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Abstract—Although popular text search engines allow users perform the same high-level functionality [10]. Rarely do
to retrieve similar web pages, source code search engines programmers record any traceability links between softwar

do not have this feature. Detecting similar applications isa  4tifacts, which belong to different applications, to &tith
notoriously difficult problem, since it implies that similar high- . - o ’
their functional similarity.

level requirements and their low-level implementations ca be . o =nt o .
detected and matched automatically for different applicaions. Knowing similarity between applications plays an im-

We created a novel approach for automatically detecting portant role in assessing reusability of these application
Closely reLated ApplicatioNs (CLAN) that helps users detect improving understanding of source code, rapid prototyping
similar applications for a given Java application. Our main and discovering code theft and plagiarism [23], [25], [31],

contributions are an extension to a framework of relevance ad [39], [42]. Enabling programmers to compare automaticall
a novel algorithm that computes a similarity index between ! ) g prog P y

Java applications using the notion of semantic layers that how different applications implement the same requiresient
correspond to packages and class hierarchies. We have built greatly contributes to knowledge acquisition about these
CLAN and we conducted an experiment with 33 participants  requirements and subsequently to decisions that these de-
to evaluate CLAN and compare it with the closest competitive velopers make about code reuse. Retrieving a list of similar

approach, MUDABIue. The results show with strong statistial applications brovides a faster wav for brodrammers to con-
significance that CLAN automatically detects similar applca- Pp P y prog

tions from a large repository of 8,310 Java applications whh a  Centrate on relevant aspects of functionality, thus satiing

higher precision than MUDABIue. and resources for programmers. Programmers can spend
this time understanding specific aspects of functionality i
. INTRODUCTION similar applications, and see the complete context in which

Retrieving similar or related web pages is a feature ofth€ functionality is used. ,
popular search engines (e.g., Google, Ask.com, HotBot). A fundamental problem of detecting closely related ap-

After users submit search queries, Google displays "nkglications is in the mismatch between the high-level intent
to relevant web pages along with a link labelgidmi | ar reflected in the descriptions of these applications and low-
next to each result. Thessi mi | ar links point to web level implementation details. This problem is known as the

pages that the Google similarity algorithm computes bfo_ncept f_;\ssignr_nent proble[t!]. For any tV\_’O gpplicatipns
aggregating many factors that include, but are not limited t It 1S 100 imprecise to establish their similarity by simply
the popularity scores of the retrieved pages, links amoag thMatching words in the descriptions of these applications,
pages, and the links’ positions and sizes [11]. For example?®Mments in their source code, and the names of program
for the main ACM SigSoft page, Google returns threevariables and types. Since programmers typically invest a

top similar web sites: IEEE Computer Society, Softwaresignificant intellectual effort (i.e., they need to overeom
Engineering Institute, and ESEC/FSE 2809 high cognitive distance [24]) to understand whether retie

Detecting similar applications is a notoriously difficult @PPlications are similar, existing code search enginesoto n

problem, since it means automatically detecting that highglleviate the task of detecting similar applications beeau

level requirements for these applications match semdlytica (€Y return odnly a Iarlge numbﬁrf ofddiffer%wt colde snippdets.
[19, pages 74,80] [26]. This situation is aggravated by the We created a novel approach for deteciBigsely rel ate

fact that many application repositories are polluted WithAppIicatioNs (CLAN) This paper makes the following con-

poorly functioning projects [17]; a match between words inmbUt'onS:_ o _

requirement documents with words in the descriptions or in * A major contribution of our approach is that CLAN
the source code of applications does not guarantee that thes ~ US€S complete software applications as input, not only
applications are relevant to the requirements. Applicatio natural language queries. This feature is useful when a
may be highly-similar to one another at a low-level of developer needs to find similar applications to a known

the implementations of some functions even if they do not ~ Software application. _ _
« We introduce a new abstraction that is relevant to

ILast time checked: September 20, 2011. semantic space$18] that are modeled as existing



inheritance hierarchies oApplication Programming requirements from different stakeholders. There are cuite
Interface (APIl)classes and packages. few competing companies for each bid: IBM Corp, HP Corp,

« We extended a well-established conceptual frameworKata Consultancy Services to name a few. A winning bid
of relevance with our new abstraction. The intuition proposal has many components: well-elicited requirements
behind our approach is that if two applications containpreliminary models and design documents, proof of experi-
functional abstractions in a form of inheritance hier- ence of building and delivering similar applications in the
archies and packages that contain API calls whose sepast. Clearly, a company that submits a bid proposal that
mantics are defined precisely, and these calls implemertontains these components as closely matching a desired
the same requirement (e.g., different API calls from aapplication as possible, will win the bid.

data compression library), then these applications have |t is important to reuse these components from success-
a higher degree of similarity than those that do not havqu”y delivered applications in the past - doing so will
API calls that are related to some requirement. The ide@aye time and resources and increase chances of winning
of using API calls to improve code search was proposeghe pid. It is shown that over a dozen different artifacts
and implemented elsewhere [5], [12], [13]; however,can e successfully reused from software applications [21,
this idea has never been used to compute similaritiepages 3-5]. The process of finding similar applicationgstar
between software applications. _with code search engines that return code fragments and

« Based on this extension, we designed a novel algorithrgocuments in response to queries that contain key words
that computes a similarity index between Java applicafom elicited requirements. However, returned code frag-
tions, and we implemented this algorithm in CLAN and ments are of little help when many other non-code artifacts
applied to 8,310 Java applications that we downloadegyre required (e.g., different (non)functional requiretsen
from Sourceforge. CLAN is available for public #se documents, UML models, design documents).

