
Verifying Client-Side Input Validation Functions Using String Analysis

Muath Alkhalaf Tevfik Bultan Jose L. Gallegos
Computer Science Department, University of California Santa Barbara, CA, USA

{muath,bultan,jlgallegos}@cs.ucsb.edu

Abstract—Client-side computation in web applications is be-
coming increasingly common due to the popularity of powerful
client-side programming languages such as JavaScript. Client-
side computation is commonly used to improve an application’s
responsiveness by validating user inputs before they are sent
to the server. In this paper, we present an analysis technique
for checking if a client-side input validation function conforms
to a given policy. In our approach, input validation policies
are expressed using two regular expressions, one specifying
the maximum policy (the upper bound for the set of inputs
that should be allowed) and the other specifying the minimum
policy (the lower bound for the set of inputs that should be
allowed). Using our analysis we can identify two types of errors
1) the input validation function accepts an input that is not
permitted by the maximum policy, or 2) the input validation
function rejects an input that is permitted by the minimum
policy. We implemented our analysis using dynamic slicing to
automatically extract the input validation functions from web
applications and using automata-based string analysis to ana-
lyze the extracted functions. Our experiments demonstrate that
our approach is effective in finding errors in input validation
functions that we collected from real-world applications and
from tutorials and books for teaching JavaScript.

I. INTRODUCTION

A crucial problem in developing dependable web appli-
cations is the correctness of the input validation operations.
One of the main forms of interaction between a user and a
web application is through text fields, where the user types
a text as input which is then parsed by the web application
and converted to some specific type of data such as a date, a
credit card number, or an e-mail address. A web application
needs to separate valid user input from inputs that do not
match the expected input type and prompt the user to re-
enter an appropriate input if necessary.

Web applications typically use a three-tier architecture
which consists of client-side code (executing at the user’s
machine that is running the browser), server-side code (exe-
cuting at the web server) and the back-end database (storing
the persistent data on a separate database server). In recent
years, in order to improve efficiency and usability, web ap-
plications have started to migrate many of the computational
tasks to the client-side code. This makes applications more
responsive by reducing the need to send a request to the web
server from the user’s machine and wait for the response.
Nowadays, many web applications include client-side input
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validation functions that check the user input and warn the
user if the input is invalid without requiring any interaction
with the web server.

In this paper, we focus on automated verification of client-
side input validation functions for three main reasons: 1)
Security: Client-side input-validation vulnerabilities are an
emerging class of vulnerabilities that are due to errors in the
client-side input validation functions [17]. 2) Correctness:
Errors in the client-side input validation functions can cause
valid inputs to be rejected without reaching the server. 3)
Performance: Errors in the client-side input validation func-
tions can degrade the performance by creating unnecessary
communication between the client and the server.

In order to verify client-side input-validation functions
in an existing web application, we first have to extract the
input validation functions from the application. We do this
by executing the application using both valid and invalid
input values and track accesses to the input values in order
to identify the input validation operations. We use dynamic
slicing to find all the statements that are influenced by the
input values that we track. We output the resulting slice in
the form of an input validation function that returns true or
false based on the input value.

We check the correctness of the automatically extracted
input-validation functions using an automata-based string
analysis. We use deterministic finite automata (DFA) to
represent values that string expressions can take. At each
program point, each string variable is associated with a
DFA. We use a forward symbolic reachability analysis
that computes an over-approximation of all possible values
that string variables can take at each program point. Since
convergence of the symbolic reachability analysis is not
guaranteed without approximation, we use an automata
based widening operation in the presence of loops. Our
analysis is path-sensitive and handles the branch conditions
by appropriately restricting the values that string variables
can take at the true and false branches of a conditional
branch. Our analysis is conservative in the sense that the
set of string values we compute correspond to a superset of
possible string values that a string expression can take at
runtime.

We assume that each input validation function takes a
string value as input and returns true if the input is valid
(i.e., if the input is permitted by the input validation policy)
or returns false otherwise. When we automatically extract an



input validation function we extract it in this form. Using
our string analysis we compute all possible input values that
allows the program to reach to the “return true” statement.
Then we check if this set of values are a subset of the
language defined by the regular expression characterizing
the input validation policy. If it is, then we know that the
application implements the input validation policy correctly.

One easy way to conform to every input validation policy
would be to reject all the inputs. In order to make sure that an
input validation function is allowing at least some reasonable
set of inputs, we write the input validation policies using two
regular expressions, one (maximum policy) corresponding
the largest set of strings that should be recognized as valid
(i.e., everything outside this set should be definitely rejected)
and one (minimum policy) corresponding to the smallest set
of strings that should be recognized as valid (i.e., everything
within this set should be definitely accepted). Having a
minimum and a maximum validation policy helps us in two
ways: 1) It provides more flexibility where an application
does not have to match to a single policy exactly, but,
instead, has to do validation that is at least as strict as the
maximum policy and at least as permissive as the minimum
policy. 2) Having a minimum policy allows us to check for
the cases where an application erroneously disallows some
valid user inputs. In order to check that the application is at
least as strict as the maximum policy we look at the input
values that reach the “return true” statement as we described
above. However, in order to check that the application is at
least as permissive as the minimum policy we use our string
analysis to compute all possible input values that allows
the program to reach to the “return false” statement. Then
we check if the intersection of this set of values and the
minimum policy is empty. If it is, then we conclude that
the application is not rejecting any user input that should be
valid according to the minimum policy.

II. AN OVERVIEW

In this section we give an overview of how we model the
client-side input validation function verification problem.

Client-side input validation functions: A client-side input
validation function takes a string value from a web (HTML)
form field and checks it against a certain policy. If none of
the validation functions used for a form report a violation,
then the form data is submitted to the server, otherwise it
is not submitted. We make the following assumptions about
the validation functions: A validation function takes at least
one string input and checks it with respect to a certain policy
and returns either true or false. True indicates that the string
input conforms to the policy and false indicates otherwise.

