
Do Code Clones Matter?

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, Stefan Wagner
Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany
{juergens,deissenb,hummelb,wagnerst}@in.tum.de

Abstract

Code cloning is not only assumed to inflate mainte-
nance costs but also considered defect-prone as inconsistent
changes to code duplicates can lead to unexpected behavior.
Consequently, the identification of duplicated code, clone
detection, has been a very active area of research in recent
years. Up to now, however, no substantial investigation of
the consequences of code cloning on program correctness
has been carried out. To remedy this shortcoming, this pa-
per presents the results of a large-scale case study that was
undertaken to find out if inconsistent changes to cloned code
can indicate faults. For the analyzed commercial and open
source systems we not only found that inconsistent changes
to clones are very frequent but also identified a significant
number of faults induced by such changes. The clone de-
tection tool used in the case study implements a novel algo-
rithm for the detection of inconsistent clones. It is available
as open source to enable other researchers to use it as basis
for further investigations.

1. Clones & correctness

Research in software maintenance has shown that
many programs contain a significant amount of duplicated
(cloned) code. Such cloned code is considered harmful for
two reasons: (1) multiple, possibly unnecessary, duplicates
of code increase maintenance costs and, (2) inconsistent
changes to cloned code can create faults and, hence, lead
to incorrect program behavior [20, 29]. While clone detec-
tion has been a very active area of research in recent years,
up to now, there is no thorough understanding of the degree
of harmfulness of code cloning. In fact, some researchers
even started to doubt the harmfulness of cloning at all [17].

To shed light on the situation, we investigated the ef-
fects of code cloning on program correctness. It is impor-
tant to understand, that clones do not directly cause faults
but inconsistent changes to clones can lead to unexpected
program behavior. A particularly dangerous type of change
to cloned code is the inconsistent bug fix. If a fault was

found in cloned code but not fixed in all clone instances,
the system is likely to still exhibit the incorrect behavior.
To illustrate this, Fig. 1 shows an example, where a missing
null-check was retrofitted in only one clone instance.

This paper presents the results of a large-scale case study
that was undertaken to find out (1) if clones are changed in-
consistently, (2) if these inconsistencies are introduced in-
tentionally and, (3) if unintentional inconsistencies can rep-
resent faults. In this case study we analyzed three commer-
cial systems written in C#, one written in Cobol and one
open-source system written in Java. To conduct the study
we developed a novel detection algorithm that enables us
to detect inconsistent clones. We manually inspected about
900 clone groups to handle the inevitable false positives and
discussed each of the over 700 inconsistent clone groups
with the developers of the respective systems to determine
if the inconsistencies are intentional and if they represent
faults. Altogether, around 1800 individual clone group as-
sessments were manually performed in the course of the
case study. The study lead to the identification of 107 faults
that have been confirmed by the systems’ developers.

Research Problem Although most previous work agrees
that code cloning poses a problem for software mainte-
nance, “there is little information available concerning the
impacts of code clones on software quality” [29]. As the
consequences of code cloning on program correctness, in
particular, are not fully understood today, it remains unclear
how harmful code clones really are. We consider the ab-
sence of a thorough understanding of code cloning precari-
ous for software engineering research, education and prac-
tice.

Contribution The contribution of this paper is twofold.
First, we extend the existing empirical knowledge by a case
study that demonstrates that clones get changed inconsis-
tently and that such changes can represent faults. Second,
we present a novel suffix-tree based algorithm for the detec-
tion of inconsistent clones. In contrast to other algorithms
for the detection of inconsistent clones, our tool suite is
made available for other researchers as open source.

ar
X

iv
:1

70
1.

05
47

2v
1

 [
cs

.S
E

]
 1

9
Ja

n
20

17

Figure 1. Missing null check on right side can cause exception (Sysiphus).

2. Terms and definitions

The literature provides a wide variety of different defi-
nitions of clones and clone related terms [20, 29]. To avoid
ambiguity, we describe the terms as used in this paper.

Code is interpreted as a sequence of units, which for ex-
ample could be characters, normalized statements, or lines.
The reason to allow normalization of units at this stage, is
that often pieces of code are considered equal even despite
differences in comments or naming, which can be leveled
by the normalization. An exact clone is then a (consecutive)
substring of the code that appears at least twice in the (nor-
malized) code. Thus our definition of a clone is purely syn-
tactical, but catches exactly the idea of copy&paste, while
allowing simple changes, such as renaming, due to normal-
ization. An exact clone group is a set of at least two exact
clones that appear at different positions.

To capture the notion of non-identical clones, we roughly
follow the definitions of a gapped or type 3 clone given
in [20, 29]. A substring s of the code is called an incon-
sistent clone, if there is another substring t of the code such
that their edit distance is below a given threshold and that
t has no significant overlap with s. The edit distance is a
metric that counts the number of edit operations (insertion,
removal, or change of a single unit) needed to transform one
sequence into the other. Obviously, this definition is slightly
vague, as it depends on the threshold chosen and the mean-
ing of a “significant overlap”. However, it captures our in-
tuitive understanding of an inconsistent clone as used in this
paper. Examples are shown in Figs. 1 and 7. By clone we
denote both exact and inconsistent clones.

A clone group can be viewed as a connected graph,
where each node is a substring, and edges are drawn be-
tween substrings that are clones of each other. If at least
one pair of inconsistent clones is in the group, it is called an
inconsistent clone group. We could also have required all
clones in a clone group to be clones of each other, but often
these slightly larger clone groups created by our definition
reveal interesting relationships in the code.

For a thorough discussion of the consequences of incon-
sistent clones, we define that a failure is an incorrect output
of a software visible to the user and that a fault is the cause
of a potential failure inside the code. Defects are the super-
set of faults and failures.

