UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
PorchLight: A Tag-based Approach to Bug Triaging

Permalink
https://escholarship.org/uc/item/9hiOm7rn

Author
Bortis, Gerald Terry

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9hj0m7rn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

PorchLight: A Tag-based Approach to Bug Triaging

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Gerald Terry Bortis

Dissertation Committee:

Professor André van der Hoek, Chair
Professor Cristina V. Lopes
Associate Professor James A. Jones

2016

(© 2016 Gerald Terry Bortis

DEDICATION

To my wife, Rebecca, and daughter, Adelina.

i

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF LISTINGS
ACKNOWLEDGMENTS
CURRICULUM VITAE

ABSTRACT OF THE DISSERTATION

1 Introduction
1.1 Thesis Structure

2 Background and Motivation
2.1 Bug Trackers
2.1.1 Information Captured
2.1.2 BugLife Cycle
2.1.3 Examples of Bug Trackers,
2.2 Bug Triaging
2.2.1 Search Filters
222 Tags/Labels Lo
2.3 Problems with Current Approaches
24 Related Work oL
2.4.1 Duplicate detection
2.4.2 Assignment automation
243 Fieldstudies.

3 Requirements
3.1 Requirement 1: Exploreo
3.2 Requirement 2: Search
3.3 Requirement 3: Inspect
3.4 Requirement 4: Take Action
3.5 Summary ...

il

Page
vi
viii

ix

xi

xiii

4 PorchLight 43

4.1 Design Decisionso 45
4.2 OVEIVIEW 46
421 User List s 48
4.2.2 Milestone List 50
423 BuglList ol
424 Timeline e 52
4.2.5 Quick Filters 55
426 Search 57
4.2.7 Assigning Bugs 57
4.2.8 Quick Comment o7
429 TagSets 58

4.3 BTL: Bug Tagging Language 63
4.3.1 Functions e 64

4.3.2 Time Windows e 65
4.3.3 Custom Fields and Actions. 66
4.3.4 Custom Functions. e 67

4.4 Scenarios. e 69
4.4.1 Release Planning Session 69
4.4.2 Individual Developer 71
4.4.3 Volunteer Triager 72

4.5 DIScussion e 74
451 Conclusion e 76

5 Implementation 78
5.1 Data Model e 78
5.1.1 Status 79
5.1.2 Fields 81
5.1.3 Actions 82
5.1.4 Metadata 84

5.2 Internal Architecture 86
5.2.1 Client 86
5.2.2 Server 88

5.3 Plugin Architecture 94
5.4 Implementation Challenges 97
6 Analysis and Findings 99
6.1 Preliminary User Study 102
6.1.1 Setup and Procedure L. 102
6.1.2 Observations 104

6.2 Participant Observation Study L. 107
6.2.1 Setup and Procedure L 108
6.2.2 Summary of Participant Observation Sessions 110

6.3 Discussion 147
6.3.1 Feature and Tag Set Usage 148

v

6.3.2 Thinking In Tag Sets Lo 156

6.3.3 Making Triaging Better 0L 166

6.4 Weaknesses 174
6.4.1 Conceptual 175

6.4.2 Technical 176

6.5 Threats to Validityo 178
6.5.1 Internal Validity 178

6.5.2 External Validity o 179

7 Conclusions 180
8 Future Work 185
8.1 Conceptual 185
8.2 Further Studies 186
8.3 Technical 187
Bibliography 189
A BTL Grammar 193
B PorchLight User Study 196
B.1 Introduction 196
B.2 User Study: Part T 197
B.2.1 Tutorial 197

B.3 User Study: Part IT 199
B.4 Bug Tagging Language (BTL) Reference 199

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4
5.5

LIST OF FIGURES

Page
Life cycle of a Bugzilla bug from [19]. 14
Life cycle of an Eclipse bug from [6]. 15
Life cycle of a GNOME Project bug. 16
Morzilla bug search filters.o 18
Bugs Ahoy! user interface.o oo 19
Google Code issue grid view. 20
An example of a bug tossing graph showing the transition probabilities. . . . 30
An example Bugzilla history for a bug report showing the status changing
from UNCONFIRMED to NEW to RESOLVED and to REOPENED. 38
Early mock-up based on the card stacking metaphor. 44
The user interface of the PORCHLIGHT system, implemented as a Java desktop
application. Clockwise from the top: (a) user list, (b) milestone list, (c¢) bug
details, (d) timeline, (e) tag set list. A7
Importing project bugs from a source bug tracker. 48
Committing changes made to to the bugs. 49
Selecting a project. 49
User list showing search results. 51
Bug list with selected bug and associated user and milestone. 52
Timeline showing actions in the bug’s history. 52
Different elements of the the timeline component. 53
Timeline with event details. 54
Quick Filters with several filters enabled. 56
Quick Comment feature displaying commonly used comments. 58
Tag set list and indicators in bug list. 59
Creating a new ad hoctagset. 62
Editing a BTL statement in PORCHLIGHT. 62
Example of bug that has received numerous comments. 71
Default bug life cycles for popular bug trackers. 80
The PORCHLIGHT bug data model. 83
The PORCHLIGHT system architecture. 87
Visualization of graph representation of bugs in the neo4j database. 92
Tag Set Processor data flow. 93

vi

6.1

6.2
6.3
6.4
6.5

Researcher (left) and study participant (right) during participant observation

SESSION. « v v v v v e e e 101
Study participant verifying tag set syntax.o L. 114
Study participant creating new tagset. 120
Bug details and activity timeline for MIRTH-3167. 121
Spectrum of analysis criteria.o 167

vil

3.1

4.1
4.2
4.3

5.1

5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

LIST OF TABLES

Page
Summary of requirements for a dedicated triaging workspace. 42
Actions displayed on the activity timeline and their associated color. 53
Functions available natively in the Bug Tagging Language. 65
Features in PORCHLIGHT that address the requirements for a dedicated triag-
ing tool. 7
Comparison of statuses from default workflows of Bugzilla, JIRA, and Trac,
and the statuses selected for the Bug Data Model 81
Comparison of fields from default workflows of Bugzilla, JIRA, and Trac. . . 81
Fields selected for the bug data model. 84
Actions selected for the bug data model. 85
Preliminary user study questions and average responses. 105
Summary of projects imported into PORCHLIGHT for the study. 108
Summary of PORCHLIGHT feature usage by participant. 148
Summary of BTL feature usage. 152
Frequency of tag sets created by type. 153
Summary of custom plugins developed. 154
Criteria for analysis. 167

viii

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

LIST OF LISTINGS

Page
The Importer Java interface. 89
The Exporter Java interface. 90
An example of a plugins.jsonfile. 95
The FieldHandler Java interface. 95
The EstimateFieldHandler plugin implementation. 96
The action Java interface. 96
The Function Java interface. 96
The comMeENTED function implementation. 97
The waTcHING function implementation. 127
The MENTIONED function implementation. 140
Tag sets created during first session with development co-leads. 151
Tag sets created during second session with development co-leads. 151
Tag sets created during first session with product manager. 151
Tag sets created during second session with product manager. 151
Tag sets created during first session with development manager. 151
Tag sets created during second session with development manager. 152

X

ACKNOWLEDGMENTS

First and foremost, thank you my advisor, André van der Hoek, for his mentorship, guidance,
and support throughout this long process, and his unfaltering encouragement at the times
when it was most needed. Thank you also for your patience over the years.

Thanks to my committee members, Cristina Lopes and James Jones, for their thoughtful
questions and comments while selecting and refining my topic for this dissertation.

Thank you to Jon Teichrow for supporting both my Ph.D. and my professional career. My
research would not have been possible if not for all that I had learned during my time at
Mirth.

Thanks to Wayne Huang for his help with the programming for this dissertation, and thanks
to Jacob Brauer, David Schramm, Nick Rupley, and Brent Moen for their valuable feedback.

Thanks to the members of the SDCL, for their friendship, feedback, and for being a sounding
board. It was with this group that I had stimulating conversations that would inspire me to
expand my research and challenge my assumptions. In particular, thank you to Alex Baker
and Nicolas Mangano.

Thanks to Ben Mehling and Dr. Bob Murry for their regular checkins on my progress, and
their urging to see this work through completion.

Thanks to my parents and brothers for being a wonderful family, for their support during
this process, and the encouragement to continue my education through graduate school in
the first place.

Most of all, my deepest gratitude goes towards my wife Rebecca, whose support and encour-
agement have been unwavering.

CURRICULUM VITAE

Gerald Terry Bortis

EDUCATION

Doctor of Philosophy in Software Engineering

University of California, Irvine

2016
Irvine, California

Master of Science in Information and Computer Science 2007

University of California, Irvine

Irvine, California

Bachelor of Science in Information and Computer Science 2005

University of California, Irvine

PROFESSIONAL EXPERIENCE

Vice President, Platform
NextGen Healthcare

Chief Informatics Officer
Mirth

Sr. Software Engineer
Mirth (formerly WebReach, Inc.)

Software Engineer
WebReach, Inc.

Technical Writer
WebReach, Inc.

LARC Tutorial Assistant Program Tutor
University of California, Irvine

x1

Irvine, California

2014—Present
Costa Mesa, California

2011-2014
Irvine, California

2007-2011
Irvine, California

2005—2007
Newport Beach, California

2005
Newport Beach, California

2004-2005
Irvine, California

REFEREED CONFERENCE PUBLICATIONS

PorchLight: a Tag-based Approach to Bug Triaging May 2013
International Conference on Software Engineering

TeamBugs: A Collaborative Bug Tracking Tool May 2012
International Workshop on Cooperative and Human Aspects of Software Engineering
DesignMinders: A Design Knowledge Collaboration Nov 2009
Approach

International Workshop on Knowledge Collaboration in Software Development

DesignMinders: Preserving and Sharing Informal Soft- Sep 2009
ware Design Knowledge
Workshop on Knowledge Reuse

Software Pre-Patterns as Architectural Knowledge May 2008
International Workshop on Sharing and Reusing Architectural Knowledge

xil

ABSTRACT OF THE DISSERTATION

PorchLight: A Tag-based Approach to Bug Triaging
By
Gerald Terry Bortis
Doctor of Philosophy in Software Engineering
University of California, Irvine, 2016

Professor André van der Hoek, Chair

Bug triaging is an important activity in any software development project. It involves triagers
working through the set of unassigned bugs, determining for each of the bugs whether it
represents a new issue that should receive attention, and, if so, assigning it to a developer
and a milestone. Current bug tracking tools provide only minimal support for bug triaging,
and especially break down when users must triage a large number of bug reports, since those

reports can only be viewed one-by-one.

This dissertation seeks to further our understanding of bug triaging, particularly the con-
jecture that allowing triagers to work and organize bugs in sets better matches what they
want to do when they triage. Our vehicle for exploring this conjecture is PORCHLIGHT, a
prototype triaging environment that uses tags, assigned to individual bug reports by queries
expressed in a specialized bug tagging language, to organize bug reports into meaningful sets
so triagers can more easily explore, organize, and ultimately work with bugs in sets. We
describe the current challenges in supporting bug triaging, the design decisions upon which

PORCHLIGHT rests, and the technical aspects of the implementation.

We conducted two studies using PORCHLIGHT. The first was a preliminary user study to
test the concept, assess the usability of the tool, and to determine if triagers would be able

to employ the basic features. The second was a participant observation study with four

xiil

participants over a set of six sessions in which we engaged them in discussions about their
approach to triaging, and performed triaging using bugs from projects with which they were

familiar.

Our study led to several key findings. We found that triaging can be a highly context-
dependent activity that varies between individuals and projects. Through our discussions
with the participants, we also uncovered latent workflows that were realized through the
exploration of bugs in sets. Finally, the ability to directly work with bugs in sets rather than
individually seems to have enabled triagers to both think about, and work with, bugs more

naturally, particularly when there are a large number of bugs that need to be triaged.

Xiv

Chapter 1

Introduction

Managing and working with bug reports and feature requests is an important part of any
software project. Whether an open source project, a commercially developed product, or
even an application developed internally within an organization, any software project that

has an active user base will elicit additional changes that need to be tracked.

There are many aspects, both social and technical, to how these bug reports and feature
requests (referred to collectively as just bugs from here on) are managed. From the per-
spective of the end user reporting the bug or requesting the feature, the primary need is for
a portal to facilitate documenting the details of the bug, submitting it to the appropriate
place, and subsequently keeping track of the bug to know if it has been triaged, resolved, or
if it requires additional information. From the perspective of a project manager, knowing
how many bugs and feature requests have been submitted for a project provides input for
planning a release and generally measuring the status of the project as well as the workload
of the development team. Finally, from the developer’s perspective, a list of bugs can be a
to-do list for the day [27], and a bug report can provide crucial information needed to track

down and resolve a problem. Connecting each of these perspectives, bug reports often serve

as a key communication hub, especially in large open source projects [27].

Each of these perspectives is addressed in some way by bug tracker tools. Indeed, bug trackers
are typically positioned as supporting the entire life cycle of a bug report, from developers
and end users first reporting a problem encountered or suggesting a possible feature they
might like to see, to keeping track of the stage at which the bug is in its resolution cycle,
to eventually closing the bug and providing the developer and organization, should they be

interested, with a variety of statistics and reports.

While end users are able to report a bug, and, once assigned, developers can obtain the
information needed to act on the bug, the process of assigning the bug to the right developer
for the right milestone has been largely ignored in the implementation of bug trackers. This
process is known as bug triaging, which is defined more formally as the process of determining,
first, if issues reported through the project’s bug tracker describe meaningful new problems
or enhancements, and second, if they do, assigning them to the appropriate developers and

target release milestones for further handling [24].

Bug triaging has a particularly visible role in open source communities, where it is not
uncommon to find projects with hundreds if not thousands of open bug reports [31]. In these
projects, volunteers are often assigned the task of being the at front-line of the bug triaging
process: go through long lists of newly opened and re-opened bugs to sort, tag, and triage
them for the developers downstream. Individuals distributed around the world participate
in this process by triaging bugs on their own time and contributing to the development of
the project. For example, the Mozilla project maintains a regular schedule for volunteer

triagers to assist the project [15]:

“Bugs can stay unnoticed in Bugzilla for a long period of time - they're either
not moved in the right component or are missing vital information to get them

in developers’ hands. Our aim for the day is to manage incoming bugs in the

Untriaged component. The Unconfirmed Bugs Triage Day is held on a weekly
basis. This event is open to anyone wanting to help, contribute or just hang out

with us on the #testday channel.”

The GNOME project employs a similar approach to triaging with Bug Days [8]:

“A Bug day is a day when we get together on IRC, find bugs and clean our bug
database Bugzilla so that developers can get more work done by focusing on bugs
that matter instead of wasting their time on duplicates, unconfirmable bugs and
problems that they’ve already resolved. What we basically do is called ‘triaging’,

i.e. analysing and processing fault reports in Bugzilla.”

This process is as important, however, in commercially developed products, especially since
such projects can ill afford to ignore incoming bugs reported by customers. In this setting,
triaging is more commonly associated with an actual meeting: developers, project managers,
and other stakeholders gathering in a conference room, loading the bug tracker on a large
display, and working through the latest bugs and features. Some bugs are worked through
quickly when there is agreement between the participants, others involve more discussion

about when it should be worked on and who should work on it.

At a smaller scale, applications developed for internal organizational use also receive feedback
from the end users it was designed for. A simple tool to assist a specific department or make
some business process easier will inevitably receive requests for additional features or bug

reports, and the author(s) of the tool will need to triage the bugs accordingly.

Triaging can happen in a group setting, or by individuals working alone. In some organiza-
tions, bug triaging occurs during meetings regularly scheduled to prepare for the next phases
of development—whether these phases are a coarse-grained series of major releases (release

planning [45, 38, 41]) or a fine-grained set of sprints in an Agile project [30]. Triagers working

3

in a distributed setting can also participate in the process, either by sharing a screen during

a triaging session or by asynchronously annotating bug reports for others to follow-up with.

Triaging can also be performed by individual triagers or developers in their own workspace.
In open source projects, where community participants are often distributed globally, triagers
share information but perform the actual activity of working through the list of new bugs
on their own. If they require additional information from the reporter, or feedback from
another triager, they can annotate or comment on the bug and move on to the next one.
Similarly, projects developed internally within an organization can have limited resources, so
individual developers will triage bugs and feature requests as part of the regular maintenance

of the product.

However, bug triaging also takes place outside of such meetings or structured triaging activ-
ities of individuals. Triaging can occur anytime the status of a bug needs to be reassessed.
It is especially common for bug reports to be reassigned, because an initial assignment may
rely on an inaccurate assessment of the root cause of a bug, a wrong impression of whom
the expert is to resolve an issue, or developer overload. As a result, the work must be re-
distributed among the available developers [32]. In the Eclipse project, for instance, about
44% of reported bugs were reassigned at least once [34]. Bug triaging, then, is an on-going
activity [29]. In fact, the Triage Best Practices guide for the Chromium open source project

recommends to triagers that they “triage at regular times, at least once a week.” [20)]

It is also important to note that the process of triaging goes beyond just assigning a bug
to a developer or milestone. It can be a complex activity that requires knowledge of the
development process as well as the norms and rules of the project’s community. The Triaging
Bugs guide for the Chromium project [21] described the following guideline for cleaning up

old bugs:

“If the bug has been waiting for information for over a month, and there has

4

already been at least one reminder, add a comment saying that the bug is being
closed due to lack of response and that a new bug should be filed with the
requested information if it’s still reproducible, then close the bug as WontFiz.

Otherwise, add the Action-FeedbackNeeded label if it’s not already there.”

This guideline is an example of how heuristics are applied when triaging a bug. The status
of the bug (“waiting for information”), the timing of the report (“for over a month”), the
level of activity (“at least one reminder”), and the recommended action (“close the bug”)
are key pieces of information that a triager uses to work through a large list of bugs, both

old and new.

The GNOME Project Steps of Triaging guide [10] recommends the following:

“We should wait at least 6 weeks before closing a report INCOMPLETE that
has unanswered questions or missing stack traces. Note: If the report has many
duplicates (say >15), give it even more time. The more duplicates a report has,

the longer we should wait, because the problem affects more people.”

This suggestion is another example of how various factors are considered when triaging a
bug, including the absence of information (“missing stack traces”) and the relationship of

the bug to other bugs that have been reported (“the more duplicates a report has”).

Bug triaging is one of the activities inherently supported by bug trackers, since assigning and
reassigning a bug to a certain developer and certain milestone is part of the life cycle of a bug
[26]. Unfortunately, evidence is emerging that this support is rather limited. Particularly
in the open source community, where triaging bug reports is a highly visible process and a
responsibility that is distributed across the community [16, 21|, concerns have been openly
voiced. As an example, a former contributor to the Mozilla project posted on his blog [31]

an explanation for no longer contributing to the project, stating that “Triaging is broken.

Period.” He continues by explaining that the bug tracker used for the project, Bugzilla, is
ill suited for handling the large influx of bug reports from the community as part of a new

release process:

“Right now, there is no real way to triage except ‘Here is a list of 1700 bugs.
Start at the top and work your way down.” We need a way to mark bugs that
need triage ... But we also need to remember, BMO [Bugzilla@Mozilla] is being

used for things it never was created for.”

The former contributor calls for a new type of tool to support triaging:

“This is why I have envisioned a separate BMO product of [Unconfirmed] bugs.
That way, we can separate end-user bug submission from the development pro-
cess, at least in the beginning stage. We can add flags to bugs, that while useless

for developers, are incredibly useful for Triagers.”

He is not alone in his frustration. Other examples of concerned developers can readily be
found, with several academic studies backing up the need for a role-oriented bug tracker
interface. For example, Bertram et al. suggest that “role-oriented interfaces that emphasize
certain aspects of the tracker’s data while abstracting away others may provide a better
fit for the multitude of stakeholders” [27]. Just et al. also suggest that, in order to make
it easier to find bugs, bug trackers should “provide a powerful, yet simple and easy-to-use

feature to search bug reports” [36].

This dissertation focuses on bug triaging, and specifically on improving our understanding of
the needs of triagers during this important activity. Our conjecture, based on the literature,
industrial experience, and observations such as those made by the open source triager above,

is that allowing triagers to work and organize bugs in sets better matches what they want to

do when they triage. We are not the first to observe this. Members of the triaging commu-
nity have used approaches like saving and sharing filters and search results, communicating
guidelines and norms through wiki pages, and using tags to annotate bug reports for triaging
purposes. While these approaches have had some success, they are ultimately auxiliary ways
of addressing the problems that triagers face in working with a large collection of bug reports.
Fundamentally, the triager must still work through the list of bugs one-by-one with limited
context for making decisions, regardless of their overall process. Additionally, as they make
assignments, they are lacking feedback to let them know the impact of their recent and prior
actions. Finally, they must still address the problem of what to do with bugs that cannot
be triaged and should be set aside or grouped, without losing track of them when working

through hundreds or thousands of other bugs.

This work is based on the insight that a key obstacle to effective triaging with current bug
trackers is that they force a developer to work with bug reports one-by-one, with significant
overhead to move from one bug to a next. Triagers have a need to deal with bug reports in
meaningful groups (e.g., bugs that do not include a screen shot, bugs that were reassigned
three times or more, bugs related to component X and filed in the past two days) [29], which,
except for a handful of predefined filters, is simply impossible to achieve with current bug
trackers. It is especially difficult to effectively triage when the number of open bugs is large.
Our investigation attempts to ameliorate this problem by letting triagers explore, work with,

and ultimately assign bugs in groups.

We leverage tags as the way to organize bug reports into meaningful groups that will assist
in working with a large list of bugs. We employ an existing definition of tags as “a freely
chosen keyword or term that is associated with or assigned to a piece of information in order
to support the process of finding these resources” [50]. We define a tag set as a set of bugs
that are labeled with a particular tag. Tag sets provide a convenient way to categorize,

search, and filter a list of bugs. Tags are especially useful in this context since the meaning

of a tag can be defined in an ad hoc manner, which allows for the creation of ad hoc tag sets

that can be used to initially sort through a large list of new bugs.

A particularly important aspect of our approach is that it enables triagers to build their
own tag sets. It is impossible to predict all of the needs of triagers in terms of in which
exact subsets of bugs they may be interested at a given moment in time. To support triagers
in creating their own tag sets, we have designed a specialized bug tagging language, BTL,
that allows for the creation of new tag sets, as well as the addition of new functions to help

triagers specify new rules for organizing bugs.

We implemented our approach by constructing a software tool called PORCHLIGHT. Tag
sets are explicitly represented in the PORCHLIGHT user interface and, by turning them on or
off, act as filters on the full collection of bugs. The interface also includes a set of default tag
sets that represent subsets of bugs commonly reviewed during triage of the bug database. As
a result, developers can quickly group and then examine related bugs in many ways, giving
them access to the bug database based on attributes, time ranges, and patterns among bug
reports. Together with a number of additional features that provide at-a-glance inspection
of the historical actions associated with a bug report, drag-and-drop assignment of bugs, and
reflection on the emerging workload of different developers and milestones, PORCHLIGHT
enables developers much greater control over how they choose to triage a large repository of

bugs.

Returning to the main focus of this dissertation—understanding the needs of triagers—
PORCHLIGHT is the vehicle through which we explore both that question and our conjecture
that allowing triagers to work with and organize bugs in sets better matches what they want
to do when they triage. By implementing PORCHLIGHT and using it in a series of bug
triaging sessions with actual triagers, we both learn about the feasibility of working with

sets of bugs and what the impact is on triaging work.

We conducted a two-part study. The first was an initial exploratory assessment of how
professionals reacted to our novel approach and tool with six professional developers who
frequently triage bugs for a major open source healthcare software package. We presented
PORCHLIGHT, then asked them to work through a limited set of triaging tasks with actual
bugs, and concluded with a short interview that focused on comparing their experience with
PORCHLIGHT to their current practice of using the current bug tracker. Reactions were
positive, with all of the participants either agreeing or strongly agreeing that the PorchLight
interface provided functionality that improved upon their triaging experience. Naturally, we

also uncovered some areas where PorchLight could be enhanced.

Based on the feedback we received in our preliminary assessment, we made several improve-
ments, and then conducted a second broader participant observation study over the course
of six sessions with four participants and observed both PORCHLIGHT and tag sets in use

for triaging bugs.

1.1 Thesis Structure

This thesis is organized into eight chapters. The remaining chapters are structured as follows:

Chapter 2 - Background. This chapter briefly reviews current approaches to bug triaging
as well as the literature on bug triaging and the problems that emerge when trying to use

existing tools to perform bug triaging at a large scale.

Chapter 3 - Requirements. In order to frame the context of our approach to supporting
bug triaging, this chapter takes a broad look at the different ways in which existing bug
trackers are used in software development and outlines key requirements for supporting bug

triaging.

Chapter 4 - PorchLight. This chapter describes PORCHLIGHT, our approach to bug
triaging. Particularly, we describe the use of tag sets, combined with advanced filters, and

an extensible tagging language.

Chapter 5 - Implementation. This chapter describes the implementation details of the

different components that together provide the bug triaging functionality of PORCHLIGHT.

Chapter 6 - Analysis and Findings. This chapter describes our two-part multi-method
study of PORCHLIGHT using professionals, as well as the multi-part analysis of the observa-

tions that lead to our findings.

Chapter 7 - Conclusions. This chapter presents our concluding remarks and summarizes

the contributions of this dissertation.

Chapter 8 - Future Work. This chapter identifies areas for future work based on the

results of our research.

10

Chapter 2

Background and Motivation

In this chapter, we review the role bug trackers play in the software development process,
examine current approaches to bug triaging, and discuss the current state of bug triaging

research.

