainst code refactored by hand. We look
result, there can be two kinds of recursive methods: (i) re- at places where the two refactoring outputs differ, and guan
cursive methods which return a value, the result, and (ii) tify the number oferrors (i.e., one of the outputs uses the
recursive methods which do not return any value, but they wrong concurrent APIs) and the numberarhissiongi.e.,

refactoring in project #of LOC LOC CONCURRENCER
refactorings | changed can handle
Convert Int MINA 5 21 21
To Atomiclnteger Tomcat 5 26 26
Struts 0 0 0
GlassFish 15 60 60
JaxLib 29 240 240
Zimbra 10 54 54
Convert HashMap MINA 6 14 14
To ConcurrentHashMap Tomcat 0 0 0
Struts 6 68 64
GlassFish 14 86 86
JaxLib 7 62 62
Zimbra 44 388 377
Total for Atomicl nteger 141 1019 968
and ConcurrentHashMap
Convert Recursion mergeSort([15]) 1 36 36
to FJTask fibonacci([13]) 1 25 25
maxSumConsecutive([13]) 1 68 68
matrixMultiply ([5,13,15]) 1 108 108
quickSort(Zimbra) 1 35 35
maxTreeDepth(Eclipse) 1 30 30
Total for FJTask 6 302 302

Table 1. Programs used as case studies for CONVERT INT TO ATOMICINTEGER, CONVERT HASHMAP TO CONCURRENTHASHMAP,
and converT Recursion ToFJTask refactorings. Last two columns show LOC changed due to refac toring,
and how many LOC can be changed by = CoNcURRENCER

the refactored output could have used a concurrent API, but5.2 Q1: Is Concurrencer useful?
it instead uses the obsolete, lock-protected APIS).

For Atomiclnteger we were able to find both The top part of Table 1 show the number of refactor-
the version with theint field and the version with ings that open-source developers performed in the selected
At oni cl nt eger field, thus we use the version witht real world projects. The penultimate column shows how
as the input forconcurrencer FOI ConvERT HASHMAP TO CON- many lines of code were manually changed during refactor-

CcURRENTHASHMAP WE Were not able to find the versions which ing. Usingconcurrencer the developers would have saved

containedHashMap. It seems that those projects were us- editing 968 lines of code; instead they would have had to
ing Concur r ent HashMap from the first version of the file. only change 51 lines not currently handleddayicurrencer

In those cases we manually replacedy the type declara- The bottom part of Table 1 show the LOC changed when
tion of theConcur r ent HashMap field with HashMap; then converting the original recursive algorithm to one which

we ranconcurrencerto replaceHashMap updates with the uses theeJTask framework. To do the manual conversion,

thread-safe APIsp{it | f Absent, repl ace, anddel et e) it took the first author an average of 30 minutes for each
in Concur r ent HashMap. conversion. This includes also the debug time to make the
Setup for converT RECURSION TOFJTASK. parallelized algorithm work correctly. USing)NCURRENCER

We usedconcurrencerto parallelize several divide-and- the conversion was both correct and took less than 10 sec-
conquer a|g0rithms. We use two sets of inputs; (|) clas- onds. Doing the conversion withoncurrencersaves the pro-
sic divide-and-conquer algorithms used in others’ evalu- grammer from changing 302 LOC.
ations [5, 13, 15], and (ii) divide-and-conquer algorithms
from real projects. 5.3 Q2: How does manually and automat-
Table 1 shows the input programs. ically refactored code compare?
maxSunConsecut i ve takes an array of positive and nega-
tive numbers and computes the subsequence of consecutive concurrencerapplied all the correct transformations that

numbers whose sum is maximumumatri xMl tiply the open-source developers applied. We noticed several

multiplies two matrices. maxTr eeDept h computes the cases whereoncurrenceroutperforms the developerson-

depth of a binary tree. currencer produces the correct code, or it identifies more
The interested reader can find the input and the refac-opportunities for using the new, scalable APIs.