3. Related work

A substantial amount of research has been dedicated
to code cloning in recent years. The detailed surveys by
Koschke [20] or Roy and Cordy [29] provide a comprehen-
sive overview of existing work. Since this paper targets con-
sequences of cloning and detection of inconsistent clones,
we detail existing work in these areas.

3.1 Consequences of cloning

Indication for harmfulness of cloning for maintainability
or correctness is given by several researchers. Lague et al.
[24], report inconsistent evolution of a substantial amount
of clones in an industrial telecommunication system. Mon-
den et al. [28] report a higher revision number for files with
clones than for files without in a 20 year old legacy system,
possibly indicating lower maintainability. In [18], Kim et al.
report that a substantial amount of changes to code clones
occur in a coupled fashion, indicating additional mainte-
nance effort due to multiple change locations.

Li et al. [26] present an approach to detect bugs based on
inconsistent renaming of identifiers between clones. Jiang,
Su and Chiu [13] analyze different contexts of clones, such
as missing if statements. Both papers report the successful
discovery of bugs in released software. In [1] and [2], in-
dividual cases of bugs or inconsistent bug fixes discovered
by analysis of clone evolution are reported for open source
software.

In contrast, doubt that consequences of cloning are un-
ambiguously harmful is raised by several recent research
results. Krinke [23] reports that only half the clones in sev-
eral open source systems evolved consistently and that only

a small fraction of inconsistent clones becomes consistent
again through later changes, potentially indicating a larger
degree of independence of clones than hitherto believed.
Geiger et al. [10] report that a relation between change cou-
plings and code clones could, contrary to expectations, not
be statistically verified. Lozano and Wermelinger [27] re-
port that no systematic relationship between code cloning
and changeability could be established.

The effect of cloning on maintainability and correctness
is thus not clear. Furthermore, the above listed publications
suffer from one or more shortcomings that limit the trans-
ferability of the reported findings.

• Instead of manual inspection of the actual inconsistent
clones to evaluate consequences for maintenance and
correctness, indirect measures1 are used [1, 10, 23, 24,
27,28]. Such approaches are inherently inaccurate and
can easily lead to misleading results. For example, un-
intentional differences and faults, while unknown to
developers, exhibit the same evolution pattern as in-
tentional independent evolution and are thus prone to
misclassification.

• The analyzed systems are too small to be represen-
tative [18] or omit analysis of industrial software
[1, 2, 10, 18, 23, 27].

• The analyses specifically focus on faults introduced
during creation [13, 26] or evolution [2] of clones, in-
hibiting quantification of inconsistencies in general.

Additional empirical research outside these limitations
is required to better understand consequences of cloning
[20, 29], as presented in this paper: Developer rating of the
actual inconsistent clones has been performed, the study ob-
jects are both open source and industrial systems and incon-
sistencies have been analyzed independently of their mode
of creation.

3.2 Detection of inconsistent clones

We classify existing approaches according to the pro-
gram representation on which they operate.
Text Normalized code fragments are compared textually
in a pairwise fashion [30]. A similarity threshold governs
whether text fragments are considered as clones.
Token Ueda et al. [32] propose post-processing of the re-
sults of a token-based detection of exact clones. Essen-
tially, neighboring exact clones are composed into incon-
sistent clones. In [26], Li et al. present the tool CP-Miner,
which searches for similar basic blocks using frequent sub-
sequence mining and then combines basic block clones into
larger clones.

1Examples are change coupling or the ratio between consistent and in-
consistent evolution of clones

Abstract Syntax Tree Baxter et al. [3] hash subtrees into
buckets and perform pairwise comparison of subtrees in the
same bucket. Jiang et al. [12] propose the generation of
characteristic vectors for subtrees. Instead of pairwise com-
parison, they employ locality sensitive hashing for vector
clustering, allowing for better scalability than [3]. In [8],
tree patterns that provide structural abstraction of subtrees
are generated to identify cloned code.
Program Dependence Graph Krinke [22] proposes
a search algorithm for similar subgraph identification.
Komondoor and Horwitz [19] propose slicing to identify
isomorphic PDG subgraphs. Gabel, Jiang and Su [9] use a
modified slicing approach to reduce the graph isomorphism
problem to tree similarity.

The existing approaches provided valuable inspiration
for the algorithm presented in this paper. However, none
of them was applicable to our case study, for one or more of
the following reasons.

• Tree [3,8,12] and graph [9,19,22] based approaches re-
quire the availability of suitable context free grammars
for AST or PDG construction. While feasible for mod-
ern languages such as Java, this poses a severe prob-
lem for legacy languages such as Cobol or PL/I, where
suitable grammars are not available. Parsing such lan-
guages still represents a significant challenge [6, 25].

• Due to the information loss incurred by the reduc-
tion of variable size code fragments to finite-size num-
bers or vectors, the edit distance between inconsistent
clones cannot be precisely controlled in feature vec-
tor [12] and hashing based [3] approaches.

• Idiosyncrasies of some approaches threaten recall. In
[32], inconsistent clones cannot be detected if their
constituent exact clones are not long enough. In [9],
inconsistencies might not be detected if they add data
or control dependencies, as noted by the authors.

• Scalability to industrial-size software of some ap-
proaches has been shown to be infeasible [19, 22] or
is at least still unclear [8, 30].

• For most approaches, implementations are not publicly
available.

In contrast, the approach presented in this paper sup-
ports both modern and legacy languages including Cobol
and PL/I, allows for precise control of similarity in terms of
edit distance on program statements, is sufficiently scalable
to analyze industrial-size projects in reasonable time and is
available for use by others as open source software.

An approach similar to [32] for bug detection has been
outlined by the authors of this paper in [16]. In contrast to
this work, it does not use a suffix tree based algorithm and
no empirical study was performed.