Figure 1 shows an email validation function taken form a
popular JavaScript book [14]. The function checks that the
email is not empty and that it conforms to the given regular
expression. There is a subtle error in this function. In the

1 function validateEmail(inputField, helpText){
2 if (!/.+/.test(inputField.value)) {
3 if (helpText != null)
4 helpText.innerHTML = "Please enter a value";
5 return false;
6 }
7 else {
8 if (helpText != null)
9 helpText.innerHTML = "";
10 if (

!/ˆ[a-zA-Z0-9\.-_\+]+@[a-zA-Z0-9-]+(\.[a-zA-Z0-9]
{2,3})+$/.test(inputField.value)) {

11 if (helpText != null)
12 helpText.innerHTML = "Please enter an"

+" email address";
13 return false;
14 }
15 else {
16 if (helpText != null)
17 helpText.innerHTML = "";
18 return true;
19 }
20 }
21 }

Figure 1. A JavaScript input validation function.

regular expression in line 10 the author wanted to specify
that the first part of the email (before the @) only contains
alphanumeric characters and “.”, “-”, “ ” and “+”. Other
special characters such as “[” are not allowed. However
\.-_ includes all ASCII characters in the range between
“.” and “ ” which includes the special character “[”. The
developer forgot to escape the “-” character which indicates
a range of characters if it is not escaped.

Validation policies: We use two types of validation policies:
Max and Min. The Max policy specifies the maximal set of
strings that should be accepted while the Min policy specifies
the minimal set of strings that should not be rejected. We
use regular expressions for specification of the Max and Min
policies. This is a natural choice since regular expressions
are well-known and developers implementing input valida-
tion functions commonly use regular expressions in string
manipulation functions. Figures 2 and 3 show a number of
maximum and minimum input validation policies that we
have used in our analysis. Each policy has two entries: the
type of the input field that is checked against this policy and
the specification of the policy as a regular expression. The
standard syntax we use for specifying regular expressions is
a subset of preg syntax that is used in JavaScript and other
languages. For some simpler input types we have the same
maximum and minimum policies.

For example the Email policy in Figure 2 specifies the
correct value for an email address. It is a more restrictive
policy than RFC5322 which specifies valid email addresses.
This is due to the fact that some major email providers such
as Hotmail are much more restrictive in their email address
policy than the previous standard. Although some of these
policies look simple we were surprised to find that there
are many validation functions that do not adhere to them.



Email → /ˆ[a-zA-Z0-9]+[.a-zA-Z0-9_\-]*@
[.a-zA-Z0-9_\-]+\.[a-zA-Z]{2,6}$/

Date → /ˆ(([0-9]{1,2})|[A-Za-z]{3})[\/\-]
[0-9]{1,2}[\/\-][0-9]{2}([0-9]{2})?$/

Phone → /ˆ(\(?[0-9]{3}\)?)?[\- ]?[0-9]{3}
[\- ]?[0-9]{4}$/

Time → /ˆ[0-9]{1,2}:[0-9]{2}([ap]m)?$/
Zip Code → /ˆ[0-9]{5}([. ][0-9]{4})?$/
NotEmpty → /ˆ.*[ˆ \n\t].*$/

Figure 2. Maximum input validation policies.

Email → /ˆ[a-zA-Z0-9]+@[a-zA-Z]+\.[a-zA-Z]{3}$/
Date → /ˆ[0-9]{1,2}\/[0-9]{1,2}\/[0-9]{4}$/
Phone → /ˆ\([0-9]{3}\) [0-9]{3}-[0-9]{4}$/
Time → /ˆ[0-9]{2}:[0-9]{2}$/
Zip Code → /ˆ[0-9]{5}$/
NotEmpty → /ˆ.*[ˆ \n\t].*$/

Figure 3. Minimum input validation policies.

For example, four out of five validation functions that we
found in JavaScript tutorials and textbooks that check for
emptiness miss the fact that a form field with only spaces
should be considered to be an empty field.

Input validation function verification: If the set of strings
accepted by a validation function is not a subset of the Max
policy or not a superset of the Min policy then we consider
the validation function to be faulty. In other words, let us
assume that the set of strings considered to be valid by a
validation function F is L(Ftrue), i.e., these are the string
values for which the validation function returns true. Let us
assume that the language of the Max policy that specifies
the maximal valid set of inputs for the given field type is
L(Pmax) and the language of the Min policy that specifies
the minimal valid set of inputs for the given field type
is L(Pmin). Then the input validation function verification
problem is to check if L(Pmin) ⊆ L(Ftrue) ⊆ L(Pmax).

Since the string analysis is an undecidable problem in
general, it is not possible to compute L(Ftrue) precisely.
However, using our automata-based string analysis approach
we can compute an over-approximation L(Ftrue)

+ such
that L(Ftrue) ⊆ L(Ftrue)

+. Note that, if L(Ftrue)
+ ⊆

L(Pmax), then we can be sure that F conforms to the Max
policy. If L(Ftrue)

+ 6⊆ L(Pmax), on the other hand, we
cannot definitely say that F violates the Max policy. Since
L(Ftrue)

+ is an over-approximation, we may have a false
positive. In this case, in order to figure out if the input
validation function is really faulty, we generate a string value
s ∈ L(Ftrue)

+ \ L(Pmax) and execute the input validation
function on that value. If the input validation function returns
true for this input, then we are sure that the input validation
function violates the Max policy and the generated string
s serves as a counter-example demonstrating the policy
violation.

We cannot use the over-approximation L(Ftrue)
+ to

check conformance to the Min policy since L(Pmin) ⊆
L(Ftrue)

+ does not imply that L(Pmin) ⊆ L(Ftrue). In
order to check conformance to the Min policy we need an
under-approximation of L(Ftrue). However, since our string
analysis is a sound analysis technique, it can only generate
over-approximations. We solve this problem by using our
string analysis to compute an over-approximation of the set
of values for which the input validation function F returns
false. Let us call this set L(Ffalse). Using our string analysis
we compute L(Ffalse)

+ such that L(Ffalse) ⊆ L(Ffalse)
+.

