
Observable Modified Condition/Decision Coverage
Michael Whalen, Gregory Gay, Dongjiang You

Mats P.E. Heimdahl
Department of Computer Science and Engineering

University of Minnesota, USA

Matt Staats
Division of Web Sciences & Technology

Korea Advanced Institute of Science & Technology, South Korea

Abstract—In many critical systems domains, test suite ade-
quacy is currently measured using structural coverage metrics
over the source code. Of particular interest is the modified
condition/decision coverage (MC/DC) criterion required for, e.g.,
critical avionics systems. In previous investigations we have found
that the efficacy of such test suites is highly dependent on the
structure of the program under test and the choice of variables
monitored by the oracle. MC/DC adequate tests would frequently
exercise faulty code, but the effects of the faults would not
propagate to the monitored oracle variables.

In this report, we combine the MC/DC coverage metric
with a notion of observability that helps ensure that the result
of a fault encountered when covering a structural obligation
propagates to a monitored variable; we term this new coverage
criterion Observable MC/DC (OMC/DC). We hypothesize this
path requirement will make structural coverage metrics 1.)
more effective at revealing faults, 2.) more robust to changes
in program structure, and 3.) more robust to the choice of
variables monitored. We assess the efficacy and sensitivity to
program structure of OMC/DC as compared to masking MC/DC
using four subsystems from the civil avionics domain and the
control logic of a microwave. We have found that test suites
satisfying OMC/DC are significantly more effective than test
suites satisfying MC/DC, revealing up to 88% more faults,
and are less sensitive to program structure and the choice of
monitored variables.

I. INTRODUCTION

Test adequacy metrics defined over the structure of a
program, such as branch coverage and modified condi-
tion/decision coverage (MC/DC) have been used for decades
to assess the adequacy of test suites. Such criteria can be
useful tools when evaluating a testing effort. Nevertheless,
these criteria are quite sensitive to the structure of the program
under test, e.g., the complexity of Boolean expressions [18].

In our work we have been particularly interested in
the coverage criterion Modified Condition/Decision Coverage
(MC/DC) [4] since it is used as an exit criterion when testing
software for critical software in the avionics domain. For cer-
tification of such software, a vendor must demonstrate that the
test suite provides MC/DC coverage of the source code [21].
In previous investigations, we have found that the effectiveness
of MC/DC is highly dependent on the syntactic structure of
the code under test. A simple syntactic transformation, such as
inlining variables— eliminating intermediate Boolean values
to create more complex decisions— can dramatically improve
the effectiveness of the MC/DC criterion with increases in
fault detection of up to 89% [29].

When examining the discrepancy in fault finding between
test suites for non-inlined and inlined programs, we often
found that the test case encountered a fault in the code, e.g.,
an erroneous Boolean operator, leading to a corrupted internal
state, but this state was masked out in a subsequent condition
and did not propagate to an output. This effect was far more
prevalent in programs with many small Boolean expressions
whose results were stored in intermediate values (a non-inlined
implementation). Furthermore, in both non-inlined and inlined
programs, it was common that a test case encountered a fault
leading to a corrupted internal state, but the test case was too
short to allow the corrupted state to propagate to an output; the
test case terminated before the corrupted state became visible
in a variable monitored by the test oracle.

The underlying issue is that structural coverage criteria
such as MC/DC require only that each syntactic element—
in the case of MC/DC, a particular truth assignment of a
decision—is covered. Nevertheless, covering an element does
not ensure faults found will be observed by a test oracle. In
the case of MC/DC, the effects of masking and test length
can be overcome if the test oracle monitors all variables in the
program under test, i.e., all internal state variables as well as all
outputs [25], but this is often prohibitively expensive. Instead,
we would prefer to use a coverage criterion requiring that the
result of the covered syntactic structure, e.g., a condition, be
likely to propagate to the test oracle variables.

To address this issue, we have defined Observable Modified
Condition/Decision Coverage (OMC/DC). OMC/DC combines
the coverage of decisions required by MC/DC with a path
condition that increases the likelihood that a fault encountered
when executing the decision will propagate to a monitored
variable. Unlike previous extensions to MC/DC [27], this path
condition does not increase the number of test obligations
over MC/DC; instead, it makes the existing obligations more
difficult to satisfy, since the possibility of propagating a fault
revealed by the MC/DC obligation must also be demonstrated.
We hypothesize that this additional observability obligation
will improve the effectiveness of the MC/DC criterion, par-
ticularly when used as a test generation target for automated
tools, paired with output-based test oracles.

The idea of observability has been explored in hardware
testing [7], [9], but our ideas extend this work in several
ways. First, we provide a straightforward semantic definition
of observability to ground the discussion of the metric. Second,
the hardware work is pessimistically inaccurate; it states that

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA102

certain observable obligations, using our semantic definition,
are not observable, making it unsuitable as a coverage target
for critical software. Finally, we describe the close connection
between the notion of observability and MC/DC.

In this paper, we present experiments conducted on four
subsystems from the civil avionics domain and one example
of the logic control of a microwave. Our results indicate that
test suites generated to satisfy 100% achievable OMC/DC
over non-inlined systems achieve between 2% and 88% bet-
ter fault finding than test suites providing 100% achievable
MC/DC when using an oracle observing the output variables
only. When using an oracle observing all state variables, the
advantage of OMC/DC diminishes, but it is still significant
(1% to 14% better fault finding than MC/DC, with a median
improvement of 4.5%). We also observed that OMC/DC is
dramatically less sensitive to the structure of the program
under test than MC/DC—a highly desirable trait of a structural
test adequacy metric.

Based on these results, OMC/DC is—for the systems
studied—a far more effective test adequacy coverage criterion,
both in terms of fault finding and robustness to changes in
program structure and variables monitored by the test oracle.

II. BACKGROUND AND PROBLEM STATEMENT

Modified Condition/Decision Coverage (MC/DC) is a
white-box structural coverage metric developed as a compro-
mise between the benefits of multiple-condition coverage and
the lower number of test cases required by condition/decision
coverage [4]. A test suite provides MC/DC over the structure
of a program or model if every condition within a decision
has taken on all possible outcomes at least once, and every
condition has been shown to independently affect the deci-
sion’s outcome (the condition of interest cannot be masked
out by the other conditions in the decision). Note that when
discussing MC/DC, a decision is defined to be any Boolean
expression and a condition is an atomic Boolean expression
with no connectives such as and or or.

