
Improving Early Detection of Software Merge Conflicts

Mário Luı́s Guimarães and António Rito Silva
Department of Computer Science and Engineering

INESC-ID, IST, Technical University of Lisbon
Lisbon, Portugal

{mario.guimaraes, rito.silva}@ist.utl.pt

Abstract—Merge conflicts cause software defects which if
detected late may require expensive resolution. This is espe-
cially true when developers work too long without integrating
concurrent changes, which in practice is common as integration
generally occurs at check-in. Awareness of others’ activities was
proposed to help developers detect conflicts earlier. However, it
requires developers to detect conflicts by themselves and may
overload them with notifications, thus making detection harder.

This paper presents a novel solution that continuously
merges uncommitted and committed changes to create a
background system that is analyzed, compiled, and tested to
precisely and accurately detect conflicts on behalf of developers,
before check-in. An empirical study confirms that our solution
avoids overloading developers and improves early detection of
conflicts over existing approaches. Similarly to what happened
with continuous compilation, this introduces the case for
continuous merging inside the IDE.

Keywords-version control; merge conflicts; awareness;
continuous merging

I. INTRODUCTION

Because of productivity, today almost all software systems
are built by teams of programmers working in parallel.
In this context, software merging concerns the creation of
a version of the system that integrates the intentions of
concurrent changes.

In general, developers modify private working copies of
the system to ensure stability during programming. How-
ever, this prevents them from knowing what co-workers are
doing which may affect private work. Therefore, conflicts
emerge due to concurrent work, and become more complex
as changes grow without being integrated and as further
developments are made. Consequently, the later conflicts
are detected, the harder it is to resolve them because more
code must be reworked. Besides, a conflict detected late is
generally harder to resolve since the changes that caused it
are no longer fresh in developers’ minds [1], [2].

In a field study, Perry et al. [3] concluded that the number
of software defects increase with parallel work, which was
found to be considerable and inadequately supported by
tools. Their conclusions remain valid today as parallel work
increases with the growing distribution of software teams,
which still use tools and processes similar to those found in
their study.

In a recent work, Brun et al. [4] studied nine of the
most active open source projects in GitHub (http://github.
com), and concluded that even with modern version control
systems, like Git (http://git-scm.com), merge conflicts are
“frequent, persistent, and appear not only as overlapping
textual edits but also as subsequent build and test failures”.

Industry experts have proposed several best practices to
control merge conflicts, like Continuous Integration [2], [5],
which recommends frequent merges and check-ins to avoid
conflicts staying undetected for too long. Unfortunately,
merging is cumbersome and disrupts programming flow, so
some developers do not merge as frequently as desirable
— teams avoid parallel work because of difficult merges
[6], and developers rush their tasks to avoid being the ones
responsible for the merge [7].

To support developers, awareness [8] of co-workers’ ac-
tivities helps break the isolation of private work by informing
developers where in the code their co-workers are currently
making changes. This information can be used by the
developer to detect conflicts earlier. However, because of the
complex semantics of today’s programming languages, like
polymorphism and late binding, it is very hard for developers
to detect conflicts by themselves while they are program-
ming. In addition, awareness may overload developers with
too much information, thus making detection of conflicts
harder [9], [10], [11].

This paper presents a novel solution that reduces the
amount of information developers have to digest. The
present solution continuously merges uncommitted and com-
mitted changes to create a background system that is an-
alyzed, compiled, and tested to detect conflicts with high
precision and accuracy on behalf of developers, while they
are programming, that is, before check-in. Detected conflicts
are then presented to the affected developers inside the IDE.
In comparison to our initial paper [12], this details the
evolution of our solution, presents our full-fledged tool, and
its empirical evaluation using controlled user experiments.

The contributions of this paper are the following:
• a novel solution that introduces continuous merging

inside the IDE, much like to continuous compilation;
• an empirical evaluation which provides quantitative and

qualitative evidence that our solution improves early
detection of conflicts when compared with existing

approaches based on change and dependency-based
awareness.

Subsequent sections are summarized as follows. Section II
motivates the need to detect conflicts early. Section III
explains the limitations of existing awareness approaches
to this problem, and Section IV describes our solution.
Section V presents the implementation of our solution in
Eclipse, and Section VI reports an empirical evaluation that
sustains our solution. Section VII lists the related work, and
Section VIII concludes.

II. MOTIVATION

The need to detect conflicts early was determined by
industry and research and it is illustrated next.

Suppose that Mike, Anne, and Bob check out the same
working copy of the Zoo application from their mainstream
Version Control System (VCS). Mike ¶ changes class
Mammal to extend Animal, and commits. Simultaneously,
Anne · creates class Primate by extending Mammal, and
adds “Primate.move(int x, int y)” to move primates to
location “(x,y)”. Then, she does a clean merge with Mike’s
changes at the head of the repository, and commits. Mean-
while, Bob ¸ adds method “Animal.move(int dx, int dy)” to
move animals by some distance from their current location,
updates his working copy with Mike’s and Anne’s changes
at the head, and finally commits. Note that all VCS merges
were clean because the developers changed different files,
though a merge conflict exists in the final state at the head,
shown in Fig. 1.

Animal

-px: int
-py: int

+move(int dx, int dy)

Mammal

Primate

-x: int
-y: int

+move(int x, int y)

1

2

3

Figure 1. The final merge at the head.

The merge conflict is an unexpected override between the
methods added by Anne and Bob, and at runtime it will
cause the following bug: when method “Animal.move(int
dx, int dy)” is invoked on a primate, this will move to
location “(dx,dy)” instead of moving distance “(dx,dy)” from
its current location, as expected for all animals.