Then, we check if L(Ffalse)
+ ∩ L(Pmin) = ∅. If the inter-

section of L(Ffalse) and L(Pmin) is empty, then we can be
sure that the validation function F does not reject any value
that is allowed by the Min policy, i.e., it conforms to the Min
policy. If, on the other hand, L(Ffalse)

+ ∩ L(Pmin) 6= ∅,
we cannot be sure that F violates the Min policy since it
can be a false positive. In this case we generate a string
s ∈ L(Ffalse)

+ ∩L(Pmin) and execute the input validation
function on input s. If the input validation function returns
false for this input, then we can be sure that F violates the
Min policy and s is a counter-example demonstrating this
policy violation.

III. VALIDATION FUNCTION EXTRACTION

In this section we discuss how we extract a validation
function for a given HTML form input field. We start
with a brief discussion of validation of HTML forms using
JavaScript.

Input validation with JavaScript: The first step in form
validation is to register an event handler for some event of
the input form or its fields. The event handler is then used
to call the JavaScript validation code for some or all of the
form fields. Based on the result returned by this validation
code, either the form will be submitted or error messages
will be shown to the user. Submission of the form data is
done either by the browser itself or a JavaScript issued XHR
(XmlHttpRequest) request when Ajax is used. The default
event for handling form validation code is onsubmit event
of the form itself. In the basic case, the browser will execute
the onsubmit event handler (if found) when a user tries to
submit an HTML form by clicking on an HTML element of
type submit. If the handler returns true (or if there is no
handler for onsubmit) then the browser will submit the
form data using an ordinary HTTP get/post request. In this
approach all the validation code goes inside the onsubmit
handler and the functions it calls.

In websites that use Ajax and XHR to submit the forms,
the situation is different. First of all, the onsubmit handler
should return false when the element used to submit the form
is of type submit (so that the browser does not submit the
form itself). Furthermore, since the form will be submitted
from within the JavaScript code, the element the user is
supposed to click to submit the form does not have to be of



type submit, and there is a large number of events besides
onsubmit that can be linked to form submission such as
onclick, onmousedown, and onmouseup. Finally, due
to the capturing and bubbling of DOM events, it is possible
to do the validation in an event handler for one of the events
of one of the ancestors of the element used to submit the
form. This happens especially when the area the user clicks
on to submit the form consists of multiple elements overlaid
on top of each other.

Validation function extraction: It is not feasible to stati-
cally find and extract the code that does the client-side input
validation. First, it is difficult to find the event handlers
that contain the form validation code due to the variety
and complexity of the input validation process discussed
above. Even in the basic case, where the onsubmit event
handler is used, sometimes this event handler is registered
dynamically from within the JavaScript code that loads the
page instead of being statically linked in the HTML code
of the webpage. Second, even if we succeed in statically
locating and extracting the event handling code, the code
itself is large and full of event handling, error handling
and error message rendering functions which are hard to
separate statically. Furthermore the validation code contains
all the validation functions for all form fields mixed together
instead of having one function per input field.

In our analysis we focus on one form input field at a
time and break the verification process into two phases.
In the first phase, we extract a dynamic slice [20] from
the JavaScript code that is executed upon form submission.
This slice represents the validation code for the field we
are targeting. It contains all the statements that access the
targeted field along with all the other statements they depend
on. Then, in the second phase, we statically analyze the
extracted slice using string analysis techniques (discussed
in Section IV) to check if the validation code conforms to
the minimum and maximum validation policies.

As discussed in Section II, in order to verify the input
validation function in a sound manner with respect to
the maximum and minimum policies, we need to over-
approximate both the set of inputs that are accepted by the
input validation function and also the set of inputs that are
rejected by the input validation function, respectively. We do
this by generating, based on our policies, two input values:
a valid and an invalid one. We run the program for each
input and extract two separate dynamic slices. We record
the last control branch that accesses the input value that we
provided. If the input value we provided at the beginning
is a valid input value, we insert the statement “return true”
to the beginning of the branch that the execution takes. If
the input value we provided at the beginning is an invalid
input value, then we insert the statement “return false.” We
use the slice extracted using the valid input value to obtain
an over-approximation of the values that the input validation

function accepts by computing an over-approximation of the
input values that reach the statement “return true”. We use
the slice extracted using the invalid input value to obtain an
over-approximation of the values that the input validation
function rejects by computing an over-approximation of the
input values that reach the statement “return false”.

We implemented the dynamic slicing on top of HtmlU-
nit [6] which is a browser simulator written in Java that
uses Rhino [15] JavaScript interpreter. Using HtmlUnit, we
simulate the process of filling out a form and submitting it.
We provide a profile of values that will be used to fill out
the form including one value per each form input and two
values - valid and invalid - for the target input field. During
this simulation, we instrument the interpreter to track all the
JavaScript statements that operate on or test the content of
our target field. We then output these statements and all other
statements in the execution trace that they depend on. If there
are function calls, we inline them such that the final code
consists of only one validation function for the target field
which ends with either a “return true” statement or a “return
false” statement. Since we have instrumented the JavaScript
interpreter, we convert all accesses on objects and arrays to
accesses on memory locations. This avoids imprecision in
our static string analysis phase due to objects, arrays and
aliasing.

IV. STRING ANALYSIS

Given a JavaScript input validation function, we compute
an over approximation of string variables’ values at each pro-
gram point using a flow- and path-sensitive, intra-procedural,
symbolic string analysis algorithm. The possible values of
a string variable at a program point is represented by a
deterministic finite automaton (DFA). We use a symbolic
automaton representation where the transitions of the au-
tomaton are represented as a Multi-terminal Binary Decision
Diagram (MBDD).

Lattice: Since JavaScript is not statically typed, it is not
possible to statically infer variable types before performing
our analysis. Hence, during our string analysis we have to
take into account all the variables in the validation function
since they can all potentially hold string values. Moreover,
we have to take into account that variables can change their
types during execution. We use a value lattice that reflects
this by initializing all variables in the code to a special value
called uninitialized value, denoted as ⊥, which corresponds
to the bottom element of the lattice. This special value
indicates that the variable type is unknown. As soon as we
figure out that a variable is a string variable, we initialize its
value to ∅ (which corresponds to the empty language, i.e.,
no string value).

