
Influencing the Adoption of Software Engineering Methods Using Social Software

Leif Singer, Kurt Schneider
Software Engineering Group
Leibniz Universität Hannover

Hannover, Germany
{leif.singer, kurt.schneider}@inf.uni-hannover.de

Abstract—Software engineering research and practice provide
a wealth of methods that improve the quality of software and
lower the costs of producing it. Even though processes mandate
their use, methods are not employed consequently. Software
developers and development organizations thus cannot fully
benefit from these methods. We propose a method that, for a
given software engineering method, provides instructions on
how to improve its adoption using social software. This
employs the intrinsic motivation of software developers rather
than prescribing behavior. As a result, we believe that software
engineering methods will be applied better and more
frequently.

Social Software; Motivation; Adoption; Process; Virtual
Communities; CSCW; Social Network Sites

I. INTRODUCTION
Many software engineering methods, such as unit testing

or version control, have been shown to positively influence
the quality and costs of the produced software. Practitioners
and researchers alike are constantly refining existing
methods and inventing new ones.

However, in practice, many of these are often not used
optimally or not used at all. Anecdotally, we have seen this
happen in industry projects. Test cases don’t get written
because of tight deadlines. Code exhibits high coupling, even
though developers know better. Employees perform version
control by emailing compressed project directories back and
forth. Using processes helps tackling these problems to a
certain degree – but mandatory procedures are not always
followed and may be met with resistance [11]. Key
motivations for software engineers are autonomy,
independence, and being included in decision making [3] – a
stark contrast to activities mandated by processes.

In the past years, much research on the effects of social
software has been published. Some of these results stem
from computer science, but many have their roots in social
psychology and group dynamics. They show that social
software helps motivating users and can propagate behavior
and information. For example, users of social network sites
are more likely to enact a certain behavior if they were able
to observe their contacts exhibiting the behavior before [5,
6]. Social software may also help raising awareness in
project teams, as it makes visible what is happening in the
project [16].

Software engineering – a social activity – could benefit
from the systematic application of social software. In

particular, we believe that it can influence the use of
software engineering methods. This is currently not yet done
systematically; rather some tools already use these effects in
some places. We present the first results of a systematization
of this approach and describe our plans for future work in
this area.

II. RELATED WORK
We are creating a systematic method that can be applied

to a multitude of software engineering methods, i.e., it is
method-independent. Its goal is improving the use of these
methods. Software development processes, such as the
V-Model XT, as well as software process improvement
models, have similar goals and properties.

The latter were first meant to assess to what degree an
organization implemented a given development process. By
now, they are also used to improve the implementation of
these processes in organizations. Examples are CMMI [15]
and SPICE [12].

However, software engineers do not accept processes just
because they are mandated. Riemenschneider et al. found out
that „individual developer acceptance is far from assured
even in the presence of an organizational mandate“ [11].
Beecham et al. later found out that one of the key motivators
for software engineers seems to be autonomy. They have a
wish for independence, yet want to be included in decision
making [3]. Simply mandating a process doesn’t achieve any
of these things.

Contrary to processes and process improvement models,
our approach strives to support the existing motivations of
software engineers. In our view, this would complement
processes and developer education to improve the adoption
of software engineering practices.

An example that plainly shows how existing software
engineering methods can be improved upon using social
software features is Brun et al.’s Crystal [4]. When
developers using a version control repository work on the
same branch of a project simultaneously, conflicts can easily
arise. Crystal proactively monitors the repository and warns
collaborators when it detects potential for future conflicts.

The problem identified with the software engineering
method of version control was that developers would notice
conflicts rather late, so that they were harder to fix than if
they had been addressed earlier. To solve this, Crystal has an
internal model of the group of the users involved with a
project, i.e., the software engineers. From commit events, it

Leif Singer
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

derives a conflict potential for each user, which we call
system-derived information. As all developers are subscribed
to changes in that status, Crystal sends them notifications
about these changes – and, therefore, about potential
conflicts. As we will see in the following section, these are
all elements of social software.

When given the software engineering method version
control and the objective of resolving conflicts earlier, our
method would provide its user with a set of guidelines
regarding potentially helpful effects from social software,
and a strategy as to how to combine and integrate them with
version control. The end result should be a solution similar to
Crystal.

To make this possible, the following section first
systematizes elements of social software and then provides
an overview of the results of our preliminary literature
review regarding the effects of such elements.