» We conducted an experiment with 33 Java programmers Matching words in queries against words in documents

to evaluate CLAN. The results show with strong statis- . ) . :
) L . . —_and source code is a good starting point, however, it does
tical significance that users find more relevant applica-

tions with higher precision with CLAN than those based 2;:;"2?'; :tsikeheorliiset?n ?ﬁ}:blsherhm rapﬁp“(lziigggz are
on the closest competitive approach MUDAB1&2] 99 : Paper,

and a svstem that combines CLAN and MUDABIue as a collection of all source code modules, libraries, and
that we i);nplementefd programs that, when compiled, result in the final delivezabl

that customers install and use to accomplish certain bsisine
Il. OUR HYPOTHESISAND THE PROBLEM functions. Applications are usually accompanied by non-
code artifacts, which are important for the bidding process

In this section we use a conceptual framework for rele L R X .
vance to define the concept of similarity between appnca_EstabIlshlng their similarity at large from different siar

tions, formulate a hypothesis, and describe problems teat weOMPonents of the source code is a goal of this paper.

should solve to test this hypothesis. The concept of similarity between applications is inte-
o . grated in the software lifecycle process as follows. After
A. A Motivating Scenario obtaining the initial set of requirements, the user enters

A motivating scenario for detecting similar application is keywords that represent these requirements into a search
based on a typical project lifecycle in Accenture, a globalengine that returns relevant applications that contaisehe
software consulting company with over 250,000 employeekeywords. In practice, it is unlikely that the user finds an
as of February, 2012. At any given time, company consulapplication that perfectly matches all the requirements - i
tants are engaged in over 3,000 software projects. Since iig happens, then the rapid prototyping process is finished.
first project in 1953, Accenture’s consultants deliveretste Otherwise, the user takes the returned applications and
of thousand of projects, and many of these projects are sinstudies them to determine how relevant they are to the
ilar in requirements and their implementations. Knowing th requirements.

similarity of these applications is important for preseyi  agter examining some returned application, the user de-
knowledge, experience, winning bids on future projects, an (grmines what artifacts are relevant to requirements, and
successfully building new applications. which ones are missing. At this point the user wants to

A typical lifecycle of a large-scale project involves many fing similar applications that contain the missing artifact
stages that start with writing a proposal in response 10 a big jje retaining similarity to the application that the users
from a company that needs an application. A major part ok, nq That is, using the previously found application, the
writing a proposal and developing a prototype is to elicitiniia| query is further expanded to include artifacts fréfis

2http:/fwww javaclan.net appllca_tlon that mgtqhed some _of requirements as thfe user

Shttp://www.mudablue.net determined, and similar applications would contain actga

“http://mww.clancombined.net that are similar to the ones in the found application.



B. Similarity Between Applications MUDABIue uses syntagmatic associations for computing

We define the meaning of similarity between applicationsSimilarities among applications [22]. The problem withsthi
by using Mizzaro’s well-established conceptual frameworkaPProach is that C(_)mputed relevance is r_elatlvel_y Impeecis
for relevance [32], [33]. In Mizzaro's framework, similar When compared with CLAN as we show in Section V.
documents are relevant to one another if they share SOMS  gemantic Anchors in Software
common concepts. Once these concepts are known, a corpus . _ . .
of documents can be clustered by how documents are Since programs contain API calls with precisely defined
relevant to these concepts. Subsequently all documents #gmantics, these API calls can serve as semantic anchors
each cluster will be more relevant to one another wherf® compute the degree of similarity between applications
compared to documents that belong to different clusters?y matching the semantics of these applications that is ex-
This is the essence of the cluster hypothesis that speciﬁegressed W|th.these API calls. Programmers routinely use API
that documents that cluster together tend to be relevant tg2llS from third-party packages (e.g., theva Development
the same concept [46]. Kit (JDK)) to implement various requirements [5], [8], [12],
Two applications are similar to each other if they imple-[13], [43]. API calls from well-known and widely used
ment some features that are described by the same abstrdraries have precisely defined semantics unlike names of
tion. For example, if some applications use cryptographid®rogram variables and types and words that programmers
services to protect information then these applicatiores arUSe in comments. In this paper, we use API calls as semantic
similar to a certain degree, even though they may hav@nchors to compute similarities among applications.
other diffgrent funct?onalities for different domains. @mer E. Challenges
example is text editors that are implemented by different o ) o
programmers, but share many features: copy and paste, undo®@Ur hypothesis is based on our idea that it is better
and redo, saving data in files using standard formats. A0 compute similarity between programs by utilizing API
straightforward approach for measuring similarity betwee calls as semantic anchors that come from JDK and that
applications is to match the names of their program vargbleProgrammers use to implement various requirements. This
and types. The precision of this approach depends highl{d€a has advantages over usivgctor Space Model (VSM)
on programmers choosing meaningful names that reﬂed@/he_‘re_ dqcuments are represented as vectors pf words and
correctly the concepts or abstractions that they implemen@ Similarity measure is computed as the cosine between

but this compliance is generally difficult to enforce [1]. ~ these vectors [41]. One main problem with VSM is that
. different programmers can use the same words to describe
C. Our Hypothesis different requirements (i.e., the synonymy problem) arey th