Note that this conflict is very difficult to find. Only
Bob could detect it since after merging Mike’s and Anne’s
changes from the head only his working copy has the
conflict. Nevertheless, the VCS told him that the merge was
“clean”, so he does not suspect his co-workers’ changes.
Besides, he had to merge other files, making him overlook

those of Mike and Anne. He even had a test for Animal,
which ran successfully before he checked in. However, it did
not consider primates because Bob did not know about that
class when he wrote the test. Or all he wanted was to rush
his check-in. Unfortunately, the bug will enter production,
and further developments will be made on top of broken
code.

Eventually, the bug will be found and the developers will
have to resolve it. They will have to remember what they
did before, determine the impact of the bug on other parts of
the code, and decide what to do. All this certainly takes time
because the changes are no longer fresh in their minds. At
least they will have to remove one of the duplicated points,
rename one of the “move” methods, and change where in
the code there are dependencies on the removed point and
renamed method. Although simple, this example shows that
conflicts can be difficult to detect and are costly to resolve
when found late.

III. PROBLEM

Would it not be helpful to detect the above conflict as it
emerges during programming and avoid all that rework?

Awareness, defined as “an understanding of the activities
of others, which provides a context for your own activity”
[8], has been suggested to help developers detect conflicts
early [13], [14], [15], [16]. In general, these proposals use
presence and change awareness.

Presence awareness informs where others are looking in
the code [13], which may be useful to find co-workers for
collaboration, though it does not help with conflict detection.

Change awareness informs where changes are being made
in the code, which may help detect conflicts early. However,
reporting which files, types, or program elements are being
changed may overload developers with notifications that
are irrelevant to what they are doing [9], [10], [11]. Some
of these tools use dependency-based awareness [13], [14],
[15], and notify when two files, types, or program elements,
connected by a path of dependencies (e.g., “extends” and
“calls”) with length n ≥ 0, have been simultaneously
changed by the developer and a co-worker. Their idea is
to reduce the number of notifications to help developers
focus on the most relevant ones, which may indicate a
conflict with co-workers. For example, instead of notifying
concurrent changes in every file, some tools only notify
concurrent changes to the dependencies of files changed by
the developer.

Notwithstanding, dependency-based awareness does not
prevent developers from being overloaded, especially when
the choice of granularity in the tool is that of file or type
level — for example, it causes false direct conflicts (n = 0)
and false indirect conflicts (n > 0) because of concurrent
changes to independent program elements in the same type
or dependent types, respectively. In addition, developers still
have to investigate the notifications to determine if they

bear any conflict, thus stealing time from programming.
Unfortunately, it can be difficult for developers to detect
conflicts by themselves because of the complex interdepen-
dencies between program elements, like polymorphism and
late binding. For example, in Fig. 1, it is unlikely that Mike
upon receiving the notifications “(Primate, Mammal)” and
“(Mammal, Animal)” would be able to correlate them to
discover an unexpected override, especially if he is busy
and tired of irrelevant notifications.

IV. SOLUTION

Our solution continuously merges all uncommitted and
committed changes inside a software team to create a
background system that is analyzed, compiled, and tested
to precisely and accurately detect conflicts on behalf of
developers before check-in. This introduces the case for
continuous merging inside the IDE, similarly to the current
experience of continuous compilation.

A. Collaborating inside Teams

The model of our solution is that of a team of program-
mers working along a development line (or branch) [1] in a
VCS, as shown in Fig. 2.

Outside collaborators

Development

Line
Anne Bob

Merged

System

Figure 2. The Team Model.

A team comprises a set of members (e.g., Anne and Bob),
a development line, and a special system that merges all un-
committed changes of the members and those committed in
the development line, called the merged system. In addition,
the team’s development line and its members may receive
code from the outside, that is, from other programmers or
teams participating in a major joint development. (Code
exchanges with outside collaborators go in both directions.
However, we are only interested in those incoming to the
team. They also follow project-specific policies that are not
relevant to discuss in this paper.)

The first member creates the team and associates it with
the development line. This initializes the merged system with
a copy of the system at the head (of the development line).
At any time, members may join and leave the team, which
continues to exist until the last member leaves.

Members modify their working copies of the system
in the development line using common VCS operations
— check out, modify, update, merge, check in, pull, and

push. This “copy-modify-merge” process generates a flow
of changes, from all members and the head, which are
then sent to update the merged system in the background.
Changes in working copies are captured when files are
saved, and sent automatically or manually. The last allows
members to control when their changes are transmitted as,
for example, when they are stable enough to be shared. Note
that, whether automatic or manual, transmission only occurs
if the working copy has no compilation errors, so the merged
system will not be affected by syntactic errors due to invalid
files. Additionally, members leaving the team cause their
changes to be removed from the merged system.

Changes in the head (check-ins) are processed automati-
cally. Unlike before, where the model is able to ensure that
changes are only transmitted if files are syntactically valid,
here the team should follow the recommended practice to
forbid compilation errors from entering the development line
[1], which can be easily supported by modern IDEs and
VCSes (e.g., via pre-commit hooks).

This model is very flexible and supports mainstream
VCSes and their workflows found today in practice.

B. Merged System

Albeit physically made of folders and files, the system
under construction and the merged system are abstractly
modeled as a tree of typed and attributed nodes, like in
Fig. 3 for the part that constitutes the file Primate.java.

/zoo/animals:Folder

Primate.java:File

package=”zoo.animals”

Primate:Class

visibility=”public”

extends=”Mammal”

x:Field

visibility=”private”

type=”int”

initval=””

y:Field

visibility=”private”

type=”int”

initval=””

move(int,int):Method

visibility=”public”

type=”void”

body=”{. . .}”

Figure 3. The abstract model of the system.

Every folder, file, and program element inside a file is a
node having a type and a set of attributes (none for folders)
in the system’s tree. The possible types and attributes are
specified by the domain, which in the figure is that of Java.