2.1 Bug Trackers

Bug trackers serve an obvious need in software development. They “help software teams
manage issue reporting, assignment, tracking, resolution, and archiving via a reliable, shared
to-do list that is used by numerous stakeholders throughout the lifecycle of the software.”
[27]. Commercial bug trackers, like Atlassian JIRA [13] and FogBugz [2], and open source
bug trackers like Bugzilla [1] and Trac [3], have emerged as invaluable tools for many projects.
While a bug tracker is fundamentally a centralized database for tracking bugs and features, it
serves a much broader purpose. For example, one qualitative study of the use of bug tracking
systems by small, collocated software development teams revealed that the bug tracker played

multiple roles, ranging from a to-do list of tasks for developers, to a communication and

11

coordination hub for the entire team [27].

A particularly important role is that of a knowledge repository. Because over time “the
issue tracker builds up a staggering amount of information” [27], it becomes a key source
of knowledge about a project for the team. Various stakeholders contribute knowledge to
the bug tracker by creating bug reports, commenting on issues, and annotating them with
metadata. Bug trackers are often also linked to other sources of information, like the source
code repository, to provide additional insights into how a particular bug was resolved. Over
time as information is collected in the bug tracker, and as it is associated with other pieces
of information about the project, it becomes a record of the rules and norms of the team or

community that can provide valuable insights regarding how bugs should be triaged.

The bug tracker also acts as a communication and coordination hub for the project. Be-
cause the bug tracker is an easily accessible place to tie together all the various threads of
information involved in software development, it is not surprising that a significant body of
communication surrounding the data is stored [27]. Triaging discussions about a particular
bug, requests for clarification on the bug, and design decisions made to resolve a bug are all
frequently stored in the bug tracker. Some bug trackers even support adding comments to a
bug report by replying to an email, which makes it easier for developers to quickly respond

and archive their communication regarding a bug.

Given this, and other roles, it is no surprise that bug trackers have become popular tools
indeed. Web pages for popular projects like Eclipse and Chromium include a prominent link
to the bug tracker, and new users are directed to the bug tracker as a way to become familiar
with what problems currently exist in a project, and what the future direction of the project

1s.

12

2.1.1 Information Captured

Bug trackers capture the data needed to act on a bug report, including:

e a summary and detailed description of the bug or feature request;

a relative measure of the severity and/or priority of the issue;

the stakeholders involved (such as the reporter and the assignee);

the version in which the defect was discovered and the version in which it was or will

be resolved; and

a unique identifier that makes it easy to refer to the report in communications.

Some bug trackers also support the following functionality by default:

an attachment or screen shot;

a time estimate for resolving the bug or implementing the feature;

votes from community members to indicate popularity; and

dependencies on other issues (i.e., bugs that must be resolved before this one).

While the information that can be represented varies between bug trackers, most bug trackers
are configurable and can be modified to capture any type of information related to the bug
report. For example, some bug trackers include a field for capturing the component that is
affected by the bug (UI, database, etc.) or the environment in which the bug was detected

(operating system, browser, etc.), that can be added depending on the project characteristics.

Even though most bug trackers are able to capture this information, not all bugs are created

equal. One study has shown that, by including certain pieces of information with a bug

13

report, reporters can drastically increase the likelihood of the bug being resolved [28]. For
example, including the steps to reproduce a bug is by far the most important piece of
information on a bug report. However, both runtime stack traces and screen shots have
been rated as important as well by developers. An analysis of 150,000 sample bug reports
concluded that bug reports that contain stack traces get fixed sooner, bug reports that are
easier to read have shorter lifetimes, and including code samples in a bug report increases

the chances of it getting fixed [28].

2.1.2 Bug Life Cycle

Besides the data that is captured in the bug report, the life cycle of a bug is an important
aspect of the bug tracker. Since a key role of the bug tracker is to “track bugs, features,
and inquiries as they progress from their initial creation state to a final closed state” [27],
most bug trackers allow users to transition a bug from one state to another, view the current
state, and even create custom workflows. Figure 2.1 illustrates the default workflow using

the default bug statuses in Bugzilla.

Bug determined

to be present Bug is filed by a
non-empowered user

CONFIRMED UNCONFIRMED
7

Developer is working H
on the bug
1
1

IN_PROGRESS |¢ -------------

Fix checked in

]

Al

Does not

pass QA ﬁ
RESOLVED
-

QA verifies that the
solution works

Wrong fix
VERIFIED [--------------------

Figure 2.1: Life cycle of a Bugzilla bug from [19].

W

(

14

The information needs of the developers working on resolving a bug typically differ based
on the bug’s state in the life cycle. In one analysis of 600 bug reports from the Eclipse
and Mozilla open source projects, the authors of the study found that, after a bug has been
opened, most questions from the assigned developer were requests for missing information
or details for debugging in order to locate the source of the bug [29]. Later questions are
mainly discussions of how to correct a bug once a cause has been found, as well as status

inquiries to determine if a fix will be included in a certain version of build of the program

[29].

In order to accommodate different software development workflows, most bug trackers allow
the life cycles to be configured. For example, JIRA includes a graphical workflow designer
[22] tool that allows administrators to define the states that bugs can be in, the possible

transitions between the states, and the type of information that is collected in a bug report.

2.1.3 Examples of Bug Trackers

Because bug trackers play such an important role in the software development process,
numerous tools have emerged, both commercial and open source, that provide a wide array

of features. Bug trackers can be divided into two broad categories: stand-alone and add-on.

User

User adds more
inform ation, and
remaoves the
"needinfo” keyword

RESOLVED
duplicates
invalidy
wontfixi
not_eclipse/
worksforme

Committer determines
that no action is required to
resolve the bug.

CLOSED
duplicate)
invalid)
wontfix/
not_eclipsel
worksforme

Release in which the bug

wasfiled is shipped.
MEW

incomplete

NEW
un-triaged

User Re-opens
the bug

Committer requests
more information
adds a "needinfo"

Committer
accepts the bug
(verify component,
validity, etc.)

Committer
decides
towork on

a bug

ASSIGNED
assigned to:
Inbox

ASSIGNED
assigned to:
Committer

Release
with the bug
fixed is
shipped.

RESOLVED
fixed

Committer
applies
a fix.

RESOLED
verified

User verifies
the corrected
behavior,

CLOSED
verfied

Figure 2.2: Life cycle of an Eclipse bug from [6].

15

—[UNCONFIRMED]

[NEW NEEDINFO]

”[ASSIGNED

—

A

[REOPENED]‘—’[RESOLVED

I
)
[rFoxep || ossotete || incompreTE |

[

[noTaBuG || wontFix || noteNoMe |

Figure 2.3: Life cycle of a GNOME Project bug.

Stand-alone bug trackers, like Bugzilla [1] or JIRA [13], are tools that are dedicated to bug
tracking. While they integrate with other tools, like version control systems, their primary
focus is on capturing bug information and managing the bug life cycle (see Figure 2.2 and
Figure 2.3 for example bug life cycles). Many stand-alone bug trackers also support custom

workflows, so the bug life cycle can be modeled after existing processes.

Add-on bug trackers are those that are built into tools that primarily provide some other
functionality. These are most common on software project management or hosted version
control services like GitHub [7], Trac [3], or Google Code [11]. While these bug trackers offer
basic bug tracking functionality and are tightly integrated with other features such as the
project wiki and source code, they often lack advanced functionality offered by stand-alone

tools, such as configurable workflows.

16

2.2 Bug Triaging

Because most bug trackers lack any explicit support for triaging large numbers of bugs, the

triaging community has developed several approaches, particularly filters and tags.

2.2.1 Search Filters

Some large software development projects provide triagers with persistent search filters that
can assist in narrowing down the number of bugs that must be triaged. For example, the
Mozilla Bugzilla site offers a variety of filters, including a triaging filter (Figure 2.4) that
allows triagers to search for bugs from any project with filters for who the last commenter
was and when the last comment was added. This allows triagers to quickly create a list
of bugs that may require additional information from the reporter, or bugs that have been
dormant for too long. Another example of a filter that is available on the Mozilla Bugzilla
site is one that identifies bugs that have been filed in the last 24 hours. This provides an easy
way for triagers to view recent activity and catch bugs which are relatively easy to triage

before additional activity occurs on them and they are lost in the thousands of other bugs.

As another example, the 30 Second Triage Checklist from the Chromium project wiki [20]

recommends that all triagers:

“Load up your base query (bookmark it): internals:network -feature:spdy,preload

-label:spdy”

This query creates a list of bug reports that are related to network functionality but exclude
features related to the new SPDY functionality. This bookmarked page is then the starting

point for a triager.

The GNOME Project’s Find bugs to triage guide [9] has a similar recommendation for

17

[N =&
Ll User: Tyler/Firefox Triage Toals - .. * | 4 Bug List: new | 4 Triage Regaorts % | 3 Bugs Ahay - find relevant Moailla... = | + | &
& % M | B hetpebugils mozilaony/ page.cgitidstrisge reperts.htrm 7w @ || W - Wikipedio fen 2 B

Bugzilla@Mozilla - Triage Reports

Home | New | Browse | Search [?] | Reports | Requests | New Account | Log In | Forgot Password

Show UNCONFIRMED bugs with:

Product: « Comment:

Component: = JJ where the |ast commenter is the reporter -
| where the last comment is older than 30days

Generate Report

Home | New | Browse | Search | — m [?] | Reports | Requests | New Account | Log In | Forgot Password

Privacy Policy

Figure 2.4: Mozilla bug search filters.

creating and persisting common filters:

“If you're having a hard time finding bugs to triage in the above lists, you can
also use Bugzilla’s search /query page. There are some examples of using it below.

Note that these searches can be saved for later use, which can come in handy.”

Example filters for the project include:

e All the unconfirmed bugs changed in the last four days.
e All the new bugs changed in the last four days.

e Bugs with the words “crash” or “process” in the summary. These bugs tend to be ones

that do not have enough information and that need to be marked as NEEDINFO.

Some community members have developed web applications that integrate with the bug

tracker to help aspiring triagers identify bugs based on their assigned component. These

18

[FrErGTS| L |
L User Tylen/Firefox Trisge Tools - — > | g Bug List new « | @ Triage Reports x | _lugﬁhny-l’mdr:lwmlhﬂmilh_# |iﬁ

A | @ v joshmatthews.net/bugsahoy Mayout=1 ["l'q Hug;.ﬂhny-lmdralwammnulu.h:g;i"

-

___Bugs Ahoy!

these | are relevant nleresls

Are you interested in

) Accessibility Results (3}
| Build System
| G
I N a::? 198592 - Put -moz-align-self chunk of ua css mto an @suppons rule 1o avwoid Spamming error B
et ng consale
| Jevascnpt Engine
¥ Layout
) DOM and CS5 technology 185821 - layout/reftestsforms could do with some ordering
[Z] Input handling
| Firefox intemals 163399 - Remove N5_CS5S_MINMAX in favour of mozilla:-clamped
| Media
. :‘!o:?le {L-:I-ndroldj TE3001 - Typo in layout/style/nsC35PseudeClassList h
| Firefox

| Firefox Developer Tools
| Release Enginaering
| Test Automation

1377846 - Switch from --moz-placeholder to -moz-placeholder (psewdo-class to pseudo-
elamant)

| Firefox Sync _
| Thunderbird 25798 - Session histary for <input> value doesnt work with @form
| SeaMonkey
| Calendar T2T164 - multi-column Layout doesnt work on Beldset element
| Boot2Gecko / Firefox OS
! Metro (Windows 8) 4508488 - outlines are drawn outside (i.e, expanded by) bax-shadow and other visual overflow
Do you know 156881 - Underline should skip characterpa-of-character that is balow the base line (texd- i
Aacnecatinnamadal
= Zokero

Figure 2.5: Bugs Ahoy! user interface.

handful of approaches are in some way a precursor to our work. They serve a dedicated
triaging purpose and provide a lens on the vast amount of information that is available in
the bug tracker. Rather that starting with a clean slate and having to form complex search
queries, triagers (or even developers) can browse the page and discover bugs that are of
interest. For example, Bugs Ahoy! [5], shown in Figure 2.5, is an open source project that
displays a simple page for new triagers and developers to browse bug reports and feature
requests for the Mozilla project. Bug report summaries are displayed in chronological order
based on when they were last updated. Additional information, such as the exact date when
the last update was and the developer to whom the bug may already be assigned, is available

as a tool-tip when hovering over a bug.

Another example of tool created to provide view for triagers is Google Code’s issue grid view

19

<« C' i | @ ntips//code.google.com/p/chromium/issues/list?can:

Project Home ~ Downloads ~ Wiki | Issues | Code Search

+Feature+Status+Owner+Summary

=Update

Newissue| Search | Openissues || for

Rows: [Guner [=] Cols: [nistene [=] Cells:[Ties [<] |Update
b2 u

160471 Untriaged 159939 szﬂzb\e
Javasoriptgenersted | Need Chyo

DRSpme ey Cause | | |page tor Fapper loker
bmwserm execute

167499 Untiaged 171197 Uniriaged

stack overflow inlayout sap does notload
rendering

86817 Avsiladle 172003 Untriaged
Show page zoom state Chrome memoy

age action, usage increases
transient bubble n

i,

139265 Available 157233 szﬂzb\e

Sandooxed iirames Sect
andwindows allow sar\dhnx seg«suus in
femote resources PPAPI D

155696 Untiaged 163174 Available
Ghrome shortcuts e
website incomplete browser_sync:-DataTyp

155350 Untriaged

phrsaraoh bre
when copying Eiom

157106 Uniriaged
Another Border-Bug
dotted line turns salid
onthe haif way

158905 Untriaged

Wrong rendering of
elements

159055 umnzged
hover not

appliedto avnzmmzuv
added element

159389 Untriaged

170329 Untriaged
Changed Font size is
ot reflecting n search
results pane

175960 Availale

ExtensioninstallForcelic

mormaton efesn
165472 Available
Buton Relosc dont

reload pages in
browser

171758 Availasle
HTIILS videos in
youtube are hanging

134459 Assigned

$88 Transtion opscy
fadeins Jankte

186720 Availale
Tabs API should not e
callable within platform
apps.

166671 Untriaged
display. table clearfic
CSS leads to some
elements not receiing

175386 Untriaged

Cicing on hs crop
o o nen o e

URL shoulgshow

162394 Untriaged
[Regression] WeoGL.
texture is no longer.
displayed on Chrome

161613 Untriaged

179533 Availaole

file-manager bect
fransperent Ser neert

64675 Availadle
Theme dialag says
“Added to Chrome

e resetiing to

166362 Availale
“Download was nota
CRX

71639 ExtemaiDe
Canvas filText ang
measureText handle
idsographic spaces

140028 Uniisged
Slow memory leak
Seen when Google
Analjics logded in

168747 Availale

Reloading an apy
Iaunched win Lhpea

73264 Uniriaged
Chrome is not full
Screen in Windows 8
mode on W8 white

A74214 Untriaged
e are getting Chrome
stable verison upon
Canary installation.

176074 Assigned

Comboboees are
timmed

178016 Untriaged

Search| Advanced search Searchtips Subscriptions

161482 Availadle
The instalmy
Sigeloag shuum L

178204 Untriaged

Facebook pages not
loading properly

138303 Assigned
Chrome uninstalation
should not affe
installed apps

133305 Availadle
;s Hostunincalition

SEouEsrmpts

SBiet prome

179359 Untriaged
CF-Vimeo not
rendered properly
within the window

174652 Untriaged
election

Text selection, user
inputand scrolling be
Droken under certain

132714 Assigned
Tagtransport images
with device scale factor
information

166882 Available
“Your deskiop is being
shared window not
necessary in curtain

179240 Availadle
Panel closes when
Gmail compose is
invoked

179429 Availasle

160597 Availasle

Tab sync should not
iggers Sine cyeles for

164133 Availale
Clsanup cortent

settings exceptions for
Hetro Switch'to_

148890 Availale

Sync keyboard
modifiers

154148 Availale
[Tab Capture] Effcient
135 eaptur on Chrarhe

172746 Availale
Wiite automated tests
forv2 Task Hanager

178856 Availale
File Wanager-Refresh
while pasting stops
pasting process

179270 Available

Right click does not
work on search results

177208 Availasle

300 reac-only
FileSystem AP for
acesss o packaged
177209 Availasle
chrome-exen:

GRES Shouid suDDﬂr\
range requests

178446 Availale

Figure 2.6: Google Code issue

132904 Available | 175015 Availadle

Platform-nat Wake extensions and
cunrgurzuunmr chrome apps use strict
Chromoting hosts mode JavaScript by

grid view.

5954 issues of 37147 issues shown
10
5618 Assigned

House middle-bution
opens new ta feature

10502 Assigned
Ability to make all
cookles session
Cookies without

32391 szﬂzme
Temp dirfile leal

during test_ sheH Ltests
and layout

102004 Availadle

Crashin
ProfilelOData:Lazyinitia

105184 Untriaged

Chrome Regression
(somewhere between
5)

164030 Untriaged
developer website is
broken

113284 Unconfime

Heap-buffer-overlow in
WebCore: Font:codePa

148701 Untriaged
alog boxes busted

156857 Uniriaged

scrolling to the bottom
of a page dossntwork

4809 Available

PluginTest llediaPlayer
broke with 16023

11298 Availanle
Festute request alow

copypacte in G
error dialog:

16619 Availale

List|Grig

[11]. Google Code provides project hosting amenities for open source projects, including a

bug tracker. One feature of the bug tracker, shown in Figure 2.6, is the ability to create grids

with customizable rows and columns.

In this example taken from the Chromium project,

each row represents an individual developer while each column represent a project milestone.

This feature gives a triager the ability to dissect and organize the bug list based on a number

of dimensions.

2.2.2 Tags/Labels

Finally, tagging has become a prominent approach to manage triaging. Tagging provides a

way for triagers to annotate bug reports without directly modifying the data provided by

the reporter. In other words, tagging allows triagers to include metadata that can be used

by other triagers and developers, or potentially even the triaging tools themselves.

Many

bug trackers natively support bug tagging natively, and the use of custom tags has expanded

20

their use in the triaging workflow [16, 12].

Tagging, for instance, can be used to denote the state of a bug or trigger actions for other

triagers. For example, the Mozilla triaging guidelines include the following:

“When preparing to close a bug as INCOMPLETE, it is important to place a
CLOSEME tag in the whiteboard of the bug. This way, other triagers know that
the bug is waiting for a reply, and bugs with past dates can be closed using simple
queries. The typical format of CLOSEME tags is [CLOSEME YYYY-MM-DD].
A CLOSEME should specify a date at least 3 weeks in advance, except in special

cases. Once a bug is closed as INCOMPLETE, please keep the CLOSEME tag

for tracking purposes.”

In this example, tagging is used to communicate the state of a bug report between triagers.
A single tag encodes both the status of the bug, as well as the timing for when the bug
should be triaged again if no further information becomes available. It is also important to
note that triaging in this case is performed on a bug that has been resolved, and it thus is

not an activity that only applies to newly created reports.

One study [50], in looking at why software developers tag work items (bugs) and the roles
tags play in practice, found that the primary reason for tagging is for categorizing work items
so that they can be more easily found later. For example, in interviews with developers one

participant stated:

“During the polish phase of [a release], we had two weeks to polish. It’s like,
what polish things do we do? So we had tags like polish and wusability, and I use

that to kind of guide what work items we could work on.”

Tagging is also used to indicate the state of a bug in a workflow that is not necessarily

21

captured by the bug tracker’s default life cycle. When used this way, tagging becomes an
indirect communication mechanism between triagers and developers to make others aware

of particular incoming work items [50].

“Based on our analysis, we discovered the existence of lifecycle related tags.
These tags are used extensively only for a specific period of time as they are
related to a milestone in the development process and usually have the name of

this release in their name, e.g. beta2candidate”

From these examples, we find that the ad hoc nature of tagging makes it an effective practice

for triagers and developers to quickly organize work items as they are reviewing them.

2.3 Problems with Current Approaches

While existing ad hoc approaches described in the previous section, such as filters and
tagging, have aided in easing the job of the triager when it comes to bug triaging, there are

several important shortcomings that still remain.

First, in their current state bug trackers still require a person to drive the process. The
triagers, thus, still faces inspecting each bug report, making an assignment for it (either by
confirming the suggestion or choosing one on their own), and moving on to the next bug —
all through manually navigating the bug repository using the features available in the bug
tracker. For most developers, this means using a web-based interface to first search through
a vast amount of largely unorganized bug reports for a subset of bugs in which they are
interested. They must then select a single bug and, after some inspection and thought,
either decide to assign it to a developer and milestone, or skip the bug for now. They then

return to the previous search results to select another bug (often in an arbitrary order) and

22

start this process all over again, all without much, if any, feedback during the entire process.

Second, by lacking first-class support for bug triaging, triagers must rely on search filters
and bookmarks to track triaging metadata. This approach relies on the filtering capabilities
of the bug trackers and is hindered by the navigation functionality provided by the web
browser. This makes it difficult for triagers to maintain a context during a triaging session.
For example, if a triager views a preset filter for bug reports opened in the last 24 hours and
starts from the top of the list, he or she must open a separate tab to review each bug report
to either tag or triage it, and then return to the search results list. There is no context
maintained with respect to which bugs have already been triaged or what the last action
was. Furthermore, many relevant relationships amongst the bugs are not brought forth in
the list interface. Bug reports that are related to a particular component, or have been
reported by the same reporter, or fall within a certain time frame, are not reflected in the
search results list. The list only provides a single dimension by which the large collection of

bug reports can be categorized and worked through.

Third, bug trackers provide little, if any, feedback when triaging actions are performed. As
triagers work through a list of bug reports provided by a search filter and triage individual
bugs, there is no feedback to determine what effect the assignment may have on a particular
developer’s workload, or on the milestone road map, or even on other bugs that are related.
This is especially important for triagers who are new to the project, the development team,
and the norms of the community. Feedback in the form of suggestions for a triaging action,

or a post-action report, are ways in which a triager can improve their performance.

Finally, bug trackers do not provide a history of bug assignments that can be used to learn
from and guide future triaging decisions. For example, the Triaging Bugs guide for the

Chromium [21] project recommends:

“The more you triage bugs, the more duplicates you will recognize immediately.

23

If you suspect something might be a duplicate but aren’t sure (such as with a
feature request that seems likely to have been made before), search for as many
of the variants of the key words in the bug as you can think of. Be sure to search
“All issues”, not the default of “Open issues” so that you can find WontFized

bugs and other duplicates.”

The burden lies on the triager to maintain a working memory of the bugs that they have
already seen, and what their action was for each particular bug. Bug trackers provide little
to no feedback to decide, once a bug has been triaged, if there are other bugs that could be

triaged in the same way, or what the effect of the assignment was on the list of bugs.

2.4 Related Work

We are not alone in realizing that bug triaging is an area that can benefit from improved
and dedicated tool support. Prior work on the bug triaging process has fallen into three
research areas: duplicate detection, assignment automation, and field studies of bug trackers
and the triaging process. Work in the first two areas, duplicate detection and assignment
automation, aims to reduce the burden on the developers who are involved in the triaging
process. Work in the third category, field studies of actual bug triaging processes, aims
to improve our understanding of how bug triaging takes place in practice, and informs the

design of future bug triaging tools.

2.4.1 Duplicate detection

The goal of duplicate detection is based on the recognition that not every single bug report

refers to a unique bug. Given that most software is used by many different users, when a new

24

release introduces a bug, it is not uncommon for that bug to be reported multiple times. On
one hand, this benefits the triagers, since they can readily recognize a serious issue because of
the multitude of similar bug reports that are likely to be filed. Moreover, some reports may
include additional detail (e.g., a stack trace, screen shot) that may help them in triaging.
On the other hand, it is still up to the developer to process them all manually, one-by-one.
Duplicate detection techniques address this issue by identifying similar bug reports and, in

some cases, merging them into a single bug report.

For example, the summaries of the following bugs from the Firefox project were identified

as duplicates [51]:

Bug-244372: “Document contains no data” message on continuation page of NY Times

article
Bug-219232: random “The Document contains no data.” Alerts

Since bug reports are written in natural language, the use of natural language processing
over the text descriptions to identify duplicates is a popular technique [22,23]. Natural
language processing, or NLP, looks at the frequency of information elements, or fields, in
the bug report to determine the similarity of two bugs. Because this approach relies on the
vocabulary used in describing the bug, it is applied to finding duplicates that describe the
same failure, and not duplicates that describe different failures with the same underlying

fault [46]. The processing stages of NLP are:

e Tokenization: Turning the characters in the bug description into a stream of tokens,

which are typically words (without punctuation, capitals, etc.);

e Stemming: Identifying the ground form of each word (ex. worked and working are

transformed into work);

e Stop words removal: Removing common words that do not carry any specific infor-

25

mation (ex. the, that, when, etc.);

e Vector space representation: Representing the words in a multi-dimensional vector

space model to represent each word and its frequency; and

e Similarity calculation: Measuring the similarity between any two bug descriptions

using the vector space model.

One approach to evaluating a duplicate detection technique is to treat it as an information
retrieval system. That is, to determine how effective it is, one compares its results with bugs
that have been actually determined to be duplicates by a human. The two measures used
in evaluating information retrieval systems are precision and recall [46]. Precision is the
fraction of retrieved bug reports that are relevant to the search, while recall is the fraction
of the but reports that are relevant to the search that are successfully retrieved. One study
using NLP over a set of bug reports from a mobile phone software developer found that the
best results returned by a duplicate bug search were approximately 39% for a top list size of
10 (a top list is the number of possible candidates that are returned from a duplicate search)

and 42% for a top list size of 15 [46].

This work led to refinement of the NLP approach by including runtime execution traces. In
one study, Wang et al. used the bug repositories for the Firefox and Eclipse open source
projects and generated runtime execution traces of error reports and feature requests [51].
Using several heuristics to combine the summary information with the traces, they were able
to achieve an increase of up to 26 percentage points in recall rates over approaches using

only NLP information.

The most recent work in duplicate detection using NLP by Somasundaram and Murphy
incorporates clustering techniques to group duplicates [47]. Clustering is the unsupervised
classification of multi-dimensional vectors into groups based on similarity [47]. The authors

applied three clustering algorithms (k-means, normalized cut, and size regularized cut) to

26

partition a list of bugs into clusters that describe the same defect. Though their experiments
they found that LDA-KL produced recalls similar to those found with existing techniques,

but with better consistency across all components for which bugs must be categorized.