In Mizzaro's framework, a key characteristic of rele- can use different words to describe the same requirements
vance is how information is represented in documents. Wéi.e., the polysemy problem). This problem is a variation
concentrate orsemantic anchorswhich are elements of of the vocabulary problem, which states that “no single
documents that precisely define the documents’ semantizord can be chosen to describe a programming concept in
characteristics. Semantic anchors may take many forms. Féhe best way” [9]. This problem is general toformation
example, they can be expressed as links to web sites th&etrieval (IR) but somewhat mitigated by the fact that
have high integrity and well-known semantics (e.g., cnmco different programmers who participate in the projects use
or whitehouse.gov) or they can refer to elements of semanticoherent vocabularies to write code and documentatios, thu
ontologies that are precisely defined and agreed upon bincreasing the chance that two words in different applica-
different stakeholders. tions may describe the same requirement.

This is the essence qfaradigmatic associationshere The sheer number of API calls suggests that many of these
documents are considered similar if they contain terms witlcalls are likely to be shared by different programs that enpl
high semantic similarities [36]. Our hypothesis is that byment completely different requirements leading to sigaific
using semantic anchors and dependencies among them itifmprecision in calculating similarities. Our study showatt
possible to compute similarities between documents with aut of 2,080 randomly chosen Java programs in Sourceforge,
higher degree of accuracy when compared to documents thaver 60% of these programs uSer i ng objects and over
have no commonly defined semantic anchors in them.  80% contain collection objects; these programs invoke API

Without semantic anchors, documents are considered aslls that these string and collection classes exports. [14]
bags of words with no semantics, then the relevance off similarity scores are computed based on these common
these documents to user queries and to one another can B®l calls, most Java programs would be similar to one
determined by matches between these words. This is thanother. On top of that, it is not computationally feasilde t
essence obyntagmatic associationshere documents are compute similarity scores with high precision for hundreds
considered similar when terms (i.e., words) in these docuef thousands of API calls. It is an instance of a problem
ments occur together [36]. For example, the similarity eagi  known asthe curse of dimensionalityvhich is a problem



caused by the exponential increase in processing by adding Finally, we observed that a requirement is often imple-
extra dimensions to a representational space [35]. mented using combinations of different API calls rather

Graphically, programs are represented as dots in a muthan a single API call. It means that co-occurrences of
tidimensional space where dimensions are API calls an@PI calls in different applications form patterns of imple-
coordinates in this space reflect the numbers of API callsnenting different requirements. For example, a requirdmen
in programs. The JDK contains close to 115,000 API callsof efficiently and securely exchanging XML data is often
that are exported by a little more than 13,000 classes aninplemented using API calls that read XML data from a
interfaces that are contained in 721 packages. Computinfje, compress and encrypt it, and then send this data over
similarity scores between programs using VSM in a spacé¢he network. Even though different ways of implementing
with hundreds of thousands of dimensions is not alwayshis requirement are possible, detecting patterns in co-
computationally feasible, it is imprecise, and difficult to occurrences of API calls and using these patterns to compute
interpret. We need to reduce the dimensionality of thisthe similarity index may lead to higher precision when
space while simultaneously revealing similarities betwee compared with competitive approaches.
implemented latent high-level requirements. i )

B. Latent Semantic Indexing (LSI)
l1l. OUR APPROACH To implement our key idea we rely an IR technique called

In this section we describe our key idea, provide backLatent Semantic Indexing (LShat reduces the dimension-

ground material on LSI that we use in CLAN, and explainality of the similarity space while simultaneously revegli

its architecture. latent concepts that are implemented in the underlying
corpus of documents [7]. In LSI, terms are elevated to an
A. Key Idea abstract space, and terms that are used in similar contexts

Our key idea is threefold. First, if two applications shareare considered similar even if they are spelled differently
some semantic anchors (e.g., API calls), then their siijlar LSI automatically makes embedded concepts explicit using
index should be higher than for applications that do notesharSingular Value Decomposition (SVDyhich is a form of
any semantic anchors. Sharing semantic anchors means mdeetor analysis used to reduce dimensionality of the space
than the exact syntactic match between the same two ARD capture most essential semantic information.
calls; it also means that two different API calls will match  The input to SVD is anm x n term document matrix
semantically if they come from the same class or packaggTDM). Each ofmrows corresponds to a unique term, which
This idea is rooted in the fact that classes and packages in our case is either a class or a package name that contains
JDK contain semantically related API calls; for example,a corresponding API call that is invoked in a corresponding
the packagg ava. security contains classes and APl application (i.e., document). Columns correspond to ugiqu
calls that enable programmers to implement securityedlat documents, which in our case are Java applications. Each
requirements, and the packapava. util. zi p exports element of the TDM contains the weight that shows how
classes that contain API calls for reading and writing thefrequently this API call is used in this application when
standardZl P and GzI P file formats. Thus we exploit compared to its usage in other applicatfn&e cannot use
relationships between inheritance hierarchies in the J®K ta simple metric such as the API call count since it is biased
improve the precision of computing similarity. This idea is — it shows the number of times a given API call appears
related to semantic spaces where concepts are organizediinapplications, thus skewing the distribution of thesdscal
structured layers and similarity scores between documenteward large applications, which may have a higher API call
are computed using relations between layers [18]. Moreoverount regardless of the actual importance of that API call.
recent work has shown that API classes and packages can beSVD decomposes TDM into three matrices using a re-
used to categorize software applications using thoseadassduced number of dimensions, whose value is chosen
and packages [30]. experimentally. The number of dimensions for LSI is com-