This system model allows us to compare two states of a
file to determine differences at node and attribute level. This
is important to track the changes made to the nodes and

their attributes by every member and at the head, which are
used for background merging and to find members to report
conflicts. Members’ changes are computed by comparing
working copy files with their bases in the development line
while head’s changes are computed by comparing successive
file states at the head. In addition, the model is extended with
edges (not shown for clearness) representing dependencies
between program elements, like the “extends” dependency
from “Primate” to “Mammal”. Thus, it forms an abstract
semantic graph used for analysis of the merged system
(explained later).

The merged system is updated in the background by
merging the most recent changes using structural merging
[17]. This collects the changes of each node in the system’s
tree, merges them, and returns the new merged state, which
is used to rewrite the node in the merged system. This is
done for every recently changed node in the system’s tree,
thus resulting in an updated merged system.

Structural merging allows fine-grained merges of source
files to be done automatically in places where a textual
merge would require manual intervention. For example,
changes to different program elements or attributes of a
program element in the same line of a source file are merged
automatically, contrasting with a conflict on the line given
by textual merging. For example, Fig. 4 shows the changes
made by Anne and Bob in their working copies of a base
file F.java (the rectangles and strikes), and the resulting file
in the merged system. Note that structural merging was
able to merge the changes of the attributes of “class F”
and “float pi”, despite being on the same line. Likewise,
additions of “int a” and “int b” at the same line are handled
transparently because structural merging recognizes them
as different program elements. The gray color represents
temporary resolutions of structural conflicts done in the
merged system, as explained next.

C. Detection of Conflicts

Our solution detects conflicts of different types, namely,
structural, language, behavior, and test conflicts.

1) Structural Conflicts: These conflicts are detected du-
ring background merging, and they are temporarily resolved
in the merged system using default resolutions to not halt
background merging — this does not change the code in the
working copies.

A pseudo direct conflict occurs when different attributes
of a node are concurrently changed, or the same attribute
is simultaneously changed to the same value. In fact, it is a
warning that reminds there is no structural conflict, but only
the possibility of a semantic conflict — probably, it may be
detected as a language conflict (see below). In Fig. 4, this
conflict occurs in “class F” and “float pi” after Anne and
Bob changed these program elements’ attributes.

The attribute change & change conflict occurs when the
same attribute of a node is concurrently changed to different

class F {
public float pi;
int q = 1;
int m() {
return 1;
}
}

F.java (base)

final class F {
public float pi = 3.14 ;
int a = 1;
int q = 2 ;
int m() {
return q ;
}
}

F.java (Anne)

public class F {
public float pi;
int b = 2;
int q = 3 ;
int m() {
return 1;
}
}

F.java (Bob)

public final class F {
float pi = 3.14;
int a = 1;
int b = 2;
int q = 0 ;
int m () {
return q;
}
}

F.java (merged system)

Figure 4. File merging example.

values. One example is the “initval” attribute of “int q”,
which was changed by Anne to 2 and by Bob to 3. In this
case, the default resolution is to assign a default value to the
attribute in the merged system. Default values are predefined
for each attribute type, and for “int” it is zero (in gray).

The node change & deletion conflict occurs when there are
simultaneous changes and deletions to the same node. This
happened with method “m()” changed by Anne and deleted
by Bob. In this case, the default resolution is to ignore
deletions to preserve changes, so Anne’s change prevails in
the merged system. (We tested this decision with twenty-one
graduate students by exposing them to a “change & deletion”
situation, and they all decided to preserve the change.)

The inconsistent node type conflict happens when trying
to put nodes of a different type at the same location in the
system’s tree. For example, a developer adds a file named
“F.java” while another adds a folder named “F.java”. If this
occurs, the default resolution is to remove the node from the
merged system. In practice this bizarre case should never
occur, but the model supports it.

An important advantage of structural merging is that a
direct conflict never occurs when different program elements
in a file are changed, thus reducing overload by avoiding
notifications of false direct conflicts.

Note that developers are always alerted to structural
conflicts, and once they resolve them in their working copies,
the merged system is updated with their resolution: this is
why default resolutions in the merged system are always
temporary.

2) Language Conflicts: The merged system is automati-
cally compiled every time it is updated. We call the result-
ing compilation errors language conflicts because they are
caused by invalid combinations of developers’ changes with

respect to the static semantics of the programming language.
One example is the invisible method conflict that occurs
when a developer makes a method private while another one
adds a call to it outside that method’s class. A more complex
example is the undefined constructor conflict that occurs
when a developer adds a constructor with one argument to
a class having no constructors as another developer creates
a subclass of that class.

By leveraging the compiler to detect language conflicts
we avoid re-implementing complex checks of programming
language rules: we just listen to the compilation output, pro-
cess the errors, and report corresponding language conflicts
on the user interface (see Section V).

3) Behavior Conflicts: These conflicts represent poten-
tially unwanted behavior due to unexpected interactions be-
tween concurrent changes. They are detected after updating
the merged system by searching for conflict patterns, that is,
logical conjunctions of facts regarding the program elements
and their dependencies in the abstract semantic graph of the
merged system, which identify unwanted behavior.

The simplest is the dependency-based conflict previously
discussed in Section III. Its pattern is

∃x, y ∈ G : dep∗(x, y)

where x and y are nodes changed in the graph G and have
a transitive dependency dep. More specialized patterns are
generally more interesting because they represent conflicts
that are more difficult to find by developers, like the unex-
pected override conflict in Section II, which can be found
using the pattern

∃A,B,m1,m2 ∈ G : extends∗(A,B) ∧method(A,m1) ∧
method(B,m2) ∧ equalSignature(m1,m2)

where A is a super class of B.
Note that these patterns are deemed as behavior conflicts

only if the facts correspond to nodes changed by different
team members (we omitted this part in the above definitions
to avoid complicating them).