If we find out through our analysis that a variable is
actually not a string variable, we change its value to the
top value of the lattice which corresponds to unknown value



(and unknown type) and is denoted as >. Just below the top
value of the lattice we have Σ∗ which corresponds to all
possible strings, and this corresponds to the case where we
know that a variable is a string variable but we do not know
anything about its value, i.e., it could have any string value.
If we exclude the top and bottom elements of the lattice
(which are introduced to deal with non-string values), the
remaining elements form a sub-lattice where ∅ is the least
element and Σ∗ is the greatest element, and all the other
elements are regular languages over the alphabet Σ.

Algorithm: Our string analysis algorithm (Algorithm 1)
starts by receiving the control flow graph of the given
validation function along with the validation policies as
input. Each node in the CFG represents a statement in the
given validation function. In this discussion we will only
concentrate on the types of nodes/statements that are crucial
for our analysis.

There are two main types of statements we are dealing

Algorithm 1 STRINGANALYSIS(CFG,Policymin,Policymax)
1: initParams();
2: queue WQ := NULL;
3: WQ.enqueue(CFG.entrynode);
4: while (WQ 6= NULL) do
5: node := WQ.dequeue();
6: IN :=

⋃
node′∈PredNodes(node) OUTnode′ ;

7: if (node ≡ IF pred THEN) then
8: tmpon T := tmpon F := IN ;
9: if (numOfV ars(pred) = 1) then

10: var := getPredV ar(pred);
11: predV al := EVALPRED(pred);
12: tmpon T [var] : = IN [var] ∩ predV al;
13: tmpon F [var] : = IN [var] ∩ (Σ∗ - predV al);
14: end if
15: tmpon T := (tmpon T ∪OUTon T )∇OUTon T ;
16: tmpon F := (tmpon F ∪OUTon F )∇OUTon F ;
17: if (tmpon T 6⊆ OUTon T ) then
18: OUTon T := tmpon T ; OUTon F := tmpon F ;
19: WQ.enqueue(Succ(node));
20: end if
21: else
22: tmp := IN ;
23: tmp[var] := EVALEXP(exp, IN );
24: tmp := (tmp ∪OUT )∇OUT ;
25: if (tmp 6⊆ OUT ) then
26: OUT := tmp;
27: WQ.enqueue(Succ(node));
28: end if
29: end if
30: end while
31: for (node ≡ RETURN TRUE ) do
32: if (L(OUTnode[param1]) 6⊆ POLICYmax) then
33: s := pick(L(OUTnode[param1]) \ POLICYmax)
34: return “COUNTER-EXAMPLE: s”
35: else
36: return “OK”
37: end if
38: end for
39: for (node ≡ RETURN FALSE ) do
40: if (L(OUTnode[param1]) ∩ POLICYmin 6= ∅) then
41: s := pick(L(OUTnode[param1]) ∩ POLICYmin)
42: return “COUNTER-EXAMPLE: s”
43: else
44: return “OK”
45: end if

46: end for

Exp → replace(ptrn, strlit, var)
| call func(...) | concat(Exp, Exp)
| var | strlit | numlit | boollit | null | undefined

Figure 4. The abstract grammar for the right hand side expressions in an
assignment statement.

with in the algorithm which are Assignment Statement and
Conditional Statement. Each statement is associated with
two arrays of DFAs: IN and OUT. Both IN and OUT
have one DFA for each variable and input parameter in the
validation function.1 Given variable v, and the IN array for
a statement, IN[v] is a DFA that accepts all string values
that variable v can take at the program point just before
the execution of that statement. Similarly, OUT[v] is a DFA
that accepts all string values that variable v can take at the
program point just after the execution of that statement. The
tmp array is used to store the temporary values (i.e., DFAs)
computed by the transfer function before joining these values
with the previous ones. As shown in Algorithm 1, the
algorithm starts by initializing all the validation function
parameter values in the IN array of the entry statement to
Σ∗. This indicates that the validation function can receive
any string value as input. At each program point, we update
the DFAs in the OUT array based on the DFAs in the IN
array and the transfer function of the statement at that point.
Below we describe the transfer function used to compute
the OUT array for each of the two basic types of statements
mentioned above. Notice that assignment, join, and widening
operations on IN and OUT arrays are carried out as point-
wise operations.

Assignment Statement: In this type of statement a variable
on the left hand side is assigned a value of an expression on
the right hand side. Figure 4 shows the syntax for the type of
expressions on the right hand side that we handle with our
analysis. We use the function EVALEXP to compute the set
of string values that an expression can take. This function
takes two inputs: an expression on the right hand side of an
assignment and an IN array (which is the IN array of the
assignment statement where the expression is). It evaluates
the expressions as follows:
• var: The set of values for the variable var in the IN array

(i.e, the DFA IN[var]) is returned.
• strlit: A singleton set that only contains the value of the

string literal strlit is returned (i.e., a DFA that recognizes
only strlit).
• numlit, boollit, null: Since our analysis is concerned only

with analyzing string values, in these cases we return >
indicating that the value (and type) of the expression is not
known.

1In our implementation we have a wrapper around the DFA representa-
tion in order to represent the bottom ⊥ and top > elements, but we will
refer to IN and OUT as DFA arrays to simplify the discussion.



• undef : This represents an uninitialized variable so we
return ⊥.
• concat(exp1, exp2): Here we compute the concatenation

of the regular languages resulting from evaluating exp1
and exp2 and return it as the result (using the symbolic
DFA concatenation operation discussed in [23]).
• replace(ptrn, strlit, var): Here we compute the result

of replacing all string values in IN[var] that match the
pattern ptrn (given as a regular expression) with the string
literal strlit. There are two types of pattern matching
partial match and full match. The match operation used
is chosen based on ptrn value as follows: 1) If the value
starts with the symbol ˆ and ends with the symbol $ this
means that we have to do a full match where we have
to replace a string in IN[var] only if it fully matches
the regular expression given by ptrn. This is done by
taking the difference between the language in IN[var]
and the language L(ptrn) and then adding the replace
string str to the result. 2) Otherwise we use partial match
where we compute the result by using the language-based
replacement algorithm described in [23].
• call func(...): Since our analysis is intra-procedural we

only analyze one function at a time without following any
function call. However, for the commonly used functions
(such as replace and its variations) we have constructed
function models that can be used during our analysis. So,
in case of a function call, there are three options: 1) We
inline the function if possible. 2) We use the model that
we have for this function if it is available. 3) If the first
two options are not available then we return Σ∗ indicating
an unknown string value.