While MC/DC ensures that a condition will not be masked
out in a decision, it is still possible that the condition will ulti-
mately be masked out within some sequence of statements in a
program. As an example, consider the trivial program fragment
in Table I. Based on the definition of MC/DC, TestSet1 in
Table I provides MC/DC over the program fragment; the test
cases with in_3 = false (bold faced) contribute towards
MC/DC of in_1 or in_2 in stmt1. Nevertheless, if our
oracle monitors the output variable out_1, the effect of in_1
and in_2 cannot be observed in the output since it will be
masked out by in_3 = false. Thus, TestSet1 gives us
MC/DC coverage of the program fragment, but a fault on the
first line will never propagate to the output. On the other hand,
TestSet2 will also give MC/DC coverage of the program,
but since in_3 = true in the first two test cases, faults in
the first statement can propagate to an output.

This masking problem can be addressed by monitoring all
internal state variables, but the use of such a strong test oracle
is often cost-prohibitive (or outright infeasible). An alternative

TABLE I
SAMPLE PROGRAM SUSCEPTIBLE TO MASKING

expr_1 = in_1 or in_2; //stmt1
out_1 = expr_1 and in_3; //stmt2

Sample Test Sets for (in 1, in 2, in 3):
TestSet1 = {(TFF),(FTF),(FFT),(TTT)}
TestSet2 = {(TFT),(FTT),(FFT),(TFF)}

approach is to strengthen the coverage criterion to include a
notion of observability of expressions in the variables moni-
tored by the test oracle. To this effect, in this paper we propose
a new test-adequacy coverage criterion—Observable MC/DC
(OMC/DC). Informally, OMC/DC establishes observability of
decisions by requiring that the variable whose assignment
contains a particular Boolean decision remains unmasked
through a path to a variable monitored by the test oracle
(commonly an output variable).

Observability is a measure of how well internal states of
a system can be inferred, usually through the values of its
external outputs [25]. We state that an expression in a program
is observable in a test case if we can modify its value, leaving
the rest of the program intact, and observe changes in the
output of the system. If we cannot find such a value, then the
expression is not observable for that test case.

More formally, we can view a deterministic program P
containing expression e as a transformer from inputs to
outputs: P : I → O. We write P [v/en] for program P where
the computed value for the nth instance of expression e is
replaced by value v. Note that this is not substitution but akin
to mutation; we are replacing a single instance of expression
e rather than all instances. We say e is observable in test t
if ∃v.P (t) 6= P [v/en](t). This idea can be straightforwardly
lifted from test cases to test suites.

This formulation is a generalization of the semantic idea
behind masking MC/DC [3], lifted from decisions to programs.
For masking MC/DC, the main obligation1 is that given deci-
sion D, for each condition c in D, we want a pair of test cases
ti and tj that ensure c is observable for both true and false val-
ues: (D(ti) 6= D[true/cn](ti))∧ (D(tj) 6= D[false/cn](tj)).
Given this definition, one can directly lift MC/DC obligations
to observable MC/DC obligations by moving the observability
obligation from the decision to the program output. Given test
suite T , the OMC/DC obligations are:

(∀cn ∈ Cond(P) .
(∃t ∈ T . (P (t) 6= P [true/cn](t))) ∧
(∃t ∈ T . (P (t) 6= P [false/cn](t))))

where Cond(P) is the set of all conditions in program P .

III. TAGGED SEMANTICS

Unfortunately, the semantic definition for observability is
unwieldy both for test generation and especially for test

1The other obligations being that each decision evaluates to both true and
false and that each entry and exit point has been invoked; these can be added
to the observable MCDC criteria with no difficulty.

103

measurement. First, the analysis requires that two versions of
the program run in parallel to check that the results match.
Second, for test measurement, the test suite must be run
separately for each pair of modified programs.

In order to define an observability constraint that more
efficiently supports monitoring and test generation, we ap-
proximate semantic observability using a tagging semantics
similar to [9]. We assign each condition a tag and then track
the observability of these tags through the execution of a
program. If a tag reaches the output, we consider the obligation
satisfied. More accurately, we track pairs: the first is the
condition tag (uniquely assigned for each condition instance in
the program syntax), and the second is the Boolean outcome
of the condition. The level of coverage for a test suite can be
assessed by examining how many of all possible pairs within
the program have reached an output in some test.

To demonstrate the generality of the approach, we define
semantics both for an imperative command language and a
simple dataflow language sharing a common set of expres-
sions, shown in Table II. For presentation, we use a reduction
semantics with evaluation contexts (RSEC) [10] which we ma-
chine checked for consistency using the K tool suite [20]. The
rules operate over configurations that contain the syntax being
evaluated (K) and a set of labeled configuration parameters.
To simplify presentation, elements of the configuration are not
shown in rules if not used or modified. The rules operate by
applying rewrites at positions in the syntax that are allowed
by the evaluation context (the Context definition). A context
is a program or fragment of a program with a hole, where
the hole (represented by �) defines a placeholder where a
rewrite can occur. We assume appropriate definitions for maps
including lookup (σ x) and update σ[x ← v] operations,
the empty map ∅, and lists with concatenation x.y and cons
elem :: x, operators. During rewriting, additional syntax
may be introduced; we distinguish this syntax from user-level
syntax by formatting it against a gray background.

Expressions yield (Val,TS) pairs (where TS is a set of
tags) and are evaluated in a context containing environment
E of type Env = (id → (Val × TS)). The expressions
are standard except the tag(t, e) expression, which adds a
tag to the set of tags associated with the expression e. For
OMC/DC, it is assumed that each condition is wrapped in
a tag expression. The Boolean operators and, or define
masking: given a and b, the value of a only matters if b is
true, so a’s tags only propagate if b is true (and vice-versa); or
is similar and not shown in Table II due to space constraints.

The imperative language semantics describe how tags prop-
agate through commands. The main issue involves conditional
statements: tags in conditions should propagate through all
variables assigned in either branch, as a condition may affect
the value of the variable by not assigning it. We extend the
expression configuration to include C : TS to store the set
of condition tags. Conditional statements add tags to C that
must be removed once the statement has completed. To do so,
an end statement is appended to reset C and propagate the
conditional tags to all variables assigned in the conditional

TABLE II
SYNTAX AND TAGGING SEMANTICS FOR AN IMPERATIVE AND DATAFLOW

LANGUAGE

Expression syntax, context, and semantics:

E ::= Val | Id | E op E | not E |

E ? E : E | tag(E, T) | (Val, TS) | addTags(E, TS)