An advantage of this model is that conflict patterns can
be easily added to support an increasing number of complex
behavior conflicts (e.g., “unexpected dynamic binding”),
and are reusable across projects. Moreover, conflict patterns
contrast with tests, which have to be designed and only
detect conflicts on the features they test.

4) Test Conflicts: A test conflict is a test that fails after
updating the merged system and its execution flow has
reached two or more methods changed by different members.

Taking the Zoo application, imagine that Anne adds
a test to verify if all species have a price returned by
method “getPrice()” while Bob creates class Chimpanzee
without such method (because he is not aware of Anne’s
requirement). Afterwards, the merged system is updated with
both changes, and Anne’s test fails when verifying the price
of Chimpanzee, as the following execution flow shows:

zoo.testing.ZooTests.setUp() "
zoo.testing.ZooTests.testAnimalGetPrice() " (Anne)
...
zoo.animals.Animal.getPrice(Ljava/lang/Class;) "
zoo.animals.Chimpanzee.getPrice() $ (Bob)

This results in a test conflict for “testAnimalGetPrice()”
because its execution flow has a method changed by Anne
(the test itself) and a method missing in the class created by
Bob. In this example, the test tried to call “getPrice()” via
reflection on Chimpanzee. Our solution intercepts reflection
calls too and checks if missing methods were deleted or
never existed, which was the case for Bob. Consequently,
this test conflict is named missing method conflict. Tests are
very useful to detect conflicts involving reflection, which are
hard to find using conflict patterns.

D. Reporting Conflicts

Each conflict is reported to the members that changed
the node or nodes affected by it. For structural conflicts,
the affected node is that at the location of the conflict in
the system’s tree; for language conflicts, the affected nodes
are the ones involved in the compilation error; for behavior
conflicts, they are those that match the corresponding con-
flict pattern; and for test conflicts they are the nodes which
represent the methods in the failed execution flow. Only the
members that changed the affected nodes and their attributes
are notified of the conflict. Such members are found by
looking for who changed the affected nodes in the node
change tracking information.

V. IMPLEMENTATION IN ECLIPSE

Our tool, called WeCode, implements our solution for
Java programming inside the Eclipse IDE. WeCode has both
client and server plugins, and at the moment it supports
Subversion (http://subversion.apache.org).1

A. The Server

This plugin runs on Equinox (http://eclipse.org/equinox)
and is responsible for managing teams: it handles members’
joins and leaves; tracks their changes to the system’s tree;
does background merges; and updates the conflicts affecting
the team.

Each team holds a project inside Equinox containing the
code of the team’s merged system. This is updated every
time changes are received from client plugins or from check-
ins in the team’s development line, which is monitored by
the server.

The merged system is automatically compiled by the
Eclipse Java Tools installed in Equinox. The server lis-
tens for marker deltas (IMarkerDelta) corresponding to

1Subversion was our first choice because it had the best plugin for Eclipse
when we started development. Currently, we plan to support other VCSes,
like Git and Mercurial (http://mercurial.selenic.com).

¶

·

¸

¹

Figure 5. Continuous merging inside the IDE.

errors in the compilation output to update the language
conflicts affecting the team.

At the same time, the server compares the previous and
the updated states of the merged system to determine how
it was modified during background merging. This is done to
find out which conflict patterns need to be verified to update
the behavior conflicts affecting the team. In what concerns
the detection of behavior conflicts, we leverage the abstract
semantic graph implemented by the Eclipse Java Tools to
look for instances of conflict patterns in the merged system.

Test conflicts are found by running JUnit test
cases (http://www.junit.org) after updating the merged
system. To support this, we created modified versions
of the org.eclipse.junit.{core, runtime}
plugins to collect the execution flows of running
test cases. In particular, we have a version of
class RemoteTestRunnerClient (core plugin)
installed on the server JVM, and a version of class
RemoteTestRunner (runtime plugin) installed on the
test JVM, which opens a socket connection to the server
and sends back the results as tests are run.

The server launches the test JVM with an agent li-
brary that instruments the methods’ entry points in all
loaded classes (except those of the Java runtime, JUnit,
and Equinox/Eclipse) with code that logs method calls. Test
execution flows are then collected by logging the method
calls between each test start and end.

Every conflict detected by the server contains a detailed
message that describes what happened, the affected program

elements, and the affected members that have modified those
elements, thus speeding up conflict resolution on the client
side. All conflict updates are sent to the client plugin of
affected members.

B. The Client

This plugin collects changes to folders and files in the
developer’s working copy by listening to events sent by the
Subversion plugin and the Eclipse IDE, and sends them
to the server. In addition, it receives from the server the
latest changes of other members and the most recent conflict
updates. All these sends and receives are automatic or
by developer’s request. The client plugin also offers the
following two views that constitute the main of WeCode’s
user interface.

1) The Team View: Following Fig. 5, this view (¸) lists
all members in the team (including the head), and details
their changes to folders, files, and program elements down
to fields and methods. This view has buttons that developers
may use to publish their changes () and receive updates
() within their team (located in the server at the URL).

The Team view uses red () and yellow () icons to
mark files simultaneously changed by the developer and
other members. The red icon alerts that there are structural
conflicts (other than pseudo) inside the file while the yellow
icon indicates that even though they modified the same file,
none or only pseudo direct conflicts exist. This color scheme
avoids developers wasting time investigating notifications by
helping them focus on “urgent” files. In addition, the icons

are kept minimal to avoid overloading the user interface: we
only show them in the developer’s subtree and at folder and
file nodes. (Supporting icons for other conflict types or at
finer-grained nodes might be distracting in this view but we
need to investigate it further.)