2.4.2 Assignment automation

The goal of assignment automation is to lighten the load for a triager by recommending, for a
given bug report, who might be appropriate to resolve it [24]. To date, two predominant types
of approaches have emerged: machine learning techniques and statistical analysis techniques

of bug tossing graphs.

Machine learning

The area of machine learning most applicable to bug triaging is text categorization, which
involves the classification of a set of documents (bug reports) into a set of categories (as-
signments to a developer) [24]. A supervised machine learning algorithm takes as input a
set of bugs with known assignments and generates a classifier which can then be used to
suggest an assignment for an unassigned bug. The process of creating a classifier from a
set of bugs is known as training the classifier. Features such as keywords and metadata
are extracted from past bug reports and, together with data linking these bug reports to
the developers who then fixed them, used to train a machine learning model [24]. As with
duplicate detection, the performance of a particular ML approach is measured using recall
and precision. In automated assignment, precision measures how often the approach makes
an appropriate assignment recommendation for a bug. Recall measures how many of the

developers who may be appropriate to resolve the bug are actually recommended.

In one study by Anvik et al., the authors applied a machine learning algorithm across

27

three different open source projects: Firefox, Eclipse, and gcc. On the two larger projects,
Firefox and Eclipse, the approach achieved precision rates of greater than 50%. However,
for the gee project the precision rate was only 6%. Recall rates across all of the projects
were low, often hovering at a few percent, due to the way the authors calculated recall. One
explanation for the disparity between the results is the characteristics of the project. Machine
learning algorithms generally produce better results if more data is available from which the
algorithm can learn. For some projects, like Apache Ant, there was insufficient data based
on an examination of the number of reports assigned for the approach to be useful. For other
projects, like gce, one developer seemed to dominate the bug resolution activity, because of
which the classification weight of the active developer skewed the automated assignments.
These are examples of how project norms and history can come into play when triaging bugs,

and are things that can be difficult to capture in fully-automated techniques.

This work led to several other studies that refine the pure machine learning approach. For
instance, Somasundaram and Murphy applied Latent Dirichlet Allocation to categorize bug
reports into components (e.g., “build”, “UI”) [47]. One limitation of an SVM (Support
Vector Machines) approach is that it may not produce consistent results for each component
for which recommendations might be needed if some component does not have as many
reports appearing as other components [47]. To overcome this limitation, the authors of
one experiment combine an existing machine learning approach with LDA, which is an
unsupervised generative model that categorizes the words that appear in the bug reports
into clusters. Looking across three different open source projects, the authors found that
the combined approach of LDA with the Kullback-Leibler (KL) divergence “can produce
recommendations with more consistency in recall values across all components of a system

than previous approaches” [47].

Additional studies explore machine learning further. For example, Tamrawi et al. applied

fuzzy set-based modeling to automate developer assignments and was able outperform other

28

approaches both in terms of prediction accuracy and time efficiency [49]. For top-5 recom-
mendation tests, the approach has an accuracy of 68% (i.e. in 68% of the cases, the devel-
oper that fixed the bug was in its top-5 recommended list), while other machine learning
approaches reach the maximum accuracy of 53.02% in top-5 recommendations. Poshyvanyk
et al. incorporated a combination of an information retrieval technique and processing of
source code authorship information to recommend developers, resulting in “about 20% more
accurate than an approach that uses machine learning on past bug reports” in one particular

project [43].

Probabilistic analysis

The second type of approach relies on probabilistic analysis of the bug tossing graph. One
study has shown that 37-44% of bugs have been tossed, or reassigned, at least once to
another developer [34]. A bug tossing graph, like the one shown in Figure 2.7, captures the
history of such reassignments from developer to developer, and is used as the source for a
Markov chain model that aims to detect repeated patterns (e.g., any time a bug is assigned
to developer A that pertains to component X, it is tossed to developer B; half the bugs

assigned to developer C are reassigned to developer D) [34].

The authors of one study used this model to represent the bug tossing history of the Mozilla
and Eclipse projects. They found that the tossing graphs could be useful in several ways,
including identifying the developer structure of a project, reducing the tossing paths by
predicting the proper developer, and improving bug triage by recommending developers for
assignment using machine learning techniques. In their experiments, the authors were able
to reduce tossing steps by up to 72% and improve the accuracy of bug assignment over

traditional machine learning approaches by up to 23 percentage points [34].

29

Q e
033 IWK
667
0.33
0.1 1.

Figure 2.7: An example of a bug tossing graph showing the transition probabilities.

D

2.4.3 Field studies

Bugs, and particularly bug histories, have been the subject of quite a few field studies (e.g.,
26, 27, 29, 33, 40]). The process of bug tracking, and more specifically bug triaging as
relevant to our work, has received less attention, with only a handful of studies emerging to

date [24, 25].

Most influential on our work is a study by Halverson et al. in which they conducted interviews
with industry and open source developers to understand coordination problems that arise
when managing bug reports in large, distributed teams [33]. The authors used a combination
of interviews and analysis of the bug tracker data for the Mozilla project. They found that
detecting patterns in a bug’s history that could be used to triage using current bug trackers
like Bugzilla can be difficult because “in most change tracking systems it is hard to assemble
and see the relevant information,” resulting in the assignment problems “going undetected

for long periods of time to the detriment of the project” [33].

The authors further identify specific classes of bugs that require attention, such as zombie

30

bugs (bugs that have been dormant for a relatively long period of time) and hot potato bugs
(bugs that continue to be tossed from developer to developer without being resolved). Both
observations point to a quite different way of exploring a bug repository, one in which bugs
are not explored in isolation, but in relationship to each other—whether that relationship is

one of functionality or of similarity in the type of bug or bug history.

Another study by Aranda et al. looks at the coordination patterns that emerge surrounding
bug tracker user in a large commercial setting [26]. The authors conducted interviews and
analyzed the history of bug reports and identified numerous patterns as a result. For exam-
ple, it was observed that developers will “huddle” with other team members, or “summit”
with people from different divisions to discuss a particular bug. This type of coordination
complements triaging, which was also observed as team members discussed and decided

whether an issue was worth addressing.

Similarly, the social aspects of the bug tracker were found to play an important role in how
it is used. Attempts to automate bug assignments can be difficult due to the need for bug
histories to “include the social, political, and otherwise tacit information that is also a part
of the bread and butter of software development” [27]. This suggests that even for triaging,

there are tacit rules and norms that cannot be detected using machine learning techniques.

Another field study of bug tracker usage by Bertram et al., this time in a smaller collocated
team setting, reveals that the bug tracker serves as a boundary object and that participants
in different roles make use of the bug report information in different, yet interrelated ways and
have different perspectives with different needs [27]. For instance, developers and members
of the QA team use the bug tracker as an organized list of their work to-be-completed so
they could “just come in and sit down and start working” [27]. Meanwhile, one project
manager used the bug tracker to maintain a customer-oriented view and as an “outboard

brain to keep track of all the things that, from a customer perspective, are important” [27].

31

In a more recent study by Murphy-Hill et al., the authors conducted qualitative interviews
and surveys with engineers working on a variety of products and observed six bug triage
meetings to better understand the many factors that influence how bugs are resolved [40].
Their early findings reveal that developers take numerous factors into account when selecting
which bugs will be fixed and how they will be fixed, specifically looking at the risk that new
bugs would be introduced and the risk that spending significant time fixing one bug comes
at the expense of fixing other bugs [40]. This suggests that beyond initial triage, deciding
which bugs to fix can be a complicated process that incorporates information that is not
only available in the bug tracker, but that resides with the development team and their

understanding of the system architecture and the current state of the product.

This aligns with the insight by Halverson et al. that developers use a bug’s relationship to
other bugs in terms of their functional dependencies, in order to determine how they should
be triaged and in which order they should be assigned and resolved. For example, in their
study, numerous participants pointed out that “multiple related bugs could be a sign of a

larger structural issue with the code, potentially requiring redesign” [33].

32

Chapter 3

Requirements

As part of our initial research, we explored existing approaches and tools to supporting
bug tracking and bug triaging. In the open source community, for instance, we found sev-
eral ad hoc approaches that have been built around existing bug trackers (as described in
Section 2.2.1). We also looked at field studies which suggest that a much broader process
exists, involving communication and coordination between different groups, through which
bug tracking and triaging actually takes place (as described in Section 2.4.3). We also real-
ized that, while there is much room for improvement in existing techniques, such as duplicate
detection and assignment automation, any such improvement would still be within the con-
fines of the bug tracker. As we have seen, however, working within the boundaries of the bug
tracker has some fundamental limitations. Specifically, as further expanded in Section 2.3,
triagers must still work through a list of bugs, one-by-one, with the limited aid of some filters

and possibly tags, to triage.

Inspired by our findings, and our own experiences having witnessed and participated in
triaging meetings in both a commercial and open source development setting, we decided to

step back and look at triaging as a whole—what is it that triagers need to achieve, and how

33

can they achieve it effectively?

To address these two questions, we developed a dedicated tool based on the concept of sets
of bugs. To guide the development of the tool, we identified four elementary requirements
for triaging; that is, basic needs that triagers have and that must be reflected in any triaging
tool. Each of the following requirements first states the basic need for triaging, and then

works out the implications for sets of bugs.

Initially these requirements were somewhat vague, based on discussions on blog posts, wiki
articles from the triaging community, the studies that we have previously mentioned, and
speaking informally with developers from a professional software development organization.
As we explored our initial requirements, we began to construct several prototypes, and
through these reflected more on the problem. The following requirements are the results of
this iterative process, and represent the four most important requirements that we set out

to meet in the research.

3.1 Requirement 1: Explore

The first requirement for a triaging tool is to provide triagers with the ability to browse new

and unassigned bugs and to easily organize them into categories for further triaging.

The number of bug reports that should be triaged in a typical large project can be over-
whelming. For example, in the spring of 2010, the Mozilla Firefox project had approximately
13,000 unconfirmed bugs that were unassigned to either a developer or a milestone [31], with
a multitude of new bugs being filed each day. To make the process of triaging these bug
reports manageable, a tool should provide triagers with ways to explore and organize the
bugs; that is, they should be able to quickly get to a subset of the bugs that they find

interesting, and change this subset at any moment in time when they want to take a look at

34

a different slice of the overall set of bugs.

Situations arise in which triagers cannot immediately triage a bug until more information
is obtained, or other bugs are triaged first [29]. Part of exploring a large collection of new
bugs is being able to set select ones aside to come back to at a later time. To support this,
a bug triaging tool should support ad hoc grouping of bugs, i.e., the manual creation of
sets of bugs that are seemingly unrelated but of importance for the triager or developer to
keep track of. This allows triagers to set aside bugs that may require follow-up from the
reporter, need additional information from another developer, or can only be triaged after
the workload across the developers is determined from triaging other bugs. Supporting ad
hoc grouping is especially important in open source projects where many unconfirmed bug
reports require follow-up from the reporter with more details, stack traces, or screen shots
[29]. It should also be possible to persist sets of bugs across triagers, so they can be used as
a starting point for a future triaging session. New triagers, too, may want to use sets as a
way of putting bugs aside for review by more experienced developers, while still contributing

to the process in assigning those bug reports that they can clearly handle.

Ad hoc groups could also be used for tentative planning. Rather than making definite
assignments bug-by-bug, a triager could use an ad hoc group to create a planned set of bug
assignments for a given developer or milestone that they do not want to quite commit just
yet. If one of the developers is already overloaded, for instance, it may still be desirable to
assign him or her some bugs that he or she is most qualified to address. Doing so through
an ad hoc group allows the triager to safeguard against assigning too many new bugs to the
developer. Particularly, if at the end of the triaging session only a few bugs exist in the ad
hoc group, they can then be assigned as a whole, but if there clearly are too many, some can
be reassigned first to other developers without having to look through all of the bugs that

were already assigned before the triage session began.

35

3.2 Requirement 2: Search

The second requirement is to provide triagers with the ability to search for bugs using different

criteria, as well as to group them based on these criteria.

While we could focus on creating a rich portfolio of search filters as the goal of our research,
if one examines the comments from the triaging community and the types of searches that
bug triagers actually want to express, it is clear that we need to go beyond simple search

filters that can be applied in the bug tracker.

As stated under requirement 1 (Explore), triaging requires the ability to easily organize large
sets of bugs, and then to be able to flexibly compose and work with these subsets. Triagers
also need to be able to do this in a way that can be shared with other triagers or developers so
that the rules and norms of the community can be developed and maintained. This suggests
a need for not only a way to work with sets of bugs, but also a new approach to how these
sets are defined. Specifically, we need an approach that allows triagers to compose sets of
bugs that take into account the different fields, statuses, and heuristics that triagers apply to
make triaging decisions based on the varying workflows and rules used by each community.
In other words, triagers must be able to find bugs and organize them based on the criteria

that are useful to them.

While predefined search filters are useful, they necessarily limit the ability of the developer
since they cannot easily compose, modify, or share them with other developers. Consider

the following examples of types of sets that a triager might want to explore while triaging:

e Bugs which have been reported in the last 24 hours.
e Bugs which have gone for 30 days with no comment from the reporter.

e Bugs which have been reassigned multiple times to different developers.

36

e Bugs which include a screen shot or stack trace as part of their description.

e Bugs which have been waiting for more information for over 30 days and already include

one reminder from a triager.

These, and other sets like it, should be easily obtainable by triagers. In fact, if they so wish,
these sets should not just be viewable, but also assignable in their entirety to a particular

developer or milestone.

3.3 Requirement 3: Inspect

The third requirement is to provide triagers with the ability to inspect individual bugs by

reviewing comments, histories, and related bugs, to make informed triaging decisions.

Once a triager has identified the sets of bugs that need to be triaged, they must review each
individual bug to take some action. The information that a triager should have available
varies depending on the state of the bug that is being inspected. If a bug is early in the life
cycle and has recently been reported, a triager will need to be able to view basic information
about the bug, like the summary, the details, and the reporter. This information should
be immediately available to the triager upon selecting a bug, especially since triagers may
not have much time to dedicate to each individual bug. If the initial review of the bug
information does not provide enough detail to make a decision, the triager should be able
to easily inspect additional details and related data elements. For example, screenshots,
attached files, or stack traces within the bug report can help inform the action that should

be taken.

Later in the bug life cycle after it has been assigned however, a triager may require a

different set of details to properly inspect the bug. For example, a triager should be able

37

W Changes made to bug 19

* C A 8 nttpsy/bugzillamozilla.org/show_activity.cgi?id=199819 =
noririty 2003-03-31 |[s:atu- | unconFirmeo [[wew | | g
n4g:28 TS 4 |
seb 2003-04-14 Keywords ||regression
05:21:00 PDT |
e [privacy] setting browser.formfil.enable to false doesn't disable setting browser.formfill.enable to false doesn't disable form
Y | form autocomplete autocomplete
| Status I NEW RESOLVED
| Resolution || --- INVALID r
| Target .
Milestone (| POSN0-7 |
Fazk 2003-04- 14 05:21:00
Resolved
seb 2003-04-16 Status] RESOLVED REOPEMNED
11:48-47 DOT 2

Figure 3.1: An example Bugzilla history for a bug report showing the status changing from
UNCONFIRMED to NEW to RESOLVED and to REOPENED.

to easily identify problematic patterns in the bugs history, such as frequent reassignments
or inactivity, to take the appropriate action [26, 33]. For example, a bug that goes from
high to no activity could indicate a “zombie bug” that may be at risk of falling through the
cracks, and it is important for triagers to be aware of and potentially reassign the issue. For

instance, Figure 3.1 shows the the history of a bug that has changed status several times.

Being aware of these status changes and their causes may well influence the actions of the
triager, who, instead of simply assigning the bug, may add a comment requesting more
information from the reporter, or contact the developer who was originally assigned the bug

to learn what expertise is needed to resolve the bug.

Whether or not source code has been committed to the bug, comments from developers and
the community, and any status changes or reassignments are examples of the kind of infor-
mation that should be at hand when triggers are making assignment decisions. In the ideal
case, the information should be summarized for at-a-glance examination and interpretation,
but at the same time any details should be readily obtainable when they are needed to make

an informed decision.

38

3.4 Requirement 4: Take Action

Finally, the fourth requirement is to allows triagers to easily take action by assigning a bug,

adding a comment, assessing any feedback, and moving on to the next one.

It goes without saying that the process of taking an action on a particular bug, which usually
means assigning a bug to a milestone or developer, must be lightweight and require minimal
effort. When working with hundreds or even thousands of new bug reports, triagers must be
able to efficiently work through the set of bugs and take action. Triaging actions generally

fall into one of four categories, abbreviated as A.C.T.S.:

e Assign: Triagers assign a new bug to a developer or milestone, or re-assign a bug that

has already been assigned.

e Comment: Triagers often comment on new bugs to either request additional infor-
mation from the reporter, or to add context that can be used to assign the bug at a

later time.

e Tag: Triagers leverage tags to add metadata to the bug report to both categorize bugs

and also indicate state within a workflow.

e Status: Triagers move bugs between various states in the workflow as part of the

triaging process.

Triagers should be able to easily perform these actions without disrupting the triaging process
or altering the context created by the initial bug sets. This is not the case in existing bug
trackers, since viewing a bug’s details and performing an action usually require leaving the
bug list and losing the search context. For example, the process of triaging a list of unverified

bugs using Bugzilla is the following:

1. Load the Mozilla Bugzilla page at https://bugzilla.mozilla.org/

39

2. Click Search link

3. Select Advanced Search

4. Select a status of NEW (along with any additional filter criteria) and click Search
5. Sort the search results by a column, such as the bug’s severity

6. Select an individual bug from the list and review its details

7. Select a developer from the Assigned To list, or set the Target Milestone, or both
8. Click the browser’s Back button to return to the search results

9. Repeat step 6

It is crucial to avoid such context switching between searching, inspecting, and finally taking

action.

Additionally, in existing bug trackers, after a decision has been made to assign a set of bugs
to appropriate developers and milestones, all of that information moves to the background.
The bug disappears from the list, but there is no tangible feedback for the triager. The
triager has no easily accessible cumulative record of their assignment decisions, other than
their personal memory. This is a problem, as triaging decisions are not just based on which
developer is suitable to work on a bug, but also on the desire to appropriately manage
the emerging workload of each developer and evenly distribute new feature requests across
releases [26]. In commercial settings, it is particularly important for anyone triaging issues
to not only appropriately label and assign bugs, but also to maintain a balance of bugs
between developers and milestones, as there are limitations in the resources that are assigned.
This information, available upon assignment, can provide valuable feedback during the few
minutes allotted to each issue, and assure that one particular developer or milestone is not
overloaded or underloaded. Once an assignment has been made, the effects of that action

on the workload should be visible to provide awareness of the impact on the project.

40

A triager should also be able to assess their progress in handling the current set of bug
reports. Particularly, they should be provided with up-to-date counts of how many bug
reports are left to triage in each set that they are working with. For example, a triager may
find that a large number of bug reports cannot be assigned since they require additional
information from the reporter. Over time, the number of bugs in this group should decrease
as the reporters comment and the bugs are assigned. Triagers should have a sense of whether
bug counts in certain groups are increasing or decreasing in order to measure the effectiveness

of the triaging process.

3.5 Summary

These four requirements suggest that, just as developers have an integrated development
environment (IDE) for working with source code, triagers should have a dedicated workspace
that integrates with the information stored in the bug tracker, but provides a view of the bug
list that supports triaging. The same interface must support exploration and searching for
bugs based on criteria, visualization of important bug details, and quick action with feedback.
However, any approach should integrate with existing bug tracking systems. Migrating a
large number of bug reports and mapping them to a new bug tracking system is a significant
undertaking, especially in large and established projects. Since existing bug trackers work
fairly well in some regards, it would be prudent to maintain the existing information and
provide an interface on top of the bug tracker to facilitate triaging. Any new information
that is generated as part of the triaging process should be kept in sync with the source bug

tracking system. We summarize the requirements for a dedicated triaging tool in Table 4.3.

41

Explore

Support organizing large collections into bug sets
Allow the creation of ad hoc bug sets

Allow the composition of bug sets

Search
Allow triagers to search based on criteria
Support advanced criteria such as time windows and
actions
Support the creation of tag sets from searches
Inspect

Display information that is relevant to triaging at all
stages of the bug life cycle

Allow triager to view additional details

Provide an at-a-glance view of a bug’s event history

Take Action

Support primary actions: assign, comment, tag, and
change status

Support these actions on both individual bugs and on
sets

Allow actions to be taken without unnecessary switching
context

Provide reflective feedback after actions are taken

Table 3.1: Summary of requirements for a dedicated triaging workspace.

42

Chapter 4

PorchLight

Because bug trackers are ubiquitous and have established roles during software development,
our approach has been to augment and integrate with existing bug trackers rather than try
to replace them. We decided to design and implement a new user interface that sits on top
of the bug tracker and is compatible with the data that has already been collected, but also

introduces the key features that are needed to support and enhance the triaging process.

The main question in designing this new interface is: what metaphor would best satisfy
our requirements for representing sets of bugs and provide an improved experience for
triagers? Through numerous mock-ups and iterative designs, we explored a range of al-
ternative metaphors, including a stacking metaphor (each bug report is represented by a
note card that can be sorted into stacks to represent desired groupings, see Figure 4.1), a
network metaphor (each bug is a node in a network that the triager could navigate and
update by using and changing relationships between nodes to create clusters), and a grid
metaphor (each bug report is represented by a tile in a grid that the triager can reshuffle to

make assignments).

Ultimately, we chose to adopt tagging as a paradigm for working with bugs. Tagging has

43

Figure 4.1: Early mock-up based on the card stacking metaphor.

emerged as a powerful technique that is applicable to many different situations (e.g., manag-
ing e-mail [37], collaborating through work items [50], annotating online media [23]). Many
software projects have adopted tagging as a way to both organize and annotate bugs to in-
dicate progress or state. Some communities even provide a collection of tags that should be
used, and it is recommend that triagers organize bugs first by tagging them before triaging
(The Chromium Projects [21] being the prime example). Tagging is also an easy way for
a community to establish norms [50] and communicate them to new contributors who may
wish to help with the triaging process. Finally, nearly every bug tracker already supports
tagging of bugs in some way. For example, both JIRA and Bugzilla provide a field when
reporting a bug for entering free-form tags that can subsequently be used to search for bugs

or to create search filters.

Despite their potential, tags are not used consistently throughout most bug tracker interfaces
as a means of organizing bugs or triaging. For example, both JIRA and Bugzilla provide
search interfaces that emphasize searching based on descriptions, assigned versions, or other

attributes which are often set after bugs have been triaged. JIRA additionally provides an

44

Agile view for organizing new feature requests into sprints, which emphasizes a different set
of attributes, such as assigned story points and sprint version. While these fields can be used
for triaging, they do not provide the ability to broadly categorize large numbers of bugs, as
tagging can. As a result, tags are displayed as optional columns in tabular views, or as a

field that can only be viewed after selecting an individual bug.

Our goal is to move tags to the forefront of the user interface as the primary means of
categorizing large collections of bugs and making triaging decisions. That is not to say that
tags are the only attributes that are important in a bug tracker. Rather, we view it as the
most effective tool in tackling the problem of too many bugs during triaging. Tags provide
triagers with an efficient way of taking a “first pass” at bugs and sorting them for further
work. By developing a tool that is tailored for this process, we aim to improve how triagers

can do their work.

The result of our design efforts is a novel bug triaging tool, PORCHLIGHT, that leverages
tagging as the mechanism for organizing and working with bugs. In this chapter, we demon-
strate our approach through PORCHLIGHT’s basic features, and we highlight its novel fea-

tures which unlock the power of tagging.

4.1 Design Decisions

To ensure that we adequately address the requirements for a triaging tool that we described

in Chapter 3, we first made several key design decisions.

First, we wanted to make PORCHLIGHT a dedicated triaging tool. While there are numerous
roles that use bug trackers during the software development process, and whose work we could
improve with a dedicated tool, our goal was to focus on supporting the specific needs of a

triager. We wanted to develop a tool that would support triaging in both in open source and

45

commercial settings where triagers must work through large collections of bugs and make

triaging decisions.

Second, we wanted PORCHLIGHT to integrate with existing bug trackers. Development teams
and communities have invested much time (and in some cases, money) in their existing bug
tracking tools. To encourage adoption, we wanted to build a new environment to supplement
the existing bug trackers and that would use the same underlying bug report data. The rest
of the team could continue using the bug tracker tool as is, while triagers could make use of

this new environment.

Third, we wanted tag sets to be the primary mechanism in PORCHLIGHT by which triagers
interact with large collections of bugs. Rather than just re-implementing the search filters
and tabular view that triagers already use, we wanted to anchor the workspace in tag sets.
We also wanted to use tagging as a way to create these tag sets since it is an approach that

triagers are already familiar with.

Finally, we wanted to avoid excessive context switching in PORCHLIGHT as much as possible.
Because we have designed a new view on top of the bug tracker and were not bound by
existing views and workflows, we had the opportunity to address one the major sources of
frustration in working with large collections of bugs to triage. We wanted to make the process
of exploring, searching, inspecting, and taking action possible through a single perspective

that did not require the triager to navigate back and forth between different levels of detail.

4.2 Overview

The PORCHLIGHT user interface is shown in Figure 4.2. Because PORCHLIGHT is imple-
mented as a new interface to existing bug trackers, users can connect it to a source bug

tracker by using the project import feature (Figure 4.3) which imports the project and all

46

of the bugs from the bug tracker.

Once connected to a source bug tracker, any changes made in PORCHLIGHT, such as updating

bug meta data or assigning a bug, are recorded until the user wishes to commit them. The

ability to commit changes allows the triager to review changes made across numerous bugs

before they become permanent in the bug tracker (Figure 4.4). Changes that have been

committed to the source bug tracker are available for other users to view and modify. If

there are any conflicts during the commit process (that is, the status or other details of a

bug have been changed in the bug tracker), the conflicting bugs will be displayed and the

user will be given the option to either preserve the bug state as it is in the bug tracker or

continue by applying the changes.