Figure 2. The clone detection pipeline used

4. Detecting inconsistent clones

This section explains the approach used for detecting in-
consistent clones in large amounts of code. Our approach
works on the token level, which usually is sufficient for
finding copy-pasted code, while at the same time being effi-
cient. The algorithm works by constructing a suffix tree of
the code and then for each possible suffix an approximate
search based on the edit distance in this tree is performed.

Our clone detector is organized as a pipeline, which is
sketched in Figure 2. The files under analysis are loaded
and then fragmented by the scanner, yielding a stream of
tokens, which is filtered to exclude comments and gener-
ated code (recognized by user provided patterns). From
the token stream, which consist of single keywords, iden-
tifiers, operators, and so on, the normalizer reassembles
statements. This stage performs normalization, such that
differences in identifier names or constant values are not
relevant when comparing statements. The sequence formed
by those statements is then fed into our clone detection algo-
rithm, which finds and reports clone groups in this stream.
Finally, clone groups are post-processed and uninteresting
ones are filtered out. We outline the detection steps in more
detail in the following subsections.

4.1. Preprocessing and normalization

As stated before, the code is read and split into tokens
using a scanner. An important task during preprocessing
is normalization, which creates statements from the scan-
ner’s tokens. This is used as it allows better tailoring of
normalization and to avoid clones starting or ending within
statements. The used normalization eliminates differences
in naming of identifiers and values of constants or literals,
but does not, for example, change operation order.

Further tasks of the preprocessing phase are the removal
of comments or generated code, which is either already ex-
cluded at the file level or on the token stream based on cer-
tain patterns that recognize sections of generated code.

4.2. Detection algorithm

The task of the detection algorithm is to find clones in
the stream of units provided by the normalizer. Stated dif-
ferently, we want to find common substrings in the sequence
formed by all units of the stream, where common substrings
are not required to be exactly identical (after normalization),
but may have an edit distance bounded by some threshold.
This problem is related to the approximate string matching
problem [14, 33], which is also investigated extensively in
bioinformatics [31]. The main difference is that we are not
interested in finding an approximation of only a single given
word in the string, but rather are looking for all substrings
approximately occurring more than once in the entire se-
quence.

A sketch of our detection algorithm is shown in Figs. 3
and 4. The algorithm is an edit distance based traversal of
a suffix tree of our input sequence. A suffix tree over a
sequence s is a tree with edges labeled by words such that
exactly all suffixes of s are found by traversing the tree from
the root node to a leaf and concatenating the words on the
edges encountered. Such a suffix tree can be constructed in
linear time by the well-known online algorithm by Ukko-
nen [34]. Using this suffix tree, we start a search for clones
at every possible index.

Searching for clones is performed by the procedure
search which recursively traverses the suffix tree. The first
two parameters to this function are the sequence s we are
working on and the position start where the search was
started, which is required when reporting a clone. The pa-
rameter j (which is the same as start in the first call of
search) marks the current end of the substring under inspec-
tion. To prolong this substring, the substring starting at j is
compared to the word w being next in the suffix tree, which
is the edge leading to the current node v (for the root node
we just use the empty string). For this comparison an edit
distance of at most e operations (fifth parameter) is allowed.
For the first call of search, e is the edit distance maximally
allowed for a clone. If the remaining edit operations are
not enough to match the entire edge word w (else case), we
report the clone as far as we found it, otherwise the traver-
sal of the tree continues recursively, increasing the length
(j−start) of the current substring and reducing the number
e of edit operations available by the amount of operations
already spent in this step.

To actually make this algorithm work and its results us-
able, some details have to be fleshed out. For the com-
putation of the longest edit distance match we are using
the simple dynamic programming algorithm found in al-
gorithm textbooks. While this is easy to implement, it re-
quires quadratic time and space2. To make this step work

2Actually the algorithm can be implemented using only linear space,
but preserving the full calculation matrix allows us some simplifications.

proc detect (s, e)
Input: String s = (s0, . . . , sn), max edit distance e

1 Construct suffix tree T from s
2 for each i ∈ {1, . . . , n} do
3 search (s, i, i, root(T), e)

Figure 3. Outline of approximate clone detec-
tion algorithm

proc search (s, start, j, v, e)
Input: String s = (s0, . . . , sn),

start index of current search, current search index j,
node v of suffix tree over s, max edit distance e

1 Let (w1, . . . , wm) be the word along the edge leading to v
2 Calculate the maximal length l ≤ m, such that

there is a k ≥ j where the edit distance e′ between
(w1, . . . , wl) and (sj , . . . , sk) is at most e

3 if l = m then
4 for each child node u of v do
5 search (s, start, k +m, u, e− e′)
6 else if k − start ≥ minimal clone length then
7 report substring from start to k of s as clone

Figure 4. Search routine of the approximate
clone detection algorithm

efficiently we look at most at the first 1000 statements of
the word w. As long as the word on the suffix tree edge
is shorter, this is not a problem. In case there is a clone of
more than 1000 statements, we would find it in chunks of
1000. We considered this to be tolerable for practical pur-
poses. As each suffix we are running the search on will of
course be part of the tree, we also have to make sure that no
self matches are reported.

When running the algorithm as it is, the results are often
not as expected because the search tries to match as many
statements as possible. However, allowing for edit opera-
tions right at the beginning or at the end of a clone is not
helpful, as then every exact clone can be prolonged into an
inconsistent clone. Thus in the search we enforce the first
few statements (how many is parameterized) to match ex-
actly. (This also speeds up the search, as we can choose the
correct child node at the root of the suffix tree in one step
without looking at all children.) The last statements are also
not allowed to differ, which is checked for and corrected just
before reporting a clone.