Developers can use this view to compare and exchange
code among them or between them and the head. For
example, they can access the file compare editor of any
file node to integrate other members’ changes, so that they
resolve conflicts while changes are fresh in their minds or
stay updated with the most recent code within the team.
They can also use a chat view2 to ask other members
if their changes are already stable, thus avoiding merging
unfinished code. For instance, a true direct conflict (red icon)
can be collaboratively resolved by merging other members’
changes, publishing the locally merged file, and asking those
members to accept the merged file, thus turning the icon
yellow.

2) The Team Merge View: This view (¹) lists all lan-
guage, behavior, and test conflicts affecting the developer,
which in the figure are those already introduced in the paper.

Every conflict has a detailed description that reports
its nature, the affected program elements, the affected
members, and how these changed the affected elements.
The description results from instantiating the placeholders
of the conflict’s template. For example, the template for
tests conflicts includes the message returned by the failure,
which for the test case in the figure is the message in
assertNotNull("Price not ...);.

Developers can double click a conflict in the Team Merge
view to quickly jump to its location, which can be a program
element or a statement inside a method. In addition, conflicts
are signaled in the Package Explorer (¶), and inside editors
at their location in the affected files (·) (for an example of
a conflict at statement level see line 6 of Fig. 7 in [12]).

All the information is unobtrusively presented to deve-
lopers in a way that resembles the continuous compilation
experience in Eclipse’s Problems view. With these features,
the Team Merge view helps developers speed up resolution,
instead of wasting time investigating many change notifica-
tions to detect conflicts, as discussed back in the Problem
section (Section III).

C. Preparing for the Evaluation

To support the evaluation of our tool, we created an
additional view, called Team Alerts (Fig. 6), which uses
dependency analysis to offer a heuristic mode of conflict
detection similar to those in [13], [14], [15]. This view
notifies the developer about co-workers’ changes to the
APIs referenced by files modified by the developer. The
notifications are listed for the file selected in the Package
Explorer or opened in the active editor.

2The Collaboration view in Eclipse ECF (http://www.eclipse.org/ecf).

Figure 6. Team Alerts view showing notifications for Feline.java.

Figure 7. Notifications are signaled in the Package Explorer view.

For example, Fig. 6 lists the notifications for Feline.java.
The red icons alert that a co-worker changed program
elements used in Feline.java whereas the yellow icons alert
for changes to unused program elements in types referenced
by Feline.java. The notifications may be double clicked to
open an editor to compare the co-worker’s file (that in
the “Resource” column) with its corresponding local file.
The icons are also shown for files in the Package Explorer
(red icons win) to alert developers when they are focused
somewhere else, as shown in Fig. 7.

VI. EVALUATION

The evaluation here described shows that our solution
does not overload developers with notifications and improves
early detection of conflicts when compared to existing ap-
proaches based on change and dependency-based awareness.

A. Experimental Design

To show this, we ran several controlled user experiments
comprising three treatments that correspond to different
levels of support for conflict detection: the REPOSITORY
had no support, the HEURISTIC was supported by the
Team Alerts view, and the MERGE used the Team Merge
view. Using this scheme we wanted to assess the number of
conflicts detected in each treatment before check-in, and the
notification overload (this one for the last two treatments).

The experiments involved twenty-one graduates in com-
puter engineering from our university, one half being recent
bachelors and the other being PhD students, having enough
experience with the tools used in the experiment, namely,
Eclipse, Java, and Subversion.

The experiment was ran once for each team comprising
one subject and one confederate (the experiment host). The
teams were randomly assigned into the treatments so that
the number of bachelors and PhDs was the same for all
treatments.

Subjects were told they were going to be studied on how
they managed conflicts between concurrent programming
tasks modifying the Zoo application (a total of 41 classes

and 1143 LOCs), which was sent to them at least two days
before their session. At the beginning of their experiment,
they watched a treatment-specific video showing the tools
using a conflict that would not occur during their session.
Then, they were given a guide with six tasks and the code to
type in each task. They were told to follow the task order and
say aloud when a task started or finished and when a conflict
was detected. All sessions were recorded with prior subject
agreement. At the end, a questionnaire containing 10-point
Likert scale and free response questions was given. All this
was designed so that each experiment took less then one
hour and thirty minutes.

The confederate followed a list of concurrent tasks, which
inserted the following indirect conflicts at about the same
time for all subjects: two undefined constructor conflicts
(language), one unexpected override conflict (behavior),
and one missing method conflict (test). All conflicts were
inserted before subjects had finished half of their work so
that they had enough time to detect them before the end.
The confederate also checked in after every task in the
REPOSITORY case; this was unnecessary in the other cases
because the tool was configured to automatically publish
changes to the team’s server.

B. Results

1) Quantitative Analysis: Table I shows the number of
conflicts detected (D) and not detected (ND) in each treat-
ment before subjects checked in at the end of their tasks —
a conflict was considered detected when (MERGE) subjects
said they had seen it in the Team Merge view, and when
(HEUR. & REPO.) subjects said something like “I think
there is a problem: I changed this and my co-worker changed
that” and the “problem” was a conflict.

What is the effect of the awareness mode on the ability
of developers to detect conflicts early? Table I shows that
REPO. subjects found none of the conflicts before check-in.
Only one subject synchronized frequently with the reposi-
tory, but he only looked for direct conflicts at file level. In
general, all REPO. subjects were observed during check-in
to pay attention only to those files that they and the confed-
erate also changed, thus missing the indirect conflicts. The
HEUR. subjects did better, but most only detected conflicts
after importing changes from their co-worker, mainly “to
stay updated with the most recent code” as one said, thus
producing a compilation error in their working copies that
caught their attention. Only one succeeded in finding the
unexpected override conflict by correlating the additions of
two methods in the hierarchy. In contrast, MERGE subjects
were able to detect all conflicts early on given the detection
capability provided by this mode. In general, they started
resolution at their best opportunity, generally between their
tasks, and only then they decided to import from their co-
worker as needed to resolve the conflicts.