If a source bug tracker hosts multiple projects, the

File

currently

active project is displayed

[search users.

[Search issues.

] [Search versions.

(35

brentm (74)

35

eduardoa (1)

(35

Jace

g
&

(35

Jaysenp (78)

(35

leilanim (48)

2

[~}
narupley 282)

-}

wayneh (171)

Finished Importing Data

[Tags | Summary [
MIRTH-3145 Mirth Connect Counts not being updated [a] [Has Active Tag
MIRTH-3146 CLI Method to remove channel should always undeploy the channel first Q]
[[] Unassigned (User)
MIRTH-3147 Improve message pruner to prevent out of memory errors when message ids to prune are not contiguous
MIRTH-3148 HTTP Listener no longer replaces values from the global channel map [Unassigned (Versio
) Open
MIRTH-3150 Code template inclusion is no longer restricted by the template scope (Message/Channel /etc.) =
MRTH-3151 Add methods to ChannelUtl to retrieve a list of all channels (or all deployed channels) [F| O Resohed
MIRTH-3152 D Invalid HL7 error © Closed
MIRTH-3153 Thread deadlock when a channel's source connector fails to start and the source queue is enabled
MIRTH-3154 Importing a transformer into a destination does not reconcile the source outbound data type
MIRTH-3155 Add case insensitive, starts with/ends with options to Rule Builder
MIRTH-3156 File Reader fails to read files on servers hosted on certain operating systems (like AIX)
MRTH-3158 Auto-created Mapper variables should be displayed in “Available Variables™ in filters and transformers to which they are visible
MRTH-3159 []J] Server and Database tab of Mirth Connect Server Manager does not display correctly.
MIRTH-3160 /Add the ability to display correlated connectors in a message browser search
MIRTH-3161 Raw content is not included for destination connector message imports
MIRTH-3162 Subsequent queued messages can get skipped if a previous queued message was deleted z

Allow parallelization of message processing through a single channel

(Created by narupley on Mon Mar 03 08:42:06 PST 2014

Currently only one message can process through a channel. This is by design for things like message order preservation and the serial nature of the global channel map.

sable All

[Gestmatons]

patthern,speling | (1)
®

[T

However, this can severely hamper message throughput for channels that don't actually _need_ message order or any other benefits that the *single message conduit' paradigm might bring. Especially for stateless" Web Service / HTTP
Listener channels, requests tend to be mutually exclusive and don't necessarily need to be ordered in any specific way. This can be true for HL7 interfaces as well, particularly for servers that accept QRY messages and return a set of

results (immunizations, syndromic surveillance, etc.). In 2., the

part existed when

a channel, but you couldn't actually respond from a destination or custom response.

So in essence, this feature would provide some way for multiple messages to process through a channel at the same time. Obviously certain sacrifices would have to be made:
* Message order is not guaranteed. So a message that was received first is not guaranteed to be sent out first, and the associated response is not guaranteed to be sent back to the source first. Also, depending on how this is impleme
inted, the overall message ID may not accurately reflect the true order of messages as they were received by the channel.
 Collisions and overwriting of shared memory (like things stored in the global or global channel maps) could happen across different messages, without appropriate checks. With the current structure, if a counter is kept in the global ¢
hannel map, then it's guaranteed to be accurate across multiple messages. However that would no longer be true.
* Scripts for different messages can be running at the same time, and in indeterminate order. So for example if you are using a transformer to call out to a database, you should expect that multiple instances of the same transformer ¢

ould be doing that at the same time. Any q

02/28/2014 00:43+

Date: 03/04/2014 09:49:53
Comment Author: narupley

should be written appropriately to prevent deadlocks or other problems.

04/21/2014 13:58:05 11/09/2014 01:

08/13/2014 05:38=

Here's one of the more recent forum threads regarding this issue, though there have been several in the past, and also people on IRC talking about it

[Intp: fuwwaw. mirthcorp. com/community/forums showthread. php7p =37933#post3 7933]

Add Comment

e ——
38— 08/14/2014 07:08:09 0

04/05/2015 17:38:18

09/23/2015 15:44:59———09/23/2015 15:

©

)

>

B

0)

i

7)

2

i

i

9

i

9)

i

1)

)

)

1)

)

]

)

i

3

o

31)

i

3.0.3018)

1)

3.0.267)

D]

[aI

Figure 4.2: The user interface of the PORCHLIGHT system, implemented as a Java desktop
application. Clockwise from the top: (a) user list, (b) milestone list, (¢) bug details, (d)
timeline, (e) tag set list.

47

[] Import from JIRA

JIRA Project Key

[MIRTH

JIRA Server

Server URL |http:,f,"www_mir‘thcorp_com,"communitwissues

Username |gera|db | Password | ---------

Destination Graph Path

JUsers/geraldb /Documents /workspace /porchlight/graphs /MIRTH Browse

Subversion Repository (optional)

Repository URL |https:,f,fsvn.mirthcorp_com,fconnect,f

Username Password

Project Key [MIRTH |

Open graph after import

Figure 4.3: Importing project bugs from a source bug tracker.

the upper-right corner of the interface. Users can change the active project using the project

selector dialog (Figure 4.5).

Selecting a project results in multiple lists being populated: a user list on the left of the
interface, a milestone list on the right, and the list of bug reports in the center. The goal of
the interface is to include all of the information that the triager needs to inspect a bug report
and assign it to both a user and a milestone. Doing so in a single perspective prevents users
from having to continuously switch between different views to see both bug details and bug

lists.

4.2.1 User List

The user list (labeled “a” in Figure 4.2) displays all of the user accounts that are available
in the bug tracker. Each user is visualized as an icon with a label containing the user’s

login name and current assigned bug count. In a typical open source project with many

48

800 Commit Dialog

Review Changes

Type Key Description
User Assignment MIRTH-2571 Assigned to bradd
Version Assignment IMIRTH-2571 Removed 3.0.0 RC 1 from fix versions
Version Assignment [MIRTH-2571 Removed 3.0.0 from fix versions
Version Assignment [MIRTH-2571 Added 4.0 to fix versions
User Assignment MIRTH-2566 |Assigned to brentm (from narupley)
Version Assignment [MIRTH-2566 Removed 3.0.0 RC 1 from fix versions
Version Assignment [MIRTH-2566 Removed 3.0.0 from fix versions
Version Assignment IMIRTH-2566 |Added 3.1.0 to fix versions
Comment Created |[MIRTH-2562 Please attach a screenshot of the issue. Please provide a screen...
Tag Added Gerald (= assignee geraldh)
Tag Added Optimizations |Assigned to 3 bugs

‘ Commit H Cancel

Figure 4.4: Committing changes made to to the bugs.

bug reporters and commenters, this list can be very long. While we have decided to include
all users in this list to make it possible to assign to any participant in the community, we
have taken several steps to make it more usable than just a large alphabetically sorted list
of users. Because there are different types of users (i.e., not all users registered with the bug

tracker are developers), we partition the user list into the following groups:

e Users that have been assigned bugs
e Users that have only commented on a bug

e Users that have only reported a bug

800 Select Project

Select project to open

Mirth Connect v

| Open || Cancel |

Figure 4.5: Selecting a project.

49

o All other users

Within these groups, the users are sorted by the total number of assigned bugs. If the

number is equal, the group is sorted alphabetically based on the username.

In a project that has been active for some time or has quite a few bugs, the first group
represents the makeup of the core contributing developers. These are the users to which a
bug is most likely to be assigned for resolution. The second group represents users that have
participated in the bug reporting process by commenting on a bug, but are not currently
active in development. This group is likely to be triagers who request additional information
from reporters through comments on bugs. The third group represents users who have
contributed by creating a bug report, but not followed up with additional information.
Finally, the remaining users—those who have created an account but have no activity—are

displayed in the last group.

Even with the grouping and sorting method described above, the list of users can become
quite long. To make it easier to quickly find a specific user in the list, we have included a
search field that will automatically scroll the list to the user that most closely matches the

search term entered (see Figure 4.6).

4.2.2 Milestone List

The milestone list (“b”) displays all of the milestones, or release versions, for the project
defined in the bug tracker. Each milestone is visualized as an icon with a label containing
the milestone name (typically, but not always, a version number) and a count of the number
of bugs that are currently assigned to the milestone. The milestone list is sorted using
the Semantic Versioning, or SemVer, specifications [18]. This handles version numbers that

follow the convention of X.Y.Z, where X denotes the major version, Y denotes the minor

50

b |

(=

chrisl (274)

(=

chrisr {37}

D

e

[
mitchd {41)

Figure 4.6: User list showing search results.

version, and Z denotes the patch version. This scheme also takes into the account pre-release

qualifiers, such as alpha or beta.

The milestone list includes both released and unreleased milestones, as it is not an infrequent
occurrence that a release contains bugs that were not resolved yet. In such cases, the triager
still has to have access to the bug for further handling and rescheduling it to an upcoming
release, and know where it was originally to be resolved. Planned releases are shown first in

the list to prevent constant searching.

4.2.3 Bug List

The bug list (“c”) is the primary focal point for triagers in PORCHLIGHT. Each row in the
list displays the bug’s unique identifier, colored squares representing the tags assigned to
the bug, and the summary. The list is populated with all of the bug reports in the project,
initially presented chronologically with newer bugs at the top and older bugs at the bottom.
We have chosen these columns for the list because they convey the minimum amount of

information that is needed to quickly identify a bug.

51

[search users. | [search issues.] [search versions.

- - Key o Tags Summary [] [=]
christ (37) MRTH-1965 Miirt WS receiver cant' handle HTTP 1.0 invocations [~] [JHas Active Tag
8 MRTH-1966 RTF Files Generated From Document Writer Produce Blank Files 0 unassigned (us Enable All | Disable All 3.0.0 372)
Py METU_oF MUSDU receiiar doecatarcent WD) Sl catoran ;
dabuddhaman (1) I MRTH-1968 [] Redirect java.util.logging (UL to log4j [unassigned ve Dvllrnlzalmm 9 = L
f T T T 4l G open @ 2230
- MRTH-197 Need a way to get all the users currently holding a session O Resolved _
dans @9) MRTH-1970 Add to HTTPReceriver content-type dynamic selection and possibility to return binary files
MRTH-1971 Add About Box information for 05 X O Closed 22269
& MIRTH-1972 Default source and destiation connectors should default to channel reader and channel writer _ r
erikh (1) MRTH-1973 MLLP destination - Send ACK to channel - pass mappings with message = =
® || Redirect java.util.logging (JUL) to log4j 221 @D
os =
geraldb (519) Some internal components in Java use JUL to manage logging. These log entries are treated as if they are from System.out when using log4). JAX-WS especially generates a lot of log lines, so it would be useful to control J
o] this output 2.2.0RC1 (B9
(&}
jacobb (768) ©
9 2.2.0 110)

Figure 4.7: Bug list with selected bug and associated user and milestone.

The triager navigates this list by moving up and down (either with the scroll bar or using
arrow keys). If a selected bug has already been assigned, the developer and/or milestone to
which it has been assigned are highlighted in the respective list. For instance, in Figure 4.7,
MIRTH-1968 is selected and shown to be assigned to “geraldb” and milestone “2.2.0 RC1”.
This makes it possible for a triager to quickly determine if a bug has already been assigned,

and to which developer or milestone it has been assigned.

4.2.4 Timeline

Selecting a bug from the bug list displays additional information about the bug. This includes

the summary or title of the bug, a more detailed description, and the timeline (Figure 4.8).

10/27/2011 16:42:14 01/19/2012 16:46-4+4

i
| |
12/02/2011 07:5363 12/02/2011 07:55:03

Figure 4.8: Timeline showing actions in the bug’s history.

The timeline displays all of the activity that has transpired relating to the bug report (Fig-
ure 4.9). Actions are plotted chronologically on the timeline oldest to newest from left to
right. The starting date for the timeline is the date the bug was created, and the ending date
is the date of the last action taken. Actions that are related to the bug appear as colored

vertical markers ((1) in Figure 4.9). A cursor ((2) in Figure 4.9) under the timeline indicates

92

the selected event, and can be used to traverse the history of the bug using the left and right
arrow keys. Each action type is assigned a different color to make it easier to distinguish in

the timeline. Table 4.1 shows the actions represented in the timeline with their associated

color.
Action Color
Comment added Blue
Attachment added Blue
Assignment (or reassignment) to user | Red
Assignment to milestone Red
Status change to Closed Red
Vote added Red
Tag/label added Purple
Source code committed Orange

Table 4.1: Actions displayed on the activity timeline and their associated color.

It is not uncommon for multiple actions to occur in succession (for example, commenting
on an bug and then resolving it). To make it easier to identify individual actions that occur
within a small timeframe, multiple actions are represented as stacked markers, one per action
((3) in Figure 4.9). It is also common for there to be periods of inactivity between actions,
which can cause areas of high activity to be concentrated in one area of the timeline. We
have added several features to improve the visibility of individual actions and to make it

easier to make sense of the history.

(1 3) I | %(4) | (6)

A 3/11/2015 5/14/2015
2 (5)

Figure 4.9: Different elements of the the timeline component.

Particularly, the timeline is further broken down into periods of activity. Long periods of

53

10/27/2011 16:35:36 10/27/2011 16:42:14 01/19/2012 164644 01/19/2012 16:
| |
| I |
| |
12/02/2011 07:53:& 12/02/2011 07:55:03

Date: 10/27/2011 16:36:10 | M jtrunk/server/src/com/mirth/connect/connectors /http HttpListenerProperties.java -
Commit Author: geraldb <geraldb@webreachinc.com> M /trunk,/server/src/com/mirth/connect/connectors /http /HitpConnector java
M Jtrunk/server/src/com/mirth/connect/connectors/http (HitpMessageDispatcher.java

i

MIRTH-1996: Binary MIME types on requests are now Base64 encoded before added to the request XML B B et . . N . .
MIRTH-1991: Default charser is now used for listener and sender ﬂ M Jtrunk/server/src/com/mirth/connect/connectors/http (HitpMessageConverter.java

MIRTH-1953: If the sender MIME type is set to “application/x-www-form-urlencoded" the POST request bady will be set to the query par—| M /irunk/server/src/com/mirth/connect/connectors/hitp /HitpMessageReceiver.java :I
Arantare M /trunk /server/src/com/mirth/connect/connectors /htto /HitoConfiauration.iava =

Figure 4.10: Timeline with event details.

inactivity are removed and the interruptions are noted by the zigzag ((4) in Figure 4.9). This
allocates more space for the actions to be displayed, and decreases the amount of overlap
between markers during those periods of activity. The timeline is broken down in up to four
activity periods, with each of the three largest gaps between actions having to be longer
than one week in order for the four periods to be shown. The start and end dates of each
period of inactivity are indicated above or below the timeline, with a solid line connecting
the two dates to indicate the time span ((5) in Figure 4.9). We chose this design so that the

timeline can convey activity on a bug over any period of time.

We also fill the timeline background between markers with colors to indicate activity between
those two actions ((6) in Figure 4.9). For example, the background between Open and
Resolved markers is shaded red, the background between Resolved and Closed is shaded
yellow, and the background between Closed and Reopened is shaded Green. We chose this
design to make it easier to identify patterns in the bug’s activity at-a-glance without having

to view the details of each action.

Selecting a marker from the timeline changes, either by clicking on it or by iterating through
the actions using the arrow keys, the marker’s color to green and reveals additional details
about the action under the timeline (see Figure 4.10). For example, if the action is a user
commenting on the bug, the contents of the comment are displayed, along with the author
and the date it was added. If source code was committed to the bug, the commit log message
and a list of the source code files committed are displayed, along with the types of changes

made to each of the files (added, modified, or deleted).

o4

A timeline visualization was chosen to display each bug’s history because it allows triagers to
assess the level of activity related to a bug in an at-a-glance manner while also providing the
ability to drill down and view additional details. Because triagers can iterate quickly through
the bug list, it is important that the detailed action information be immediately available
without requiring them to navigate to a separate view. A timeline also affords the ability to
detect patterns in the activity for a bug. For example, a timeline with primarily assignment
and reassignment actions, and few if any source code commits or comments, likely indicates
that the bug is a “hot potato” that is being reassigned among developers. A timeline with
a flurry of activity just before the current date can, on the other hand, indicate a bug that

has become “hot” and is likely to be resolved, possibly leading up to a release.

As an additional example of how the timeline can be used for triaging, suppose that a triager
selects a specific bug and views the timeline showing the bug’s history. By traversing through
each of the events, they notice that the bug had been closed once, but then re-opened with
no other activity. This could indicate that there was some deficiency with the original fix
and that the developer required more information to resolve the bug. This type of pattern

might be a candidate for a tag set of bugs that require follow-up from the triager.

4.2.5 Quick Filters

Before triaging, it is likely that a triager will need to immediately cull the list of all bugs
to a subset that need to be reviewed. To make this easier, we have included a set of filters
that filter the bug list based on a few key statuses. Triagers can enable a Quick Filter
(see Figure 4.11) from the top of the interface at any time. The following quick filters are

available:

e Unassigned (to a user)

%)

Unassigned (to a milestone)

Open

Resolved

Closed

Has Active Tag

Note that multiple Quick Filters can be active at the same time. For instance, selecting
both Unassigned and Open will only display bugs that are open but are not yet assigned.
In order to avoid conflicting filters being applied, the status options (Open, Resolved, and

Closed) are radio buttons that only allow one to be selected at any time.

The Has Active Tag quick filter only displays bugs that have been assigned to one or more
tag sets that are selected in the tag set list. This filter, in combination with the tag set
functionality which is described later, allows triagers to easily categorize a large bug list.
Triagers can use these quick filters to set up their environment before taking on the task of
triaging new bugs. For example, a triager will likely enable the Open and Unassigned (both
to user and milestone) filters to obtain a list of bugs that need to be assigned. From here,

they can drill down into the details of each bug and perform an assignment action.

Key | Tags | Summary |
MIRTH-2572 Add file/folder navigation to External Script transformer step :: [_] Has Active Tag
MIRTH-2569 The Add Channel Tag dialog sometimes displays all black the first time it is opened | Unassigned (User) Enable All Disable All
MIRTH-2551 GUI of administrator will frozen when open in remote client,esp when open two clier
MIRTH-2549 High concurrency causes JavaScript type errors [unassigned (versio Cptmizaten |5
MIRTH-2547 Support new HL7 v2.7 truncation character (#) in MSH-2 @ Open
MIRTH-2543 webadmin in 3.0 can't login in a mapped local ip. 3 Resolved
MIRTH-2540 Add ability to reverse the Sort Files By setting in the File Reader
MIRTH-2538 Moving a JavaScript Filter in the Filters list causes it to be renamed © Closed
MIRTH-2532 Consolidate error types far alerts
MIRTH-2519 Add ability to import/export specific transformer steps
MIRTH-2513 Add support for storing the message received_date with milliseconds in MySOL z

Figure 4.11: Quick Filters with several filters enabled.

56

4.2.6 Search

A search field in the upper-right corner of the interface allows triagers to perform a search
of the bug reports in the bug list. If the search term entered into the field matches a bug
identifier exactly, with or without the project prefix (ex. MIRTH-1968 or 1968), the exact
bug will be displayed in the bug list. All other search terms will be partially matched against

the bug summary or description and the results will be displayed in the bug list.

4.2.7 Assigning Bugs

Because of the layout of the PORCHLIGHT interface, it is possible to simultaneously inspect
detailed information about a bug, view it within the context of the bug list, and assign it
all within one perspective. Assignments can be easily performed through drag-and-drop: a
bug, or set of bugs that have been selected via Ctrl-click, can be dragged from the bug list
onto a user or milestone icon on the respective lists. The icon in the list is then highlighted
to provide a visual indicator that the bug can be dropped onto the list. Releasing the mouse
will drop the bug onto the user or milestone and the assignment will be made. The assigned
bug count of either the user or milestone is then updated in real-time to reflect the action

taken after a bug or set of bugs is dropped.

4.2.8 Quick Comment

The Quick Comment dialog shown in Figure 4.12 allows triagers to add a new comment
to a selected bug report. The triager has the choice of either entering a new comment, or
selecting from a list of snippets that will populate the comment text field. The snippets are
defined in a separate configuration file that triagers can edit to include additional snippets.

The status of the bug can also be optionally changed from this dialog. The following Quick

57

Comment snippets are included by default:

e “Please provide a screenshot of the defect described.”
e “Please provide a stack trace of the runtime exception described.”

e “There is not enough information to address this defect, please include additional steps

to reproduce.”

[] Bug Status - DEMO-5
Status: OPEN =
1 Response: |None |v

MNone

Request Screenshot
Request Stacktrace
Cannot Reproduce

Comment:

o perform a mon

Figure 4.12: Quick Comment feature displaying commonly used comments.

4.2.9 Tag Sets

The basic features of PORCHLIGHT described thus far make it possible for a triager to assign
groups of bugs to users and milestones (i.e., by using Ctrl-click to select multiple bugs and
then dragging them to the desired user or milestone), but not necessarily very conveniently.
Triagers still must manually select multiple bugs, and there is nothing they can do with the

selection other than assigning it.

58

To better support triagers in exploring, working with, and assigning bugs in groups rather
than individually, PORCHLIGHT employs the concept of a tag set, or a collection of bugs
that is indexed by a tag, or unique keyword. Tag sets are managed in the tag set list where
existing tag sets are listed with their names and associated color. Within this list, each tag
set can be selected or deselected independently from the other tag sets. When a tag set is
selected from the list, every bug that belongs to the tag set is identified in two ways. First,
a new marker is added to the Tags column with the color that is assigned to the tag set.
Additionally, the rows in the table are highlighted using the same tag set color. Deselecting

a tag set removes the markers and row coloring from the bug list.

Key | Tags | summary |

DEMO-1 What is an issue? [] Unassigned (User) Add Tag
DEMO-2 Changing an issue's status [[] Unassigned (Versio Enable All / Disable Al
pemo-3 OO Keyboard shortcuts

-emo (1)
DEMO-4 Editing issues [Open —

eyboard-shortcuts

DEMO-5 O Searching [Resolved Y (
DEMO-6 What's next? holding3) (1)

[] Closed

[] Has Active Tag

[4] Il [Tv]

Figure 4.13: Tag set list and indicators in bug list.

Each tag set’s color is also used to color a solid dot indicator in the Tags column of the bug
list to denote that the bug belongs to the specific tag set (shown in Figure 4.13). If a bug
belongs to multiple tag sets, as is often the case, then multiple dots are displayed in the cell.
To make it easy to identify tag sets that a bug belongs to when scrolling through the bug
list, we also chose to highlight the entire row in the table with the color of the tag set. In
the case when a bug belongs to multiple tag sets, the row is highlighted using the color of

the tag set containing the most number of bugs.

Colored markers were chosen to represent tag set membership since they are easy to detect
when visually scanning through the bug list. We are also able to display more tags sets

within the table cell as dots compared to displaying the entire tag name. Square markers

59

indicate static tags that have been added to the bug from the source bug tracker. Round
markers indicate dynamic tags, or tags that have been added to the bug through the creation

of a new tag set.

To make tag sets more approachable, PORCHLIGHT includes several tag sets that represent
criteria that are commonly used in triaging. These tag sets are included by default so that a
triager does not need to create them each time they use PORCHLIGHT with a new project.

The following predefined tag sets are included:

Popular: bugs that have had more than three comments

Missing Details: bugs that do not have a screen shot or stack trace attached

Hot Potato: bugs that have been reassigned twice or more

Zombie: bugs that have been open more than one month and have had no activity

It is important to note that all tag sets are always available to the triager from the tag set
list and can be updated by recreating the tag set; that is, as new comments are made on
bugs, stack traces submitted, or reassignments done (as just some examples), if one or more
bugs now matches the criteria of a tag set to which it did not yet belong, this tag set or

these tag sets will be updated to contain the bug (and it might be removed from others).

Working with Tag Sets

The true power of PORCHLIGHT lies in the ability to create new tag sets to help organize the
collection of bugs. Because tag sets persist across triaging meetings, it is not only possible
to continue where one left off, but also that the tag sets created by the triager can become a
vehicle for sharing common rules and criteria for grouping bug reports (thereby establishing

community norms). If a tag set has been created in error, it can easily be removed by

60

right-clicking on a tag set in the list and selecting Delete Tag. This will remove the tag set
and disassociate it from the bugs in the bug list. Tag can sets can be created using several

techniques.

First, triagers can create tag sets to view view all the bugs assigned to a specific user or
milestone. To do this, a triager can simple drag the user’s icon from the user list on the
left, or the milestone icon from the milestone list on the right, to the tag set area. This
automatically creates a new tag set automatically that can be used henceforth. The new tag
set is automatically assigned a random color selected from a pallet of pleasant pastels when
it is created, though the user can manually select a color as well. The color is used as the

background of the tag set label in the tag set list.

Triagers can also create tag sets from manually selected bugs from the bug list. The first
requirement we presented in Chapter 3 motivates the need for such ad hoc tag sets: setting
aside bugs that cannot be immediately triaged, grouping bugs that might seem unrelated but
that the triager wants to keep together, or keeping track of tentative plans to be confirmed
later. PORCHLIGHT supports such ad hoc tag sets by allowing triagers to select bugs from
the bug list and dragging them (one-by-one or as a group after Ctrl-clicking them) onto a
tag set in the tag set list. If the desired tag set does not yet exist, the triager can drop the
selected bugs onto any empty area in the list. The tag set creation dialog is then displayed

to allow the triager to specify the name and color of the new tag set.

These features are convenient for creating relatively simple tag sets. However, triagers may
also want to create tag sets based on criteria that are too complex to describe by simply
selecting bugs from the bug list. For example, they may want to identify bugs created
within a period of time, or that have been reassigned a certain number of times. This can be
accomplished using the tag set editor. This feature is particularly important, since triaging
is a dynamic activity where the set of bugs of interest changes over time and cannot be

predicted ahead of time, nor does the tag set always follow convention.