Including all of these optimizations, the algorithm can
miss a clone either due to the thresholds (either too short
or too many inconsistencies), or if it is covered by other
clones. The later case is important, as each substring of a
clone of course is a clone again and we usually do not want
these to be reported.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 1 2 3 4 5 6

Ti
m

e
in

 s
ec

on
ds

System size in MLOC

Figure 5. Runtime of inconsistent clone de-
tection on Eclipse source

4.3. Post-processing and filtering

During and after detection, the clone groups that are re-
ported are subject to filtering. Filtering is usually performed
as early as possible, so no memory is wasted with storing
clone groups that are not considered relevant. Using these
filters, we discard clone groups whose clones overlap with
each other and groups whose clones are contained in other
clone groups. Additionally, we enforce not only an absolute
limit on the number of inconsistencies, but also a relative
one, i. e., we filter clone groups where the number of incon-
sistencies in the clones relative to the clone’s length exceeds
a certain amount. Moreover, we merge clone groups which
share a common clone. While this leads to clone groups
with non related clones (as our definition of an inconsistent
clone is not transitive), for practical purposes it is preferred
to know of these indirect relationships, too.

4.4. Tool support

To be able to experiment with the detection of incon-
sistent clones, our algorithms and filters have been imple-
mented as part of CloneDetective3 [15] which is based on
ConQAT [4]. The result is a highly configurable and ex-
tensible platform for clone detection on the syntactic level.
As our cloning pipeline could reuse a major portion of the
CloneDetective code, we consider such an open platform
essential for future experiments, as it allows researchers to
focus on individual parts of the pipeline. CloneDetective
also offers a front-end to visualize and assess the clones
found, and thus supports the rapid review of a large num-
ber of clone groups.

4.5. Scalability and performance

Due to the many implementation details, the worst case
complexity is hard to analyze. Additionally, for practical

3Available as Open Source http://www.clonedetective.org

http://www.clonedetective.org

purposes, the more complicated average complexity would
be more adequate. Thus, and to assess the performance of
the entire pipeline we executed the detector on the source
code of Eclipse4, limiting detection to a certain amount of
code. Our results on an Intel Core 2 Duo 2.4 GHz running
Java in a single thread with 3.5 GB of RAM are shown in
Figure 5. The settings are the same as for the main study
(min clone length of 10, max edit distance of 5). It is ca-
pable to handle the 5.6 MLOC of Eclipse in about 3 hours,
which is fast enough to be executed within a nightly build.

5. Study description

In order to gain a solid insight into the effects of incon-
sistent clones, we use a study design with 5 objects and 3
research questions that guide the investigation.

5.1. Study objects

We chose 2 companies and 1 open source project as
sources of software systems. This resulted in 5 analyzed
projects in total. We chose systems written in different lan-
guages, by different teams in different companies and with
different functionalities to increase the transferability of the
study results. These objects included 3 systems written in
C#, a Java system as well as a long-lived Cobol system. All
these systems are already in production. For non-disclosure
reasons we gave the commercial systems names from A to
D. An overview is shown in Table 1.

Munich Re Group The Munich Re Group is one of the
largest re-insurance companies in the world and employs
more than 37,000 people in over 50 locations. For their in-
surance business, they develop a variety of individual sup-
porting software systems. In our study, we analyzed the
systems A, B and C, all written in C#. They were each
developed by different organizations and provide substan-
tially different functionality, ranging from damage predic-
tion, over pharmaceutical risk management to credit and
company structure administration. The systems support be-
tween 10 and 150 expert users each.

LV 1871 The Lebensversicherung von 1871 a.G.
(LV 1871) is a Munich-based life-insurance company. The
LV 1871 develops and maintains several custom software
systems for mainframes and PCs. In this study, we analyze
a mainframe-based contract management system mostly
written in Cobol (System D) employed by about 150 users.

4Core of Eclipse Europa release 3.3

Sysiphus The open source system Sysiphus5 is developed
at the Technische Universität München (TUM) but none of
the authors of this paper have been involved in the devel-
opment. It constitutes a collaboration environment for dis-
tributed software development projects. The inclusion of
an open source system is motivated by the fact that, as the
clone detection tool is also freely available, the results can
be externally replicated6. This is not possible with the de-
tailed confidential results of the commercial systems.

Table 1. Summary of the analyzed systems
System Organization Language Age Size

(years) (kLOC)
A Munich Re C# 6 317
B Munich Re C# 4 454
C Munich Re C# 2 495
D LV 1871 Cobol 17 197
Sysiphus TUM Java 8 281

5.2. Research questions

The underlying problem that we analyze are clones and
especially their inconsistencies. In order to investigate this
question, we answer the following 3 more detailed research
questions.

RQ 1 Are clones changed inconsistently?

The first question we need to answer is whether inconsistent
clones appear at all in real-world systems. This not only
means whether we can find them at all but also whether they
constitute a significant part of the total clones of a system.
It does not make sense to analyze inconsistent clones if they
are a rare phenomenon.

RQ 2 Are inconsistent clones created unintentionally?

Having established that there are inconsistent clones in real
systems, we need to analyze whether these inconsistent
clones have been created intentionally or not. It can ob-
viously be sensible to change a clone so that it becomes
inconsistent to its counterparts because it has to conform to
different requirements. However, the important difference
is whether the developer is aware of the other clones, i.e.
whether the inconsistency is intentional.

RQ 3 Can inconsistent clones be indicators for faults in
real systems?

5http://sysiphus.in.tum.de/
6http://wwwbroy.in.tum.de/˜ccsm/icse09/

http://sysiphus.in.tum.de/
http://wwwbroy.in.tum.de/~ccsm/icse09/

Figure 6. Clone Group Sets

After establishing these prerequisites, we can determine
whether the inconsistent clones are actually indicators for
faults in real systems. If there are inconsistent clones that
have not been created because of different requirements,
this implies that at least one of these clones does not con-
form to the requirements. Hence, it constitutes a fault.