III. A SYSTEMATIZATION OF SOCIAL SOFTWARE
Using a set of criteria, we analyzed a set of software

applications for social application dialogs. Using qualitative
coding, we extracted patterns and categories from the raw
data. As this procedure is not the main focus of this paper,
we now only provide a sample of what we found for
illustrative purposes.

A. The Elements of Social Software
The user represents the individual using the software. To

other users, they’re often represented in a user profile. A
situational profile might contain additional information that
is only valid for a certain timeframe, such as the user’s
location or other individuals they’re currently with. An
embedded profile is used to represent the user in contexts
where the user isn’t the main subject. For example, the user’s
name and photo, linking to her profile can be used when
attributing content. Mentions of users appear either
interwoven into or as metadata added to other content. These
are often just the user’s name with a profile link.

Users can form relationships with each other, which can
either be one-sided or mutual and may or may not need to be
accepted by the other party. Facilities that help users find
people enable them to create new relationships. For
organizing one’s relationships, systems may provide groups,
whose existence may be private or public. Having a
relationship to a user often means subscribing to the content
provided by that user.

The content created by subscribed users is often shown
in a chronologically ordered digest, a stream. Content may
either be created by a user explicitly, or be derived by the
system from the user’s activities or other events. Depending
on the goals of the system, content is created in a fire &
forget manner or is maintained for a longer period of time. A
special case is content that is used for collaboration. While
either content can be directed at another user via mentions,
messages are private content exchanged between two users.
The system notifies its users of interesting content using
notifications – while each system may define what is
interesting on its own, notifications are often triggered by
other users’ interaction with the user via content or

relationships. Examples are new friend requests, a private
message, a mention, or a comment on content the user posted
before. Among other forms of metadata, system-derived
information may be shown together with content or users,
such as the number of comments addressing the content.
Often, this is used as a content hint that leads the user to
more detailed views of the information.

Content can often be annotated. Apart from comments
that allow users to discuss content, mechanisms for rating
content may exist. Depending on the systems, these can
range from a very low-barrier implementation (“like”) to
those requiring directed effort on the rater’s part (e.g., a book
review).

To make the propagation of content through the network
of users easier, content can be shared. This can either be
directed sharing, targeting one or more specific users, or
may be a simple repost of existing content, distributed to all
the user’s subscribers. For some implementations, the user is
allowed to add an own comment on the content to the
sharing act. Public, undirected reposts can also be interpreted
as a kind of rating, stating, “I approve of this content.”

Social software systems emit events. When a given
condition is satisfied, an event may trigger an action by the
system. That action might generate content on behalf of a
user (“Jane changed her profile picture”), send a notification
to one or more users (“John subscribed to your posts”), or
generate a change in a system-derived status (“Jack just
earned a badge”).

The signals that get sent from a social software system to
its users are thus mostly activities, notifications, and system-
derived information.

B. The Effects of Social Software
In a preliminary literature review, we found several

effects that can be supported or triggered by social software.
Here, we provide a sample to illustrate our findings.

1) Information Spread
Social network sites often have a mechanism that allows

users to reshare content they obtained from other users. On
Facebook, this is achieved using the Like and the Share
functions. Twitter has a Retweet, while Google+ also calls it
a Share or Reshare. These allow content to jump from one
social network to another, enabling content to “go viral”.

For Twitter, Kwak et al. found that Retweets allow users
to spread information very far, largely independent of a
user’s follower count [10]. For Facebook, Sun et al. found
that large “viral” chain reactions of information diffusion do
not start with a single user’s post [14]. Instead, it takes
several users posting the same content independently to form
large diffusion clusters.

2) Behavior change through activity awareness
Most social network sites contain a stream that shows the

posts and activities of a user’s contacts. Being exposed to the
activities of peers and being able to discuss them seems to
support the spread of behavior among users.

For example, Foster et al. designed a Facebook
application that allowed study participants to enter their daily
step counts, taken with a step counting device throughout the
day [8]. For some users, the application would automatically

create a post stating the step count for that day. This led to a
significant increase in step activity compared to the
participants whose application did not create those posts.

Centola shows that being exposed to the activities of
one’s contacts increases the likelihood of adopting the
observed behavior – even if these contacts were randomly
selected [6].

Using data from Facebook, Burke et al. found the same
effect: new users of the site were more likely to share content
themselves when they saw their contacts do so [5].