Context ::= � | Context op E | E op Context | not Context |
Context ? E : E | addTags(Context, TS) |
〈K : Context, E : Env, . . .〉

lit n⇒ (n, ∅)
var 〈E : σ〉[x]⇒ 〈E : σ〉[(σ x)] if x ∈ dom(σ)

op (n0, l0)⊕ (n1, l1)⇒ (n0 ⊕ n1, l0 ∪ l1)
and1 (tt, l0) and (tt, l1)⇒ (tt, l0 ∪ l1)
and2 (tt, l0) and (ff, l1)⇒ (ff, l1)

and3 (ff, l0) and ⇒ (ff, l0)

ite1 (tt, l0) ? et : ee ⇒ addTags(et, l0)

ite2 (ff, l0) ? et : ee ⇒ addTags(ee, l0)

tag tag(t, (v, l))⇒ (v, l ∪ {(t, v)})
addt addTags((v, l0), l1)⇒ (v, l0 ∪ l1)

Imperative command syntax, context and semantics:

S ::= skip | S;S | if E then S else S |

Id := E | while E do S | end (List Id, TS)

Context ::= . . . | Id := Context | if Context then S else S |
Context;S | 〈K : Context, E : Env, C : TS〉

asgn 〈E : σ〉[x := (n, l)]⇒ 〈E : σ[x← (n, l)]〉[skip]
seq skip; s2 ⇒ s2

cond1 〈C : c〉[if (tt, l) then s1 else s2]⇒
〈C : c ∪ l〉[s1; end(V, c)] where V = (Assigned s1).(Assigned s2)

cond2 〈C : c〉[if (ff, l) then s1 else s2]⇒
〈C : c ∪ l〉[s2; end(V, c)] where V = (Assigned s1).(Assigned s2)

while while(e) s⇒ if (e) then (s; while(e) s) else skip

endcond1 〈C : c
′〉[end (nil, c)]⇒ 〈C : c〉[skip]

endcond2 〈E : σ, C : c
′〉[end (x :: V, c)]⇒ 〈E : σ

′
, C : c

′〉[end (V, c)]

where (σ x) = (n, l) and σ′
= σ[x← (n, l ∪ c′)]

prog s⇒ 〈K : s, E : ∅, C : ∅〉

Dataflow program syntax, context, and semantics:

EQ ::= Id = E | Id = pre(E)

Prog ::= (I, Env,List EQ)

Context ::= . . . | Context; List EQ | Context :: List EQ |
EQ :: Context | Id = Context | Id = pre(Context) |
〈K : Context, I : List Env,O : List Env,
E : Env,S : Env)〉

comb 〈E : σ〉 eqs0.((x = (n, l)) :: eqs1)⇒
〈E : σ[x← (n, l)]〉 eqs0.eqs1

state 〈S : σ〉 eqs0.((x = pre (n, l)) :: eqs1)⇒
〈S : σ[x← (n, l)]〉 eqs0.eqs1

write 〈O : κ, E : c〉 nil; eqs⇒ 〈O : κ.[c], E : c〉 eqs
cycle 〈I : σi :: ι, E : ,S : σl〉 eqs⇒

〈I : ι, E : (σi ∪ σl),S : ∅〉 eqs; eqs
prog (i, s, eqs)⇒ 〈I : i,O : nil,S : s, E : ∅,K : eqs〉

104

body (using (Assigned s), a helper function that returns the
list of variables assigned by a statement s). Given a context
containing input variable values, these rules determine the set
of tags that propagate to outputs.

Dataflow languages, such as Simulink and SCADE, are
popular for model-based development, and assign values to a
set of equations in response to periodic inputs. To store system
state, state variables (1z blocks in Simulink) are used. Our
dataflow language consists of assignments to combinatorial
and state variables, and the semantics are defined over lists
(traces) of input variable values. The expression configuration
is extended to contain an input trace I , output trace O, and
state environments S. Evaluation proceeds by cycles: at the
beginning of a cycle, the cycle rule constructs the initial
evaluation environment. During a cycle, variable values are
recorded using the comb and state rules. Note that the context
does not force an ordering on evaluation of equations; instead,
an equation can evaluate as soon as all variables it uses
have been stored in the environment. When all equations
have been computed, the write rule appends the environment
to the output list. The prog rule, given an input list, an
initial state environment, and a list of equations, initializes the
configuration for the cycle rule. Coverage can be determined
by examining the tags stored in the output environment list.

Note that both the tagging semantics are optimistically
inaccurate with respect to observability; that is, they may
report that certain conditions are observable when they are
not. This is easily demonstrated by a small code fragment:

if (c) then out := 0 else out := 0 ;

The semantic model of observability will correctly report that
c is not observable; it cannot affect the outcome of this code
fragment. However, the tagging model propagates the tags of
c to the assignments in the then and else branches.

IV. TEST GENERATION FOR DATAFLOW PROGRAMS

In the previous section, we presented an extended semantics
that accounts for tags in imperative and dataflow programs.
In order to generate tests, we would like to instead annotate
the program and describe trap properties to track the tags.
We will generate test obligations such that each obligation is
suitable for tracking a single tag and determining whether it
propagates to an output. This is accomplished by conjoining
an MC/DC coverage obligation over a single variable (as
described in [18]) with a path condition representing the
variable’s observability at one of the monitored variables. We
describe this annotation for the dataflow language Lustre [13]
in order to measure test coverage of industrial Simulink
models in Section V.

A. Immediate Non-Masking Paths

A variable x is observable if it is not masked along some
computation path (as described in the tagged semantics) to a
monitored variable. If the path is entirely within one computa-
tional step (i.e., it does not go through any delays), we call it an
immediate non-masking path and the variable is immediately
observable. This can be defined inductively by examining

the variables that use x in their definition: if one of these
variables y is immediately observable, and x is not masked
in the definition of y, then x is immediately observable. We
track these notions by defining additional variables to track
this information: x IMM USED BY y which is true if x is
not masked in the definition of y, and x IMM OBSERVED if
x has an immediate non-masking path. Suppose we had the
following equations, where out1 is an observed variable:

out1 = v1 and v2 ;
v1 = true ;
v2 = if (input1) then (v3) else (v1) ;
v3 = true ;

In this case, we could generate additional definitions to track
the observability of the variables as follows:

v1_IMM_USED_BY_out1 = v2 ;
v2_IMM_USED_BY_out1 = v1 ;
input1_IMM_USED_BY_v2 = true ;
v3_IMM_USED_BY_v2 = input1 ;
v1_IMM_USED_BY_v2 = (not input1) ;

out1_IMM_OBSERVED = true ;
v1_IMM_OBSERVED =
(v1_IMM_USED_BY_out1 and out1_IMM_OBSERVED) or
(v1_IMM_USED_BY_v2 and v2_IMM_OBSERVED) ;

v2_IMM_OBSERVED =
v2_IMM_USED_BY_out1 and out1_IMM_OBSERVED ;

input1_IMM_OBSERVED =
input1_IMM_USED_BY_v2 and v2_IMM_OBSERVED ;

v3_IMM_OBSERVED =
v3_IMM_USED_BY_v2 and v2_IMM_OBSERVED ;

v1 is used in two equations and therefore has two immediate
paths to observability: one through v2 and another directly
through out1, while the other variables are each used once, so
have one immediate path.