5.3. Study design

We answer the research questions with the following
study design. In the study we analyze sets of clone groups
as shown in Fig. 6. The outermost set are all clone groups C
in a system, IC denotes the set of inconsistent clone groups,
and UIC the unintentionally inconsistent clone groups. The
subset F of UIC consists of those unintentionally inconsis-
tent clone groups that indicate a fault in the program. Please
note that we do not distinguish between created and evolved
inconsistent clones as for the question of faultiness it does
not matter when the inconsistencies have been introduced.

We use these different clone group sets to design the
study that answers our research questions. The independent
variables in the study are development team, programming
language, functional domain, age and size. The dependent
variables for the research questions are explained below.
RQ 1 investigates the existence of inconsistent clones in re-
alistic systems. Hence, we need to analyze the size of set
IC with respect to the size of set C. We apply our incon-
sistent clone analysis approach to all the systems, perform
manual assessment of the detected clones to eliminate false
positives and calculate the inconsistent clone ratio |IC|/|C|.

For RQ 2, whether clones are created unintentionally, we
then compare the size of the sets UIC and IC. The sets are
established by showing each identified inconsistent clone
to developers of the system and asking them to rate them
as intentional or unintentional. This gives us the uninten-
tionally inconsistent clone ratio |UIC|/|IC|. The most im-
portant question we aim to answer is whether inconsistent
clones indicate faults (RQ 3). Hence, we are interested in
the size of set F in relation to the size of IC. The set F
is again determined by asking developers of the respective
system. Their expert opinion classifies the clones in faulty
and non-faulty. We only analyze unintentionally inconsis-
tent clones for faults. Our faulty inconsistent clone ratio

|F|/|IC| is thus a lower bound, as potential faults in inten-
tionally inconsistent clones are not considered.

Using this, we are already able to roughly find the an-
swer to RQ 3. As this is our main result from the study,
we transform it into a hypothesis. We need to make sure
that the fault density in the inconsistencies is higher than
in randomly picked lines of source code. This leads to the
hypothesis H:

The fault density in the inconsistencies is higher than the
average fault density.

As we do not know the actual fault densities of the an-
alyzed systems, we need to resort to average values. The
span of available numbers is large because of the high vari-
ation in software systems. Endres and Rombach [7] give
0.1–50 faults per kLOC as a typical range. For the fault
density in the inconsistencies, we use the number of faults
divided by the logical lines of code of the inconsistencies.
We refrain from testing the hypothesis statistically because
of the low number of data points as well as the large range
of typical defect densities.

5.4. Procedure

The treatment we used on the objects was the approach
to detect inconsistent clones as described in section 4. For
all systems, the detection was executed by the researcher to
identify consistent and inconsistent clone candidates. On
an 1.7 GHz notebook, the detection took between one and
two minutes for each system. The detection was configured
to not cross method boundaries, since experiments showed
that inconsistent clones that cross method boundaries in
many cases did not capture semantically meaningful con-
cepts. This is also noted for exact clones in [21] and is even
more pronounced for inconsistent clones. Since in Cobol
sections in the procedural division are the counterpart of
Java or C# methods, clone detection for Cobol was limited
to these.

For the C# and Java systems, the algorithm was param-
eterized to use 10 statements as minimal clone length, a
maximum edit distance of 5, a maximal inconsistency ra-
tio (i. e., the ratio of edit distance and clone length) of 0.2
and the constraint that the first 2 statements of two clones
need to be equal. Due to the verbosity of Cobol [6], mini-
mal clone length and maximal edit distance were doubled to
20 and 10, respectively. Generated code that is not subject
to manual editing was excluded from clone detection, since
inconsistent manual updates obviously cannot occur. Nor-
malization of identifiers and constants was tailored as ap-
propriate for the analyzed language, to allow for renaming
of identifiers while at the same time avoiding too large false
positive rates. These settings were determined to represent
the best compromise between precision and recall during
cursory experiments on the analyzed systems, for which

Table 2. Summary of the study results
Project A B C D Sysiphus Sum Mean
Precision exact clone groups 0.88 1.00 0.96 1.00 0.98 — 0.96
Precision inconsistent clone groups 0.61 0.86 0.80 1.00 0.87 — 0.83
Clone groups |C| 286 160 326 352 303 1427 —
Inconsistent clone groups |IC| 159 89 179 151 146 724 —
Unintentionally inconsistent clone groups |UIC| 51 29 66 15 42 203 —
Faulty clone groups |F | 19 18 42 5 23 107 —
RQ 1 |IC|/|C| 0.56 0.56 0.55 0.43 0.48 — 0.52
RQ 2 |UIC|/|IC| 0.32 0.33 0.37 0.10 0.29 — 0.28
RQ 3 |F |/|IC| 0.12 0.20 0.23 0.03 0.16 — 0.15
Faulty in UIC |F |/|UIC| 0.37 0.62 0.64 0.33 0.55 — 0.50
Inconsistent logical lines 442 197 797 1476 459 3371 —
Fault density in kLOC−1 43 91.4 52.7 3.4 50.1 — 48.1

random samples of the detected clones have been evaluated
manually.

The detected clone candidates were then manually rated
by the researcher in order to remove false positives, i. e.,
code fragments that, although identified as clone candidates
by the detection algorithm, have no semantic relationship.
Inconsistent and exact clone group candidates were treated
differently: all inconsistent clone group candidates were
rated, producing the set of inconsistent clone groups. Since
the exact clones were not required for further steps of the
case study, instead of rating all of them, a random sample
of 25% was rated, and false positive rates then extrapolated
to determine the number of exact clones.