Second, different API calls have different weights. Recallmonly chosenr = 300 [7], [34]. One of these matrices
that many applications have many API calls that deal withcontains document vectors that describe weights that docu-
collections and string manipulations. Our idea is to autema ments (i.e., applications) have for different dimensidtech
ically assign higher weights to API calls that are encoweder column in this matrix is a vector whose elements specify
in fewer applications and, conversely to assign lower wigigh coordinates for a given application in the-dimensional
to API calls that are encountered in a majority of applica-space. Computing similarities between applications means
tions. There is no need to know what API calls are used ircomputing the cosines between vectors (i.e., rows) of this
applications — this task should be done automatically. Boin matrix.
it will improve the precision of our approach since APl calls _ . .

Note that we do not consider the number of times each API sall i

that Come_from common paCk?g_es _I|k@va. I'ang will executed, e.g., in a loop. Instead, we count occurrencesRifcalls in
have less impact to skew the similarity index. source code.



C. CLAN Architecture and Workflow - Vietadata ] (@)Applications|(3) ,
. . . ) A e @ Extractor TDM Builder
The architecture for CLAN is shown in Figure 1. The
main elements of the CLAN architecture are the Java Ap{ Ap, Similarity |8 Iicl @
plications (Apps Archive) and the API call Archive, the |Archiv @ Matrix 7 TDM¢
Metadata Extractor, the Search Engine, the LSI Algorithm, @ O [Py @

and the Term Document Matrix (TDM) Builder. In TDM, ﬁ | = eh

rows represent packages or classes that contain JDK AP &% *@I Engine @ | LSIh
calls that are invoked in Java applications and columns Algorithm
represent Java applications. Applications metadata idbescr
different API calls that are invoked in the applications and
their classes and packages. The input to CLAN (i.e., a user
query) is shown in Figure 1 with a thick solid arrow labeled

I(gb)l 'clj'h:elzoutput is shown with the thick dashed arroW and columns designate applications. For any two applica-
abeled(12) . tions Ay and Aj, each element of S|, S;j is the similarity

_ CLAN works as follows. The Metadata Processor takes agcqre hetween these applications that is defined as follows:
its inputs( 1) the Apps Archive with Java applications and {O <s<1, if i#]

Figure 1. CLAN architecture and workflow.

The Similarity Matrix, ||S|| is a square matrix whose rows

API archive that contains descriptions of JDK API calls. TheS; =

Metadata Processor outpyt&) the Application Metadata, 1Lif i=]j

which is the set of tuples:<<package, cl ass >, APl It took us close to three hours to construct the TDM for
cal | >7A > ||nk|ng API calls and their packages and MUDABIue using Intel Xeon CPU W3540, 2.93GHz with
classes to Java applicatioAsthat use these API calls. 2GB RAM, less than one hour for TDM for the package- and

Term-Document Matrix (TDM) Builder take§3) Ap- class-level TDMs for CLAN. Running SVD on these TDMs

plication Metadata as its input, and it uses this metadatf0k 1ess than three hours for MUDABIue, and less than 30
(4) to produce two TDMs: Package-Application Matrix minutes for the package- and class-level TDMs for CLAN.
(TDMb) and Class-Application MatrixTDM:) that contain For_ all three TDMs, we used Fhe same corpus of 8,310 Java
TFIDFs for JDK packages and classes whose API call§roicts from SourceForge with 114,146 API calls.
are invoked in respective applications. The LSI Algorithm When the user enters a quef®), it is passed to the
is applied(5) separately tofDVb and TDM: to compute Search Engine that rc_etrleves releyant appl!cqt(ol_ﬁ) wnr_]
(6) class and package matrick8| and|P||. That is, each ranI§S_ in the descending o_rder using the S|m_|lar|_ty Matnix. |
row in these matrices contain coordinates that represent i@ddition, the Search Engine uses the Application Metadata
corresponding application in a multidimensional spacéwit ( 11) to extract a map of API calls for each pair of similar
respect to either classes or packages of API calls that af@PPlications. This map shows API calls along with their
invoked in this application. classe{s and pgckqges that are shared by similar applisation
Class-level and package-level similarities are differemand this map is given to the usgf2) .
since applications are often more similar on the package
level than on the class level because there are fewer paskage
than classes in the JDK. Therefore, there is the higher Typically, search and retrieval engines are evaluatedgusin
probability that two applications may have API calls that manual relevance judgments by experts [28, pages 151-153].
are located in the same package but not in the same clasgo determine how effective CLAN is, we conducted an
Matrices||C|| and ||P|| are combined 7) into the Simi- ~ €xperiment with 33 participants who are Java programmers.
larity Matrix using the following formuld|S| = Ac-||S|c+  Our goal is to evaluate how well these participants can
Ap - ||Sllp, where A is the interpolation weight for each find similar applications to the ones that are considered
similarity matrix, and matrice$S||c and||S||p are similarity ~highly relevant to given tasks using three different sinitja
matrices for||C|| and ||P|| respectively. These similarity €ngines: MUDABIue, CLAN, and an integrated similarity
matrices are obtained by computing the cosine between thngine that combines MUDABIue and CLAN.
vector for each application (i.e., a corresponding row in )
the matrix) and vectors for all other applications. WeightsA' Background on MUDABIue and Combined
Ap and Ac are determined independently of applications. MUDADblue is the closest relevant work to CLAN since
Adjusting these weights enables experimentation with howt provides automatic categorization for applications][22
underlying structural and textual information in applioat  The cluster hypothesispecifies that documents that cluster
affects resulting similarity scores. In this paper we seldc together tend to be relevant to the same concept [46]. To
Ac = Ap = 0.5, thus stating that class and package-levethe best of our knowledge, there is no other system that is
scores contribute equally8) to the Similarity Matrix. competitive to CLAN in that it finds similar applications. We