Conditional Statement: This type of statement represents
the branch conditions in a number of language constructs in
JavaScript including if statement, for loop, while loop and
do while loop. Conditional statement consists of a predicate
on variables and constants. Since it represents a branch in
the program, unlike other statements, it is followed by two
statements, one after the ON_TRUE branch and the other one
after the ON_FALSE branch.

The predicate in a conditional statement constrains the
values of its variables in each of the two branches of
execution following the conditional statement. If the pred-
icate evaluates to true, the execution will continue in the
ON_TRUE branch, otherwise it will take the ON_FALSE
branch. This behavior is represented in our analysis by
having two OUT arrays reflecting the possible future values
on each of the two branches of execution. OUTon T rep-
resents the values for the ON_TRUE branch and OUTon F

represents the values for the ON_FALSE branch. In order to
compute these arrays we first compute the DFA that accepts
the set of string values that a variable can take that would
make the predicate to evaluate to true (we describe this in
detail in the next section). Then we compute the OUT array

of the ON_TRUE branch of the conditional statement by
intersecting the IN DFA for the variable with the DFA for
the set of strings that make the predicate to evaluate to true.
On the other hand for the ON_FALSE branch we intersect
the IN DFA with the DFA that is the complement of the
DFA that corresponds to the strings that make the predicate
to evaluate to true.
Fixed point computation: Algorithm 1 shows our string
analysis algorithm that computes the least fixed point that
over approximates the possible values that string variables
can take at any given program point. At each iteration of the
algorithm we compute the transfer function for a statement
as described above. After computing the transfer function
using the IN array, we update the OUT array for the current
statement using the join (union) and widening operators. The
widening operator we use here is taken from [1] and it is
used to achieve convergence since the analysis lattice has
an infinite height. Briefly, we merge those states in the two
input automata belonging to the same equivalence class. Two
states are equivalent if the languages accepted starting from
the two states are equivalent or both states are reachable
from the initial state via the same string.

The analysis converges when the work list becomes
empty, which means that reevaluating the transfer functions
will not change any of the OUT arrays. After the conver-
gence, the OUT value for the input parameter (param1)
at the return true statement (which corresponds to
an over-approximation of the set of input values that the
validation function identifies as valid) is checked against the
maximum policy, and the OUT value for the input parameter
at the return false statement (which corresponds to
an over-approximation of the set of input values that the
validation function identifies as invalid) is checked against
the minimum policy. At return true statement we ver-
ify that all input values that are considered valid by the
validation function conform to our maximum policy (i.e.,
are a subset of the maximum policy). If not, we generate
a counter-example string that is not in the maximum policy
but is considered to be valid by the input validation function
(to compute the counter-example string we implement a
function ”pick” that returns a string accepted by a given
DFA). At return false statement we verify that none
of the input values that are considered to be invalid by the
validation function are a member of the minimum policy. If
not, we generate a counter-example string demonstrating the
minimum policy violation.

A. Handling Predicates

We only handle the JavaScript predicates that are used
for string manipulation. Figure 5 shows the syntax of the
predicate language that we handle. Due to space limitations
we only list a subset of the predicates that we can handle.

An important point that is not expressed in the abstract
syntax is that we only handle predicates on a single variable



Pred → Pred && Pred | Pred || Pred | !Pred
| var RelOp strlit | var.length RelOp intlit
| regexp.test(var) | var.match(regexp)
| var.indexof(strlit) RelOp intlit

RelOp → < | <= | > | >= | == | !=

Figure 5. The abstract grammar for the branch conditions handled by our
analysis.

which means that var in the above syntax must be the same
variable throughout the whole predicate. So, each branch
condition must be on a single string variable (although,
of course, different branch conditions can be on different
variables). The reason behind this restriction is mainly the
limitations of the DFA representation we are using which can
only store a single set of values for each program variable
at each program point. Consider the following predicate on
two different variables x and y: x == "foo" || y ==
"bar". On the ON_TRUE branch of the condition there are
three possible OUTon T states. One possibility is to restrict
the value of x only. The second one is to restrict the value of
y only. The third and last one is to restrict both values. These
three possibilities reflect the fact that program execution
may take the ON_TRUE branch when either x == "foo",
y == "bar" or x == "foo" and y == "bar". Note
that we cannot express these three scenarios using only two
DFAs (one for x and one for y). Even when we handle
a predicate with and boolean operator we will have a
similar problem when handling the ON_FALSE branch of
the conditional statement. We can consider using a set of
DFAs for each variable, however, this problem gets worse
when the conditional statement is part of a loop structure. In
this case, for each iteration of the fixed point computation
we will add more and more possibilities of OUT states
and the number will grow exponentially requiring more and
more DFAs to represent it. Hence, due to this problem we
limit that the predicates should be on a single variable.
Interestingly in our experiments we did not encounter any
predicate with more that one variable, so this limitation was
not significant in practice.

Algorithm 2 shows the algorithm we use to compute the
DFA for a given predicate on a certain variable. The algo-
rithm takes a predicate on one variable as input and returns
the corresponding DFA (in the algorithm we represent the
DFA using the regular expression for its language). The DFA
is computed recursively on the given predicate following its
recursive structure. Notice that wherever we use the notation
Σi it means concatenating Σ i times where Σ0 = Σ. We have
omitted the discussion of some of the predicates due to the
space limitation.