The inconsistent clone groups were then presented to the
developers of the respective systems in the tool CloneDe-
tective mentioned in Section 4.4, which is able to display
the commonalities and differences of the clone group in a
clearly arranged way, as depicted in Figs. 1 and 7. The de-
velopers rated whether the clone groups were created in-
tentionally or unintentionally. If a clone group was created
unintentionally, the developers also classified it as faulty or
non-faulty. For the Java and C# systems, all inconsistent
clone groups were rated by the developers. For the Cobol
system, rating was limited to a random sample of 68 out of
the 151 inconsistent clone groups, since the age of the sys-
tem and the fact that the original developers were not avail-
able for rating increased rating effort. Thus, for the Cobol
case, the results for RQ 2 and RQ 3 were computed based
on this sample. In cases where intentionality or faultiness
could not be determined, e. g., because none of the original
developers could be accessed for rating, the inconsistencies
were treated as intentional and non-faulty.

6. Results

The quantitative results of our study are summarized in
Table 2. Except for the Cobol system D, the precision val-

ues are smaller for inconsistent clone groups than for ex-
act clone groups, as was expected, since inconsistent clone
groups allow for more deviation. The high precision results
of system D result from the rather conservative clone detec-
tion parameters chosen due to the verbosity of Cobol. For
system A, stereotype database access code of semantically
unrelated objects gave rise to lower precision values.

About half of the clones (52%) contain inconsistencies.
Therefore, RQ 1 can be positively answered: Clones are
changed inconsistently. All these would not be reported by
existing tools that search for exact matches. From these
inconsistencies over a quarter (28%) has been introduced
unintentionally. Hence, RQ 2 can also be answered pos-
itively: Inconsistent clones are created unintentionally in
many cases. Only system D is far lower here, with only 10%
of unintentionally inconsistent clones. With about three
quarters of intentional changes, this shows that cloning and
changing code seems to be a frequent pattern during devel-
opment and maintenance.

For RQ 3, whether inconsistent clones are indicators for
faults, we note that at least 3-23% of the inconsistencies ac-
tually presented a fault. Again the by far lowest number
comes from the Cobol system. Ignoring it, the total ratio
of faulty inconsistent clones goes up to 18%. This consti-
tutes a significant share that needs consideration. To judge
hypothesis H, we also calculated the fault densities. They
lie in the range of 3.4–91.4 faults per kLOC. Again, system
D is an outlier. Compared to reported fault densities in the
range of 0.1 to 50 faults and considering the fact that all sys-
tems are not only delivered but even have been productive
for several years we consider our results to support hypoth-
esis H. On average the inconsistencies contain more faults
than average code. Hence, RQ 3 can also be answered pos-
itively: Inconsistent clones can be indicators for faults in
real systems.

While the numbers are similar for the C# and Java
projects, rates of unintentional inconsistencies and thus

Figure 7. Different UI behavior since right side does not use operations (Sysiphus).

faults are comparatively low for project D, which is a legacy
system written in Cobol. To a certain degree, we attribute
this to our conservative assessment strategy of treating in-
consistencies whose intentionality and faultiness could not
be unambiguously determined as intentional and non-faulty.
Furthermore, interviewing the current maintainers of the
systems revealed that cloning is such a common pattern in
Cobol systems, that searching for duplicates of a piece of
code is actually an integral part of their maintenance pro-
cess. Compared to the developers of the other projects,
the Cobol developers where thus more aware of clones in
the system. To account for this difference in “clone aware-
ness” we added the row |F |/|UIC| to Table 2, which re-
veals that while the rates of unintentional changes are lower
for project D, the ratio of unintentional changes leading to a
fault is in the same range for all projects. From our results it
seems that about every second to third unintentional change
to a clone leads to a fault.

Although not central to our research questions, the de-
tection of faults almost automatically raises the question for
their severity. As the fault effect costs are unknown for the
analyzed systems, we cannot provide a full-fledged sever-
ity classification. However, we provide a partial answer by
categorizing the found faults as (1) faults that lead to po-
tential system crash or data loss, (2) unexpected behavior
visible to the end user and (3) unexpected behavior not vis-
ible to the end user. One example for a category (1) fault is
shown in Fig 1. Here, one clone of the affected clone group
performs a null-check to prevent a null-pointer dereference
whereas the other does not. Other examples we encountered
for category (1) faults are index-out-of-bounds exceptions,
incorrect transaction handling and missing rollbacks. Fig. 7
shows an example of a category (2) fault. In one clone the
performed operation is not encapsulated in an operation ob-
ject and, hence, is handled differently by the undo mecha-
nism. Further examples we found for category (2) faults are
incorrect end user messages, inconsistent default values as
well as different editing and validation behavior in similar

user forms and dialogs. Category (3) examples we iden-
tified include unnecessary object creation, minor memory
leaks, performance issues like missing break statements in
loops and redundant re-computations of cache-able values,
differences in exception handling, different exception and
debug messages or different log levels for similar cases. Of
the 107 inconsistent clones found, 17 were categorized as
category (1) faults, 44 as category (2) faults and 46 as cat-
egory (3) faults. Since all analyzed systems are in produc-
tion, the relatively larger amounts of category (2) and (3)
faults coincide with our expectations.

7. Threats to validity

We discuss how we mitigated threats to construct, inter-
nal and external validity of our study.

7.1. Construct validity

We did not analyze the development repositories of the
systems in order to determine if the inconsistencies really
have been introduced by incomplete changes to the system
and not by random similarities of unrelated code. This has
two reasons: (1) We want to analyze all inconsistent clones,
also the ones that have been introduced directly by copy and
modification in a single commit. Those might not be visible
in the repository. (2) The industrial systems do not have
complete development histories. We confronted this threat
by manually analyzing each potential inconsistent clone.