IV. EXPERIMENTAL DESIGN




faithfully reimplemented MUDABIue for our experiment as  The guidelines for assigning confidence levels are the
it is described in the original paper [22]. following.

The original MUDABIue was implemented and evaluated 1) Completely dissimilar - there is absolutely nothing in
on a small repository of 41 C applications that were selected  the target application that the participant finds similar

from five different categories from Sourceforge. Comparing to the source application, nothing in it is related to the
two similarity search engines that do not work with the same task and the functionality of the subject application.
code base or different granularity levels (i.e., applmasi 2) Mostly dissimilar - only few remotely related require-

vs. code fragments) might introduce considerable threats ments are located in source and target application.

to validity. Sourceforge has a popular search engine and 3) Mostly similar - a somewhat large number of imple-
contains a large Java repository online; Apps Archive is mented requirements are located in the target applica-
populated with all Java projects from this repository, and tion that are similar to ones in the source application.
we applied MUDABIue as baseline approach to this archive 4) Highly similar - the participant is confident that the
thus making its set of applications comparable with those of source and the target applications share the same
CLAN. semantic concepts expressed in the task.

Since Similarity Matrices of MUDABIue and CLAN Al participants were computer science students from
have the same dimensions, it is possible to construct ghe University of lllinois at Chicago who had at least six
combined matrix whose values are the average of the valnonths of Java experience. Twelve participants were upper-
ues of the MUDABIue and CLAN matrix elements at the |evel undergraduate students, and the other 21 participant
corresponding position. The intuition behind this combine \were graduate students. Out of 33 participants, 15 had
approach lies in integrating two approaches: MUDABIueprogramming experience with Java ranging from one to three
where every word in the source code of applications is takejears, and 11 participants reported more than three years
into consideration versus the CLAN approach where onlyof experience writing programs in Java. Sixteen participan
API calls with precisely defined semantics are consideredeported prior experience with search engines, and eigt sa

A research question is whether this integration produces ghat they never used code search engines before.
superior result when compared to each of the constituent

approaches. Experimenting with this combined SimilarityC- Precision
Matrix allows us to seek an answer to this question about Two main measures for evaluating the effectiveness of re-

the benefit of the combined approach. trieval are precision and recall [49, page 188-191]. The pre
cision,P, = # of retrilev#ed fappl icati odns thla}t are simlar
) ! ~ total of retrieved applications o
B. Methodology i.e., the precision of a ranking method is the fraction of

We used a cross validation study design in a cohort of 33he topr ranked target applications that are relevant to the
participants who were randomly divided into three groupssource application, whene= 10 in this experiment, which
The study was sectioned in three experiments in whichmeans that each similarity engine returned top ten sirbjlari
each group was given a different engine to find similarmatches. Relevant or similar applications are counted only
applications to the ones that we provided for given tasksif they are ranked with the confidence levdsor 3. The
Each participant used a different task in each experimenprecision metrics reflects the accuracy of the similarity
Participants translated tasks into key words, searcheetfor search. Since we limit the investigation of the retrieved
evant applications using a code search engine, and selectagplications to top ten, the recall is not measured in this
an application that matched their key words the best. Westudy.
call this applicatiorthe source applicatiorirhen a similarity We created the variable precisioB,as a categorization
engine returned a list of top te¢arget applicationghat were  of the response variable confiden&z, We did it for two
most similar to the source application. Thus each partitipa reasons: improve discrimination of subjects in the result-
used each subject engine on different tasks and differenhg data and additionally validate statistical evaluatin
applications in this experiment. Before the experiment weresults. Precision? imposes a stricter boundary on what is
gave a one-hour tutorial on using these engines to findonsidered reusable code. For example, consider a situatio
similar applications. where one participant assigns the level two to all returned

The next step was to examine the retrieved applicationapplications, and another participant assigns level thoee
and to determine if they are relevant to the tasks andhalf of these applications and level one to the other half.
the source application. Each participant accomplishesl thiEven though the average & = 2 in both cases, the
step individually, assigning a confidence lev€l, to the second participant reports much higher precisiBn; 0.5
examined applications using a four-level Likert scale.c8in while the precision that is reported by the first participant
this examination is time consuming, manual and laboriouss zero. Achieving statistical significance with a stricter
we asked participants to examine only top ten applicationsliscriminative response variable will give assurance that
that resulted from searches. result is not accidental.