V. EXPERIMENTS

The approach presented in this paper can be used both as
a forward engineering approach (as an analysis used during
the application development) or as a reverse engineering

approach (by automatically extracting and analyzing input
validation functions after deployment). We evaluated the
forward engineering scenario on input validation functions
collected from tutorials and books for teaching JavaScript.

Algorithm 2 EVALPRED(Pred)
1: if Pred ≡ Pred1 && Pred2 then
2: return EvalPred(Pred1) ∩ EvalPred(Pred2);
3: else if Pred ≡ Pred1 || Pred2 then
4: return EvalPred(Pred1) ∪ EvalPred(Pred2);
5: else if Pred ≡ !Pred1 then
6: return Σ∗ - EvalPred(Pred1);
7: else if Pred ≡ var == strlit then
8: retVal := {strlit};
9: return retVal;

10: else if Pred ≡ var != strlit then
11: retVal := Σ∗ - {strlit};
12: return retVal;
13: else if Pred ≡ var.length == intlit then
14: return Σintlit ;
15: else if Pred ≡ var.length > intlit then
16: return Σ∗ -

⋃intlit
l=0 Σl;

17: else if Pred ≡ var.length >= intlit then
18: return Σ∗ -

⋃intlit−1
l=0 Σl;

19: else if Pred ≡ var.length < intlit then
20: return

⋃intlit−1
l=0 Σl;

21: else if Pred ≡ var.length <= intlit then
22: return

⋃intlit
l=0 Σl;

23: else if Pred ≡ var.length != intlit then
24: return Σ∗ - Σintlit ;
25: else if Pred ≡ regexp.test(var) | var.match(regexp) then
26: if check regexp(regexp) = partial match then
27: return CONCAT(CONCAT(Σ∗, L(regexp)), Σ∗);
28: else
29: return L(regexp);
30: end if
31: else if Pred ≡ var.indexof(strlit) == intlit then
32: if intlit = -1 then
33: return (Σ - {strlit[0]})∗;
34: else if intlit ≥ 0 then
35: return CONCAT(Σintlit−1, CONCAT ({strlit[0]} , Σ∗));
36: end if
37: else if Pred ≡ var.indexof(strlit) >= intlit then
38: if intlit = -1 then
39: return CONCAT( Σ∗, CONCAT({strlit[0]}, Σ∗)));
40: else
41: return CONCAT((Σ - {strlit[0]})intlit , CONCAT( Σ∗, CON-

CAT({strlit[0]}, Σ∗)));
42: end if
43: else if Pred ≡ var.indexof(strlit) > intlit then
44: return CONCAT((Σ - {strlit[0]})intlit+1, CONCAT( Σ∗, CON-

CAT({strlit[0]}, Σ∗)));
45: else if Pred ≡ var.indexof(strlit) <= intlit then
46: if intlit = -1 then
47: return (Σ - {strlit[0]})∗;
48: else
49: return

⋃intlit
l=0 CONCAT(Σl, CONCAT({strlit[0]}, Σ∗));

50: end if
51: else if Pred ≡ var.indexof(strlit) < intlit then
52: if intlit = 0 or intlit = -1 then
53: return (Σ - {strlit[0]})∗;
54: else
55: return

⋃intlit−1
l=0 CONCAT(Σl, CONCAT({strlit[0]}, Σ∗));

56: end if
57: else if Pred ≡ var.indexof(strlit) != intlit then
58: if intlit = -1 then
59: return CONCAT(Σ∗, CONCAT({strlit[0]}, Σ∗));
60: else if intlit = 0 then
61: return CONCAT(Σ - {strlit[0]}, Σ∗);
62: else
63: return CONCAT(Σintlit−1, CONCAT(Σ - {strlit[0]}, Σ∗));
64: end if
65: else
66: return Σ∗;

67: end if



We evaluated the reverse engineering scenario on several
real-world applications by extracting and analyzing their
input validation functions. In our experiments we used a
MacBook Pro with a 2.53 GHz core 2 due processor and 4
GB of memory.

A. Verifying Stand-Alone Input Validation Functions

In this section we show the results of verifying 23
JavaScript validation functions collected from a JavaScript
book [14] and several JavaScript input validation tutorials
on the internet. The book on JavaScript and the tutorials
represent a set of validation functions that should have been
written very carefully given that these are examples used for
teaching JavaScript programming. These functions also in-
clude a wide variety of string operations and predicates that
one expects to see in a JavaScript application and hence form
a good benchmark for evaluating the effectiveness of our
string analysis techniques. The functions we analyzed cover
all the policies mentioned in Section II. Five of the validation
functions were changed slightly to conform to our assump-
tions for validation functions, so that the modified function
return true/false values instead of empty/nonempty error
messages in case of acceptance/rejection of input.

Results. The total time it took for analyzing the 23 functions
was 3.05 seconds during which 488 lines of code have
been analyzed. Table I shows the individual results for each
validation function using our analysis. The first column
is the validation function name. The second one is the
source for this function. The third column shows the type
of data that is validated by this validation function which
is also the type of policy used to verify the function itself.
Columns four and five show the performance of our string
analysis in terms of time and memory. Last column shows
the result for verification against both the maximum and the
minimum policies. Failing the maximum policy means that
the function accepts some values that are invalid according
to our policy. For example, the first function does not satisfy
the maximum policy which means that it allows email
addresses that are considered to be invalid by our policy.
On the other hand failing the minimum policy means that
the function rejects some values that are correct according to
our policy. For example, function number 13 does not satisfy
the minimum policy which means that it rejects some time
inputs that we consider to be correct.

Discussion. Among the 23 functions we have analyzed, 10
of them violated a maximum policy while 3 of them violated
a minimum policy. We tested these results using the counter-
examples generated by our analysis and did not find any
false positives due to over-approximation. It is interesting to
see that all the functions that validate the email addresses
failed to comply with our maximum email policy (which
is the most complicated policy we used). It is even more
interesting to see that four of the five functions that validate

non emptiness failed to comply with our maximum non
emptiness policy although this check seems very simple.