B. Delayed Non-Masking Paths

Although many variables can be immediately observed,
often, the effect of a variable on an output can only be
observed after several steps. In each of these intermediate
steps, its tag is stored in a delay, until it eventually propagates
to an output. We call this a delayed non-masking path and the
variable is delay observable. This situation can be broken into
immediate observations: the first from a variable to a latch,
the next from the latch to another latch, etc., until an output
is reached. Suppose we had the following Lustre program2:

delay1 = 0 -> pre(v1) ;
v1 = v2 and delay2 ;
v2 = in1 ;
delay2 = 0 -> pre(in1) ;

In the same way that we modeled immediate observability, we
could talk about immediate use by delay equations:

2In Lustre, latches are represented slightly differently than in the language
in Section II: the Lustre equation var = init -> pre(expr) contains
both the initial value of the latch init and the latch expression pre(expr),
whereas our semantics imports the initial value of latches through an initial
latch environment s.

105

v2_IMM_USED_BY_v1 = delay2 ;
delay2_IMM_USED_BY_v1 = v2 ;
v1_DEL_USED_BY_delay1 = true ;
v2_DEL_USED_BY_delay1 = v2_IMM_USED_BY_v1

and v1_DEL_USED_BY_delay1 ;
delay2_DEL_USED_BY_delay1 = delay2_IMM_USED_BY_v1

and v1_DEL_USED_BY_delay1 ;

We now have a mechanism that defines immediate paths
to latches. What is necessary is some means to knit these
paths together to define a sequential path through (possibly)
several delays to an output. We accomplish this using a
token variable that describes the current delay location. Once
the token is initialized to a delay variable X , it can non-
deterministically move to any other delay location (as long as
X is DEL_USED_BY that location) or to a special COMPLETE
state (if X is immediately observed). If the token cannot move,
because it is not observable at another delay or the output, the
token moves to an ERROR state and stays there.

C. Test Obligations

An OMC/DC coverage obligation can be represented as an
MC/DC obligation over a single variable conjoined with a
path condition describing the observability of that variable at
one of the monitored variables. For delayed paths, we have to
describe the instant in which the expression was immediately
observable at a delay (called capture). We then want to latch
this fact for the rest of the execution, hoping that the token
will propagate to an output. So, the test consists of the original
MC/DC obligation (v2_AT_v1_TRUE) below and a path
condition, which can be satisfied by either be an immediate or
delayed path, as described in the following Lustre code:

v2_AT_v1_TRUE = in1 and delay2 ;
v2_AT_v1_TRUE_CAPTURE = (v2_AT_v1_TRUE and

(v1_DEL_USED_BY_delay1 and token=delay1) ;
v2_AT_v1_TRUE_CAPTURED = v2_AT_v1_TRUE_CAPTURE ->

(v2_AT_v1_TRUE_CAPTURE or
pre(v2_AT_v1_TRUE_CAPTURED))

v2_true_ob = ((v2_AT_v1_TRUE and v1_IMM_OBSERVED)
or (v2_AT_v1_TRUE_CAPTURED and token=TOK_COMPLETE))

V. EVALUATION & EXPERIMENT

We wish assess the quality in terms of fault finding of the
test suites generated to satisfy OMC/DC as compared to mask-
ing MC/DC [3]. We also want to evaluate the effect of program
structure on the effectiveness of test suites generated to provide
OMC/DC. Thus, we address the following questions:

1) Are test suites generated to provide OMC/DC more
effective at revealing faults than test suites generated
to satisfy masking MC/DC?

2) How robust is the OMC/DC criterion to the structure
of the program under test? Will the effectiveness of
OMC/DC change as program structure changes?

Additionally, we are interested in the nature of the tests gen-
erated to satisfy the OMC/DC and MC/DC coverage criteria:

3) How do the length of the individual tests, the size of
test suites, and the percentage of achievable coverage
compare between OMC/DC and MC/DC for the systems
included in our experiment?

A. Experimental Setup Overview

In this research, we have used four industrial systems de-
veloped by Rockwell Collins engineers. Two of these systems,
DWM1 and DWM2, represent distinct portions of a Display
Window Manager (DWM) for a cockpit display system. The
other two systems, Vertmax and Latctl, describe the vertical
and lateral mode logic for a Flight Guidance System. In addi-
tion, we have used a Microwave System — control software
for a generic microwave oven developed as a non-proprietary
teaching aid at Rockwell Collins.

Each of the systems under test represent sizable, realistic
industrial systems. The size of each system and number of
variables are listed in Table III.

TABLE III
CASE EXAMPLE INFORMATION

Subsysts. Blocks Outputs Internal Vars.
DWM1 3109 11,439 7 569
DWM2 128 429 9 115

Vertmax 396 1,453 2 415
Latctl 120 718 1 128

Microwave 22 101 4 162

For each case example, we generated inlined and non-
inlined versions of each system (detailed in Section V-B
below). Then, for each implementation of each system, we:

1) Generated 10 test input suites each for OMC/DC and
MC/DC (Section V-C).

2) Generated 250 mutants of each system (Section V-D).
3) Ran test suites on mutants with output-only and maxi-

mum test oracles (Section V-E).
4) Assessed fault finding of each test suite and oracle

combination. (Section V-E).

B. Inlined and Non-Inlined Implementations

Our subject systems are modeled using the Simulink nota-
tion from Mathworks Inc. [17] and were automatically trans-
lated into the Lustre synchronous programming language [13]
in order to take advantage of existing automation. This is
analogous to the automated code generation from Simulink
offered by Mathworks’ Real Time Workshop. Lustre can be
automatically translated to C code.

When translating these systems from Simulink to Lustre,
a number of options exist on how to structure the generated
code. For example, one can factor complex boolean expres-
sions through the introduction of additional variables or one
can inline expressions to reduce the number of variables while
increasing the complexity of the boolean expressions. As we
know the structure of the program under test influences the
effectiveness of the MC/DC criterion [18], we have generated
both inlined (complex boolean conditions) and non-inlined
systems (intermediate variables used to factor expressions).