Table I
NUMBER OF CONFLICTS DETECTED IN EACH TREATMENT. THE EFFECTS
OF THE TREATMENTS ARE STATISTICALLY SIGNIFICANT ACCORDING TO

PEARSON χ2 TEST (p < .05).

MERGE HEUR. REPO. Pearson χ2 df p

D 28 7 0
62.4 2 .001

ND 0 21 28

The results in Table I provide evidence that repository
support and dependency-based awareness are not sufficient
to support early detection of indirect conflicts, and that the
continuous merging approach has greater potential.

2) Qualitative Analysis: Table II shows the scores of the
Likert questions in the questionnaire.

Q1’s scores show that subjects had a very different per-
ception about the number of false positives presented in the
two modes, which is consistent with the kind of support in
these modes.

Q2’s scores express a strong wish of being informed
about conflicts during programming, and interestingly the
subjects that scored higher in such feature were those who
experienced it, thus reinforcing the usefulness of continuous
merging. When asked to justify their score, the subjects
responded:

“[...] we could avoid spending too much time resolving
conflicts at the end [check-in]. Additionally, it would
help resolve conflicts while we still remembered the
code where they happened.” (HEUR., Q2=9)
“Allows to manage conflicts as they occur, and does
not let changes grow.” (MERGE, Q2=9)
“It allowed me to reduce the time to resolve conflicts
[...], instead of a slow commit later.” (MERGE, Q2=10)

Regarding this question, one said “I did not give max-
imum score because I occasionally paused my work to
check if the conflict was important to resolve right away”
(MERGE, Q2=9), and another said “Early detection is
crucial to avoid wasting too much time during resolution.
Although it may cause distraction, I believe with practice
it is possible to manage distractions” (HEUR., Q2=8). In
general, subjects were able to manage interruption by paying
more attention to awareness information after file saves
and between tasks. Still, we think interruption management
requires further research.

Q3’s scores summarize subjects’ overall experience with
the awareness modes in our tool, suggesting they really
appreciated knowing what was happening around them that
would help coordinate with others. The questionnaire ended
by asking subjects to express their opinion about the tool
and suggest improvements:

“I liked to know in real-time who was changing the
code I was using and where” (HEUR.)
“I appreciated being informed about remote changes
with different levels of severity” (HEUR.)

Table II
QUESTIONNAIRE SCORES IN 10-POINT LIKERT SCALE (“1-STRONGLY
DISAGREE”, 10-“STRONGLY AGREE”). THE VALUES ARE SHOWN AS

“MEAN (STD. DEV.)”, AND “N.A.” FOR NOT APPLICABLE.

MERGE HEUR. REPO.

Q1: The mode’s view listed many
false positives, that is, alerts not cor-
responding to real conflicts, thus dis-
tracting me.

2.1 (0.99) 7.6 (1.36) n.a.

Q2: I (liked / would like) to be
informed about conflicts while I
am programming, instead of being
warned only later at check-in.

9.3 (0.70) 7.7 (1.70) 8.00 (1.85)

Q3: I would use this mode’s view and
recommend it to other colleagues. 9.0 (0.93) 7.8 (0.75) n.a.

“Some changes that appeared as yellow at the beginning
revealed to be problematic [at check-in]” (HEUR.)
“I liked less the fact that the tool did not signal
the potential compilation error due to the concurrent
addition of constructors” (HEUR.)
“I liked the icon in the editor informing me about the
conflict and with whom I was conflicting” (MERGE)
“I liked most its simplicity of use” (MERGE)
“I liked tests being run on the merge of the code of the
entire team” (MERGE)

This qualitative part shows that subjects deeply appreciate
being informed about conflicts during programming, and that
there is a tendency to favor continuous merging.

C. Threats to Validity

Every experiment is challenged by threats to its construct,
internal and external validity.

1) Construct validity: We think that the application,
tasks, conflicts, and questionnaires used in our study are
valid by construction to evaluate our tool and the effect of
the different awareness modes on the ability of developers
to detect conflicts. Subjects also knew nothing about which
conflicts would occur or that our tool was being evaluated
so as to avoid influencing them.

2) Internal validity: The confederate was used to prevent
confounds caused by varying behaviors of genuine co-
workers that might have influenced subjects’ behavior. The
subjects also had no previous experience with our tool, so
there were no learning effects on their performance, and
we neutralized programming skills as much as possible by
giving the code to type in each task. The best we could
do to avoid personal characteristics (e.g., curiosity) from
confusing the results was to randomly select subjects into
treatments. As such, we think our study has internal validity.

3) External validity: The major threat to the general-
ization of our study’s results is that changing a simple
application, like Zoo, by typing pre-written code is not
representative of real practice. Regarding this, our study did

not cover aspects due to the complexity of real software
development, which may influence how programmers use
and benefit from a conflict detection tool. These include
project aspects like size and geographical distribution, and
tool aspects such as usability and interruption management,
so studies in real projects are needed. Our study might be
threatened because of our choice of conflicts. The results
show that our solution performs better than others for the
chosen conflicts. However, we think that it will not perform
worse for other conflicts, especially due to its detailed
detection capability. Even though we need to understand
the kind of merge conflicts occurring in real projects, it is
reasonable to assume that indirect conflicts will be at least
as complex and hard to detect as those in the study, so
we think our automatic conflict detection solution will be
advantageous in practice. In addition, our choice of tasks
might be threatened in terms of the false positives they did
or did not generate despite our efforts to avoid bias in any
way. The use of students seems reasonable considering one
study reporting students and professionals have no major
difference in understanding dependencies and relationships
in software [18], which is important to find conflicts between
concurrent changes. To sum up, our results are indicative of
the benefits of our solution and suggest that a longitudinal
study in the industry is necessary to ground a theory of
awareness of software conflicts.