The comparison with average fault probability is not
perfect to determine whether the inconsistencies are really
more fault-prone than a random piece of code. A compar-
ison with the actual fault densities of the systems or actual
checks for faults in random code lines would better suit this
purpose. However, the actual fault densities are not avail-
able to us because of incomplete defect databases. To check
for faults in random code lines is practically not possible.

We would need the developers time and willingness for in-
specting random code. As the potential benefit for the de-
velopers is low, the motivation would be low and hence the
results would be unreliable.

7.2. Internal validity

As we ask the developers for their expert opinion on
whether an inconsistency is intentional or unintentional and
faulty or non-faulty, a threat is that the developers do not
judge this correctly. One case is that the developer assesses
something as non-faulty which actually is faulty. This case
only reduces the chances to positively answer the research
questions. The second case is that the developers rate some-
thing as faulty which is no fault. We mitigated this threat by
only rating an inconsistency as faulty if the developer was
completely sure. Otherwise it was postponed and the devel-
oper consulted colleagues that know the corresponding part
of the code better. Inconclusive candidates were ranked as
intentional and non-faulty. Hence, again only the chance to
answer the research question positively is reduced.

The configuration of the clone detection tool has a strong
influence on the detection results. We calibrated the param-
eters based on a pre-study and our experience with clone
detection in general. The configuration also varies over the
different programming languages encountered, due to their
differences in features and language constructs. However,
this should not strongly affect the detection of inconsistent
clones because we spent great care to configure the tool in
a way that the resulting clones are sensible.

We also pre-processed the inconsistent clones that we
presented to the developers in order to eliminate false posi-
tives. This could mean that we excluded clones that are ac-
tually faulty. However, this again only reduces the chances
that we can answer our research question positively.

7.3. External validity

The projects were obviously not sampled randomly from
all possible software systems but we relied on our connec-
tions with the developers of the systems. Hence, the set of
systems is not completely representative. The majority of
the systems is written in C# and analyzing 5 systems in to-
tal is not a high number. However, all 5 systems have been
developed by different development organizations and the
C#-systems are technically different (2 web, 1 rich client)
and provide substantially different functionalities. We fur-
ther mitigated this threat by also analyzing a legacy Cobol
system as well as an open source Java system.

8. Discussion

Even considering the threats to validity discussed above,
the results of the study show convincingly that clones can

lead to faults in a system. The inconsistencies between
clones are often not justified by different requirements but
can be explained by developer mistakes.

We consider of special value the analysis of the Sysiphus
project. Because both Sysiphus and our detection tools are
open source, the whole analysis can completely be repli-
cated independently. We provide a web site with the neces-
sary information7.

Having established the empirical results, the question re-
mains of how to use this information in order to reduce
faults in software systems. The answer is twofold: (1) pre-
vention by less cloning and (2) tools that prevent uninten-
tionally inconsistent changes of clones. The fewer clones
there are in the system, the less likely it is to introduce faults
by inconsistencies between them. In order to increase de-
veloper awareness of clones, we have integrated our clone
detection tool into the Visual Studio development environ-
ment8. At the Munich Re Group, as a reaction on the clone
results, clone detection is now included in the nightly builds
of all discussed projects. Furthermore, for existing clones,
there should be tool support that ensures that all changes
that are made to a clone are made in the full knowledge of
its duplicates. Tools such as CloneTracker [5] or CReN [11]
provide promising approaches. However, both approaches
are not applicable to existing software that already contains
inconsistent clones. Due to their high fault potential, we
consider the ability to detect inconsistent clones an impor-
tant feature of industrial-strength clone detectors.

9. Conclusion

In this paper we provide strong evidence that inconsis-
tent clones constitute a major source of faults, which means
that cloning can be a substantial problem during develop-
ment and maintenance unless special care is taken to find
and track existing clones and their evolution. Our results
suggest that nearly every second unintentionally inconsis-
tent change to a clone leads to a fault. Furthermore, we
provide a scalable algorithm for finding such inconsistent
clones as well as suitable tool support for future experi-
ments.

Future work on this topic will evolve in multiple direc-
tions. One obvious development is the refinement of the
algorithms and tools used. This includes refined heuristics
to speed up the clone search and perform automatic assess-
ment to discard obviously irrelevant clones. In addition, the
usability of the tools could be advanced further to make
their use more efficient for practical applications. More-
over, it will be interesting to compare different detection pa-
rameter values, algorithms and tools according to their per-
formance and accuracy when finding inconsistent clones.

7http://wwwbroy.in.tum.de/˜ccsm/icse09/
8http://www.codeplex.com/CloneDetectiveVS

http://wwwbroy.in.tum.de/~ccsm/icse09/
http://www.codeplex.com/CloneDetectiveVS

Additionally, while answering some questions, our data
of course raises a couple of new relevant questions. One is
a more detailed quantitative classification of defect types of
the faults found. Another question is whether those faults
are also detected by classical techniques such as dynamic
testing. However, to answer these questions the developers
of the analyzed systems have to be interviewed again.

The underlying major question is how studying cloning
can help in reducing the development and maintenance
costs of software systems. This paper takes a first step into
this direction, but more work needs to be done to develop a
usable and economically sensible methodology.

Coming back to the paper title, we found that code clones
do matter. Our result is, however, limited to the conse-
quences of clones on program correctness. Hence, we be-
lieve that the most important task of future work is to inves-
tigate the impact of clones on software maintenance effort.