C. Test Suite Generation

We use a counterexample-based test generation ap-
proach to generate tests satisfying masking MC/DC and
OMC/DC [11][19]. This approach is guaranteed to generate a

106

test suite that achieves the maximum possible coverage of the
system under test. We have used the Kind model checker [12]
in our experiments.

The obligations generated to satisfy OMC/DC will differ
depending on the set of monitored variables. In this study, we
generate OMC/DC with respect to the output variables of each
system, as an output-only oracle is most likely to be used in
practice. Note when using the maximum oracle, all variables
are observable, and so the OMC/DC obligations are equivalent
to MC/DC obligations.

Counterexample-based test generation results in a separate
test for each generated coverage obligation. This results in a
large amount of redundancy in the generated tests, as each
test case likely covers several coverage obligations. Such an
unnecessarily large test suite is unlikely to be used in practice.
We therefore have reduced each generated test suite while
maintaining a consistent level of coverage. To generate these
reduced test suites, we make use of a simple randomized
greedy algorithm. We begin by determining the coverage
obligations satisfied by each test generated, and initialize an
empty test set, reduced. We then select a test input at random
from the full set of tests; if this test satisfies any obligations
not satisfied by the existing test inputs in reduced, we add
it to the set. This process continues until all tests have been
removed from the full set.

In these experiments, we have produced 10 different test
suites for each case example and program structure to elimi-
nate the possibility that we by accident create a very good (or
very poor) test suite in the test suite reduction step.

D. Mutant Generation

Mutation testing is the practice of automatically generating
faulty implementations of a system for the purpose of empir-
ically examining the fault-finding potential of a test suite [6].
During mutation testing, clones of the system under test are
created by introducing a single fault into the program. This
method is designed such that all mutants produced are both
syntactically and semantically valid. That is, the mutants will
compile, and no mutant will “crash” the system under test.

The mutation operators used in this experiment are similar
to those used by other researchers, for example, arithmetic,
relational, and boolean operator replacement, boolean variable
negation, constant replacement, and delay introduction (that
is, use the stored value of the variable from the previous
computational cycle rather than the newly computed value).
A detailed description is available in [18].

For each case example, we created 250 mutants. We then
remove functionally equivalent mutants from each evaluation
set using the Kind model checker. This is possible due to the
nature of the systems examined in this research. Each system
is finite; therefore, determining equivalence is decidable (and,
in practice, fast)3.

3Equivalence checking is common in the hardware domain; Van Eijk
provides a nice introduction [26].

E. Test Oracles and Data Collection

For the inlined and non-inlined implementations of each
case example, we ran the reduced test suites against each
mutant and the original version of the system. For each test
suite, we recorded the value of every internal variable and
output at every step of the execution of every test case using
an in-house Lustre interpreter.

To determine the fault finding effectiveness of the generated
test suites, we paired each suite with two different expected
value test oracles [25]. When using an expected value oracle,
for each test input, concrete values are specified that the
system is expected to produce for one or more variables
monitored by the oracle (internal states and/or outputs). We
have found that this form of test oracle is commonly used
by our industrial partners in the testing of critical software
systems. In this study, we have chosen two expected value
test oracles, (1) output-only, an oracle that compares expected
and actual values for each of the system’s output variables, and
(2) maximum, an oracle that compares values for all internal
and output variables.

We compute the fault finding of an oracle/test suite pairing
as the percentage of mutants killed. We perform this analysis
for each oracle and test suite for every case example.

VI. RESULTS & DISCUSSION

In this section, we address our research questions and dis-
cuss the implications of our results. We begin by presenting the
median percent of seeded faults revealed by each combination
of test suite and oracle type in Table IV (plotted in Figure 1).

A. RQ1: Fault Finding Effectiveness

We would first like to determine whether OMC/DC per-
forms better than MC/DC with respect to fault finding. To
address this question we formulated the following hypothesis:
H1: For a given oracle and program structure, the test

suite satisfying OMC/DC reveals more faults than
the test suite satisfying MC/DC.

This is paired with the appropriate null hypothesis:
H0: For a given oracle and program structure, the fault

finding results for the test suite satisfying OMC/DC
are drawn from the same distribution as the fault
finding results for the test suite satisfying MC/DC.

Our observations are drawn from an unknown distribution.
Therefore, we use a two-sided Mann-Whitney-Wilcoxon rank-
sum test [30], a non-parametric hypothesis test for determining
if one set of observations is drawn from a different distribution
than another set of observations. As we cannot generalize
across non-randomly selected case examples, we apply the
statistical test for each pairing of case example, program
structure, and oracle type with α = 0.05.

Our results indicate that the null hypotheses can be rejected
for all combinations of case examples, program structures, and
oracle types, with p < 0.001. Furthermore, we can see in
Table IV that test suites satisfying OMC/DC outperform those
satisfying MC/DC in all cases, with improvements in fault

107

TABLE IV
PERCENT OF MUTANTS KILLED FOR EACH CASE EXAMPLE, MEDIAN OVER 10 REDUCED TEST SUITES

DWM1 DWM2 Latctl Vertmax Microwave

Non-Inlined

OMC/DC Output-Only 91% 96% 95% 98% 93%
MC/DC Output-Only 3% 77% 55% 41% 59%
OMC/DC Maximum 100% 99% 99% 99% 95%
MC/DC Maximum 86% 92% 96% 86% 89%

Inlined

OMC/DC Output-Only 88% 97% 97% 96% 95%
MC/DC Output-Only 82% 95% 92% 80% 73%
OMC/DC Maximum 100% 99% 100% 100% 95%
MC/DC Maximum 99% 98% 97% 89% 93%

100 200 300 400

Test Suite Size

0

20

40

60

80

100

Fa
ul

tF
in

di
ng

(%
M

ax
im

um
)

MCDC, NI, OO

MCDC, NI, MX

MCDC, I, OO

MCDC, I, MX

OMCDC, NI, OO

OMCDC, NI, MX

OMCDC, I, OO

OMCDC, I, MX

(a) DWM1

40 60 80 100 120

Test Suite Size

70

75

80

85

90

95

100

Fa
ul

tF
in

di
ng

(%
M

ax
im

um
)

MCDC, NI, OO

MCDC, NI, MX

MCDC, I, OO

MCDC, I, MX

OMCDC, NI, OO

OMCDC, NI, MX

OMCDC, I, OO

OMCDC, I, MX

(b) DWM2

40 50 60 70 80 90

Test Suite Size

50

60

70

80

90

100

Fa
ul

tF
in

di
ng

(%
M

ax
im

um
)