tored programs ononcurrencerS Webpage. For convert INT TO ATomicINTEGER, WE Noticed cases where

the developers used the wrong APIs when they refactored dncrementAndGet | dearementAndGet
by hand. We noticed that developers erroneously replaced usages usages| usages usages
infix expressions liker+f with f. get Andl ncrement (), pomeat |9 : ‘ : :
which is the equivalent API for the postfix expres-
sion f ++. They should have replaced+f with Table 2. Human errors in using
f.increment AndGet (). Table 2 shows that the open- At om cl nteger updates in refactorings
source developers made 4 such errors, whekeurrencer performed by open-source developers.
made no error. The erroneous usage of the APl can cause
an “off-by-one” value if the result is read in the same state- program speedup
ment which performs the update. In the case studies, the 2cores 4 cores
incremented value is not read in the same statement which mergesSort Lisx 1.6x
performs the update. fibonacci 1.94x 3.82x

For convert HasHMAP To ConcurrenTHASHMAP WE noticed maxSumConsecutivg 1.78x 3.16x
cases when the open-source developersaturrencer matrixMultiply 195 3.77x
omitted to use the new atomjmt | f Absent and condi- quickSort 184x 3.1
tional del et e operations, and instead use the old patterns maxTreeDepth 155x 238
involving synchronized, lock-protected accessptae and Average 17x 297

del et e. Although the refactored code is thread-safe, it
is non-optimal for these lines of code because it locks the
whole map for the duration of update operations. In con-
trast,Concur r ent HashMap’s new APIs offers better scal-
ability because they do not lock the whole map.

Table 3 shows the number of such omissions in the rithms we use random arrays with 10 million elements. For
case-study projects. We manually analyzed all the usages i bonacci we compute the fibonacci value for the num-
of put or del ete and compiled a list of all the places ber 45. FormaxSunConsecutive we use an array with
where those usages could have been replaced with thet00 million randomintegers. Feamt ri xMil ti pl y we use
newput | f Absent , r epl ace, or conditionaldel et e. We matrices with 1024x1024 doubles. FaaxTr eeDept h we
found that the open-source developers missed many opporuse a dense tree of depth 50.
tunities to use the new APIs. This intrigued us, since the
studied projects are all developed professionally, and areg Related Work
known to be of high-quality (e.g., Zimbra was acquired by
Yahoo, Struts is developed by Apache foundation, Glass-
F'Sh Is developed mainly by SUN). Also, we found several tion stemmed from the Fortran community and it targets
instances when the open-source developers correctly use A . .
the new APIs, so they certainly were aware of the new APIs. oop parallelization. Interactive tools like PFC [9], Para

: i .dcope [11], and SUIF Explorer [14] rely on the user to spec-

We can hypothesize that the open-source developers di Iy what loops to interchange, align, replicate, or expand

not convert to the new APIs because the new APIs would ' ’ ' '

have required creational methods which had side effects what scalars to vectorize, etc. ParaScope and SUIF Ex-
q . ‘plorer visually display the data dependences. The user must
Therefore, we conservatively only count those cases when

the creational method is guaranteed not to have side-effecte'ther determine that each loop dependence shown is not

(e.0. the value to be inserted in the map is produced by Sim_vaIid (due to conservative analysis in the tool), or transfo
o a loop to eliminate valid dependences.

ply instantiating a Java collection class). E_ven so, Table 3 Freisleben and Kielman [5] present a system that paral-
Sgcr)tvgzittigzttgh5szair;-f]ce)l\jvrtfptljseveIopers mrrlnsi:s dsr?]\l/,lecr: ! Belizes divide-and-conquer C programs, similar in spuwit t
P ONCURRENCER OUr ConverT Recursion ToFJTask refactoring. To use their sys-

fewer opportunities. These are all rare, intricate pastern tem, a programmer annotates (i) what computations are to
currently not supported byoncurrencer but they could all b ted in parallel, (ii) the synchronization points af
be supported by putting more engineering effort in the tool. € execu P . Y P
ter which the results of the subproblems are expected to be
available, (iii) the input and output parameters of the recu
5.4 Q3: What is the speedup of the par- gjye function, and (iv) the sequential threshold. The anno-
allelized algorithms? tated program is preprocessed and transformed into a pro-
gram which uses message-passing to communicate between
Table 4 shows the speedup of the parallelized algorithmsthe slave processes that execute the subproblems. Unlike
(speedup = timeseq/timeyq,). FoOr the sorting algo- their systemeoncurrenceriS NOt restricted to algorithms that

Table 4. Speedup of the parallelized divide-
and-conquer algorithms.