61

Key | Tags Summary |

DENG-1 What is an issue? ["] Unassigned (User) Add Tag

DEMO-2 00 Changing an issue's status [[] Unassigned (Versio | Enable All / Disable Al
DEMO-3 Keyboard shortcuts -CE i:, (1)

DEMO-4 Editing issues [Open —k board-shortcuts) (1
g O Searehing [Resolved eyboard-shortcuts) (1)
DEMO-G rr— O Closed -holding3 (1)

[[] Has Active Tag

[] Tag Set Settings

TAG review-later E‘ [4]] [T»]

ISSUES |DEMO-5
DEMO-6&

Color: 0K Cancel
=
T —

Figure 4.14: Creating a new ad hoc tag set.

To create these more complex tag sets, triagers can use a defining feature of PORCHLIGHT,
a Bug Tagging Language, that allows triagers to create tag sets by expressing criteria for
selecting bugs. Figure 4.15 shows how a new tag set can be created to tag all bugs assigned to
user “geraldb” with at least four comments attached. Even after a tag set has been created
with a given expression, it is possible to update the underlying criteria of a dynamic defined
tag set. Simply double clicking brings up the dialog box with the current expression that

can then be edited.

TAG gerald 2}

WHERE assignee=geraldb AND FREQUENCY(comment) = 3

Figure 4.15: Editing a BTL statement in PORCHLIGHT.

62

4.3 BTL: Bug Tagging Language

To support the creation of these complex tag sets, we implemented a domain-specific set

creation language that allows triagers to:

—_

. Express basic tag sets using bug status and fields as criteria;
2. Leverage actions, specifically their presence and frequencys;
3. Restrict tag sets to a specified window of time;

4. Express compound tag sets from a set of statements; and

5. Extend the language to support new fields, actions, and computations across each.

In BTL, bug tag sets are expressed through statements, which consist of clauses like TaG and
WHERE, combined with predicates to specify attributes of the bug defined in the model. BTL

statements follow the below syntax!:

TAG name
WHERE predicates

[SINCE LAST period]

As a simple example, a statement to find all bugs assigned to a user Gerald would be:

TAG "Gerald’s Bugs" WHERE assignee = "Gerald"

The TAG clause is equivalent to the seLECT clause in SQL. It denotes the creation of a tag

set with the specified name. The wHERE clause consists of a series of predicates, for example:

assignee = "Gerald"

!'Throughout this document, BTL clauses and functions are shown in upper-case lettering while fields
and statuses are shown in lower case. This is to make the expressions more readable; BTL is case insensitive
except for quoted values.

63

The wHERE clause supports the anD and or Boolean operators between predicates. As an
example, a statement to find all unresolved bugs assigned to either Gerald or Jacob can be

specified as follows:

TAG "Gerald’s or Jacob’s Bugs" WHERE status = "Open" AND (assignee = "Gerald"

OR assignee = "Jacob")

These examples demonstrate the basic querying capabilities of BTL using simple attributes.
While BTL is similar in many ways to SQL, it is intended to be a more compact and specific
language to allow triagers who may be non-technical to create tag sets. To fully realize the
capabilities of our language and of PORCHLIGHT, we have also included features that can

be used to create more meaningful tag sets that go beyond simple filters.

4.3.1 Functions

The predicate in the wHERE clause of a BTL statement can reference a bug’s status (e.g.,
resolved), a field (e.g., summary), or an action (e.g., assignment). The distinction between
these attributes becomes relevant when actions are used in conjunction with functions, which
allow for computations to be performed on the specified status, field, or action. Functions
enable more complex statements that can incorporate not only the content of a bug report,
but also the history of actions on the bug. For example, a statement to find all bugs which

have been assigned three or more times would be:

TAG "3-Toss Bugs" WHERE FREQUENCY (assignment) >= 3

In this case, the FREQUENCY function computes the frequency of the assignment action over
the life of the bug. The result of this computation is a derived attribute (in this case, the
number of assignments) that is then used in the evaluation of the wHERE clause. Table 4.2

summarizes the functions supported natively in the waHeERE clause. While all functions must

64

have a return value, the the value can be an integer, string, or Boolean value. Though it is
not required, most functions have a parameter that is used in the computation. For example,
the conTaINs function takes in a keyword as a parameter that is uses to search the bug’s
summary and description. On the other hand, the FrREQUENCY function takes in an action as

a parameter that must be one of the actions that are part of the data model.

Function Description

CONTAINS(keyword) Returns true if the bug summary or description contain
the specified keyword, false otherwise.

FREQUENCY (action) Returns the integer frequency of the specified action.

HAS(field) Returns true if the specified field is present in the bug
report (e.g., stack trace or screenshot), false otherwise.

Table 4.2: Functions available natively in the Bug Tagging Language.

As another example, a statement to find all bugs which contain the keyword “printer” and

have five or more comments would be:

TAG "Popular Printer Bugs" WHERE CONTAINS ("printer") AND FREQUENCY (comment)

>= 5

4.3.2 Time Windows

Another feature of BTL is the ability to specify time windows in combination with bug
actions. For example, a statement to find all unresolved bugs that have been reassigned

exactly once and that have been updated in the last two months would be:

TAG "Reassigned Last Month" WHERE status = "Open" AND FREQUENCY (assignment) =

1 SINCE LAST "2 months"

The s1NCE 1LAST clause restricts the results of the statement to bugs that have been last

updated within the specified time window using a natural language expression of periods.

65

For example, “2 months”, “6 weeks”, and “1 years” are valid values for the clause. Only a

single time window can be specified as part of the clause.

As another example, a statement to find all unresolved bugs that have received less than five

comments in the last six months would be:

TAG "Less Than 5 Comments" WHERE status = "Open" AND FREQUENCY (comment) < 5

SINCE LAST "6 months"

To fully appreciate the need for both functions and time windows in BTL, suppose that
a triager must review thousands of new bug reports to take an initial pass at categorizing
them. She may start the process by creating a new tag set to identify bugs which have
been opened in the last few months, that affect the user interface, and that do not include

a screenshot.

TAG "UI Bugs Without Enough Info" WHERE status = "Open" AND component = "UI"

AND HAS (screenshot) = "false" SINCE LAST "2 months"

Without the additional clauses, this tag set would result in too many bugs to accurately
triage. With the added clause, the triager can easily perform an action on the selected tag

set, like request additional information.

4.3.3 Custom Fields and Actions

Since it is difficult to predict the tag sets a triager may want to create using BTL, or the
types of data that will be available in a source bug tracker, we have designed BTL to be an
extensible language. Custom fields and actions are extension mechanisms that allow triagers
to define new fields or actions that can be used as predicates in statements or parameters in

functions.

An example of a custom action is one that provides information about source code commits

66

associated with a bug. A new action, called Commit, could be added to represent a source
code commit that is linked to the bug. Since most bug trackers provide some way to link
a commit to a particular bug, usually by providing the bug’s identifier in the commit log
message, the logic for this extension could scan the source repository commit logs and record
the action for each bug. This new action would then enable the following statement that
would create a tag set with all bugs that have been linked with at least two source code

commits in the last two weeks:

TAG "Source Change Last Week" WHERE FREQUENCY (commit) >= 2 SINCE LAST "2

weeks"

Custom fields and actions are created by implementing interfaces that are then loaded into
the PORCHLIGHT runtime environment on startup. The code for these classes is executed
during the import process, and as bugs are created in the bug graph and attributes are
mapped, the custom fields and actions are generated. This process is discussed in more

detail in Section 5.3.

4.3.4 Custom Functions

A custom function is a way for triagers to define new functions that can be applied in BTL
statements to fields or actions. Custom functions are similar to functions in many SQL

procedural languages.

As an example, suppose an custom function existed that would return a count of the number
of dependents a bug has. Dependents are determined by the relationship in the bug tracker,
but could be bugs that are sub-tasks of the parent bug, or bugs that have been linked as re-
lated to the bug. This function, called DEPENDENTS, could be invoked as part of the execution
of a BTL statement and would count the number of dependent bugs. The implementation

of the pEPENDENTS function would of course specify how a dependent bug is defined. This

67

new function allows the following statement that creates a tag set with all bugs that have

two or more dependents:

TAG "Two Plus Dependents" WHERE DEPENDENTS >= 2

Both custom fields and functions are features of BTL which make it not only a powerful
language for creating tag sets, but also a platform on which to explore and build new ap-
proaches to bug triaging that can make the process more efficient. For instance, many of the
recent approaches to assignment automation, such as the ones discussed in Chapter 2, can be
implemented as a combination of BTL clauses and custom functions to create a tag set based
on the recommended bugs. Consider a machine learning technique that extracts metadata
from previously assigned bugs and can be used to predict an assignee [24]. Assuming the
classifier has been trained on the bug graph to date, a process which could be done offline,
a new custom function named rRECOMMENDED could be implemented to determine if a specific
user is the recommended assignee for a bug. This function would take in a developer as a
parameter and, when invoked, would search the resolved bug history to return a new tag set

consisting of bugs that could be assigned to the developer.

TAG "Recommended for Brad" WHERE RECOMMENDED ("brad") = true

The advantage of this approach is that the assignments are not made automatically. The
triager is kept in the loop and can review the recommendations and take action (by per-
forming the actual assignment) in a way that is more efficient than reviewing each bug

individually.

In summary, developers can expand the capabilities of PORCHLIGHT using custom fields,
actions, and functions. Custom fields and actions allow it to be integrated with most bug
trackers, since any fields and actions that are not part of the bug model can be added.
Custom functions provide developers with the ability to implement new functions that can

expand the expressiveness of BTL. This flexibility can be used to explore new approaches to

68

bug triaging, and PORCHLIGHT provides the beginning of a platform on which the techniques

can be built and tested.

4.4 Scenarios

Thus far, we have discussed the features in PORCHLIGHT that we designed to support the
bug triaging process largely in isolation, one-by-one. To illustrate how all of these features
work in concert, we now describe three hypothetical scenarios: (1) a group of developers
participating in a release planning session, (2) an individual developer reviewing her assigned

bugs, and (3) a volunteer triager working through new bugs.

4.4.1 Release Planning Session

Suppose that a group of three software engineers are gathered in a meeting room to plan the
next release of the product they develop. The most recent version, 2.5, was released three
months ago, and since then many new bug reports have been created. The developers have
already assigned bugs to the next several releases (2.6, 2.7, and 2.8, to be precise), but as
they near the 2.6 release date, they want to ensure that any bugs that have been reported

against the previous release have been triaged and have a chance to be fixed.

Using PORCHLIGHT, they start by first looking at the open bugs that have been reported
against the previous 2.5 release and that are unassigned. They enable the Unassigned (User)
and Unassigned(Version) filters to ensure that they are only viewing unassigned bugs. They

then create a new tag set using the Status and Affects Version field to find the relevant bugs:

TAG "Affects Last Release" WHERE status = "OPEN" AND affectsVersion = "2.5"

PORCHLIGHT executes the BTL statement and a new tag set labeled “Affects Last Release”

69

appears in the tag set list. The matching bugs are highlighted in the bug list with the tag
set indicator and assigned color. They enable the Has Active Tag Set filter to narrow the

list down to just those that belong to the tag set.

They decide to expand this list by also including the bugs that may affect the security of
the software. These bugs are particularly important since they may reveal a vulnerability,
and the developers want to ensure that they have been reviewed and assigned in a timely
manner. They know that security related bugs usually contains keywords like “permissions,”
“password,” or “authentication,” so they create a new tag set to find these bugs using the

CONTAINS custom function:

TAG "Security" WHERE CONTAINS ("permissions") = true OR CONTAINS ("password") =

true OR CONTAINS ("authentication") = true

Once again, PORCHLIGHT executes the BTL statement and a new tag set labeled “Security”
appears in the tag set list. Since the “Affects Last Release” tag set is still enabled in the
tag set list, the updated bug list shows both bugs that have been reported against 2.6, or
that contain any of the security-related keywords in the summary or description text. As
they review the bugs, they notice one particular bug, shown in Figure 4.16, that has received
numerous comments from users of the software in the last few weeks. A clear indication that
this might be an important bug, they decide that they can fix it in the next release, and

they assign it by dragging it onto 2.6 in the milestone list.

After an hour of triaging, they have made significant progress in assigning 37 bug reports.
Most have been assigned to the next release, others have been assigned to future releases, and
some were closed. Each of the developers returns to their desks and open their web-based
bug tracker to view the new bugs that have been assigned to the 2.6 release, and proceed to

work on resolving them.

70

‘s00 PorchLight
Eile

Search users. Search issues. Search versions.

) Key Tags Summary - | -
- MIRTH-3164 Allow the Administrator max heap size to be user-configurable on the launch page | L] Has Active Tag Add Tag =
brentm (74) MIRTH-3165 Make the default max heap size returned by the web start servles configurable as a Unassigned (Use || Enable All/ Disable All 4.0 @)
o MIRTH-3166 O Improve how enabling/ disabling occurs from the Channels view) [Aesanaang o> L
. (¥l < E
[~ MIRTH-3167 Allow parallelization of message processing through a single channel = ¢ (Ver)
eduardoa (1) MIRTH-3168 Not able to use certain Java objects in JavaScript conditional expressions [Open = 3.6.0 (50)
o MIRTH-3169 Improve Administrator responsiveness for servers with large amounts of channels Resolved 7 P
- MIRTH-3170 Update Web Administrator to use Bootstrap 3 v
jacobb (14) MIRTH-3171 Add the ability to set JMS message properties.) Closed - D 3.5.0 (47)
MIRTH-3172 Migrate from 3.0.1 1o 3.0.2 Clear Stat <
) Y SAY AN vl [Sinl 21 . —
- MIRTH-3173 TCP Listener response socket is binding to local address in the listener settings ~ i > >
Jaysenp (78) Allow parallelization of message processing through a single channel 3.4.0 (76)
“ Created b ley on Mon Mar 03 08:42:06 PST 201
\elfanim (48) reated by narupley on Mon Mar 4 4 | 332 @)
) Currently only one message can process through a channel. This is by design for things like message order preservation and the serial nature of the global channel map.
However, this can severely hamper message throughput for channels that don't actually _need_ message order or any other benefits that the "single message conduit” paradigm mig
narupley (282) bring. Especially for “stateless” Web Service f HTTP Listener channels, requests tend to be mutually exclusive and don't necessarily nead to be ordered in any specific way. This can 33109
L) be true for HL7 interfaces as well, particularly for servers that accept QRY messages and return a set of results (immunizations, syndromic surveillance, €tc.). In 2.x, the parallelizati
n part existed when unsynchronizing a channel, but you couldn't actually respond from a destination or custom respanse.
wayneh (171) So in essence, this feature would provide some way for multiple messages to process through a channel at the same time. Obviously certain sacrifices would have to be made 33.0 (69)
* Message order is not guaranteed. So a message that was received first is not guaranteed to be sent out first, and the associated response is not guaranteed to be sent back to the «| —
02/28/2014 00:43-68————————04/21/2014 13:58:05 11/09/2014 01:17-54——————————04/05/2015 17:38:18 =
08/13/2014 05:38-+6—————————08/14/2014 07:08:09 09/23/2015 15:44:59————————09/23/2015 15:46: *
Date: 03/04/2014 09:49:53 3218
Comment Author: narupley
Here's one of the more recent forum threads regarding this issue, though there have been several in the past, and also people on IRC talking about it. 320 1)
[http:/ fwww.mirthcorp.com/ community /forums /showthread.php?p=37933#post37933] =
mbdComment,,| 3112 =

Mirth Connect

Figure 4.16: Example of bug that has received numerous comments.

4.4.2 Individual Developer

Suppose that Nicole, a software engineer, is using PORCHLIGHT to review the bugs that
have been assigned to her for the upcoming development sprint. She starts by enabling a tag
set she created called “My Bugs” which identifies unresolved bugs that have been assigned

to her:

TAG "My Bugs" WHERE STATUS = "Open" AND assignee = "nicole"

To help prioritize her work for the day, she decides to create an additional tag set to identify
the bugs where her product manager, David, has left a comment. These are bugs that usually
contain useful feedback and guidance that she can use when implementing a new feature. In
order to create such a tag set, she first implements a new custom function called COMMENTED
that returns true if the specific user has commented on a bug. She then creates the desired

tag set using the newly implemented function:

TAG "Commented by David" WHERE COMMENTED (david) = true

71

PoORCHLIGHT executes the BTL statement and a new tag set labeled “Commented by David”
appears in the tag set list. She scans the bug list for any bugs that have belong to both
of the enabled tag sets, and notices that three bugs have received comments from David.
She selects one of the bugs that is both assigned to her, and has been commented on by
her product manager. Based on this latest comment, she realizes that the enhancement
being requested is in a module that she is not familiar with. After quick instant message
conversation with Alan, the software engineer who usually works on the module, she selects
the bug from the bug list and drags it over to his name in the user list, assigning it to him

and removing it from her assigned bugs.

Having reviewed the bugs with with feedback, Nicole disables “Commented by David” tag
set and creates a new tag set to view the bugs that have been assigned to the next release.
She does this by dragging the milestone, in this case 2.6, from the milestone list onto the tag
set list. A new tag set appears labeled “2.6” and the bugs belonging to the tag set appear
in the bug list. Since she still has the “My Bugs” tag set enabled, she is able to quickly

identify the bugs which have been assigned to her for the release.

After reviewing her assigned bugs, she realizes that that there are too many bugs to complete
before the end of the sprint. She selects several of the bugs from the bugs list and drags
them onto the tag set list, which pops up a dialog box where she enters “To Review” as the
new ad hoc tag set name. She will review the bugs in this tag set with David after the stand

up meeting to discuss if they can be reassigned to a later release.

4.4.3 Volunteer Triager

Suppose that Wayne, a volunteer triager for a popular open source project, finds some time
to help by triaging the ever-growing list of new bug reports. Because he is one of the more

one of the more experienced triagers on the project, Wayne makes extensive use of tag sets

72

as a way to review the open bugs. He begins by creating a new tag set to tag the unassigned

bugs that have been reported since his last triaging session:

TAG "Since Last Session" WHERE status = "OPEN" SINCE LAST "2 months 3 days"

PORCHLIGHT executes the BTL statement and a new tag set labeled “Since Last Session”
appears in the tag set list. He does a cursory scan of the bug list and sees that there are over
50 new bug reports that have been created. To narrow this list down, he enables his tag set
which contains bug reports that may require additional information, such as a screenshot of
it is a bug affecting the UI component, or a stack trace if it is describing an error message.

These tag sets make use of the Component field, and the sas and conTa1ns functions.

TAG "Needs Screenshot" WHERE status = "OPEN" AND component = "UI" and
HAS (screenshot) = false

TAG "Needs Stacktrace" WHERE status = "OPEN" AND CONTAINS ("error") and
HAS (stacktrace) = false

With these additional tag sets enabled, Wayne is able to identify the bugs in the bugs list
which belong to two or more tag sets, that is, those which have been reported since his last
triaging session and that are missing a screenshot (if related to the UI) or a stack trace (if
describing an error message). He selects these bugs and uses the Quick Comment feature to
add a comment to each requesting the additional details, and saving the development team

the effort of reviewing them with insufficient information.

After triaging the bugs that require additional information, he looks to see if he can assign
some bugs to developers working on the project. To help with this process, some of the
developers have shared tag sets that make use of the previously described RECOMMENDED
custom function to identify bugs that could potentially be assigned. This function takes into
account, previous assignments based on the description of the bug and determines if a bug

is a “good fit” for a particular developer. Jacob, a frequent contributor to the project with

73

expertise is in troubleshooting defects related to the database, has provided the triagers a

tag set based on the following BTL statement:

TAG "Database Bugs for Jacob" WHERE status = "OPEN" AND component =

"database" AND RECOMMENDED (" jacob") = true

Wayne disabled all other tag sets, then enables “Database Bugs for Jacob” in the tag set
list. He browses through the list of bugs that have been recommended for Jacob. Based on
the description he decides that it is indeed a bug that Jacob should be able to fix, and he
assigns it to him for the next release by dragging the bug to Jacob’s icon in the user list,

and then the next release in the milestone list.

4.5 Discussion

To summarize our approach, we revisit our initial requirements for supporting bug triaging
presented in Chapter 3, and describe how the design of PORCHLIGHT addresses each of

them.
Requirement 1: Explore

The first requirement is to provide triagers with the ability to browse new and unassigned

bugs and to easily organize them into categories for further triaging.

PorcHLIGHT addresses this requirement in several ways. First, it provides triagers with the
entire contents of the bug tracker along with useful tools, like the user and milestone lists, to
make sense of the task at hand: to review and triage a large number of bugs. Quick filters
let triagers quickly cull the list down to bugs of interest, and the ability to scroll through
the bug list and see which bugs have been assigned to which user and/or milestone makes it

easy to get a sense of how much work needs to be done.

74

More significantly, tag sets provide a way for triagers to dynamically explore and partition the
collection of bugs into meaningful groups that they can use to plan their work. Viewing the
bug tracker not as an intimidating list of unassigned bugs, but as a collection of meaningful
tag sets—Ilike unassigned bugs related to the UI with no screenshots—gives triagers a way

to tackle the flood of bugs in a project.
Requirement 2: Search

The second requirement is to provide triagers with the ability to search for bugs using
different criteria (time, activity, missing elements, etc.), as well as to group them based on

these criteria.

PorcHLIGHT addresses this requirement by leveraging the tagging capabilities of the Bug
Tagging Language. BTL provides triagers with an extensible way of expressing the criteria
needed to create tag sets that are meaningful to triaging. Language features such as time
windows and functions allow for complex criteria to be used in finding the bugs that should
be tagged. PORCHLIGHT also provides search capabilities within the bug list to make it easy

for triagers to quickly find and navigate to a specific bug.
Requirement 3: Inspect

The third requirement is to provide triagers with the ability to review comments, histories,

and related bugs to make informed triaging decisions.

PorcHLIGHT addresses this requirement by providing triagers with a detailed bug view
which includes all of the captured information about the bug, along with a timeline which
provides an at-a-glance visualization of the history of activity for a particular bug. The
timeline also encapsulates numerous details, depending on the action type, that the triager
can access to make triaging decisions, like files that have been committed as part of fixing

a bug. Information about the bug is also inferred from the tag set(s) to which the bug

5

belongs. Seeing that a bug belongs to multiple tag sets, and viewing the BTL expression

which generated the tag sets, can provide useful insights when inspecting a bug.
Requirement 4: Take Action

Finally, the fourth requirement is to provide triagers with the ability to easily assign a bug,

comment on it, assess any feedback, and move on to the next one.

PorcHLIGHT addresses this requirement by offering all of its functionality in a single in-
terface so that triagers can take action and avoid the need for context switching (i.e., the
back and forth syndrome of many bug trackers). Our design makes it feasible to assign a
bug without leaving the current triaging context. Organizing, sorting, and filtering bugs,
viewing of the details and history of individual bugs, and assigning bugs are all available at
hand. The unique layout also makes it possible for triagers to drag-and-drop from the bug

list to the user and milestone lists to take action.

Finally, PORCHLIGHT provides visual feedback when as assignment action is performed in
the form of updated bug counts, which make it easier for triagers to asses the effect of that

particular action on the project as a whole.

4.5.1 Conclusion

Combined, the features in PORCHLIGHT transform a static bug list to a dynamic workspace
in which the bugs can be organized (through enabling and disabling tag sets, using the filters,
and sorting the list), worked with (by selecting bugs of interest and viewing their details,
assigning them to ad-hoc tag sets), and assigned (by dragging either individual bugs or entire
tag sets onto developer and milestone icons). All the while, PORCHLIGHT gives clear, visible
feedback on the actions that the triager performs, through the already described counts on

the developer and milestone icons, the coloring of individual bugs in the bug list, and the

76

Explore

e Single view with user and milestone lists
e Quick filters

e Viewing status of a selected bug

e Tag sets
Search

e BTL

o Advanced features like time windows
Inspect

e Detailed bug view

e Timeline

Take Action
e Single-pane interface

e Drag-and-drop interaction

e Visual feedback

Table 4.3: Features in PORCHLIGHT that address the requirements for a dedicated triaging
tool.

markers that indicate to how many tag sets a bug belongs. Given that this information is
available at-a-glance, a triager can flexibly move back and forth between the higher-level
task of organizing and finding bugs and the lower-level task of inspecting and if so desired

assigning bugs, without losing the overall context in which they are working.

7

Chapter 5

Implementation

In this chapter, we describe the implementation details behind PORCHLIGHT, including:

1. The data model that represents the information and history about a bug report and

that is used for creating tag sets.
2. The language with querying and tagging capabilities based on the data model.

3. The extension of both the data model and tagging language using a plugin architecture.

We end the chapter by describing some of the challenges encountered during the design and

implementation of PORCHLIGHT.

5.1 Data Model

In order for PORCHLIGHT to be flexible enough to integrate with existing bug trackers,
we had to first design a bug data model to standardize the data that is available. With a

sufficiently rich data model, we can represent the status, fields, and history of a bug report to

78

support building tag sets. Looking towards the more significant contributions of our tagging
language, we must also be able to capture metadata about the bug report to form more

meaningful tag sets.

5.1.1 Status

The starting point for our data model was the status, or the state of the bug report in the
workflow. We began by comparing the default bug report life cycles from Buzgilla, JIRA,
and Trac (Figure 5.1). These workflows represent the different statuses a bug report can
have, from when it is first reported to when it is eventually resolved or closed, and the
possible transitions between each status. Each model differed slightly in the names of the
statuses and the transitions. For example, the default status for a newly created bug in
Bugrzilla is Unconfirmed, meaning that the bug has yet to be triaged and confirm as a bug,
while the default state in both JIRA and Trac is New, and the transition to the Accepted

status signifies that the bug has been triaged.