MCDC, NI, OO

MCDC, NI, MX

MCDC, I, OO

MCDC, I, MX

OMCDC, NI, OO

OMCDC, NI, MX

OMCDC, I, OO

OMCDC, I, MX

(c) Latctl

150 200 250 300 350

Test Suite Size

40

50

60

70

80

90

100

Fa
ul

tF
in

di
ng

(%
M

ax
im

um
)

MCDC, NI, OO

MCDC, NI, MX

MCDC, I, OO

MCDC, I, MX

OMCDC, NI, OO

OMCDC, NI, MX

OMCDC, I, OO

OMCDC, I, MX

(d) Vertmax

20 25 30 35 40

Test Suite Size

50

60

70

80

90

100

Fa
ul

tF
in

di
ng

(%
M

ax
im

um
)

MCDC, NI, OO

MCDC, NI, MX

MCDC, I, OO

MCDC, I, MX

OMCDC, NI, OO

OMCDC, NI, MX

OMCDC, I, OO

OMCDC, I, MX

(e) Microwave

Fig. 1. Percent of mutants killed, plotted against reduced test suite size, for each implementation and oracle pairing for each system.

finding of 19-88% for non-inlined systems using an output-
only oracle (3-14% when using a maximum oracle) and 2-22%
for inlined systems when using an output-only oracle (1-11%
when using a maximum oracle).

We therefore accept H1—for all combinations of system,
program structure, and oracle type—and conclude that test
suites satisfying OMC/DC provide a statistically significant
and practical improvement over those satisfying MC/DC.

B. RQ2: Sensitivity to Program Structure

Previous research indicates that MC/DC is sensitive to
program structure [18]; inlining a program generally makes
it more difficult to achieve MC/DC over a program, but
yields a large improvement in fault finding for test suites
satisfying MC/DC, with one study demonstrating increases of
9-89% [29]. As seen in Table IV and summarized in Table
V, we see similar increases of 14-79% for output-only oracles.

This sensitivity is undesirable for any criterion, as the value
of satisfying the criterion depends heavily on how the program
is written; indeed, the sensitivity of MC/DC to program
structure, and its negative impact on automated test generation,
is one of the motivations for the creation of OMC/DC. The
cause of MC/DC’s sensitivity relates to (1) errors not prop-
agating to observed variables due to masking, coupled with
(2) inlining imposing additional constraints when computing
MC/DC obligations over complex expressions, which limits
opportunities for masking.

In the studied examples, OMC/DC is far less sensitive to
changes in program structure. When paired with an output-
only oracle, we see a median improvement of 1% from
inlining (and, in two cases, actually see a -2 to -3% decrease
in fault finding). When using a maximum oracle, the effect
is negligible. Thus, while inlining has been proposed as a
solution to the masking and propagation-related deficiencies

108

of MC/DC [29], the addition of the path condition required
by OMC/DC, which explicitly addresses issues with masking,
is also an effective, and—in our opinion—cleaner and more
straightforward solution.

TABLE V
MEDIAN IMPROVEMENT FROM INLINING

Case Example Oracle OMC/DC MC/DC

DWM1 Output-Only -3% 79%
Maximum 0% 13%

DWM2 Output-Only 1% 18%
Maximum 0% 6%

Latctl Output-Only 2% 37%
Maximum 1% 1%

Vertmax Output-Only -2% 39%
Maximum 1% 3%

Microwave Output-Only 2% 14%
Maximum 0% 4%

On a related note: the use of a maximum oracle has
also been proposed as a method of addressing issues with
propagation. As we can see in Table IV, generally test suites
satisfying OMC/DC with an output-only oracle perform the
same or better than suites satisfying MC/DC with a maximum
oracle (though, gains are low to negligible). Only in one case—
DWM1 when inlined—do suites satisfying MC/DC achieve
significantly higher median fault finding (99% versus 88%).

C. RQ3: Test Suites and Coverage Obligations

Our final question is concerned with the cost and challenge
of satisfying OMC/DC. In particular, does satisfying OMC/DC
require more test inputs, must the test inputs be longer, and
what percentage of obligations are uncoverable, i.e., cannot be
achieved by any test input? Note that as OMC/DC requires
the same obligations as MC/DC (with an additional path
condition), the total number of obligations required to cover a
system will be the same for both criteria.

From the information in Table VI, we can see that (1) there
is no definitive pattern for test suite size; sometimes reduced
suites for OMC/DC are larger than those for MC/DC and vice-
versa, and (2), OMC/DC obligations are more likely to be
uncoverable, with as low as 57.5% of obligations coverable.

With respect to size, we can see that for non-inlined
systems, OMC/DC generally requires more—sometimes many
more—test inputs than MC/DC. This reflects the strength of
OMC/DC: the observability requirements ensure test cases are
more diverse with respect to which paths they must take; thus,
it is less likely that several test cases will cover the same
obligation. Naturally, more test cases are needed to satisfy
100% achievable OMC/DC. Also, we observed that OMC/DC
test case lengths (not shown for space reasons) are slightly
longer than that of MC/DC, as test cases must take additional
steps through delays to propagate certain variables to outputs.

Nevertheless, while we naturally do not wish to increase the
cost of testing, we believe ensuring propagation during testing
is necessary; otherwise, why bother to exercise a condition at
all? Furthermore, we believe the substantial improvements in
testing effectiveness justify the cost, particularly in the domain
of critical systems.

The increase in uncoverable obligations is more concerning.
For MC/DC, a coverage obligation is uncoverable if it is
impossible to demonstrate that a condition can independently
affect the outcome of a decision. This situation can occur
through interrelationships between conditions in a decision
making certain truth assignments impossible. For OMC/DC,
this can also cause uncoverable obligations, as can the inability
to propagate values to monitored variables. The path con-
straints accounts for the increase in uncoverable obligations.

Uncovered obligations for structural coverage criteria may
reflect problems with the code (conditions that are not properly
influencing decisions) or simply eccentricities in the code
(e.g., dead code or interrelationships between conditions in a
decision). In our case, since we are using a verification tool for
test generation, the tool will simply produce maximum achiev-
able coverage with a proof that the uncovered obligations are
truly uncoverable. However, if OMC/DC was adopted as a
coverage criterion in conjunction with other test generation
techniques (e.g., manual or based on heuristic search), it may
become necessary—as it currently is with MC/DC in the
context of critical avionics systems—to demonstrate that all
necessary test have been found, i.e., to demonstrate that all
uncovered obligations are indeed uncoverable. This is already
a challenging task for MC/DC, and would be made more
challenging with the addition of path constraints; how to
address this problem is a topic for future research.