The most subtle error in email validation functions is the
one that we discussed at the beginning of section II where
the developer forgot to escape the dash character inside a
character class. This results in accepting email addresses
with invalid characters such as “[”. Another problem that
we have found is the usage of a black list to block invalid
characters in an email address rather than a white list where
only valid characters are accepted. All of these black lists
miss at least one invalid character. We think that the white
list approach that we used in our policy is much simpler and
less error prone.

The phone validation function number 16 failed to comply
with our minimum policy because it rejects a phone number
that has two parentheses around its area code. This is the
most common format to write a phone number in US and,
hence, in our minimum policy we specify that this should
be accepted as valid input.

The most surprising result is the errors in non emptiness
checks. The reason behind the four failures is that these
four functions accept a field value that only consists of
white space characters while such value should be consid-
ered empty. Such a validation error will likely cause an
unnecessary interaction with the web server, and if the same
validation check is also erroneous at the server side it can
lead to fatal errors in the application.

Our results demonstrate that 1) writing input validation
checks in JavaScript is an error-prone task and even the
sample validation functions shown in tutorials and books
on JavaScript contain errors. 2) Using the string analysis
techniques we presented, we can efficiently check the con-
formance of a JavaScript input validation function to a given
input validation policy.

B. Verifying Input Validation Operations in Deployed Web
Applications

We applied our verification technique to a number of
real world websites that use JavaScript to validate their
HTML form inputs. For each of these websites we pick an
HTML form, fill it out, and submit it. During submission
we automatically extract the validation code for one target
field and analyze this code statically to see if it violates
our predetermined policies for the type of that field. We
applied our technique on fields with common input format
such as email, phone number, etc. Our analysis can also be
applied to other fields that need specific policies chosen by
the organization running the website such as username and
password fields.
Results. Table II shows the results of applying our analysis
to a number of websites. Each row represents the results for
extracting and verifying the validation code for a single input
field in a form in the given website. Since this is done twice
for a valid and invalid input we show two sub-columns for



Table I
RESULTS OF OUR ANALYSIS ON INPUT VALIDATION FUNCTIONS COLLECTED FROM JAVASCRIPT BOOKS AND TUTORIALS

FuncName Source Type Time (seconds) Memory (MB) Result
Max Policy Min Policy

1 validateEmail Book - HeadFirst JavaScript Email 0.640 9.6 X
√

2 validateEmail Tut - http://www.webcheatsheet.com/ Email 0.150 24.3 X
√

3 emailValidator Tut - http://www.tizag.com/ Email 0.140 44.7 X
√

4 checkEmail Tut - http://developer.apple.com/ Email 0.560 8.3 X
√

5 isEmailAddress Tut - http://www.devshed.com/ Email 0.140 19.9 X X
6 isAlphabet Tut - http://www.tizag.com/ Alphabet 0.014 24.1

√ √

7 isAlphabetic Tut - http://www.devshed.com/ Alphabet 0.014 25.0
√ √

8 isAlphanumeric Tut - http://www.tizag.com/ AlphaNumeric 0.018 26.1
√ √

9 isAlphaNumeric Tut - http://www.devshed.com/ AlphaNumeric 0.009 27.2
√ √

10 isNumeric Tut - http://www.tizag.com/ Numeric 0.013 28.0
√ √

11 isNumber Tut - http://www.devshed.com/ Numeric 0.011 28.7
√ √

12 validateDate Tut - http://www.the-art-of-web.com/ Date 0.041 32.0
√ √

13 validateDate Book - HeadFirst JavaScript Date 0.507 5.2
√

X
14 validatePhone Tut - http://www.webcheatsheet.com/ Phone 0.075 15.6

√ √

15 checkPhone Tut - http://developer.apple.com/ Phone 0.058 27.4
√ √

16 validatePhone Book - HeadFirst JavaScript Phone 0.076 37.5 X X
17 validateTime Tut - http://www.the-art-of-web.com/ Time 0.031 43.1

√ √

18 validateZipCode Book - HeadFirst JavaScript ZipCode 0.040 48.1
√ √

19 validateEmpty Tut - http://www.webcheatsheet.com/ NotEmpty 0.448 0.8 X
√

20 notEmpty Tut - http://www.tizag.com/ NotEmpty 0.013 1.8 X
√

21 isEmpty Tut - http://developer.apple.com/ NotEmpty 0.017 2.9 X
√

22 isEmpty Tut - http://www.devshed.com/ NotEmpty 0.014 4.2
√ √

23 validateNonEmpty Book - HeadFirst JavaScript NotEmpty 0.021 5.9 X
√

Table II
RESULTS OF OUR ANALYSIS ON DEPLOYED WEBSITES

Source Type Code Size (LOC) Execution Trace Size (LOC) Extraction Time (s) Analysis Time (s) Result
Valid Invalid Valid Invalid Valid Invalid Valid Invalid Max Min

1 www.google.com Email 407 407 103 138 17.82 13.42 0.57 0.47 X
√

2 www.bloomberg.com Email 2138 2133 776 769 14.85 12.84 0.48 0.44 X
√

3 www.bloomberg.com Phone Number 2138 2138 808 808 18.81 16.92 0.45 0.44 X
√

4 www.stc.com.sa Email 124 102 93 62 67.88 54.23 0.65 0.50 X X
5 www.kooora.com Email 35 35 10 11 10.50 7.67 0.60 0.45 X

√

6 www.multiply.com Email 171 171 230 271 8.74 9.22 0.50 0.47 X
√

7 www.acm.com Email 1644 1644 867 871 10.19 11.41 0.61 0.43 X X
8 www.netflix.com Email 518 518 2411 2411 24.27 24.27 - - X

√

9 www.btjunkie.org Email 104 104 20 21 12.16 12.01 0.50 0.52 X
√

10 www.pcmag.com Email 514 514 31808 31808 32.13 32.13 - - X
√

11 www.pcmag.com Zip Code 570 570 31850 31850 33.48 31.81 0.33 0.43 X
√

12 www.apple.com Email 1925 1925 1783 1783 14.15 13.95 0.51 0.42 X
√

13 www.acm.com Zip Code 1666 1644 1052 1047 12.70 10.42 0.49 0.66 X
√

each. The first column is name of website where we got the
form from. The second column shows the type of data that is
validated by this validation function which is also the type
of policy used to verify the function itself. Column three
shows the size (in lines of code) of the form submission
handling code including the validation code from which we
extracted the validation function. Column four shows the
number of lines of code that has been executed as part of
submitting the form. Column five shows the time it takes to
dynamically extract the validation function while column six
shows the time to statically analyze the extracted function. In
two cases there was no validation code in the application and
the extracted validation function was empty. Hence, there
was no string analysis done for these two cases and the
corresponding column is left empty. Last column shows the
result for verification against both the maximum and the
minimum policies where an X means a policy violation.