D. Hypotheses biased towards any of the similarity search engines that are

We introduce the following null and alternative hypothe- used in this experiment. Descriptions of these tasks should
ses to evaluate how close the means are fobhandPs P€ flexible enough to allow participants to find different
for control and treatment groups, whe@eand P are the ~Matching applications for similarity search. This crieeri
confidence level and the precision respectively. Unless wé'gnificantly reduces any bias towards evaluated simylarit
specify otherwise, participants of the treatment groupeaise search engines. These tasks and the results of the expérimen
ther MUDABIue or Combined approaches, and participant&r€ available for downlo&d
of the control group use CLAN. We evaluate the following E Tasks

hypotheses at a.05 level of significance. The follow ) . " £ 36
Ho  The primary null hypothesis is that there is no e following two tasks are examples from the set o

. : . tasks we used in our experiment.
difference in the values of confidence level and o . o
precision per task between participants who use ° Create an application for sharing, viewing, and explor-

MUDABIue, Combined, and CLAN. ing large data sets that are encoded using MIME. The

H:  An alternative hypothesis tély is that there is data sets may represents blogs or genom sequences.
statistically significant difference in the values of The data can be stored using key value pairs. The
confidence level and precision between participants ~ @Pplication should support retrieving data items by
who use MUDABIue, Combined, and CLAN. mapping keys to values.

« Implement a library for checking XPath expressions.
The checker should support compiling XPath expres-
sions, evaluating XPath expressions in the context of
the specified XML document and returning the results
as the specified type.

Once we test the null hypothesif, we are interested
in the directionality of meangy, of the results of control
and treatment groups. We are interested to compare the
effectiveness of CLAN (CN) versus the MUDABIue (MB)
and Combined (MC) with respect to the values of confidence

level, C, and precisionP. G. Threats to Validity
H1l: C of CLAN versus MUDABIue.
H2: P of CLAN versus MUDABIue.
H3: C of CLAN versus Combined.
H4: P of CLAN versus Combined.

In this section, we discuss threats to the validity of this
experimental design and how we address and minimize these
threats.

. 1) Internal Validity: Participants. Since evaluating hy-
H5: C of MUDABIue versus Combined. potheses is based on the data collected from participants,
H6: P of MUDABIue versus Combined. we identify three threats to internal validity: Java prafiuty,

The rationale behind the alternative hypotheselﬂ]toand motivation, and the uniformity among participants_

H2 is that CLAN allows users to quickly understand why  Even though we selected participants who had working

applications are similar by reviewing visual maps of theirknowledge of Java, we did not conduct an independent

common API calls, classes, and packages. The alternativ@ssessment of how proficient these participants were in Java
hypotheses to H3 and H4 are motivated by the fact thatrhe danger of having poor Java programmers as participants
if all words from source code are used in the analysis Irbf our experiment is that they can make poor choices of
addition to API calls, it will worsen the precision with wihic which retrieved app|icati0ns have higher simi|arity to the
users evaluate retrieved similar applications. Finalgying  source application. This threat is mitigated by the fact #fia

the alternative hypotheses td6 and H6 ensures that the participants from UIC have documented experience working

Combined approach still allows users to quickly understangn course projects that required writing Java code, taking

how similar applications share the same semantic concept§asses on programming with Java, and having experience

using their common API calls, classes, and packages.  working as Java programmers for commercial companies.

Tasks.Improper tasks pose a big threat to validity. If tasks
) o _are too general or trivial (e.g., open a file and read its data

We designed 36 tasks that participants work on duringnto memory), then every application that has file-related
experiments in a way that these tasks belong to domains thalp| cajis will be retrieved, thus inundating participantishw
are easy to understand, and they have similar complexityesyts that are hard to evaluate. On the other hand, if
The authors of this paper visited various programmingapplication and domain-specific keywords describe a task
forums and internet groups to extract descriptions of task§e.g.’ astronony and cosmi ¢ vacuun, only a few
from the questions that programmers asked. In additionyppications will be retrieved that contain these keywprds
we interviewed a dozen programmers at Accenture wh@pys creating a bias towards MUDABIue. To avoid this

explained what tasks they worked on in the past year.  threat, we based the task descriptions on 12 specifications
Additional criterion for these tasks is that they should

represent real-world programming tasks and should not be ®http://www.javaclan.net, follow the Experiment link.