VII. RELATED WORK

Lustre and Function Block Diagram (FBD) are data-flow
languages that describe how inputs are transformed into out-
puts instead of describing the control flow of the program.
Researchers studying coverage metrics for Lustre [15] and
FBD [14] implicitly investigated observability by examining
variable propagation from the inputs to the outputs.

Structural coverage metrics for Lustre are based on activa-
tion conditions that are defined as the condition upon which a
data flow is transferred from the input to the output of a path.
When the activation condition of a path is true, any change in
input causes modification of the output within a finite number
of steps [15]. Coverage metrics for FBD are based on a d-path
condition that is similar to activation conditions in Lustre [14].

Coverage metrics in Lustre and FBD are different from
OMC/DC in several respects. First, these metrics check if
specific inputs affect the outputs and measure the coverage
of variable propagation on all possible paths. OMC/DC, on
the other hand, checks if each atomic condition in a Boolean
expressions affects the monitored variables, and determines
if a path exists which propagates the effect of the condition.
Second, OMC/DC (as well as MC/DC) is stronger in terms of
how a decision must be exercised.

Observability has been studied in testing of hardware logic
circuits. Observability-based code coverage metric (OCCOM)
is a technique where tags are attached to internal states in a
circuit and the propagation of tags is used to predict the actual
propagation of errors (corrupted state) [7], [9]. A variable is
tagged when there is a possible change in the value of the

109

TABLE VI
NUMBER OF ACHIEVABLE TEST OBLIGATIONS AND MEDIAN REDUCED TEST SUITE SIZE

Case Example Structure Total OMC/DC MC/DC OMC/DC MC/DC
Obligations Achievable Achievable Reduced Size Reduced Size

DWM1 Non-Inlined 2038 2036 (99.9%) 2038 (100%) 236 26
Inlined 2894 1987 (68.7%) 2838 (98.1%) 244 450

DWM2 Non-Inlined 382 343 (89.8%) 364 (95.3%) 43 40
Inlined 830 477 (57.5%) 538 (64.8%) 92 118

Latctl Non-Inlined 380 355 (93.4%) 380 (100%) 47 51
Inlined 260 241 (92.7%) 259 (99.6%) 70 80

Vertmax Non-Inlined 1732 1700 (98.2%) 1732 (100%) 228 152
Inlined 1232 1188 (96.4%) 1221 (99.1%) 272 360

Microwave Non-Inlined 472 325 (68.9%) 467 (98.9%) 36 22
Inlined 468 338 (72.2%) 441 (94.2%) 40 32

variable due to an fault. The observability coverage can be
used to determine whether erroneous effects that are activated
by the inputs can be observed at the outputs.

The key differences between OMC/DC and OCCOM are
twofold: (1) OMC/DC investigates variable value propagation,
while OCCOM investigates fault propagation and (2) OCCOM
has pessimistic inaccuracy because of tag cancelation. When
both positive and negative tags exist in the same assignment
(e.g., different tags in an ADDER or the same tags in a
COMPARATOR cancel each other out), no tag is assigned [7]
or an unknown tag “?”[9] is used. Variables without tags or
with unknown tags are not considered to carry an observable
error. In OMC/DC, since we do not make a distinction between
positive and negative tags, we do not have tag cancelation or
the corresponding pessimistic inaccuracy. Extended work in
[8] may fix pessimistic inaccuracy by producing test vectors
with specific values, but is highly infeasible.

Dynamic taint analysis, or dynamic information flow anal-
ysis, marks and tracks data in a program at runtime, similar
to our tagging semantics. This technique has been used in
security as well as software testing and debugging [16],
[5]. Taint propagation occurs in both explicit information
flow (i.e., data dependencies) and implicit information flow
(control dependencies). Although the way in which markings
are combined varies based on the application, the default
behavior is to union them [5]. Thus, dynamic taint analysis
is conservative and does not consider masking. More accurate
techniques for information flow modeling, such as [28], define
path conditions quite similar to those used in this paper to
prove non-interference, that is, the non-observability of a
variable or expression on a particular output.

Dynamic program slicing [1] computes a set of statements
that influence the variables used at a program point for a
particular execution. This can identify all variables that con-
tribute to a specific program point, including output. However,
similarly to dynamic taint analysis, it does not consider mask-
ing. Checked coverage uses dynamic slicing to assess oracle
quality, where oracles are program assertions [22]. Given a test
suite, it yields a percentage of all statements that contribute to
the value of any assertion (i.e., are observable at that assertion)
vs. the total number of statements covered by the test suite.
This work is designed to assess the oracle, not the test suite.

VIII. THREATS TO VALIDITY

External Validity: We have chosen to focus on five syn-
chronous reactive critical systems. We believe these systems
are representative of the avionics domain and our results are,
therefore, generalizable to other systems in this domain.

We have used Lustre [13] as an implementation language
rather than a more common language, such as C or C++.
As noted in Section V-B, in this domain, systems written
in Lustre are similar in structure to systems written in C or
C++. Thus, we believe our results are applicable to programs
written in more traditional imperative languages.

We have generated approximately 250 mutants for each
program structure of each case example. This number was
chosen to yield a reasonable cost for the study. It is possible
the number of mutants is too low. Based on past experience,
however, we have found results using fewer than 250 mutants
to be representative [23], [24]. Additional studies have yielded
evidence that results plateau when using over 100 mutants.

Internal Validity: We have used a model checker
(Kind [12]) to generate test cases. This generation approach
provides the shortest test cases that provide the desired cover-
age. It is possible that test cases derived by hand or through
some other automated means, e.g., through heuristic search,
may provide different results.

Construct Validity: We measure the fault finding over
seeded faults, rather than real faults encountered during de-
velopment; it is possible that using real faults would lead to
different results. However, Andrews et al. have shown that the
use of seeded faults like ours leads to conclusions similar to
those obtained using real faults in similar experiments [2].

IX. CONCLUSIONS & FUTURE WORK

Structural coverage metrics, such as MC/DC, are commonly
used to measure the adequacy of test suites. Such criteria
require only that certain code structures, such as a particu-
lar Boolean assignment of a decision, be exercised, without
requiring the resulting value to affect an observable point in
the program. As a result, test suites satisfying these criteria
can produce corrupted internal state without revealing a fault,
resulting in wasted testing effort.

To address this, we have proposed Observable MC/DC,
a combination of traditional MC/DC testing with a notion

110

of observability—an additional path constraint, which helps
ensure that faults will be observed through a non-masking path
from the point the obligation is satisfied to a variable mon-
itored by the test oracle. Our results indicate that test suites
generated to satisfy achievable OMC/DC locate a median of
17.5% (and up to 88%) more faults than test suites providing
MC/DC coverage when paired with an oracle observing only
the output variables. Furthermore, we have also observed that
OMC/DC is less sensitive to the structure of the program under
test than MC/DC, and also provides the benefits of using a very
strong test oracle with MC/DC coverage.