Policy Violations. We have found a policy violation in
each of the websites that we tested. Some of these policy

violations are a result of subtle bugs in the validation code,
some of them are a result of writing light weight validation
code or even not writing any, and some of them are due
to minor differences between our policies and websites’
policies.

Two subtle bugs that we have found are in 7 and 4. In 7, a
condition in the validation code was supposed to reject any
email that ends with ”@csta.acm.org”. This was written as
if(ckEmailVal.match("@csta.acm.org")){..}
The programmer forgot to escape the dot as a special
character in the regular expression so when JavaScript
converts this string into a regular expression, it will
interpret dot as any character. Our analyzer output
”A@cstaAacm.org” as an example for an email that should
not be rejected. We changed our minimum policy to reflect
the website developers intention and still got a policy
violation with the same example.

In 4 (a website for a large telecom company) the devel-
opers claim that they follow the RFC standard for email



addresses. We found that they disallowed capital characters
from emails with no obvious reason and our analyzer
gave the following example that should not be rejected
”A@A.AAA”.

Some of the other websites have lightweight validation
code that will accept incorrect input. For example, 2 only
checks for presence of ’@’ and ’.’ in an email and our
analyzer gave ”.@n” as an invalid email that is accepted.
1 accepts any email that does not have space, ’ or ” in
it. Our analyzer gave ”0x1f@0x1f.0x1f” as an invalid email
that is accepted. This latter example was randomly generated
and happened to be not printable but for this case there
are counter examples with printable characters. Finally, two
websites 8 and 10, had no validation code at all and our
slicer returned an empty validation function, meaning that
all input values are accepted. In this corner case there is
no need to run the string analysis and we only report a
maximum policy violation.

VI. RELATED WORK

Client side input validation is an important problem that
has been studied before. FLAX [17] uses dynamic analysis
techniques to discover client side validation vulnerabilities.
The authors use dynamic taint analysis to extract validation
code related to a certain sink and then use random fuzzing to
test this sink. In our technique we use a similar approach to
extract the validation function but then we statically analyze
the extracted code to see if it violates the given policies.

In [16] authors developed a symbolic execution frame-
work for JavaScript. At the core of their framework there is
a string constraint solver called KUDZU that is built on top
of the bounded string solver HAMPI [11]. Their approach is
able to handle a larger set of string operations and predicates
in JavaScript compared to our approach. However, their
approach bounds the lengths of the execution paths (by
bounding loops) and uses a bounded string solver whereas
our approach handles unbounded paths (using widening)
and handles unbounded strings (using automata). For the
verification problem we are addressing, a bounded string
solver can only find policy violations but it can not prove
the conformance to a given policy. Our static string analyzer
(i.e., the second phase of our analysis) is sound (with
respect to the restricted set of JavaScript string operations
and predicates that we can handle) and can prove that a
validation function conforms to a given policy.

NoTamper [2] uses dynamic symbolic execution to dis-
cover constraints on HTML form inputs at the client-side.
Then, it uses these constraints to generate input values to test
the server-side input validation. In contrast, we are focusing
on finding input validation errors at the client-side with
respect to a given policy.

MiTV [19] uses dynamic symbolic execution engine
Pex [12] to test the correctness of user input validation
functions for .NET web applications. These functions are

first classified according to the type of input they validate.
Then each validation function is tested by comparing it to
a subset of the functions under the same class. As we have
seen in our experiments it is possible for many or even all
functions in a specific class to fail to correctly validate a
user input. So we believe that it is worthwhile to develop
validation policies and then use these policies as a reference
for verification of different implementations.

GATEKEEPER [9] uses static analysis to verify the
enforcement of security policies written in Datalog on
JavaScript widgets. These policies are different than ours
and they are not related to input validation.

Due to its importance for establishing dependability of
web applications, string analysis has been widely studied.
One influential approach has been grammar-based string
analysis that statically computes an over-approximation of
the values of string expressions in Java programs [3] which
has also been used to check for various types of errors in the
server side of Web applications [8], [13], [21], [10]. In [13],
[21], multi-track DFAs, also known as transducers, are used
to model replacement operations.

DFA based symbolic string analysis has been used to
verify the correctness of string sanitization operations in
PHP programs [23], [22]. Recently, foundations of relational
string analysis using multi-track automata (as opposed to
single-track automata used in our analysis) were investigated
in [24]. In the future we plan to investigate integration of
relational string analysis to our JavaScript string analyzer
which would allow us to analyze branch conditions on
multiple variables. Another future research direction would
be automatically synthesizing fixes to validation functions
that violate a given policy using techniques similar to the
vulnerability patching techniques presented in [4].

There are also several other string analysis tools that use
symbolic string analysis based on DFA encodings [18], [5],
[23]. Some of them are based on symbolic execution and
use a DFA representation to model and verify the string
manipulation operations in Java programs [18], [5].

VII. CONCLUSIONS

We have presented an approach for verifying client-side
input validation functions. Given maximum and minimum
policies identifying the largest and smallest set of input
values that should be accepted as valid, our analysis ver-
ifies if a given website conforms to the given policies
by, first, extracting an input validation function from the
given website using dynamic slicing, and then, checking the
conformance of the extracted function to the given policies
using automata-based static string analysis. When there is
a policy violation, our analysis generates a counter-example
string demonstrating the violation. We applied our analysis
to a number of validation functions and websites and our
results indicate that it can effectively find subtle errors in
client-side input validation code.
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