3) Gamification for increasing motivation
According to Deterding et al., gamification is “the use of

game design elements in non-game contexts” [7]. A game
design element might be anything in the spectrum from a
leaderboard that ranks the system’s users, to the use of actual
game design methods such as carefully crafted storytelling.
Several effects have already been successfully shown to
work.

For example, Antin and Churchill discuss the use of
badges in social media and derive their functions [1]. Among
the five functions they find, they identify three that have a
social component to them. Reputation allows others to
classify a user based on what the badges represent, which
might be, e.g., skill, interests, or experience. Badges also
serve a status function, in that those who earned them might
see them as status symbols with regards to others. Finally,
badges can increase group identification, which has a
positive effect on cooperation.

Even from our unstructured first literature review, we
found many more documented effects of social software. We
plan to conduct a systematic literature review on effects such
as the above to achieve a more complete picture. Our
method, as presented in the next section, will systematize the
usage of these effects to augment software engineering
methods.

IV. AUGMENTING SOFTWARE ENGINEERING METHODS
The inputs to our method are a software engineering

method (SE method) and a goal that should be reached with
regard to that method. We do not include finding that goal –
established methods such as GQM [2] can be used. This
seems especially beneficial, as the execution of the method
may require finding metrics that describe the goal.

Also, a set of users is required that use or should use the
SE method. These may have certain characteristics that our
method will need to consider. For example, different effects
might be suitable for users of different education
backgrounds. Between these users, relationships needs to be
derivable – e.g., the fact that they work for the same
organization or are involved with the same project.

There are several options for recreating these
relationships in software. They may be created automatically
when setting up the system. In this case, the users could or
could not be allowed to change them. Alternatively, one
could let the users create their relationships all by
themselves. The latter option is closer to the organic growth
typically associated with social software. Depending on the
situation, the options need to be balanced against each other.

Our method will contain decision helps for this, which we
have yet to extract from literature.

The output of the method is a set of instructions that
describe how the SE method should be augmented with
social software and which effects should be achievable by
that. Figure 1 illustrates the course of action for our method.

Augmentation Method

Augmentation
Instructions

Metrics Events

Software
Engineering

Method Goal
Users with

Relationships

Social Software Elements

Notifications ActivitiesSystem-Derived
Status

determines
Legend:

Mapping Goal
to Effects

Effects

Mapping Effects
to Elements

Figure 1. Overview of the proposed augmentation method.

A. Mapping a goal to the effects of social software
The goal that is to be achieved with regard to the SE

method may take one of several forms. A goal could be to
• introduce a new behavior;
• increase or decrease the frequency of a behavior;
• increase or decrease the number of users exhibiting

the behavior;
• stop a behavior;
• increase or decrease the quality of a behavior.
This goal needs to be transformed into a set of social

software effects that would help in achieving the goal. We
already found several such effects in literature. Our method
will include a mapping that provides a set of desirable and
achievable effects for a classified goal. As our method is a
work in progress, this mapping is still unfinished.

However, an example situation would be to increase the
number of users exhibiting a behavior. The mapping would
then provide an effect that transmits existing behavior from a
set of users to a different set of users not yet exhibiting the
behavior. Burke, Marlow and Lento showed that this is
indeed an effect that can be achieved with social software
[5].

B. Mapping effects to social software elements
Once the desirable effects have been found out, another

mapping should provide sets of social software elements that
may help in creating the effects. We will derive this mapping
from literature as well. For the example above, the elements
needed to achieve the effect would be a stream where users
are made aware of each other’s actions and activities, i.e.,
content displayed in the stream as if it was created by the
user exhibiting the behavior, but ultimately automatically
derived by the system.

C. Metrics & events
To express the goal in the system and to implement it

using social software, one or more metrics might be needed.
These should be able to describe quantitatively what should
be achieved. Also, it might be necessary to generate events
whenever the desired behavior is performed.

If, for example, more commits should be submitted to the
version control system, the commits themselves could be the
events. A suitable metric would be the number of commits
for a time span. In the context of Crystal and conflict
prevention, the metric would measure the probability of a
conflict for a user at each point in time. Every time a user
commits to the repository, the metric for the user would be
updated. The commit would then be an event that influences
the metric. In this case, however, the event doesn’t address
the desired behavior yet – resolving conflicts more
frequently. Therefore, we would derive another class of
events from the metric: each time a certain probability
threshold is reached, an event would be emitted. Metrics and
events influence each other.

D. Notifications, Activities, & System-Derived Information
As we have argued in section III, notifications, activities,

and system-derived information are those social software
elements that enable the system to send signals to the user.
We derive them from metrics and events.