In our comparison of statuses, we observed that the two bug trackers that are developed
under an open source model, Bugzilla and Trac, have a default starting bug status that
signifies an unconfirmed bug, and only after it has been reviewed is it considered an actual
bug. This is in contrast to JIRA, a commercially developed bug tracker, where the starting
bug status is open, and the bug is considered ready to be assigned. This suggests that bug
trackers used in open source projects typically see a larger volume of bug reports from a

wider audience, and this preliminary status assists in the triaging process.

Because our data model needs to represent bugs from existing bug trackers, we chose statuses
that would capture the most common workflow and that would allow a tool to import, or
to ignore, statuses depending on what is available in the source bug tracker. The statuses

selected for the data model are listed in the Bug Data Model column of Table 5.1.

79

Bug determined

to be present Bug is filed by a
non-empowered user

A A
" CONFIRMED [UNCONFIRMED]
Developer is working

T

1

1
on the bug

1

1

A

IN_PROGRESS %— ------------- ---

Fix checked in

Does not
pass QA

RESOLVED J:
QA verifies that the
\ solution works

Wrong fix
VERIFIED } ————————————————————

(a) Default Bugzilla bug life cycle.

OPEN
IN PROGRESS
(b)

Resolve

1
1
1
1
1
1
1
1
1
1
1
A 1
1
1
1
1
1
1
1
1
1
1
1

RESOLVED

!

CLOSED

REOPENED

i

Default JIRA bug life cycle.

Resolve

CLOSED Reassign

Resolve

ACCEPTED

Reassign

ASSIGNED REOPENED

Reassign
Resolve

Reopen

(c) Default Trac bug life cycle.

Figure 5.1: Default bug life cycles for popular bug trackers.

80

Bugzilla JIRA Trac Bug Data Model
Unconfirmed New New
Confirmed Open Accepted Open
In Progress | In Progress | Assigned In Progress
Resolved Resolved Resolved
Verified Closed Closed Closed
Reopened | Reopened Reopened

Table 5.1: Comparison of statuses from default workflows of Bugzilla, JIRA, and Trac, and
the statuses selected for the Bug Data Model

5.1.2 Fields

Along with the status of a bug report, our data model must also represent the fields that
capture information about the bug. Our goal was to select the fields that would allow
us to capture the information necessary to demonstrate the feasibility and extensibility of
our approach. We began by comparing the fields from the default software development

workflows of several popular bug trackers: Bugzilla, JIRA, and Trac (see Table 5.2).

Bugzilla JIRA Trac
Summary Summary Summary
Component Component /s Component
Additional Comments Description Description
Assigned To Assignee Assigned to/Owner
Reporter Reporter Reporter
Priority Priority Priority
Version Affects Version/s Version
Target Milestone Fix Version/s Milestone
Resolution Resolution Resolution
CC list Watchers Cc
Platform and OS
Attachments Attachments
Keywords Labels Keywords
Type Type
Severity

Table 5.2: Comparison of fields from default workflows of Bugzilla, JIRA, and Trac.

Our approach was not to simply take the union or intersection of the fields in all of these

bug trackers. Rather, we applied some basic rules to determine which would be selected for

81

the data model. If a field was available in all of the bug trackers, like Summary and Priority,
we selected it for the data model. Some of the fields represented the same information but
had different names, like Labels and Keywords, in which case we chose the name used in
JIRA since that is the bug tracker the author is most familiar with. In the case where a field
was present in only one default workflow, like Severity, we made a determination to exclude
it from the data model to the extent that it did not limit our ability to provide sufficient

information for triaging.

Additional metadata that have been included in the data model are the Date Created and
Date Updated fields. These fields capture a timestamp of when the bug was initially created,
and when it was last modified, respectively. They are captured as part of the data model to
be used when evaluating BTL expressions with time windows. For example, the SINCE 1LAST
clause makes use of the Date Updated field to select bugs which fall within the specified
time window. Finally, an Identifier field has been added so that each bug can be uniquely
identified. The process of selecting fields from the default workflows, and including additional

metadata fields, resulted in the fields for the data model listed in Table 5.3.

5.1.3 Actions

Thus far, our model captures the static information that is available in a bug report. In
order to describe meaningful tag sets, we must also be able to capture the history of the
bug as it is updated. There are different version control techniques we could employ for
capturing these changes, such as persisting successive snapshots of the entire bug report,
or representing deltas of the data model between changes [48]. For our approach, we have
chosen to instead capture the changes and transitions themselves, since that is the most
common outcome of bug triaging. We represent each transition as an action that can be

derived from the history of modifications to the bug report.

82

jast

BugTagSet

Integer id
String name
Color color

TAGS

Project

Integer id
String name

HAS _ISSUE

AS_VERSION \L

Version

Integer id
String version

FIXED_IN

Bug

Integer id

String key

String type

Enum status

String summary
String description
String component,
Person reporter
Person assignee
String priority
Version affectedVersion
Version[] fixVersions
String resolution
String[] labels

File[] attachments
Date dateCreated
Date dateUpdated

FIXED_BY,
REPORTED_BY

Person

HAS_ACTION

Action

Integer id
Person author
Date timestamp

AUTHORED_BY,
COMMITED_BY

Integer id

String firstName
String lastName
String userName

Change

Commit

Comment

Integer id

String field
String oldValue
String newValue

Integer id
String message

Integer id
String content

ChangedFile

Integer id
String name
String path

Figure 5.2: The PORCHLIGHT bug data model.

83

Field

Description

Identifier
Type
Summary
Description
Component
Reporter
Assignee
Priority
Affected Versions
Fiz Versions
Resolution
Comments
Labels
Attachments
Date Created
Date Updated

The bug’s unique identifier

The type of bug reported (Problem, Feature, Improvement, etc.)
A brief text summary of the bug

A more detailed text description of the bug

The component or module which the bug affects

The user that reported the bug

The developer to which the bug has been assigned

The priority assigned by the developer

The versions of the software that this bug effects

The versions of the software in which the bug will be (or was) fixed
The final resolution of the bug (Fixed, Can’t Reproduce, etc.)
Additional information added by users and/or developers
Labels/tags assigned to the bug

Attachments such as debug log files or screenshots.

A timestamp of when the bug report was created

A timestamp of when the bug report was last modified

Since the transition between any two statuses, or the modification of any field, can be
considered an action, the number of possible actions to capture is large. We have chosen to
capture the actions (Table 5.4) that are most relevant to bug triaging, based on on existing
research, in our model. These are actions that are performed on the bug and that can be
used to make a triaging decision. For example, we know that frequent reassignment of a bug
is a pattern that could indicate that there is not enough information to resolve it. Because

that information is useful for triaging, we are capturing the assignment action as part of our

Table 5.3: Fields selected for the bug data model.

model so that it can be used to create tag sets.

5.1.4 Metadata

Because users and milestones play an important role in the PORCHLIGHT user interface,

these elements are captured in the data model as individual entities that are associated with

84

Action Description

Developer Assignment The bug has been assigned, or reassigned, to a developer

Fix Version Assignment The bug has been assigned to a fix version

Comment A comment has been added to the bug

Priority Change The priority of the bug has been changed

Status Change The status of the bug has been changed (e.g., from Open
to Resolved)

Field Change The value of a field has been changed (e.g., the descrip-

tion has been updated

Commit A commit log message has been associated with the bug

Table 5.4: Actions selected for the bug data model.

bugs through relationships that can be be traversed. For example, the fact that a bug that is
assigned to a user is captured by the Has_1ssUE relationship between the person and the bug.
Similarly, the fact that a bug that is assigned to a milestone is captured by the FIXED_IN
relationship between the version and the bug. As the data model is populated with data
from the bug tracker, these relationships are created between bugs, users, actions, and tag

sets.

Several fields have been modeled as distinct entities in the data model and not as attributes
of the bug. For instance, the Project to which the bug belongs, and the Version in which it
has been or is assigned to be fixed, are represented by models and associated with the bug
using the HAS_TSsUE relationship. Similarly, the bug reporter, assignee, and any comment
or commit author is modeled by the Person model and associated using the REPORTED_BY,
FIXED_BY, AUTHORED_BY, and coMMITED_BY relationships, respectively. These specific fields
were normalized for performance reasons, since as, we discuss later in this chapter, being able
to quickly traverse through a large collection of bugs and identify groups based on attributes

is key to our approach.

Finally, bug tag sets themselves are represented using the BugTagSet model which has its own

attributes, specifically a name and color. The TaGs relationship captures the membership

85

of a specific bug to a bug tag set. This membership relationship is created during the BTL

statement evaluation process.

The selection of statuses, fields, actions, and metadata lead us to the complete bug data

model shown in Figure 5.2.

5.2 Internal Architecture

PORCHLIGHT is implemented as a fat-client application using a client-server architecture.
Conceptually, the architecture can be grouped into two distinct components: one providing
functionality for storing bug reports and evaluating BTL expressions, and one providing the
user interface we have described in Chapter 4. Figure 5.3 provides an overview of the system

architecture. In the remainder of this chapter, we detail each of the components.

5.2.1 Client

The PORCHLIGHT user interface was written using the Java Swing widget toolkit. Swing
was chosen because of the numerous third-party libraries and frameworks available, including
the open source MigLayout [4] layout manager which made controlling the position of each
component on the screen simpler. Early in the design process, we evaluated alternative
languages and frameworks, including Adobe Flex, JavaFX, and web-based frameworks, but
found Swing’s maturity as a platform and support for native interaction, such as drag-and-

drop, to be superior.

The user interface makes extensive use of built-in Swing components like buttons, lists, and
tables. We also extended numerous components to achieve some of the functionality needed

in PORCHLIGHT. For example, we implemented a new ListCellRenderer for the user and

86

Client

User Interface

Server Y Y
Tag Set Processor > Working Memory
Graph
Y Database
Importer and Exporter
T
1
1
Plugins Y Y
Custom Functions > Custom Elelds and
Actions

External Systems

Internal calls

Bug
Tracker

Repository

————— External calls

Figure 5.3: The PORCHLIGHT system architecture.

milestone lists to be able to display the icon, label, and bug count in a traditional list

controller.

The client interfaces with the server for two functions: connecting to the working memory,
and executing the tag set processor to create new tag sets. The client connects to the working
memory using the BugGraph Java interface. In our case, the JIRA implementation of this
interface was used to connect to the JIRA bug tracker. The interface provides methods for
connecting to the working memory and retrieving tag sets a bugs. The client invokes the Tag

Set Processor to create new tag sets in the working memory, a process which is described

later in this section.

87

5.2.2 Server

Importer

In order to integrate with the numerous bug trackers to import bug reports and associated
metadata, we designed an Importer interface (see Listing 5.1) for abstracting the methods
needed to retrieve data from the source bug tracker, and an Exporter interface for saving

changes back to the bug tracker.

This abstraction layer was implemented as a set of Java classes that encapsulate connectivity
to the source bug tracker, and perform the mapping of bug reports and associated metadata
(users, comments, source code commits, etc.) from the bug tracker’s native schema to
our data model. Though the interfaces allow for implementations for the different bug
trackers, for practical purposes we implemented one for JIRA. Our implementation of the
Importer interface makes extensive use of JIRA’s REST API [14] for retrieving bug reports,
and handles retrieving all of the bug reports, mapping the fields to the data model, and

generating the actions associated with each bug.

The Importer interface also includes methods for retrieving commit data from a source code
repository. This is used to associate commit information, such as the commit log message
and files, to a bug. For our implementation, we built an importer the Subversion version

control system.

Exporter

Actions performed through the PORCHLIGHT user interface, such as changing the assignee
for a bug or creating a new tag set, are performed immediately in the working memory copy

of the bug report. Our Exporter interface (see Listing 5.2) was designed to abstract the

88

public interface Importer {
/* Import all data from specified host into specified data directory (where
graph is stored) */
public void importFromServer (File dataDir, String host, String username,
String password, String projectKey);

/+ Import all projects in the source bug tracker =/
public void importProject();

/* Import all issues for the specified project #*/
public void importBugs (long projectId);

/+ Import all versions associated with the project */
public void importMilestones (long projectId);

/+ Import all labels (tags) for the specified bug */
public void importLabels (long issueId);

/+ Import all comments for the specified issue #*/
public void importComments (long issueld);

/+ Import the specified user */
public void importUser (String userName) ;

/+* Download the user’s avatar =/
public void downloadUserAvatar (String userName) ;

Listing 5.1: The Importer Java interface.

89

public interface Exporter ({
/* Apply all changes made (captured as DiffItems) to the source bug tracker
*/
public void exportChangesToServer (List<DiffItem> diffItems, String host,
String username, String password, String projectKey);

/* Create a new comment associated with a bug */
public void updateComments (DiffItem diff);

/* Apply a label to a bug as a result of a new tag set #/
public void updatelabels (DiffItem diff);

/+ Assign a bug to a person #*/
public void updateAssignee (DiffItem diff);

/% Assign a bug to a milestone */
public void updateMilestone (DifflItem diff);

Listing 5.2: The Exporter Java interface.

methods needed to apply the changes made in PORCHLIGHT to the source bug tracker. Our
implementation of the Exporter interface for JIRA makes use of the same REST API to
commit changes that have been made in the local graph database back to the source bug
tracker. As triagers make assignments and changes through the PORCHLIGHT user interface,
the changes are captured using the piffrtem class. When the user wants to commit the
changes, the Exporter class is invoked to connect to the source bug tracker and apply the
changes, which fall into one of the following types: add a comment, set the milestone, set
the assignee, change the status (e.g., from Open to Resolved), or add a new tag (as a result

of being added to a tag set).

Because the changes made to the bugs are first applied locally, we are able to present the
user with the option to review the changes made before committing them to the remote
bug tracker. Similar to committing changes after modifying source code, this feature allows
triagers to review their work performed during a triaging session and commit the changes so
that they are publicly reflected. Any conflicts that occur during the synchronization process,

such as bugs that have been deleted, are presented to the user (see Section 5.2).

90

Working Memory

Because bug trackers can have tens of thousands of bug reports, it is unfeasible from a
performance perspective to connect to the bug tracker server and request a bug report each
time a tag set is created or modified. To address this limitation, we have designed a working
memory into which the bug report data is downloaded for use through the user interface.
The working memory is an interface to a local copy of the bug report data that has been

retrieved from the the source bug tracker.

We have implemented the working memory for PORCHLIGHT using the neo4j [17] graph
database engine. A graph database is an “online database management system with Create,
Read, Update, and Delete (CRUD) methods that expose a graph data model” [44]. The
primary distinction of a graph database compared to traditional relational databases is that
“relationships are first-class citizens of the graph data model, unlike other database man-
agement systems, which require us to infer connections between entities” [44]. Specifically,

neodj implements the property graph model, which has the following characteristics [44]:

It contains nodes and relationships

Nodes contain properties (key-value pairs)

Relationships are named and directed, and always have a start and end node

Relationships can also contain properties

We chose to use a graph database for our implementation of the working memory in PORCH-
LI1GHT so that we could capture the numerous relationships between the data elements that

make up a bug report, and to make them readily available when creating tag sets.

The logic defined in the Importer maps bug reports and associated data, such as projects,

versions, and people, into nodes and relationships in the graph. Each bug, user, comment,

91

and source code commit is represented as a node in the graph. The attributes of each node
are represented as name-value pairs. The relationships are then established between the
nodes to allow for querying against the graph. The relationship types used to created edges

between the nodes in the graph are listed in Figure 5.2.

This model allows us to quickly traverse the graph to perform searches like “find the bugs

" Figure 5.4 shows a visual representation of the nodes (for

that Jacob has commented on.’
example, the node representing the user jacobb) and relationship types (for example, the

HAS_CHANGE relationship between a bug and an action) as created in the graph database.

— - =y &
T Database graph El |W|<:3 ﬁ'@al%:‘avldﬂmﬁv
oldstring: connect oldslliné 200 Beta2 F
created: 2010-06-02 11:40:07.0 T f i 10162
field: Fix Version author: jacol : 2010-11-09 15:45: :
0 id: 19806 body: This was resolved as a part of MIRTH-1315 ;r:lzt‘e‘:’.ol’l]k}lﬂm}’l BlEA Fpnams 200 Betal
e e D) T created: 2010-06-04 16:32:43.0 70 id: 23852 released: true =
oldstring: id: 12981 ne.wstnn p—— releasedate: 2010-04-28 00:00
type: comment ddstri g}ila /’
AUTHO i
UTHORED_BY // firstMa
/ @ lastMat|
useria
firstName: /
created: 2010-11-10 11:10:31.0 %Q lastMName: /
field: status userMame: jacobb /
0 id: 28125 S S s
newstring: Closed e 200
oldstring: Resolved HAS_CHANGE 'D.p name: & / =
released: true v b
releasedate: 2010-10-27 00:00:00.0
createct: 2010-06-02 11:40:12.0 Lae FI-\'E}.{TI‘-I
field: assignee -
£ id: 19807 created: 2010-10-2210:52:28.0 S created: 2010-06-04 16:32:43.0 | | (s \erch
newstring: Jacob Brauer . Ei - = . Ao Vetall
\dstring: Gerald Borti L field: Fix Version / I e
ol ring: Geral ortis FIXE] %D id mu @ id: 19935
HAS SHANGE newstring: 2.0.0 e .~ newstring: 200 Beta
oldstring: created: 2010-06-04 16:32:43.0 oldstring:
o field: resclution
id: 19937
HAS_HANGE newstring: Fixed Lo
HAS_JIANGE oldstring:
e
//H/ASI W
£
assignes: jacobb
description: Scenario:
1. you have a number of channels (I had 14 on the system when I encountered this issue)
2, two of the channels (Channel& and ChannelB) have a modest number of messages {300+ in my case).
3. Go to the dashboard
4, Select Channel& = =
5. Right Click and choose "Remove All Messages” s an open source cross-platform HL7 interface engine that enables
. s . - N . - ;

Figure 5.4: Visualization of graph representation of bugs in the neo4j database.

To improve performance during the initial loading of bug reports from the source bug
tracker, we made extensive use of both the BatchInserters and Index Java classes in neo4j.
BatchInserters allow for nodes and relationships to be added to graph in batches rather
than individually, allowing for significantly faster initial loading of the bug reports. As each

type of node is created in the graph, we also add the node’s unique identifier to its associated

92

index to ensure that queries were as fast as possible.

Tag Set Processor

The Tag Set Processor, or TSP, is the component that parses BTL statements and evaluates
them against the working memory to create the specified tag sets. The TSP also provides
the plugin mechanism for extending BTL with custom functions that can make use of cus-
tom fields. We first implemented a prototype of the TSP as a command-line program to
validate our graph implementation as well as the BTL syntax. We then integrated our TSP
implementation into the PORCHLIGHT client so that the BTL statements created through

the user interface could be executed.

BTL Abstract
statement Tokens Syntax Tree Bug Tag Set

Figure 5.5: Tag Set Processor data flow.

One of the jobs of the TSP is the evaluation of BTL statements. The BTL statement is
passed as input to the lexer which produces the tokens that represent the different parts of
the statement. The lexer also returns errors if the BTL statement is incorrectly formed. The
generated tokens are then passed as input to the parser which generates an abstract syntax
tree, or AST, of the provided statement. The AST is then passed as input to the evaluator
which traverses the AST and, at each branch of the tree, evaluates the part of the statement
against the working memory to identify matching bugs. Once the bugs have been identified
by traversing the graph model, a new tag set is created in the working memory and each

bug within the tag set is tagged with the tag name.

The recognizer component of the TSP was implemented using ANTLR, a “parser genera-

tor you can use to implement language interpreters, compilers, and other translators” [42].

93

ANTLR is used to generate recognizers that apply grammatical structure to a stream of input
symbols, which can be characters, tokens, or tree nodes [42]. We specified the grammar for
BTL using the Extended Backus-Naur Form notation that ANTLR supports (see Appendix
A for the complete BTL grammar). The following rule from the grammar demonstrates the

highest-level definition of a BTL statement:

statement : ’'TAG’ (name=IDENT | name=STRING) ’'WHERE’ clause ’;’? EOF -> "~ (TAG

Sname clause) ;

5.3 Plugin Architecture

Developers can implement new plugins to expand the capabilities of PORCHLIGHT by aug-
menting the bug data model or the tagging language. There are three types of plugin points

available: fields, actions, and functions.

Plugins are implemented as Java classes and must first be compiled and packaged as a JAR
file before they can be used in PORCHLIGHT. The plugins that are in use by PORCHLIGHT
are defined in the plugins. json file that resides in the application directory (example shown
in Listing 5.3). To install a new plugin, a developer must add a new entry to the appropriate
section of the file. The Java class file specified in the plugins. json file are then added to

the Java virtual machine classpath when the application is started.

Fields and Actions

While we have defined our data model for capturing information from a variety of bug
trackers, our use of a graph database to store the bugs report data means that we can
add new properties dynamically. Developers can implement plugins that define the logic

for importing new fields and creating new actions from a source bug tracker. The plugin

94

"field-handlers": [{

"jar": "custom-libs/time-estimate.jar",
"class": "edu.uci.ics.sdcl.porchlight.plugins.field.EstimateFieldHandler",
"enabled": true

11,

"functions": [{
"jar": "custom-libs/commented. jar",
"class": "edu.uci.ics.sdcl.porchlight.plugins.function.Commented",
"enabled": true

H]

Listing 5.3: An example of a plugins.json file.

architecture allows new attributes to be extracted and makes them available to the TSP
so that they can be used in BTL statements. Custom fields and actions defined in the

plugins. json file are invoked during the import process.

For example, suppose there is field in a bug tracker for keeping track of the time estimate
provided by the assignee, specifying how long the work should take. While we do not
import this field in our but model natively, it is relatively straightforward for a developer
to implement a new plugin that can import this field as part of the bug report data into

PorcHLIGHT. The FieldHandler interface is shown in Listing 5.4.

public interface FieldHandler ({
/% Map a field from the source bug tracker to the bug model #*/
public void map (Map<String, Object> issueProperties, JSONObject bugJdson)

throws JSONException;

Listing 5.4: The FieldHandler Java interface.

During the import process, the Importer will iterate through the list of field handler plugins
that are enabled and invoke the map method, which has access to the bug that is being
imported. The method can be implemented to extract the field from any location within

the bug’s original schema. For example, the implementation of the custom field handler in

95

Listing 5.5 maps the timeestimate property from the bug tracker to a new estimate field.

public class EstimateFieldHandler implements FieldHandler {
public void map (Map<String, Object> issueProperties, JSONObject bugJdson)
throws JSONException {

issueProperties.put ("estimate", bugJdson.getString("timeestimate"));

Listing 5.5: The EstimateFieldHandler plugin implementation.

Similarly, new actions can be added by implementing the Action interface.

public interface Action {

/* Adds a new action indicating a change to a field to the bug in the graph
defined by bugKey in the source bug tracker =/
public String addAction (String bugKey, String changedField, String

oldvalue, String newValue);

Listing 5.6: The action Java interface.

Functions

Along with defining new fields and actions, developers can also implement plugins that
provide new logic that can be invoked as a function during the evaluation of BTL statements.
Functions are implemented using the Function interface, and the custom functions defined

in the plugins. json file are invoked during the BTL statement evaluation process.

public interface Function {

public String evaluate (BugGraph bugGraph, Bug bug, String param);

Listing 5.7: The Function Java interface.

96

public class Commented implements Function {
public String evaluate (BugGraph bugGraph, Bug bug, String param) {
for (Comment comment : bugGraph.getCommentsForBug (bug.getKey())) {
String[] authors = StringUtils.split (param);

for (int i = 0; 1 < authors.length; i++) {
if (StringUtils.equalsIgnoreCase (comment.getAuthor (),
authors[il])) {

return "true";

}

return "false";

Listing 5.8: The coMMeENTED function implementation.

For example, consider the relatively straightforward custom function, cCOMMENTED, imple-
mented in Listing 5.8. The logic of the function is in the evaluate method, which has three
parameters: the complete bug graph, the specific bug that is being evaluated by the function,
and the parameter that was passed in to the custom function. In this example, the function
will retrieve all of the comments for the specified bug and, for each, compare the author to
the parameter, which in this case is a username. If there is a match, then it will return true,

since the user has commented on that bug. Otherwise, the function will return false.

The TSP evaluates functions by first narrowing down the list of bugs to those that can be
determined using the attributes that are captured in the bug graph, such as the assignee
or status. Each bug in the resulting list is then evaluated by the functions invoked in the

statement. After each function returns its result, the entire statement is evaluated.

5.4 Implementation Challenges

The main challenge in implementing PORCHLIGHT was ensuring that the architecture sup-

ported a responsive user interface, especially at a large scale with thousands of bug reports.

97

We wanted to both be able to present the user with a sufficient amount of information about
a bug report, including historical actions, while allowing them to quickly navigate through
the list, create tag sets, and to triage. We overcame this challenge by creating a local copy
of the bug data in a graph database. This made both the import process sufficiently respon-
sive, and allowed for complex relationships between nodes to be rapidly traversed during the

evaluation of BTL statements.

Another challenge was in the design and implementation of the timeline. The current design
is the result of multiple iterations, each of which addressed a new challenge in visualizing
the richness of a bug’s history in a way that can still be viewed at-a-glance. Features like
the zigzag to eliminate unnecessary gaps between events and avoid overlapping markers, and
filling the timeline background with colors based on the type of event, are the direct result

of testing the initial visualizations with users.

Finally, developing a language that could be sufficiently expressive to create meaningful tag
sets, that could be used through a user interface easily, and that could be extended to in-
corporate new functionality was an overarching challenge. Relying on standard techniques
for developing new languages, and using tools like ANTLR, helped us to avoid common
pitfalls. We also made extensive use of open source components, like neo4j, and their capa-
bilities to focus our efforts on the problem of creating a tool that would support the outlined

requirements rather than on the underlying technologies.

98

Chapter 6

Analysis and Findings

Now that we have presented PORCHLIGHT and its implementation, we return to the primary
objective of this dissertation, which is to understand the needs of triagers and to assess
our conjecture that working with tag sets better matches how they perform triaging. We

performed a two-part study, using a different method for each part.