VII. RELATED WORK

This section outlines several tools related to our work,
which provide awareness of software changes.

Tools that provide awareness of direct conflicts at file
granularity may overload the developer because of changes
to independent program elements inside the same files [15],
[16], [19], [20]. A fine-grained solution like ours does not
have this shortcoming.

Other tools go beyond these and support dependency-
based awareness. Tukan [13] signals developers with the
presence of co-workers and the changes they made in
elements near a dependency path from the element focused
on by the developer. Presence signals help find co-workers
for collaboration, and change signals help prevent direct and
indirect conflicts. Signals are ranked according to a dynamic
function of path length and relevance, which by default
emphasizes more the shorter paths as these are assumed
to connect elements having a stronger dependency. This
tool does not have a place where all signals are listed, so
developers are expected to contact co-workers or to inspect
concurrent changes once they see a signal of interest, before
making changes to the focused element; otherwise, it can
be difficult to remember where signals exist in the code for
later investigation.

CollabVS [14] provides presence awareness and notifies
about direct and indirect conflicts involving elements con-
nected by an unlimited dependency path. There is no ranking

mechanism to help developers focus on the most interesting
notifications. Developers can select the element granularity
at which conflicts are detected to that of file, type, or
method, but in practice it can be difficult to determine
which works best at each moment [21]. Developers upon
receiving a notification may set a “watch” on the element
edited by the co-worker to remind the developer to check
for conflicts after some time or after the co-worker removes
focus from the element. However, this mechanism may
provoke disturbance since “watches” need to be requested
to co-workers, timeouts can be hard to set properly, and co-
workers may enter and leave elements frequently.

Palantı́r [15] notifies an indirect conflict when a file mod-
ified by the developer depends on a file that had its public
APIs altered by a co-worker. Its main focus is on syntactic
indirect conflicts. Notifications carry the modifications to the
public APIs of types in remotely changed files. In addition,
a notification is a “bomb” if there is a dependency on a
code element (type or method) that had its public signature
edited in the remote file, otherwise, they are just a “warning”
of possible interesting changes to the remote file’s public
APIs. This inspired our design of WeCode’s Team Alerts
view. Notifications are also “red” or “yellow” respectively
when the remote file was checked in or is still being changed
by a co-worker. This tool does not support indirect conflicts
involving remote files not present in the developer’s working
copy — these are files created by co-workers or that the
developer did not check out.

Both CollabVS and Palantı́r do not notify conflicts involv-
ing check-ins bypassing the tool or done before developers
checked out via the tool. This is supported by WeCode’s
model of team work in a development line.

All the above tools only support direct conflicts and
dependency-based indirect conflicts. In addition, developers
must investigate notifications to determine if conflicts re-
ally exist. In contrast, WeCode considers the unpredictable
semantics that result from merging the changes to an object-
oriented system made by a whole team. Besides using
analysis, WeCode uses a merged system to detect complex
conflicts via compilation and testing, which is a feature
that awareness tools like the above do not provide. For
example, testing can detect conflicts which are very hard
or undecidable via analysis, like involving code reflection.

YooHoo [22] reports API changes that may break the code
or that are of interest to the developer as determined by the
dependencies within the files owned (recently committed)
or selected by the developer. This tool is not designed to
detect conflicts, but to help developers adapt their code to
the evolution of APIs in external projects or in branches of
sub-teams within a large team.

Crystal [4] does separate background merges of pairs of
repositories, comprising that of the developer and that of a
co-worker or a central master. The result is one of “textual
merge failure”, “build failure”, “tests failure”, or “tests

passed” relationship for each repository pair. This tells each
pair of developers if their mutual merge is problematic, but
does not tell them which conflicts are exactly occurring, so
they have to interrupt their work and spend time discovering
conflicts. In contrast, WeCode does a single background
merge of all developments of a team working on the same
branch and informs inside the IDE about the precise details
of the conflicts affecting the team as a whole. This allows us
to catch complex conflicts involving two or more developers,
and avoids duplication of awareness icons caused by the
same conflict in multiple merged repository pairs. WeCode
does not distract developers because of textual merge failures
that are easily handled via structural merging. Our solution
also supports uncommitted changes, so conflicts can be
found as soon as developers want to be informed.

Three studies compared support for early conflict dete-
ction against not having such support [14], [16], [23]. Like
them, we concluded that users like to have support for early
conflict detection, but unlike them our study also compared
two support levels.

VIII. CONCLUSION AND FUTURE WORK

The problem of merge conflicts in collaborative program-
ming is an important one as they are known to cause
software defects. The industry and research recognize this
problem and that a conflict detected earlier is much easier to
resolve than when detected later at check-in or production.

Awareness has been proposed to help developers detect
conflicts earlier. However, all known approaches require de-
velopers to detect conflicts by themselves and may overload
them with notifications, hence making detection difficult.

We have proposed a novel solution that precisely and
accurately detects conflicts on behalf of developers, thus
avoiding overloading them with notifications. It introduces
the notion of continuous merging inside the IDE, which
enables earlier resolution of conflicts while developers still
have their changes fresh in their minds, making resolution
easier. An empirical evaluation confirmed that our solution
improves early detection of conflicts and avoids overloading
developers in comparison with existing approaches.