E. Task Design
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Figure 2. Statistical summary of the results of the expeminfier C andP.The central box represents the values from the lower to ugpartile
(25 to 75 percentile). The middle line represents the mediae thicker vertical line extends from the minimum to theximaum value.
The filled-out box represents the values from the minimumhwrhean, and the thinner vertical line extends from the qudelow the
mean to the quarter above the mean.

of different software systems that were written by diffdaren 2) Testing the Null HypothesisWe used ANOVA to

people including professional programmers at Accentureevaluate the null hypothesidg that the variation in an

While this diversification of tasks does not completely experimentis no greater than that due to normal variation of

eliminate this threat to validity, it reduces it significent individuals’ characteristics and error in their measuretne
2) External Validity: To make results of this experi- The results of ANOVA confirm that there are large differ-

ment generalizable, we must address threats to externehces between the groups Brwith F =117 > Feit =3

validity, which refer to the generalizability of a casual with p~29.7-10~% which is strongly statistically significant.

relationship beyond the circumstances of our experimenfThe meanC for the MUDABIlue approach is .23 with

The fact that supports the validity of this experimentaigies the variance 1.2, which is smaller than the mead for

is that the participants are representative of professiongCombined, 23 with the variance 1.3, and it is smaller than

Java programmers since some of them have already joingle meanC for CLAN, 2.42 with the variance .D8. Based

workforce and others will do soon. A threat to externalon these results we can reject the null hypothesis and we

validity concerns the usage of search tools in the industriaaccept the alternative hypothesis.

settings, where applications may not use third-party API

call libraries. However, it is highly unlikely that modern — However, the results of ANOVA confirm that there are

large-scale software projects can be effectively develppe insignificant differences between the groupsRowith F =

maintained, and evolved without this reuse. 3.04 < Ferit = 3.09 with p = 0.052. The mearP for the
MUDABIue approach is (83 with the variance .06, which
V. RESULTS is smaller than the meaR for Combined, 5 with the

ariance 06, and it is smaller than the me&nfor CLAN,

.47 with the variance 057. Aggregating the values &f
into P changes the results of the statistical test making it
difficult to reach a conclusion, and it requires more precise

statistical tests, specifically, t-tests for paired two platior
We use one-way ANOVA and t-tests for paired two samplemeans, which we describe below.

for means to evaluate the hypotheses that we stated in

Section IV-D. A statistical summary of the results of the experiment
1) Variables: A main independent variable is the similar- for C and T (median, quartiles, range and extreme values)

ity engine (MUDABIue, CLAN, Combined) that participants are shown as box-and-whisker plots in Figure 2(a) and

use to find similar Java applications. Dependent variablkes a Figure 2(b) correspondingly with 95% confidence interval

the values of confidence level, and precisionP. for the mean.

In this section, we report the results of the experiment an
evaluate the null hypotheses.

A. Results of Hypotheses Testing



Table |
RESULTS OF FTESTS OF HYPOTHESESH, FOR PAIRED TWO SAMPLE FOR MEANS FOR TWETAIL DISTRIBUTION, FOR DEPENDENT
VARIABLE SPECIFIED IN THE COLUMN VAR (EITHERC OR P) WHOSE MEASUREMENTS ARE REPORTED IN THE FOLLOWING
COLUMNS. EXTREMAL VALUES, MEDIAN, MEANS (), VARIANCE (62), DEGREES OF FREEDOMDF), AND THE PEARSON
CORRELATION COEFFICIENT(PC),ARE REPORTED ALONG WITH THE RESULTS OF THE EVALUATION OF THE WPOTHESES I.E.,
STATISTICAL SIGNIFICANCE, p, AND THE T STATISTICS. A DECISION TO ACCEPT OR REJECT THE NULL HYPOTHESIS IS SHOWN IN
THE LAST COLUMN DECISION.

[H [ Var | Approach | Samples| Min [ Max [ Median| p | o> [ DF | PC | p | T [ Tuic | Decision |
HL || C | yooablue | ao9 s 2202119 821 | 01 | 44207 | 502 | 1.97 | Reject
el 7 [ | % [0 ST ] o [Sa[Sh e o1 [ oo |20 20| roms
Ha || © | okn | 30 g 2 |52 s 01| om 16 | 1.96| Accept
Ha || P Cocn';Abi';']e § gg 8 °i8 8:2 8:2‘; 8:22 32 | 016 | 068 | 041 | 2.04| Accept
Hs || c N(':%%?r:gg ggg Tl 3 22'%3 i:ég 321 | 002 | 0002 | -316| 1.97 | Reject
He | P “’é%Dm’?)ﬁl'gg - O 10 3 9831020 32 | 021 | 004 | -215| 204 Reject

3) Comparing MUDABIue with CLANTo test the null methods of computing similarities would yield a better tesu
hypothesis H1 and H2 we applied two t-tests for paired twathan each of these methods alone. We have a possible
sample for means, fo€ and P for participants who used explanation based on debriefing of the participants. After
MUDABIue and CLAN. The results of this test f&@ and the experiment a few participants expressed confusiontabou
for P are shown in Table I. The columBanpl es shows using the Combined engine, which reported similar applica-
that the number of samples for CLAN is smaller than thetions even though these applications had no common API
obtained number of samples for MUDABIue because threealls, classes, or packages. Naturally, this phenomenon is
participants missed one experiment. We replaced missing result of the MUDABIue's component of Combined that
values with the average value 1Grfor CLAN for this exper-  computes a high similarity score based on word occurrences
iment. Based on these results we reject the null hypotheseashile the CLAN’s component provides a low score because
H1 and H2, and we accept the alternative hypotheses thatf the absence of semantic anchors. At this point it is a
states thatparticipants who use CLAN report higher subject of our future work to investigate this phenomenon
relevance and precision on finding similar applications in more detail. While combining CLAN and MUDABIue
than those who use MUDABIue did not produce noticeable improvements, combining tdxtua