For the first part we conducted a preliminary user study. The goal of the study was to
perform concept testing to assess how the functionality we had built into PORCHLIGHT
would be perceived by the users. We wanted to conduct this study early in the development
of the tool to identify any potentially major flaws in its design, specifically in areas like the
user interface, that could prevent it from being used in a more comprehensive study. With
the preliminary user study, we did not yet set out to assess the impact of the tool on the
triaging process, or to identify how the tool might change the way triagers view the process

altogether, even though we did learn some things in this regard.

In the user study, we asked participants to perform a series of scripted tasks using bugs
with which the participants had some prior familiarity. The tasks involved basic actions like

performing assignments to users and milestones, and answering questions about a bug based

99

on the information presented in the timeline. We concluded each session with a free-form
interview to discuss what the participants did or did not like about the tool, and a ten

question survey to assess its suitability for triaging.

For the second part, we employed a lightweight participant observation study method [35, 39],
combining elements of a field study and a field deployment. For this part, we wanted to
observe the impact our approach would have on how triagers approach their task. While
we could not simply ask the participants to use the tool to do triaging per se, we wanted
to situate the study in a real-world context. The goal of this part, then, is to assess the
suitability of the tag set based approach, while at the same time learning more about triaging

as we know it, now that they are provided with a more powerful way to do triaging.

To accomplish this, we recruited a group of software professionals from a software develop-
ment organization. We provided each participant an initial training on the features of the
tool, as well as an introduction to the concept of tag sets as an approach to triaging. We
then engaged in an unstructured discussion about how the participants thought they could
employ the approach. As questions were raised, we guided the participants to the func-
tionality and ideas embodied in the tool, and collaborated with them on how they might
achieve their desired result. We observed the participants and recorded their actions as they

interacted with the tool and the bugs, while actively participating in the discussion.

We also made the decision to conduct two sessions with each set of participants. We used
the first session to train them on the basic functionality of PORCHLIGHT, to introduce the
concept of tag sets within the context of their project, and to begin the discussion through
an initial exploration of their triaging needs and how PORCHLIGHT could help them, or not.
We then used the interlude between the two sessions to create tag sets or plugins to better
support some of the ideas that were brought up in the first session. Allowing a few days
to pass between the sessions also gave the participants time to think about the approach

and their needs. We used the new tag sets and features to seed the second session, and

100

continued with the topic of how they could be used during triaging, which resulted in a more

informative and rich discussion.

We note that, as a participant observation study, the researcher did assist the participants
in working with the tool. We took on the roles of facilitator, by providing the technology, of
technical support to help use the tool and build a positive relationship with the participants
[35]. In some instances, the researcher acted as the encourager when there were features of

the approach that he felt were appropriate for the situation.

[Tugs
MIRTH-E34

O
iRTH-3855 [
L
O

&

e LoggingS AR
40
MIRTH-3356
MIRTH 3318 =
360 (50)

350 (46)

>

) 340 (73)

pattham spalling] 1~
forner] i3

o 112 46)

) Tag Set Settings. . I 1o

narupley 281) WebServiceReceiver - remove LoggingSOAPH: _,
a o

waynen (174)

T 2 311418

ied N 11 013518 FET 3015 © WHERE FREDUENCYLcomment] - 3 SINGE LAST "2

330 (69)
Bpports MTOM

By a tase n-place” capy of the WTOM atiahement dus 1 the Loggis

ok | caneal

322021

30148

EEXFC
24y
311010

310131

30308

Add Comment - E
L Commens, |

Mirth Connect

Figure 6.1: Researcher (left) and study participant (right) during participant observation
session.

The engagement of the participants with the tool during both sessions varied. Some par-
ticipants, especially during the first session, did not make use of all of the features of the
tool, and in instances where they did have ideas for new tag sets, were hesitant to take
control and create them personally. In those situations, we assisted by creating the tag sets
alongside the users and presenting the results to them for feedback (see Figure 6.1). Once
the participants were more familiar with the tool, and saw the results of their feedback from
the first session realized in the second session, they became more comfortable and they took

more control. In general, the primary use of the tool by the participants was with the basic

101

features: browsing the bugs list, viewing comments, performing assignments, and so on.
When it came to creating new tag sets, the researcher was more directly involved in writing

the BTL based on their suggestions.

We chose the participant observation study method because it allowed us, as the researcher,
to be part of the discussion, while at the same time allowing the participant to guide the
discussion. Our primary goal in this part was to enable the participants to engage in exploring
the tool and the concept of tag sets, and to discuss what the impact would be on their triaging
activities. By being actively engaged with the participants, we mitigated the risk of them
abandoning the tool out of frustration. The method also gave us the opportunity to have a
dialog with them as they used the tool, giving us insights into the impact of the approach

on their thought process.

6.1 Preliminary User Study

After several iterations of design and development of PORCHLIGHT, we conducted a pre-
liminary user study to confirm the decisions we had made, specifically regarding the layout
of the interface and the interactions that were available. We particularly wanted to ensure
that these elements would not get in the triager’s way of the participant observation study,

which focuses much more broadly.

6.1.1 Setup and Procedure

For our preliminary user study, we recruited six professionals, who work at a nearby soft-
ware development organization in the healthcare industry, and who perform triaging on a
regular basis. With each participant, we conducted a 45-60 minute session. Before each

session, we populated PORCHLIGHT with bug reports from three different active projects to

102

which the participants regularly contribute to, either by reporting or resolving issues, or by
assigning bugs to developers or milestones. The bug reports were imported directly from the

organization’s existing bug tracker.

We then provided each participant with a tutorial describing PORCHLIGHT. This included
an overview of how to perform assignments using drag-and-drop between lists, how to view
the activity timeline, how to use the quick search and filters, and how to add a comment or
update the status of a bug. We also introduced the concept of tag sets, and provided a brief
tutorial on how to create tag sets from sample BTL statements, or by using drag-and-drop

from the user or milestone lists.

We then asked each of the participants to complete a series of triaging tasks using the bug

reports from their project that we had identified ahead of time.

1. We first asked the participants to identify all bugs that had been assigned to a particular

developer and version.

2. We then asked the participants to identify all bugs that had been commented on at

least three times in the previous two months.

3. We then asked the participants to locate two open bugs, and assign one to a developer
and another to a milestone, based on their knowledge of the bug’s history and of the

project.

4. Finally, we asked the participants to locate several bugs that we had identified as
particularly interesting, and asked them to explain what could be determined based

on the information available in the tool.

As a final task, we asked the participants if they could identify and, if possible, specify in
BTL statements any tag sets that they thought could be useful when performing their own

triaging.

103

After completing these tasks, we invited the participants to provide feedback regarding their
past experiences with bug trackers, ways in which the process could be improved, as well as
their impressions of PORCHLIGHT and its approach to bug triaging. We then asked them
to complete a 10-question five-point (5—strongly agree, 1—strongly disagree) Likert scale
questionnaire rating their experience using PORCHLIGHT and BTL for triaging tasks, as well

as their openness to adopting PORCHLIGHT as their triaging tool.

6.1.2 Observations

Overall, the PORCHLIGHT interface was well received. In performing the tasks, virtually
all of the features of PORCHLIGHT were used, including tag sets and BTL statements. In
tasks that involved making assignments, the participants made use of the drag-and-drop
assignment feature, and several commented on the ease with which assignment was possible
without needing to modify search filters or lose one’s context. All six participants agreed or
strongly agreed that PORCHLIGHT made it easy to identify bugs that needed to be triaged
(Question 1, average 4.3—see Table 6.1 for complete list), as well as to perform the actual

triaging (Question 2, average 5.0). One participant commented:

“[PORCHLIGHT| might make [our triaging meetings| a bit quicker because the
interface is simpler. It’s a lot easier to get around, you don’t have to click too
much, so I think it would be very helpful for pre-planning meetings and backlog

reviews.”

Most participants made extensive use of the activity timeline, noting the frequency with
which some of the issues had transitioned from open to resolved, and the source code modi-
fications that accompanied each status change. We received positive feedback on this ability

to display multiple aspects of a bug report in a single view. One participant stated:

104

Question Average

1 | I found it easy to identify the issues that needed to be triaged. 4.3

2 | I found it easy to assign an issue to a developer and/or a 5.0
release.

3 | I found it easy to set issues aside for triage at a later time. 4.0

4 | I found it easy to update the status of, or comment on, an 4.5
issue.

5 | I had sufficient feedback from the tool as I was making as- 4.2
signments.

6 | I had sufficient information available about an issue to quickly 4.2
make an assignment decision.

7 | Thad sufficient context of related issues to make an assignment 3.8
decision.

8 | I found tag sets to be useful in triaging issues. 4.5

9 | PORCHLIGHT has some features or functionality that im- 4.5
proves my issue triaging experience.

10 | T would use PORCHLIGHT as my issue triaging tool. 4.3

Table 6.1: Preliminary user study questions and average responses.

“I would honestly use [PORCHLIGHT]. With the timeline and the filters, it has

the information I need. I would just have it open all the time.”

Participants also commented that tag sets could could make their triaging more efficient,
since their existing bug tracker forces them to continuously switch between creating and
managing filters, viewing bug report details, and making an assignment. With tag sets, they
were able to identify the bugs that needed to be triaged using BTL, merge the tag sets, and
make the assignment in the same view. Several participants attempted to write their own
BTL statements to generate new tag sets. One was unable to write the statement since the
attribute he wanted to use, the time estimate for the bug, was not available (and was not

included in the bug data model).

Others had difficulty recalling the syntax for BTL, and resorted to explaining what they
intended to include in the statement (unsurprising, since it is unrealistic to expect them to
master the full syntax of BTL in the relatively short time frame available). All six partici-

pants, however, agreed or strongly agreed that tag sets were useful for triaging (Question 8,

105

average 4.5). One participant commented:

“If you know how to use the tag sets, it’s really powerful, because it lets you do
anything. And you can also use the [BTL statements] ... it has a steep learning

curve, but other than that it gives you every option possible.”

We were encouraged by the feedback received during the open ended discussion, as several

participants put forth examples of tag sets they would use were they available, including:

Bugs that have been reported by customers within the last few weeks (as opposed to

by the open source community).

Bugs that have been recently commented on by a project manager or boss.

Bugs that have been in the sprint backlog for longer than a few months.

Bugs that have no time estimate set on them.

Furthermore, all of the participants either agreed or strongly agreed that PORCHLIGHT had
functionality that would improve their triaging experience compared to their current bug
tracker (Question 9, average 4.5), and they would use PORCHLIGHT as their bug triaging

tool if it were made available (Question 10, average 4.3). One participant commented:

“IPORCHLIGHT] could definitely replace [our bug tracker|, because you can just
sort it by backlog. We can even try using it for one of our sprints and see how it
goes, because it has all the information, you don’t have to go to a different page

and it doesn’t screw up by hitting the back button.”

While this preliminarily user study was not comprehensive, it did confirm that we were

headed in the right direction with the functionality that we were building into PORCHLIGHT.

106

The feedback we received pointed to the ability to view the information necessary for triage
in one interface, the ability to quickly browse through a list of bugs, and the ability to
quick perform an assignment as key features of the tool. Encouraged by these findings, we
continued down the path of making improvements to these functions, and also incorporating

more advanced tag set capabilities.

6.2 Participant Observation Study

While the preliminary user study provided us with positive feedback and confirmed some
of the design decisions we made, we wanted to take a step back and look at our original
conjecture and study the behaviors that the triagers exhibited when working with bugs in
sets. Specifically, we wanted to understand how tag sets could help triagers work with sets of
bugs, and what the impact of a dedicated triaging environment and tagging language built

around tag sets would be.

For this study, we asked the participants to think of PORCHLIGHT as a research prototype
designed to express certain ideas, and to consider the concept of tag sets and the ability to
create and work with tag sets rather than the specific features of the tool or the tagging
language. This subtle but important modification to the study prompt made a significant

difference to the type of feedback that was received.

The participant observation study included four participants, all employees of the same
software development organization involved in the preliminary user study. Two of the indi-
viduals had participated in both the preliminary user study and the participant observation.
The organization consists of multiple development teams working on different products. The
organization uses an Agile development methodology that involves sprint planning meetings

every 2-3 weeks.

107

6.2.1 Setup and Procedure

In preparation for each of the user study sessions, we configured PORCHLIGHT to work
against the bug tracker for the projects, in this case JIRA. We imported several thousand
of the most recent bug reports into the tool and verified the collected data (bug reports,
comments, milestones, users) were present and accurate. The specific projects that were

imported depended on the participants the projects they were most closely involved with at

the time.
Project | Age | Num. Issues | Num. Issues Imported
Project A | 10 yrs 3,700 3,000
Project B | 5 yrs 3,500 3,000
Project C | 9 yrs 8,100 3,000

Table 6.2: Summary of projects imported into PORCHLIGHT for the study.

During each session, we recorded the participants activity using a screen capture tool. This
included a recording of the actions performed while using the tool, as well as the audio of
the dialog between the participants and the researcher, along with a video of the person
currently “driving” the tool. We have included screen captures in the narrative from the
sessions that contained information that is publicly available, but not of the other sessions

which contain information that is proprietary in nature.

For this user study we conducted two sessions with each set of participants. Each session
was approximately 1 hour long, and the two sessions were conducted several days apart. We
chose to conduct two sessions for several reasons. First, we wanted to expose the participants
to the tool on multiple occasions and to give them a chance to become familiar with the
concepts and the functionality before diving in to the bug reports. The goal was to take into
account any learning curve associated with tag sets. Second, we wanted the opportunity to
analyze observations on how tag sets were used from the first session in order to prepare

the environment during the second session. We conducted the first pair of sessions with two

108

participants together as a team since they shared triaging responsibilities for their project,

and we conducted the other two pairs of sessions with the participants individually.

Similar to the preliminary user study, we began the first session by providing each participant
with a primer on PORCHLIGHT (see Appendix B for the complete study prompt). The
purpose of this part of the user study was to familiarize the participants with the features,
including the layout of the user interface and the assignment actions. Participants were

provided with an outline of the tutorial, and a BTL reference sheet, during the entire session.

After the tutorial, we directed the participants to explore the bugs that had been preloaded
from their project. This was a free-form exercise, and the only prompt was to browse
through the bugs, optionally making use of the tag set functionality. The participants were
encouraged to “think aloud” and describe any observations. Based on these comments,
we asked the participants questions about what their typical triaging approach is, and if

applicable, provided instructions on how to use the tool to answer a specific question.

After each initial session, we reviewed the recordings and identified the instances where the
participants attempted to create a tag set to express a group of bugs that were of interest
to them. If they were unable to create this tag set, we noted the reason and addressed it in
one of two ways. If the request was for a particular tag set that could not be easily created
during the session, we created this tag set so that it would be readily available during the
second session. If the request was for a particular field, action, or function that was not

available in BTL, we implemented it as a new plug-in that could then be used.

After creating new tag sets or modifying BTL based on the feedback from the first session,
we conducted a second session. The prompt for this session was to explore the same bug
reports drawn from their project, but they had several tag sets available that they could use
as a starting point. The participants were encouraged to review the bug reports that were

identified by these tag sets, and to triage them if appropriate.

109

Each session was highly interactive, and we paused at various points during the discussion
to recap observations that we had made about their specific triaging workflow or model,
or comments that the participants had made. Often this would prompt the participant
to elaborate on how they would perform some action using their current bug tracker, and
predict how they might do it differently if they were using PORCHLIGHT or tag sets. If we
felt that a specific feature or tag set would address some need that the participant posed
during the session, we provided suggestions and guidance on how to use the tool to address

the need.

6.2.2 Summary of Participant Observation Sessions

In this section we provide a narrative overview of each of the sessions. For each of the
participants, we present the concepts that were discussed and the actions that were performed
wile using PORCHLIGHT, as well as the changes that were made between sessions. More
specifically, we highlight the needs presented by the participants and the tag sets that were

created in response during each session.

Development Co-Leads

The first participants are both senior-level software engineers that shared the role of co-
lead of a commercially developed open source product. They oversee a team of three other
software engineers, and share the responsibility of planning releases for the product and
guiding the technical direction. One of their responsibilities as co-leads for the product is to
perform regular triage of new bugs that are opened in the project’s bug tracker. All bugs
for the project are tracked in JIRA, and there have been over 3,700 change requests created
since the team began using the bug tracker in 2006 (of which we have loaded the 3,000 most

recent into PORCHLIGHT).

110

We note that the sessions were conducted with both of the participants together as a team.
This was done intentionally, since both were intimately familiar with the bugs in the bug
tracker, and could complement each other in the context and knowledge they brought to bear
during the sessions. There were several points during the sessions where one participant
confirmed, or added to, the suggestions and ideas proposed by the other, which led to

refinements in many of our observations.

Session 1

The first session lasted 1 hour and 4 minutes. The overview and tutorial portion lasted 21
minutes. The remainder of the time was a discussion on tag sets and exploration of the bug
reports. We asked the participants to act as if they were conducting a “hypothetical triaging

session” and to explore the bug reports.

During the tutorial part of the session, we created a new tag set to demonstrate the capabil-
ities of BTL. In the example tag set we made use of the FREQUENCY function to identify bugs
that have received more than three comments and that have been updated in the last two

months. The resulting tag set contained 179 bug reports from the sample that was imported.

TAG "ACTIVE" WHERE FREQUENCY (comment) > 3 SINCE LAST "2 months"

Pushing Bugs Out

They began by wanting to look at all of the bug reports currently assigned to the next release
to decide the ones that need to be “pushed out.” This involved reviewing the ones that were
not likely to be resolved due to time constraints. To find the bugs assigned to 3.4.0, we
demonstrated the ability to drag the milestone from the milestone list onto the tag set list,

which created a new tag set using the following BTL expression:

TAG "3.4.0" WHERE fixVersion = "3.4.0"

111

The tag set contained 73 bugs. The participants reviewed each one to make sure that it was
correctly assigned to the 3.4.0 release. Since bugs related to the theme of the release are
typically assigned to one developer, they found the ability to multi-select bugs from the bug
list and assign them to a user an efficient way of performing the triaging action. One of the
participants began reviewing the bugs in the bug list, while referring to the the timeline to

both assess the level of activity on a bug and to review the comments.

Themes and Priorities

Both of the participants commented that they plan releases and triage bugs based on themes.
They typically identify a handful of major features that will be part of the release, and
everything else can be moved out to a subsequent release during the triaging sessions. For
the 3.4.0 release, the major theme is improvements to the Web Services Connector component
and any related changes. The participants identified this set of bugs as a potential starting
point for triaging. To identify these bugs, we suggested using the conTaIns function which

searches the summary and description text for matching keywords.

TAG "WS" WHERE STATUS = "Open" AND CONTAINS ("web service") = true OR

CONTAINS ("socap") = true OR CONTAINS ("http") = true

We attempted to create this tag set during the session, but the BTL evaluation failed and
the tag set did not contain any bugs. We noticed errors in the console output and made a

note to address them before the second session.

One of the participants also commented that the concerns themselves are prioritized as part
of triaging. There are some concerns that are specific to a release, while others apply to
all releases and are more fundamental. For example, bugs related to security defects that
may describe some vulnerability are the highest priority bugs that should be assigned and
resolved in a timely manner, and having a tag set that identifies these, based on keyword or

another property, would be a starting point for planning releases.

112

Because these bugs may not always contain easily identifying keywords that indicate a se-
curity related defect, one of the participants commented that he would initially review new
defects and manually tag them. To demonstrate this functionality, we scanned the bug list
and identified several bugs that could be related to security and created a new ad hoc tag
set by transferring them onto the tag set list. This new static set could then be used to

prioritize bugs.

The next level of priority would be bugs that indicate a problem with the foundational
components of the software. A bug that potentially prevents the processing of messages, or
the software from launching, would be one that should also be triaged and assigned. The
last set of bugs are the trivial ones: defects related to the user interface or ones that do not
prevent the software from being used. These defects are more likely to be distributed across

releases and pushed out during a triaging session.
Votes

In situations where there are too many bugs identified in the tag set to assign to a single
milestone, one of the participants requested the ability to create an additional tag set based
on the number of votes associated with each bug. Since their project is open source and
many bug reports come from the community, votes are a way for users to provide input on
what should be prioritized for each release. The participant requested the ability to identify
the bugs that have received eight or more votes. Since votes was not an action that was
implemented in the data model, we were not able to create a tag set based on votes at this

time.

Overlaying Tag Sets

We also explored the ability to have multiple tag sets active in the bug list. We did this by
enabling both the 3.4.0 tag set and the ACTIVFE tag set. The bug list then contained bugs

that were assigned to the 3.4.0 release or that were considered active using our tag set (have

113

more than three comments and have been updated in the last two months).

One of the participants suggested that these two tag sets could serve as a starting point for

a triaging session, and on top of this they would want to create additional one-off tag sets

based on search criteria, similar to the WS tag set created earlier in the session. The ability

to enable and disable the tag sets would allow him to easily identify bugs that are members

of multiple tag sets, and thus match the criteria specified by each of the tag sets.

[search issues

Search versions.

2y (280)
.
h(174)

Key v | Tags Summary
MIRTH-3843 (O Add JavaScript mode to HTTP settings
MIRTH-3842 O Add Digest authentication mode to HTTP Authentication settings
MIRTH-3841 O Add Basic authentication mode to HTTP Authentication settings
MIRTH-3840 O Add new connector plugin properties for HTTP Authentication
MIRTH-3837 O HTTP Listener / WS Listener - Add Support for MTOM
MIRTH-3834 O WebServiceReceiver - remove LoggingSOAPHandler to support MTOM/XOP
MIRTH-3832 O Getting error "Invalid server configuration file” when restore MC Config
MIRTH-3830 O Allow channels to link to library resources by name instead of ID
MIRTH-3826 O Administrator cannot launch if a single client plugin fails to start
MiRTH-3810 O Code Templates doesn't check for duplicate function declarations
MIRTH-3806 () Disabled destinations will still prevent channel from saving due to storage settings
MIRTH-3801 (O Improvements for setting common properties across multiple channels
MIRTH-3800 () Support JSON as well as XML for the Client core API
MIRTH-3798 () p to the Client (. i) core APl
MIRTH-3788 () Add the ability for users to add/remoye dafault cuctom matariata eolimne

MIRTH-3786 ()

Add the ability to determine exactly w Tag Set Settings

Code Templates doesn't check for duplicate f| .

Created by aitougan on Tue Oct 06 08:30:29 PDT 2015

Currently it is possible to define a function in Code Templates with the §
t to throw an error whenever such duplicate declaration is attempted.

10/06/2015 08:35+

Color: [] oKl Cancel | i

| WHERE (FUNCTION > FREQUENCY comment 3)

@

[»

Kl

[¥] Has Active Tag

CJu g (User)

-message Q)
(e .

[Unassigned (Versio
@ Open
0 Resolved

O Closed

Clear Status

i

Date: 10/06/2015 08:41:46
Comment Author: narupley

sl

FEROODOODOOOODODOOO

documentatior | (1)
[Crace] ©
[server] (»)
[webservice | (5)
[hai] (1)
)
)
[ooltie] (2)
(active) 179)
(D)

1sly, that leads to problems, so it would be extremely nice for Mirth Cont

If two _different_ templates have the same function name declared, that's probably fine, assuming you have them included in mutually exclusive contexts, or in different libraries that are included in differer.

hannels.

Ear tha ca

s bania

ualtinla)

tinne af tha cama nama in the cama cada tamnlata tha arahlam ic that it

Channels and Patches

Al s b Lanitimata Damanhar tha

Figure 6.2: Study participant verifying tag set syntax.

tmad lila L ar

We also discussed the ability to create tag sets based on the presence of specific items in

the bug, like screenshots or stack traces. One of the participants did not think those two

would be particularly useful, but suggested that being able to identify bugs that had specific

attachments would be helpful. For example, a channel is an artifact that is created using the

editing environment developed as part of the project. If an XML file defining the channel

114

is attached to the bug, it means that there is additional information that could be used to
debug the defect, increasing the likelihood that it can be resolved. Source code patches were
also identified as important attachments since they indicate that the reporter has not only
opened a bug report but has included a fix. A tag set with bugs that contain channels or
patches can be used as another layer that would indicate bugs that can be assigned to an

approaching release.

Who Commented?

We also discussed additional attributes that may be useful in creating tag sets. Earlier in the
session we created a tag set to identify bugs that had received more than three comments. We
provided the participants with additional examples of fields and functions available in BTL,
which prompted one of them to remark that identifying bugs based on who had commented
on them would be useful. Users from the open source community will often leave comments
on bugs with additional information, or request that a particular bug be prioritized for a
future release. Because the software is also available under a commercial license, customers

will also leave comments on bugs requesting additional information or changes.

One participant requested the ability to create a tag set that contained bugs that were
open and that had been commented on by a specific individual, either from the open source
community or that was using the commercially licensed version of the software. They would
use this set of bugs to identify ones that may need additional attention during the triaging
process. We were unable to create this tag set since BTL at the time did not have the ability

to tag bugs based on the author of a comment on a bug.

Bug Inbox

One of the participants commented that one attribute that would be useful for triaging is

when the bug was last reviewed by one of the triagers.

115

“One thing I've been playing around with is, not just necessarily time it was last
modified or created, but when is the last time I looked at this or reviewed it?
Maybe I didn’t make any changes, but I want to know ‘did I look at this issue?’
because maybe I looked at this issue last week and I forgot. It was fine, I didn’t
need to make any changes and it was exactly where it needed to be. But, if there
was a way, maybe just another field or something, like last reviewed date. Then
it turns into an inbox type of thing: here’s all the issues that I haven’t look at at

all, or ones that I haven’t looked at in 6 months, and that determines its age.”

Similarly, while reviewing the bug list generated from overlaying multiple tag sets, the other
participant commented that it would be useful to have the ability to mark a bug as viewed.
This would allow the triager to note that it has been reviewed, even if it has not been
modified or assigned. Additionally, the timestamp for when it was last reviewed could be
used in future triaging sessions to identify the ones that have not been reviewed in some

time so they can be triaged.