The earliest work on interactive tools for paralleliza-

10

putlfAbsent remove

potential human ONCURRENCER | potential human ONCURRENCER

usages omissions omissions usages omissions omissions
MINA 0 0 0 0 0 0
Tomcat 0 0 0 0 0 0
Struts 6 1 0 0 0 0
GlassFish 7 3 1 6 5 0
JaxLib 11 2 0 0 0 0
Zimbra 49 27 9 4 3 0
Total 73 33 10 10 8 0

Table 3. Human and Concurrenceromissions in using Concur r ent HashMap’s put | f Absent and con-
ditional renove.

use only two recursive subdivisions of the problem, and tool can replace only a single API call at a time, whereas our
concurrencerautomatically infers all the parameters of the tool replaces a set of related but dispersed API calls (fike t
transformation (except the sequential threshold). ones in Fig. 2, 3).

Bik et al. [2] present Javar, a compiler-based, source- Boshernitsan et al. [3] present iX|, a general framework
to-source restructuring system that uses programmer annofor code transformations. iXj has an intuitive user integfa
tations to indicate parallelization of loops and of recugsi that enables the user to quickly sketch a pattern for the code
algorithms. Javar rewrites the annotated code to run in par-transformation. Although useful for a broad range of trans-
allel using multiple threads. Javar’s support for paraiet formations, iX] is not able to transform code where the pat-
recursive functions is not optimal: each recursive caks$or tern matching executes against several dispersed statemen
a new thread, whose overhead can be greater than the usefiflike the ones in Fig. 2, 3, 5). In such scenarios, a user
computation. Unlike Javar, (Goncurrencerdoes not require needs to use a custom implemented transformation tool like
any programmer annotations, (ii) the parallel recursiambe concurrencer
efits from the efficient scheduling and load-balancing of the
FJTask framework, and (iii) we report on experiences with
usingconcurrencerto parallelize several divide-and-conquer
algorithms.

Vaziri et al. [16] present data-centric approacto mak- Refactoring sequential code to concurrency is not triv-
ing a Java class thread-safe. The programmer writes annoial. A good way to introduce concurrency into a program
tations denotingatomic setsi.e., sets of class fields that is via use of a good concurrency library suchjasi. c. .

7 Conclusionsand Future Work

should be updated atomically, andits-of-work i.e., meth- ~ Reengineering existing programs in this way is still tegiou
ods operating on atomic sets that should execute withoutand error-prone.
interleaving from other threads. Their system automayical Even seemingly simple refactorings—like replacing data

generates one lock for each atomic set and uses the lock tdypes with thread-safe, scalable implementations—is prone
protect field accesses in the corresponding units-of-work.to human errors. In this paper we presenticurrencer
Their system eliminates data races involving multiplevari which automates three refactorings for converting integer
ables, whereasoncurrencerWOrks with At omi cl nt eger fields to At oni cl nt eger, for converting hash maps to
andConcur r ent HashMap that are designed to protect only Concur rent HashMap, and for parallelizing divide-and-
single-variables. Howevetoncurrencer dogs not require conquer algorithms. Our experience Witlincurrencer
any programmer annotations. shows that it is more effective than a human developer in
Balaban et al. [1] present a tool for converting between identifying and applying such transformations, and the par
obsolete classes and their modern replacements. The proallelized code exhibits good speedup.
grammer specifies a mapping between the old APIs and We plan to extendtoncurrencerto support many other
the new APIs, and the tool uses a type-constraint analysisfeatures provided by .u.c.. Among others,concur
to determine whether it can replace all usages of the ob-rencer Will convert sequential code to use other thread-
solete class. Their tool is more general than ours, sincesafeAt oni ¢+ and scalableol | ecti on classes, will ex-
it can work with any APl mapping, for example one be- tract other kinds of computations to parallel tasks usirg th
tweenHashMap and Concur r ent HashMap. CoNCURRENCER Execut or s framework (task parallelism), and will convert
is less general, since the conversion betweashMap Arrays to Paral | el Arrays, a construct which enables
andConcur r ent HashMap is custom implemented. How- parallel execution of loop operations (data parallelism).
ever, such a conversion requires more powerful AST pattern As library developers make better concurrent libraries,
matching and rewriting than the one used in their tool. Their the “introduce concurrency” problem will become the “in-