4) Comparing MUDABIue with CombinedTo test the and structural information was successful for tasks ofufieat

null hypotheses H5 and H6, we applied two t-tests for pairedocation [34] and detecting duplicate bug reports [48].
two sample for means, f&@ andP for participants who used
the baseline MUDABIue and Combined. The results of this VI. DiscussION

test forC and forP are ShOWf.‘ in Table 1. Based on these During the experiment, programmers identified more rele-
results we accept the alternative hypotheses H5 and H6 th%nt applications using CLAN than when using MUDABIue
say thatparticipants who use Combined report higher (see Section V). This result points to a key advantage
relevance and precision on finding similar applications of CLAN: we help programmers effectively compare two
than those who use MUDABIue applications by elevating highly-relevant details of #es

5) Comparing CLAN with CombinedTo test the null  applications. Without CLAN, programmers must examine
hypotheses H3 and H4, we applied two t-tests for pairedhe whole source code of different applications in order to
two sample for means, fo€ and P for participants who  compare them. Consider the example in Figure 3. CLAN
used the baseline CLAN and Combined. The results of thiseturned the applicatiombox as the most-similar applica-
test forC and forP are shown in Table I. Based on these tion to M di Qui ckFi x for the task of recording music
results we accept the null hypotheses H3 and H4 that sajata into a MIDI file. CLAN marked these applications
that participants who use CLAN do not report higher  as similar because they share important elements of the
relevance and precision on finding similar applications AP (e.g.,com sun. nedi a. sound). For the same task,
than those who use Combined MUDABIue did not placembox even in the top ten similar

The result of comparing CLAN with Combined is some- applications toM di Qui ckFi x. This example illustrates
what surprising. We expected that combining two differenthow CLAN improves over the state-of-the-art.
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L7 com:!isuniimediaiisound
d com!:sun::media::sound::MixerSequencer
d com::sun::media::sound::MixerSequencer::RecordingTrack
L7 com!isun::media:isound::AbstractMidiDevice
» doClose()
1 com:isun:'media::sound::FastSysexMessage
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java::math
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Figure 3. Part of the CLAN interface, showing the API callsncoon to
two applications. CLAN shows these calls in order to helpgpmmers
concentrate on highly-relevant details when comparindiegtons.

Our previous work successfully uses the idea of functional
abstraction in a search engine called Exemplar to find highly
relevant applications. However, this idea has never beet us
to compute similarities between software applications: Un
like Exemplar, CLAN uses a novel combination of semantic
layers that correspond to packages and class hierarchits, a
based on our extension to Mizzaro’s relevance framework we
designed a novel algorithm based on LSI that computes a
similarity index between Java applications.

Other related approaches identify programs that are likely
to share the same origin rely on dynamic analysis and known
as API Birthmarks [42]. However, our approach uses static
information and assumes that similar applications may have
been implemented by different software developer teams.
Likewise, software bertillonage is a technique for compgri
software components based on the dependencies of those

components [6]. Bertillonage is designed to locate dupdica
code, however, and does not compute the similarity of
Vil software which may be related, but is not duplicated.

The five most related tools to our work are those based
on CodeWeb by Michail and Notkin [31], MUDABIue by VIII. ConcLusion o
Kawaguchi et al. [22], Hipikat by Cubranic and Murphy Ve created a novel search system for findidtpsely
[47] and CodeBroker by Ye and Fischer [50] and gg|reLated Appl|ca}t|ol_\ls (CLAN)hat.heIps users fmd _slmlla}r
by Bajracharya, Ossher, and Lopez [2]. CodeWeb is a?" related applications. Our main contribution is in using
automated approach for comparing and contrasting softwar@ framework for relevance to design a novel approach that
libraries based on matching similar classes and functionSOMPUtes similarity scores between Java applications. We
cross libraries (via name and similarity matching) [31]isth have built CLAN and we conducted an experiment with
work was inspirational for us in extending the relevance33 Participants to evaluate CLAN and compare it with the
framework with semantic anchors. In contrast to CodeWehbCl0Sest competitive approach, MUDABIue, and a system

CLAN also uses advanced dimensionality reduction techth@t combines CLAN and MUDABIue. The results show
niques based on LS| and SVD and computes similaritiedVith strong statistical significance that CLAN finds similar
among applications in the context of the complete soft-2PPlications with a higher precision than MUDABIue.
ware repository. SSI creates an index of code based on ACKNOWLEDGMENTS

the keywords extracted from that code, and then expands This work is supported by NSF CCF-0916139, NSF CCF-

that index with keywords from other code that uses theyg16260 and NSE CCF-1016868. Any opinions, findings
same API calls [2]. CLAN is different from SSI for three and conclusions expressed herein are the authors’ and do

reasons: 1) CLAN locates the applications similar to a givery, necessarily reflect those of the sponsors.
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