Acknowledgments The authors would like to thank the
Munich Re Group, LV 1871 and the Sysiphus team for sup-
porting this study as well as Magne Jørgensen for helpful
comments on the empirical analysis. This work has par-
tially been supported by the German Federal Ministry of
Education and Research (BMBF) in the project QuaMoCo
(01 IS 08023B).

References
[1] L. Aversano, L. Cerulo, and M. Di Penta. How clones are

maintained: An empirical study. In Proc. CSMR ’07. IEEE,
2007.

[2] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in
software evolution. In Proc. ICSM ’07. IEEE, 2007.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proc. ICSM
’98. IEEE, 1998.

[4] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner,
B. Mas y Parareda, and M. Pizka. Tool support for con-
tinuous quality control. IEEE Softw., 25(5):60–67, 2008.

[5] E. Duala-Ekoko and M. P. Robillard. Tracking code clones
in evolving software. In Proc. ICSE ’07. IEEE, 2007.

[6] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In Proc.
ICSM ’99. IEEE, 1999.

[7] A. Endres and D. Rombach. A Handbook of Software and
Systems Engineering. Pearson, 2003.

[8] W. S. Evans, C. W. Fraser, and F. Ma. Clone detection via
structural abstraction. In Proc. WCRE ’07. IEEE, 2007.

[9] M. Gabel, L. Jiang, and Z. Su. Scalable detection of seman-
tic clones. In Proc. ICSE ’08. ACM, 2008.

[10] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation
of code clones and change couplings. In Proc. FASE06.
Springer, 2006.

[11] P. Jablonski and D. Hou. CReN: a tool for tracking copy-
and-paste code clones and renaming identifiers consistently
in the IDE. In Proc. Eclipse ’07. ACM, 2007.

[12] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Decard: Scal-
able and accurate tree-based detection of code clones. In
Proc. ICSE ’07. IEEE, 2007.

[13] L. Jiang, Z. Su, and E. Chiu. Context-based detection of
clone-related bugs. In Proc. ESEC-FSE ’07. ACM, 2007.

[14] P. Jokinen and E. Ukkonen. Two algorithms for approximate
string matching in static texts. In Proc. MFCS ’91, volume
520 of LNCS. Springer, 1991.

[15] E. Juergens, F. Deissenboeck, and B. Hummel. Clonedetec-
tive: A workbench for clone detection research. In In proc.
of ICSE 2009, 2009.

[16] E. Juergens, B. Hummel, F. Deissenboeck, and M. Feilkas.
Static bug detection through analysis of inconsistent clones.
In Workshopband SE Konferenz 2008, LNI. GI, 2008.

[17] C. Kapser and M. W. Godfrey. “Cloning considered harm-
ful” considered harmful. In Proc. WCRE ’06. IEEE, 2006.

[18] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empiri-
cal study of code clone genealogies. In Proc. ESEC/FSE-13.
ACM, 2005.

[19] R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. In Proc. SAS ’01, volume 2126
of LNCS. Springer, 2001.

[20] R. Koschke. Survey of research on software clones. In Du-
plication, Redundancy, and Similarity in Software. Dagstuhl
Seminar Proceedings, 2007.

[21] R. Koschke, R. Falke, and P. Frenzel. Clone detection using
abstract syntax suffix trees. In Proc. WCRE ’06. IEEE, 2006.

[22] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proc. WCRE ’01. IEEE, 2001.

[23] J. Krinke. A study of consistent and inconsistent changes to
code clones. In Proc. WCRE ’07. IEEE, 2007.

[24] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hude-
pohl. Assessing the benefits of incorporating function clone
detection in a development process. In Proc. ICSM ’97.
IEEE, 1997.

[25] R. Lämmel and C. Verhoef. Semi-automatic grammar re-
covery. Softw. Pract. Exp., 31(15):1395–1438, 2001.

[26] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code.
IEEE Trans. Softw. Eng, 32(3):176–192, 2006.

[27] A. Lozano and M. Wermelinger. Assessing the effect of
clones on changeability. In ICSM 2008. IEEE, 2008.

[28] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Mat-
sumoto. Software quality analysis by code clones in indus-
trial legacy software. In Proc. METRICS ’02. IEEE, 2002.

[29] C. K. Roy and J. R. Cordy. A survey on software clone de-
tection research. Technical Report 541, Queen’s University
at Kingston, 2007.

[30] C. K. Roy and J. R. Cordy. NICAD: Accurate detection
of near-miss intentional clones using flexible pretty-printing
and code normalization. In Proc. ICPC ’08. IEEE, 2008.

[31] H. Täubig. Fast Structure Searching for Computational Pro-
teomics. PhD thesis, TU München, 2007.

[32] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On de-
tection of gapped code clones using gap locations. In Proc.
APSEC ’02, 2002.

[33] E. Ukkonen. Approximate string matching over suffix trees.
In Proc. CPM ’93, volume 684 of LNCS. Springer, 1993.

[34] E. Ukkonen. On-line construction of suffix trees. Algorith-
mica, 14(3):249–260, 1995.

(c) 2009 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertis-
ing or promotional purposes, creating new collective works
for resale or redistribution to servers or lists, or reuse of any
copyrighted components of this work in other works.

	1 . Clones & correctness
	2 . Terms and definitions
	3 . Related work
	3.1 Consequences of cloning
	3.2 Detection of inconsistent clones

	4 . Detecting inconsistent clones
	4.1 . Preprocessing and normalization
	4.2 . Detection algorithm
	4.3 . Post-processing and filtering
	4.4 . Tool support
	4.5 . Scalability and performance

	5 . Study description
	5.1 . Study objects
	5.2 . Research questions
	5.3 . Study design
	5.4 . Procedure

	6 . Results
	7 . Threats to validity
	7.1 . Construct validity
	7.2 . Internal validity
	7.3 . External validity

	8 . Discussion
	9 . Conclusion