11

troduce a library” problem. Tool support for introducing [16] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
such concurrent libraries is crucial for the widespread use constraints with data in an object-oriented languag®PL
of such libraries, resulting in more thread-safe, more-scal '06: Conference record of the 33rd ACM SIGPLAN-SIGACT

able programs. symposium on Principles of programming languagesges
334-345, New York, NY, USA, 2006. ACM.

References

[1] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for
class library migration. IMOOPSLA '05: Proceedings of
Object-oriented programming, systems, languages, and ap-
plications pages 265-279, New York, NY, USA, 2005. ACM
Press.

[2] A. J. C. Bik, J. E. Villacis, and D. Gannon. javar: A proto-
type java restructuring compile€oncurrency - Practice and
Experience9(11):1181-1191, 1997.

[3] M. Boshernitsan, S. L. Graham, and M. A. Hearst. Align-
ing development tools with the way programmers think about
code changes. I€HI '07: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systgrages
567-576, New York, NY, USA, 2007. ACM.

[4] D. Dig, J. Marrero, and M. D. Ernst. How do programs be-
come more concurrent? A story of program transformations.
Technical Report MIT-CSAIL-TR-2008-053, MIT, Septem-
ber 2008.

[5] B. Freisleben and T. Kielmann. Automated transformation of
sequential divide—and— conquer algorithms into parallel pro-
grams. Computers and Atrtificial Intelligencel4:579-596,
1995.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the cilk-5 multithreaded languagePIrDI '98:
Proceedings of the ACM SIGPLAN 1998 conference on Pro-
gramming language design and implementatipages 212—
223, New York, NY, USA, 1998. ACM.

[7] B. Goetz. What's New for Concurrency on the Java Plat-
form. Keynote Talk at JavaOne Conference, 200&tp:
/ldevelopers.sun.com/learning/javaoneonline/j1sessn.
jsp?sessn=TS-5515&yr=2008&track=javase.

[8] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice Addison-Wesley,
2006.

[9] J.R.Allen and K. Kennedy. PFC: A program to convert For-
tran to parallel form. IrSupercomputers: Design and Appli-
cations pages 186—205, 1984.

[10] JSR-166y Specification Request for Java 7.
http://g.oswego.edu/dl/concurrency-interest/.

[11] K. Kennedy, K. S. McKinley, and C.-W. Tseng. Analysis
and transformation in the parascope editor. |I@8, pages
433-447, 1991.

[12] D. Lea. Concurrent Programming in Java. Second Edition:
Design Principles and Pattern@\ddison-Wesley, 1999.

[13] D. Lea. A java fork/join framework. IIJAVA '00: Proceed-
ings of the ACM 2000 conference on Java Granmsges 36—
43, New York, NY, USA, 2000. ACM.

[14] S.-W. Liao, A. Diwan, J. Robert P. Bosch, A. Ghuloum, and
M. S. Lam. Suif explorer: an interactive and interprocedural
parallelizer.SIGPLAN Not.34(8):37-48, 1999.

[15] R.Ruginaand M. C. Rinard. Automatic parallelization of di-
vide and conquer algorithms. RPOPR pages 72—83, 1999.

12