While our results are encouraging, there are a number of
areas open to explore in future research, including:

• Oracle data selection: OMC/DC test obligations are
defined in terms of both the system structure and a test
oracle. In this work, we have paired the case examples
with an output-only oracle, but an intelligently selected
set of internal and output variables (such as [24]) could
potentially yield more cost-effective test suites.

• Comparison to other coverage metrics: We have di-
rectly compared the performance of OMC/DC to MC/DC.
However, there exist many other test adequacy metrics. In
particular, we would like to compare the effectiveness and
cost of generation of OMC/DC to black-box requirements
metrics, which have been previously shown to be adept
at propagating faults to the output level [23].

• Applying observability to other metrics: The current
notion of observability is general and could be adapted
to orthogonal metrics such as boundary-value coverage.

ACKNOWLEDGMENT

This work has been partially supported by NASA Ames
Research Center Cooperative Agreement NNA06CB21A; NSF
grants CCF-0916583, CNS-0931931, and CNS-1035715; an
NSF graduate fellowship; and the World Class University
program under the National Research Foundation of Korea
(Project No: R31-30007).

We also thank the Advanced Technology Center at Rockwell
Collins Inc. for granting access to industrial case examples.

REFERENCES

[1] H. Agrawal and J. Horgan. Dynamic program slicing. In Proceedings of
the ACM SIGPLAN 1990 Conference on Programming Language Design
and Implementation, volume 25, pages 246–256, 1990.

[2] J. Andrews, L. Briand, Y. Labiche, and A. Namin. Using mutation
analysis for assessing and comparing testing coverage criteria. IEEE
Transactions on Software Engineering, 32(8):608 –624, aug. 2006.

[3] J. Chilenski. An investigation of three forms of the modified condition
decision coverage (MCDC) criterion. Technical Report DOT/FAA/AR-
01/18, Office of Aviation Research, Washington, D.C., April 2001.

[4] J. J. Chilenski and S. P. Miller. Applicability of Modified Condi-
tion/Decision Coverage to Software Testing. Software Engineering
Journal, pages 193–200, September 1994.

[5] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis
framework. In Proceedings of the 2007 International Symposium on
Software Testing and Analysis, pages 196–206, 2007.

[6] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE computer, 11(4):34–41, 1978.

[7] S. Devadas, A. Ghosh, and K. Keutzer. An observability-based code
coverage metric for functional simulation. In Proceedings of the 1996
IEEE/ACM International Conference on Computer-Aided Design, pages
418–425, 1996.

[8] F. Fallah, P. Ashar, and S. Devadas. Functional vector generation for
sequential HDL models under an observability-based code coverage
metric. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 10(6):919–923, 2002.

[9] F. Fallah, S. Devadas, and K. Keutzer. OCCOM-efficient computation
of observability-based code coverage metrics for functional verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20(8):1003–1015, 2001.

[10] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theor. Comput. Sci., 103(2):235–271,
Sept. 1992.

[11] A. Gargantini and C. Heitmeyer. Using model checking to generate
tests from requirements specifications. Software Engineering Notes,
24(6):146–162, November 1999.

[12] G. Hagen. Verifying safety properties of Lustre programs: an SMT-based
approach. PhD thesis, University of Iowa, December 2008.

[13] N. Halbwachs. Synchronous Programming of Reactive Systems. Klower
Academic Press, 1993.

[14] E. Jee, J. Yoo, S. Cha, and D. Bae. A data flow-based structural testing
technique for FBD programs. Information and Software Technology,
51(7):1131–1139, 2009.

[15] A. Lakehal and I. Parissis. Structural test coverage criteria for Lustre
programs. In Proceedings of the 10th international workshop on Formal
methods for industrial critical systems, pages 35–43, 2005.

[16] W. Masri, A. Podgurski, and D. Leon. Detecting and debugging insecure
information flows. In Proceedings of the 15th International Symposium
on Software Reliability Engineering, pages 198–209, 2004.

[17] Mathworks Inc. Simulink product web site.
http://www.mathworks.com/products/simulink.

[18] A. Rajan, M. Whalen, and M. Heimdahl. The effect of program and
model structure on MC/DC test adequacy coverage. In Proc. of the 30th
Int’l Conference on Software engineering, pages 161–170. ACM New
York, NY, USA, 2008.

[19] S. Rayadurgam and M. Heimdahl. Coverage based test-case generation
using model checkers. In Proc. of the 8th IEEE Int’l. Conf. and
Workshop on the Engineering of Computer Based Systems, pages 83–91.
IEEE Computer Society, April 2001.

[20] G. Rosu and T. F. Serbanuta. An overview of the k semantic framework.
J. of Logic and Algebraic Programming, 79(6):397 – 434, 2010.

[21] RTCA. DO-178B: Software Considerations In Airborne Systems and
Equipment Certification. RTCA, 1992.

[22] D. Schuler and A. Zeller. Assessing oracle quality with checked
coverage. In Proceedings of the Fourth IEEE International Conference
on Software Testing, Verification and Validation, pages 90–99, 2011.

[23] M. Staats. The Influence of Multiple Artifacts on the Effectiveness of
Software Testing. PhD thesis, University of Minnesota, 2011.

[24] M. Staats, G. Gay, and M. Heimdahl. Automated oracle creation support,
or: how I learned to stop worrying about fault propagation and love
mutation testing. In Proceedings of the 2012 International Conference
on Software Engineering, pages 870–880, 2012.

[25] M. Staats, M. Whalen, and M. Heimdahl. Better testing through
oracle selection (nier track). In Proceedings of the 33rd International
Conference on Software Engineering, pages 892–895, 2011.

[26] C. Van Eijk. Sequential equivalence checking based on structural
similarities. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, 19(7):814–819, 2002.

[27] S. Vilkomir and J. Bowen. Reinforced condition/decision coverage
(RC/DC): A new criterion for software testing. Lecture Notes in
Computer Science, 2272:291–308, 2002.

[28] M. W. Whalen, D. A. Greve, and L. G. Wagner. Model Checking
Information Flow. Springer-Verlag, Berlin Germany, March 2010.

[29] M. W. Whalen, M. P. Heimdahl, A. Rajan, and M. Staats. On MC/DC
and implementation structure: An empirical study. In Proceedings of
the 27th Digital Avionics Systems Conference, October 2008.

[30] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):pp. 80–83, 1945.

111