Notifications inform the user of important events in the
system, i.e., those in which the user has an interest. These
may be things the user regards as positive – such as new
positive ratings for her content – or as requiring action –
such as due dates or problems that can still be dealt with.

Activities are a kind of content that is generated by the
system in place of the user. For a commit to version control,
this could a short message that contains the commit message
and affected files. This makes accessing this data easier for
the user’s contacts.

System-derived information is often presented in relation
to a user or content. Examples are rating content, the number
of contacts for a user, or a rank that a user might have
reached. Many variations are possible, each creating
different effects.

For these social software elements, our method will
provide realization recommendations and, based on
literature, mention advantages and disadvantages of these
solutions with regard to the intended effects.

V. CONCLUSIONS & OUTLOOK
We presented a draft of our method. We believe it will

allow software development organizations to systematically
influence the adoption of software engineering methods by
software engineers. It is based on several published effects
that can be achieved by social software.

Our next step regarding the theoretical basis of our
method is to derive the list of effects more systematically.
For this, we will conduct either a systematic literature review
as proposed by Kitchenham [9].

To evaluate our method, we conducted an experiment
with computer science students, in which we aimed to

motivate more frequent and smaller commits to our version
control system [13]. We used our method to find out which
kinds of helpful effects social software might be able to
provide. We then provided the students with a web-based
stream of commit activities and additional derived events.
We used notifications to remind them of their teams
activities and presented them their team’s total number of
commits. While our results look promising so far, we will
conduct more experiments to iteratively refine our method.

REFERENCES
[1] J. Antin and E. Churchill. Badges in Social Media: A Social

Psychological Perspective. In CHI 2011 Gamification Workshop
Proceedings, Vancouver, BC, Canada, 2011.

[2] Victor R. Basili. Software modeling and measurement: the
Goal/Question/Metric paradigm. Technical report, College Park, MD,
USA, 1992.

[3] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp.
Motivation in Software Engineering: A systematic literature review.
Information and Software Technology, 50(9-10):860–878, 2008.

[4] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin.
Proactive detection of collaboration conflicts. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, ESEC/FSE ’11, pages 168–
178, New York, NY, USA, 2011. ACM.

[5] M. Burke, C. Marlow, and T. Lento. Feed me: motivating newcomer
contribution in social network sites. In Proceedings of the 27th
international conference on Human factors in computing systems,
pages 945–954. ACM, 2009.

[6] D. Centola. The spread of behavior in an online social network
experiment. Science, 329(5996):1194, 2010.

[7] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke.
From Game Design Elements to Gamefulness: Defining
"Gamification". In Proceedings of MindTrek’11. ACM, 2011.

[8] D. Foster, C. Linehan, B. Kirman, S. Lawson, and G. James.
Motivating physical activity at work: using persuasive social media
for competitive step counting. In Proceedings of the 14th
International Academic MindTrek Conference: Envisioning Future
Media Environments, pages 111–116. ACM, 2010.

[9] Barbara Kitchenham. Procedures for Performing Systematic Reviews.
Technical Report Keele University Technical Report TR/SE-0401,
Software Engineering Group, Department of Computer Science,
Keele University, 2004.

[10] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? In Proceedings of the 19th International
World Wide Web Conference, pages 591–600. ACM, 2010.

[11] C.K. Riemenschneider, B.C. Hardgrave, and F.D. Davis. Explaining
software developer acceptance of methodologies: A comparison of
five theoretical models. IEEE Transactions on Software Engineering,
28(12):1135–1145, 2002.

[12] Automotive SIG. Automotive SPICE® Process Reference Model. The
SPICE User Group, 2010.

[13] Leif Singer and Kurt Schneider. It was a Bit of a Race: Gamification
of Version Control. In Proceedings of the 2nd international workshop
on Games and software engineering (in press), 2012.

[14] E. Sun, I. Rosenn, C. Marlow, and T. Lento. Gesundheit! modeling
contagion through facebook news feed. In Proceedings of the
International AAAI Conference on Weblogs and Social Media, 2009.

[15] SCAMPI Upgrade Team. Appraisal Requirements for CMMI, version
1.1. Technical Report CMU/SEI-2001-TR-034, Carnegie Mellon
University Software Engineering Institute, 2001.

[16] C. Treude and M.A. Storey. Awareness 2.0: Staying aware of
projects, developers and tasks using dashboards and feeds. In
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, 365–374. ACM, 2010.