There are several directions for our future work. First,
we will continue improving WeCode’s collaborative features
and usability. Second, we want to do a longitudinal study
with professional programmers in an industrial setting to
determine the influence of continuous merging in their
software process, and to check if new collaborative patterns
emerge. Third, we want to measure the overall effect of
continuous merging on software quality.

ACKNOWLEDGMENT

The first author was supported by FCT scholarship
SFRH/BD/27652/2006. This work was also supported by
FCT (INESC-ID multiannual funding) through the PIDDAC
Program funds.

REFERENCES

[1] S. Berczuk and B. Appleton, Software Configuration Man-
agement Patterns: Effective Teamwork, Practical Integration.
Addison-Wesley, 2002.

[2] M. Fowler. Continuous Integration. [Online]. Available:
http://martinfowler.com/articles/continuousIntegration.html

[3] D. E. Perry, H. P. Siy et al., “Parallel changes in large-scale
software development: An observational case study,” ACM
Trans. Softw. Eng. Methodol., vol. 10, pp. 308–337, July 2001.

[4] Y. Brun, R. Holmes et al., “Proactive Detection of Collabo-
ration Conflicts,” in ESEC/FSE ’11: Joint Meet. of the Euro.
Softw. Eng. Conf. and the Inter. Symp. on the Foundations of
Softw. Eng. ACM, 2011, pp. 168–178.

[5] P. Duvall, S. M. Matyas et al., Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-
Wesley Professional, 2007.

[6] R. Grinter, “Using a Configuration Management Tool to
Coordinate Software Development,” in COOCS ’95: Conf. on
Organizational Computing Systems. ACM, 1995, pp. 168–
177.

[7] C. de Souza, D. Redmiles et al., “”Breaking the code”,
Moving between Private and Public Work in Collaborative
Software Development,” in GROUP ’03: Inter. Conf. on
Supporting Group Work. ACM, 2003, pp. 105–114.

[8] P. Dourish and V. Bellotti, “Awareness and Coordination
in Shared Workspaces,” in CSCW ’92: Conf. on Computer
Supported Cooperative Work. ACM, 1992, pp. 107–114.

[9] D. Damian, L. Izquierdo et al., “Awareness in the Wild: Why
Communication Breakdowns Occur,” in ICGSE ’07: Inter.
Conf. on Global Softw. Eng. IEEE Computer Society, 2007,
pp. 81–90.

[10] S. R. Fussell, R. E. Kraut et al., “Coordination, Overload
and Team Performance: Effects of Team Communication
Strategies,” in CSCW ’98: Conf. on Computer Supported
Cooperative Work. ACM, 1998, pp. 275–284.

[11] M. Kim, “An Exploratory Study of Awareness Interests
about Software Modifications,” in CHASE ’11: Workshop on
Cooperative and Human Aspects of Softw. Eng. ACM, 2011,
pp. 80–83.

[12] M. L. Guimarães and A. Rito-Silva, “Towards Real-Time
Integration,” in CHASE ’10: Workshop on Cooperative and
Human Aspects of Softw. Eng. ACM, 2010, pp. 56–63.

[13] T. Schümmer and J. Haake, “Supporting Distributed Soft-
ware Development by Modes of Collaboration,” in ECSW
’01: Euro. Conf. on Computer Supported Cooperative Work.
Kluwer Academic Publishers, 2001, pp. 79–98.

[14] P. Dewan and R. Hegde, “Semi-Synchronous Conflict De-
tection and Resolution in Asynchronous Software Develop-
ment,” in ECSCW ’07: Euro. Conf. on Computer Supported
Cooperative Work. Springer, 2007, pp. 159–178.

[15] A. Sarma, G. Bortis et al., “Towards Supporting Awareness
of Indirect Conflicts Across Software Configuration Manage-
ment Workspaces,” in ASE ’07: Inter. Conf. on Automated
Softw. Eng. ACM, 2007, pp. 94–103.

[16] J. T. Biehl, M. Czerwinski et al., “FASTDash: A Visual
Dashboard for Fostering Awareness in Software Teams,” in
CHI ’07: Conf. on Human Factors in Computing Systems.
ACM, 2007, pp. 1313–1322.

[17] J. P. Munson and P. Dewan, “A Flexible Object Merging
Framework,” in CSCW ’94: Conf. on Computer Supported
Cooperative Work. ACM, 1994, pp. 231–242.

[18] M. Höst, B. Regnell et al., “Using Students as Subjects –
A Comparative Study of Students and Professionals in Lead-
Time Impact Assessment,” Empirical Softw. Eng., vol. 5, pp.
201–214, November 2000.

[19] G. Fitzpatrick, P. Marshall et al., “CVS Integration with Noti-
fication and Chat: Lightweight Software Team Collaboration,”
in CSCW ’06: Conf. on Computer Supported Cooperative
Work. ACM, 2006, pp. 49–58.

[20] S. Hupfer, L.-T. Cheng et al., “Introducing Collaboration into
an Application Development Environment,” in CSCW ’04:
Conf. on Computer Supported Cooperative Work. ACM,
2004, pp. 21–24.

[21] P. Dewan, “Dimensions of Tools for Detecting Software
Conflicts,” in RSSE ’08: Inter. Workshop on Recommendation
Systems for Softw. Eng. ACM, 2008, pp. 21–25.

[22] R. Holmes and R. J. Walker, “Customized Awareness: Rec-
ommending Relevant External Change Events,” in ICSE ’10:
Inter. Conf. on Softw. Eng. ACM, 2010, pp. 465–474.

[23] A. Sarma, D. Redmiles et al., “Empirical Evidence of the
Benefits of Workspace Awareness in Software Configuration
Management,” in SIGSOFT ’08/FSE-16: Inter. Symp. on
Foundations of Softw. Eng. ACM, 2008, pp. 113–123.