We also asked the participants to describe what an ideal “starting tag set” would look like
to prepare a “bug inbox” for a triaging session. Combining the tag sets discussed earlier in
the session, the participants agreed that a tag set that identified open bugs assigned to the
3.4.0 release that contain one of the theme keywords and had more than five votes from the
community would be a recurring list they would want to review for release planning. The

desired tag set is described below:

TAG "STARTING" WHERE STATUS = "Open" AND CONTAINS ("web service") = true OR
CONTAINS ("soap") = true OR CONTAINS ("rest") = true AND FREQUENCY (votes) >

5

Changes Made

Based on the feedback provided during the first session, we made several changes to the

116

tool in preparation for the second session. First, we implemented a new function called
comMENTED which allows users to tag bugs which have comments authored by a specified
user. The implementation of this plugin is listed in Listing 5.8 as an example of a custom

function.

Second, we implemented a new field handler to track the number of votes a bug has. This
field was available in JIRA as an endpoint in the REST API, and we extended the bug
data model using the plugin architecture and added a new field called votes that would be
populated during the import process. This field could then be used in conjunction with the

FREQUENCY function to tag bugs that had received a certain number of comments.

Lastly, we addressed a defect in the conTaIins function that had prevented us from creating
the tag set that identified bugs based on a set of keywords. The error was caused when the
function was evaluated against bugs that had an empty description, which was the case for
several in the bug tracker. The fix for this defect involved simple checking for an empty

string and not performing the regular expression search in that case.

Session 2

The second session was conducted with the same two participants five days after the first
session and lasted 53 minutes. We began this session with a quick review of what we had
discussed in the first session, and the new features that had been added to address some of

the feedback.

Community Votes

To demonstrated the changes that were made from the previous session, we created a new
tag set using the Votes field to identify bugs, in the same project that was imported before,

that had received more than one vote:

TAG "VOTES" WHERE FREQUENCY (votes) > 1

117

The resulting tag set contained 36 bugs. Upon review, one of the participants felt that
this tag set was a useful starting point for triaging, stating, “I think this is a small enough
list to begin [triaging] with.” In addition to this tag set, the participant wanted to refine
the criteria and tag the bugs which had received more than four votes. Using the built-in
autocomplete functionality in the BTL editor (see Figure 6.3), the participant proceeded to

create a new tag set using the following BTL expression:

TAG "VOTES2" WHERE FREQUENCY (votes) > 4

The resulting tag set contained only 8 bugs. With both tag sets active, the list contained
bugs that had received more than one vote, or that had received more than four votes. This
was indicated by the two markers in the tag set column of the bug list. The participant that
had created the tag set observed that since one of the tag sets is a subset of the other, it
would be useful to be able to sort the bug list in descending order based on the number of
tag sets the bug belongs to. This would put the bugs with more than four votes at the top

of the list and allow him to review and triage them quickly:

“T would see these [bugs| as higher priority, or just something to look at first. If
I'm doing to decide to put something into a version, I'm more likely to put these
issues here rather than something else that a couple of people have voted for but

not as many as these.”

At multiple points during the session, the participants pointed out that the assignment
indicators (green check marks) in the user and milestone list, meant to highlight the currently
assigned developer or milestone, were not prominent enough and were difficult to see when
quickly scrolling through the bug list. They requested that the indicators be more prominent,

or that the user and milestone items in the list be highlighted to indicate assignment.

Using CONTAINS

118

One of the participants then created a new tag set using the fixed conTains function to

identify bugs in one of the recent releases that were related to the Web Service Connector.

TAG "31WS" WHERE fixVersion = "3.1.0" AND CONTAINS ("web service") = true OR

CONTAINS ("socap") = true OR CONTAINS ("rest") = true

This tag set contained 17 bugs. He then enabled the existing VOTES?2 tag set (which
tagged bugs that had more than 4 votes) and found that none of the bugs in the bug list
were tagged with both tags. This indicated that, while these bugs had matched the theme
of the release, the community did not view them as particularly important (based on votes

as rough indicator).
Tag Sets for Specific Users

We then proceeded to create a new tag set that demonstrated the new coMMENTED function to
identify bugs which had been commented on by particular users in the community. Prior to
this session, the participants had provided a list of 15 usernames of users in the community

that were relevant to their triaging. We created the following tag set:

TAG "COMMENTED" WHERE COMMENTED (userl) = true OR COMMENTED (user2) = true ...
OR COMMENTED (userl5) = true

The resulting tag set contained 23 bugs. Another request that came up during the session
was the ability to identify bugs that were reported by a specific user. We demonstrated this

ability by creating a new tag set using the following BTL statement:

TAG "USER" WHERE reporter = "user"

The tag set contained 21 bugs. Enabling both of these tag sets presented a bug list which
contained bugs that had been commented on by a select list from the community, or had
been reported by a specific user. In general, the participants found the ability to create tag

sets based on the users involved, whether commenters or reporters, to be useful.

119

h users

Search issues.

| [Search versions

(]

&
brentm (74)
0
(&
eduardoa (1)
(&)
jacabb (14)
Lo]

(5]
jaysenp (77)
L]

(=]
leilanim (48)

L]
-
narupley (282)

&

wayneh (173)

Key [Tags Summary | -
MIRTH-2944 O Request to allow velocity templates in Archive Setting’s root path || [rlHas Active Tag
MIRTH-3025 (O Allow Message Builder steps to automatically handle repeating nodes (segments/fields/etc.) [] Unassigned (User | Enable All / Disable A r
MIRTH-3036 (O Use Getdown instead of Java Web Start for downloading/updating the Mirth Connect Administrat: = o
MIRTH-3102 O Add methods/options to ChannelUtil to retrieve lifetime statistics [] Unassigned (Versio e
MIRTH-3116 (O Setting to allow message pruning to prune ERRORED messages — | @ Open m
MiRTH-3126 O Server manager cannot save properties filas when the OSX installer is used O Resolved o)
MIRTH-3130 O Dispatch an alertable event when the File Reader polls but does not find any files to process m] i)
mirTH-3120 O Allow users to return custom responses when the source queue is enabled) Closed O ®
MIRTH-3167 (O Allow parallelization of message processing through a single channel M Clear Status o 5
MIRTH-3195 (O SQL comments should be ignored for the database connectors
MIRTH-3218 O [Mirth Connect] Create multi-version multi-connection fat Mirth Connect client a o
MIRTH-3219 O [Mirth Connect] Add Full MC client's Dashboard functionality to MC Web Dashboard | @
MIRTH-3221 O Administrator times out on its first few requests after being idle for a while o W
MIRTH-3229 O Allow each message browser search job to be viewed and cancellable o N =

transformer —

MIRTH-3336 O Allow the DICOM Listener to send racnan<a Al ~
MIRTH-3340 () Allow Administrator font size to Jog Sl Scltings] Ll] 1]

Allow users to return custom responses W =

Created by narupley on Fri Feb 14 09:00:53 PST 2014

AG

Right now the source queue can be a bit of a Catch-22 for some p{
rocessing thread *not* be a bottleneck), yet at the same time custq

The most they would be able to do is leverage an attachment scripl
properties. So technically this is possible in a very limited form. Hg

Options to specify channel pipelining (allowing multiple messages
reprocessor to postprocessor) to occur in order, _and_ still have the:
ue in all cases.

Also, obviously they can always split their workflow into two channels, but it reporter
1

| WHERE |

Color:[ryncTION

VOTES2 \E‘

description
estimate ‘rom multiple sources at once (and have the main message
fixVersions is currently set up this isn't really possible

FREQUENCY(comment) > n
FREQUENCY(reassign) > n
FREQUENC\“S(;KUS) >n

‘iable in the source inbound data type's response generation
=|s/messages for HL7 v2.x

be times when you also want main message processing (fror
/pipelining option on channels still wouldn't really solve the

£ |

key
OR

priority
~ngle channel.

DY

Figure 6.3: Study participant creating new tag set.

Timeline and Importance

M

>
o

m

@
°

i

While reviewing the bugs that were in the COMMENTED tag set, one of the participants

began to review the individual comments for bugs in the list using the timeline. The discus-

sion around comments and activity led to the notion that the number of comments correlates

to the importance of the issue, or the demand for an issue. As we looked at one bug in par-

ticular (MIRTH-3167 shown in Figure 6.4), one participant observed that, “this is why he

[one of the developers] is working on this one right now.”

We then asked him to also enable the VOTES tag set, and we saw that the particular

bug was tagged with both COMMENTED and VOTES. The number of comments and the

number of votes present in the bug tracker seemed to be related to the importance of the

issue and the amount of development effort that was currently going into it.

Layering Intersecting Tag Sets

120

‘s00 PorchLight

Eile
Search users Search issues. Search versions
) Key Tags Summary - | -
- MIRTH-3164 Allow the Administrator max heap size to be user-configurable on the launch page | L] Has Active Tag Add Tag =
brentm (74) MIRTH-3165 Make the default max heap size returned by the web start servles configurable as a [Unassigned (Use || Enable All / Disable All 4.0
o MIRTH-3166 O Improve how enabling/ disabling occurs from the Channels view ‘ el o (B o L
] MIRTH-3167 Q) Allow parallelization of message processing through a single channel = “
eduardoa (1) MIRTH-3168 Not able to use certain Java objects in JavaScript conditional expressions [Open = 3.6.0 (50)
o MIRTH-3169 Improve Administrator responsiveness for servers with large amounts of channels Resolved &
MIRTH-3170 Update Web Administrator to use Bootstrap 3 v &}
jacobb (14) MIRTH-3171 Add the ability to set JMS message properties.) Closed - D 3.5.0 (47)
MIRTH-3172 Migrate from 3.0.1 1o 3.0.2 Clear Stat <
) Y SAY AN vl [Sinl 21 . —
- MIRTH-3173 TCP Listener response socket is binding to local address in the listener settings =i i 5 5
Jaysenp (78) Allow parallelization of message processing through a single channel 3.4.0 (76)
“ Created b ley on Mon Mar 03 08:42:06 PST 201
\elfanim (48) reated by narupley on Mon Mar 4 4 | 332 @)
) Currently only one message can process through a channel. This is by design for things like message order preservation and the serial nature of the global channel map.
[~ 3 ==
However, this can severely hamper message throughput for channels that don't actually need_ message order or any other benefits that the "single message conduit” paradigm mig|
narupley (282) bring. Especially for “stateless” Web Service f HTTP Listener channels, requests tend to be mutually exclusive and don't necessarily nead to be ordered in any specific way. This can 33109
L) be true for HL7 interfaces as well, particularly for servers that accept QRY messages and return a set of results (immunizations, syndromic surveillance, €tc.). In 2.x, the parallelizati
- n part existed when unsynchronizing a channel, but you couldn't actually respond from a destination or custom respanse.

wayneh (171) So in essence, this feature would provide some way for multiple messages to process through a channel at the same time. Obviously certain sacrifices would have to be made 33.0 (69)
* Message order is not guaranteed. So a message that was received first is not guaranteed to be sent out first, and the associated response is not guaranteed to be sent back to the «|

02/28/2014 00:49-88———————04/21/2014 13:58:05 11/09/2014 01:17-5———————————04/05/2015 17:38:18 E—

3 | | | ? | | | g | L
08/13/2014 05:38:36——————08/14/2014 07:08:09 09/23/2015 15:4459———09/23/2015 15:46: o

Date: 03/04/2014 09:49:53 3218
Comment Author: narupley —

Here's one of the more recent forum threads regarding this issue, though there have been several in the past, and also people on IRC talking about it. 3.2.0 (O1)

[htep: / fwww.mirthcorp.com/community /forums /showthread. php?p=37933#post37933]

Add Comment 31240 ad

Mirth Connect

Figure 6.4: Bug details and activity timeline for MIRTH-3167.

One participant asked if it was possible to sequentially enable tag sets so that bugs that be-
longed to multiple tag sets could be revealed. In an effort to facilitate this, we demonstrated
two features in the tool. First, we pointed out the tag set indicators that appear in the bug
list when tag sets are enabled. If multiple tag sets are enabled, and the Has Active Tag filter

is enabled, then the bugs in the list are those that belong to any of those tag sets.

Second, we demonstrated the ability to take a tag set label from the tag set list and drag-
and-drop it onto another label. This prompted the participant to enter a new name for a
tag set which combined the clauses from the two tag sets using the and operator, creating a
new tag set which was the intersection of the two. While both of these achieved the desired
outcome, the ability to more easily enable and disable individual tag sets and dynamically
switch between viewing all of the bugs and ones that were only in certain tag combinations

of tag sets was desired.

Release Planning

We entered the next part of the discussion by asking the question, if a base list is the

121

starting point for triaging, what criteria do you use to create the tag set? This led to a
discussion about the team’s approach to release planning and the role that tag sets can
play. Specifically, tag sets could be used at various checkpoints during the process, such
as at the beginning of a development sprint or right before it ends, to ensure that bugs
have been properly assigned. Once the triaging has been performed, the development team
can continue using the existing bug tracker to view details about the individual bugs. This
supports our assertion that triagers would be well served by having a dedicated triaging

environment that meets their specific needs.

Product Manager

The second participant is a software product manager that oversees product direction for
two commercial products. On one product is solely responsible for managing and triaging
bug reports opened in the JIRA project. Part of this includes triaging new bugs as they
are opened. To date, this product has over 3,500 change requests that have been created
since the team began using the bug tracker in 2011 (of which, again, we loaded the most
recent 3,000 into PORCHLIGHT). He also oversees a new product that is under development
and has not yet been released. While he does not perform triage on bugs for this project
yet, he is responsible for creating and managing the feature requests for the project, and

distributing them across future milestones.
Session 1

The first session lasted 48 minutes. The overview and tutorial portion lasted 11 minutes.
The tutorial was significantly shorter since the participant was already somewhat familiar
with the features since he had also been a participant in the preliminary use study. We

began the exploratory part of the session with the following tag set:

TAG "ACTIVE" WHERE FREQUENCY (comment) > 3

122

The tag set contained 700 bugs. While reviewing the bugs in this tag set, the participant
suggested creating a new one that tagged bugs that were related to ZIP codes since he
knew that there were numerous tickets describing a feature request related to that topic.
Additionally, he wanted to identify those bugs in that set that had received more than a few

comments, and that had a screenshot attached. We created the following tag set:

TAG "ZIP" WHERE CONTAINS ("zip") = true AND HAS (screenshot) = true AND

FREQUENCY (comment) > 2

The tag set contained 0 bugs. We then suggested removing the comment and screenshot

criteria from the BTL statement, and we created a simpler tag set:

TAG "ZIP" WHERE CONTAINS ("zip") = true

The tag set contained 9 bugs. We then enabled the Has Active Tag quick filter and enabled
the COMMENTS tag set. This led to 705 bugs being displayed in the bug list, with 4
belonging to both tag sets. We then used the resulting bug list as a starting point for further
exploration. Browsing through the bug list, we identified a bug that belonged to both tag

sets, and had an additional static tag with a customer’s name.

One use for this tag set is to identify the key bug for a specific concern. For example, of the
9 bugs in the ZIP tag set, one or two may have the biggest impact and if resolved, could
also address the remaining bugs. The tag set that was created provides the triager with a
much shorter list of bugs to review in order to easily identify such key bugs and ensure that

it is addressed before any development time is spent on the other bugs.

What Is an Active Bug?

The participant remarked that the number of comments was one of the factors that he would
use to determine the level of activity for a bug. Other factors include any updates (changes to

any field in the bug), particularly ones that have happened more recently. He also suggested

123

that the number of watchers, or users that have requested to be notified of any changes made
to a bug, would be a useful criteria for creating tag sets. He also suggested that being able

to identify bugs that are being watched by a particular user would also be useful.
Preparing for Release

Tag sets could also be used to prepare for a release by identifying bugs that are not ready
to be included in the release notes. The desired tag set would be one that tags bugs that do
not yet have the Resolution Summary field populated. Another tag set would identify the
bugs that have not been assigned to a QA resource yet for testing (which is different from
the assignee field). The participant wanted to use tag sets as a way to keep track of specific
groups of bugs during various points during the development and release process. We were,
however, unable to create either of these tag sets since neither the resolution summary field

nor the assigned QA field were part of the default bug data model.
Tags as Temporary State

The participant also commented on the need to review bugs and set them aside for review
and verification, either personally or by assigning it later to another member of the team.
We demonstrated the ability to create an ad hoc tag set named TO BE VERIFIED using
arbitrary bugs from the bugs list, as well as the ability to add bugs to an ad hoc tag set,
which was well received. As in previous sessions, the ability to multi-select bugs from the
bug list and assign them to a user in bulk was seen as a valuable complement of having a

TO BE VERIFIED tag set.

The participant also commented that this tag set could be used as a way to hand off bug
reports to another member of the project to verify the defect. He would perform the first
level of triage himself, but then have another member use the same tag set as a work list
of bugs that need to be verified. This comment introduces the notion of sharing tag sets as

a way to communicate the state of a bug without changing any of the assignee fields. This

124

would likely happen in situations where triaging is a collaborative activity, or it is done in
tiers and the role of the lower tier is to prepare tag sets for the next tier. It also echoes

earlier feedback for a need to be able to create an inbox bug list.
Challenging Bugs

One of the ideas that came up during this session is that of challenging bugs, or ones that
can not be quickly triaged and assigned but require careful consideration. These bugs need

to be identified and set aside for review with a group rather than individually.

“Let’s find the really interesting things. There are going to be tickets that it’s
not clear should this be in the product or not. It’s it not clear how they should
be resolved. But people do have opinions, and there’s interest in this area, that’s
why there are so many comments, watchers, and activity. There are a lot of
things to work with here, so this is a great thing to review, this would be a

source of input.”

In this case, the participant used comments and aforementioned watcher count as proxies to

represent challenging bugs. A tag set to identify these might look like the following:

TAG "CHALLENGING" WHERE FREQUENCY (comment) > 2 AND FREQUENCY (watchers) > 2

This list would then serve as a starting point for a triaging session. From the bugs in this
list certain themes may emerge in the form of specific features or needs that need to be
prioritized for a future release. The key is that tag sets can be used to narrow down this

initial list and make the themes more apparent by providing context about the bug.
Cleaning Up Bugs

Another use case for tag sets that was discussed during the session is the need to manage

bug reports that do not have enough information. As a first level triager for the project,

125

the participant viewed his role as making sure that these bugs do not make it past him
into a development sprint since his teammates would waste significant time trying to gather
needed information. Instead, he would like to identify these bugs as part of his regular
triaging and either remove them, or request additional information. He proposed a tag set
called CLEANUP that would contain bugs that are missing a screenshot, have no comments,

and have no labels:

TAG "CLEANUP" WHERE HAS (screenshot) = false AND FREQUENCY (comments) = 0 and

FREQUENCY (labels) = 0

We were unable to create this tag set during the session since the FrREQUENCY function did not
apply to the labels field at the time. Had bugs been tagged with this tag set, the next step
would have been to review them and either remove them, or request additional information

from the reporter using the Quick Comment feature.
Static Tags

PorcHLIGHT proved to be useful in managing static tags along with tag sets. The partic-
ipant noted that the ability to enable and disable tag indicators on the bug list was useful,
especially when tags were used internally to the project to indicate specific customers of
the product. He could then enable specific customer tags and identify bugs which had been

requested by multiple customers. He stated:

“As a product manager, if I fix those I make three customers happy, versus just
making one customer happy. I'm doing three times the work for the same number

of hours. [My goal] is to maximize satisfaction across the board.”

The large number of tags used in the project led the participant to add the number of tags
a bug has to his list of criteria for a bug that may be in his CHALLENGING tag set, since

multiple tags can indicate multiple customers who have similar but slightly different needs.

126

Changes Made

Based on the feedback provided during the first session, we made several changes to the tool
in preparation for the second session. First, we implemented a new function called wATCHING
which allows users to tag bugs which are being watched by a specified user. Listing 6.1

shows the implementation of this plugin.

public class Watching implements Function {
public String evaluate (BugGraph bugGraph, Bug bug, String param) {
for (User user : bugGraph.getWatchersForBug (bug.getKey())) {
if (StringUtils.equalsIgnoreCase (user.getUserName (), param)) {
return "true";
}
}

return "false";

Listing 6.1: The waTcHING function implementation.

Second, we implemented a new field to track the number of watchers a bug has. This field
was available in bug report definition in JIRA as the watchCount attribute. We extended
the bug data model using the plugin architecture and added a new field called watchers that
would be populated during the import process. This field could then be used in conjunction

with the FrREQUENCY function to tag bugs that had have a certain number of watchers.

Session 2

The second session was conducted with the same participant eight days after the first session
and lasted 58 minutes. We began this session with a quick review of what we had discussed in

the first session, and the new features that had been added to address some of the feedback.

We created a new tag set to identify bugs that have a certain number of watchers:

TAG "EYEBALLS" WHERE FREQUENCY (watchers) > 3

The tag set contained 334 bugs. The participant performed a cursory review of this list and

127

made some observations about a particular bug based on the timeline, specifically the pattern

of comments. We then created an additional tag set that takes comments into account:

TAG "EYEBALLS2" WHERE FREQUENCY (watchers) > 3 AND FREQUENCY (comments) > 3

This tag set contained 152 bugs. Using this refined tag set, the participant began a deeper
exploration of the bugs. As a product manager, he considers one of his tasks to be not only a
first level triager of bugs before they are assigned to the development team, but also he must
regularly “explore the backlog” of bugs to understand the number and types of requests that
have come in. He began by looking at the first bug in the list and reviewing the timeline and
scanning the comments. Based on the bugs in the list, we discussed the distinction between
watchers and comments. Watchers represent external interest in a particular bug, while a
significant number of comments can represent “clarifications, questions, thoughts, potential
solutions, or requests of urgency.” The combination of these two factors in a tag set allows

the triager to select bugs for assignment from a “more urgent pool” of bugs.

As in previous sessions, the notion of themes for release was introduced by the participant. He
stated that releases are populated based on different themes, sometimes focused on customer
requests, other times more focused on architectural changes to the software. To help identify
candidate bugs for the former, a tag set based on watchers, comments, and tags could be

used. To help with the later, the component field in the bug data model becomes useful:

TAG "ARCHITECTURE" WHERE component = "LDAP" OR component = "API"

A similar tag set could be used as a starting point to identify bugs that would be candidates

for a release focusing on architecture changes.

Specific Watchers

Based on feedback from the first session, we also created a tag set to identify the bugs that

a specific stakeholder was a watcher on:

128

TAG "STAKEHOLDER1" WHERE WATCHING (stakeholderl) = true

This tag set contained four bugs. The participant began reviewing each of the bug reports
and though out loud. For the first one, he noted that there were a number of comments on
the bug, and that it looked like an architectural change. His triaging decision would be to
assign it to the technical lead for the team to provide additional feedback. On the second
bug on the list he noticed that there were numerous comments on the issue and noted that
“this one should be labeled major” and that “we should probably figure it out,” but took
no immediate triaging action. On the third bug he noticed that it was labeled with several
customer names and remarked that the particular bug was not a defect but rather a question
that came up during a support case, and could be addressed by providing documentation to
the reporter rather than assigning it to a milestone. On the fourth and final issue on the
list, he noted that the bug had a short description with no activity (based on the timeline),

so he would want to “investigate to see if it’s worth looking at or not.”

In this instance, the specific stakeholder used in the tag set oversees a different project which
depends on the participant’s own project. Bugs being watched by the stakeholder are ones
that are typically “changes that are needed to support [the project],” and so this tag set
becomes a proxy for another project’s list of important bugs. These bugs may also have
urgency since the dependent project is one that is in production use, and therefore newly
reported defects may need to be resolved quickly. The participant found this tag set to be a
useful starting point for triaging, remarking: “I think starting with him is a better starting

point than other random [users].”

To identify bugs important to another stakeholder on the project, the participant also created

another tag set to find bugs where he was a watcher:

TAG "STAKEHOLDER2" WHERE WATCHING (stakeholder2) = true

129

This tag set contained zero bugs. To verify if there were any bugs that he commented on

instead rather than watch, the participant created an additional tag set:

TAG "STAKEHOLDER2" WHERE COMMENTED (stakeholder2) = true

This tag set contained three bugs, which the participant proceeded to review. He noted that
several of the bugs that were in the list also belonged to the EYEBALLS tag set, based
on the presence of the tag set indicator under the summary. He used the left and right
arrows keys to iterate through the comments on the issue and found the comments from the
stakeholder to identify what his level of interest in the bug is. We observed that, as a triager,
the participant used the ability to easily explore the bugs in the list to identify patterns on
how specific users interacted with bugs: the types of comments they left (informative versus
questions), if they watched issues versus commenting, and so on. We think that this aligns
with an exploratory phase that a triager would be in when first starting to explore a larger

set of bugs belonging to a project.

There is also a certain awareness of specific watchers, since they are notified via email of
any changes made to the bug. That means that if as a triager, you made a chance that
is not viewed as the right decision, you may receive negative feedback. Having a tag set
for a specific list of watchers can be useful in providing this awareness during triaging to

inform—if not impact—the decisions made.

The discussion then transitioned into how tag sets could be used to create the different pools
of bugs that could be drawn from at various point for release planning. In his model, he
described the states in which a bug can be in, ranging from highly unorganized and missing
key information, to groomed and ready for assignment into a development sprint. While
we did not work through this entire lifecycle and create the associated tag sets during the
session, we did note that the participant began to discuss the triaging process as a workflow

where bugs were transitioned from one state to another, and that these pools of bugs were

130

more useful to consider rather than individual bugs.

In the end, the product manager made the least direct use of the functionality in PORCH-
LicHT and performed the fewest triaging actions. This is likely due to his role on the team,
which involves more early-stage triaging—filtering issues and adding information before they
are assigned to users or milestones by the development manager for the project. Even so, the
feedback provided confirmed that tag sets can be a useful model during the triaging process,
particularly for transitioning bugs between various internal states that may not be formally

represented in the bug tracker.

Development Manager

The third participant is a software development manager who oversees development of a
large commercial project. The project currently has over 8,100 change requests that have
been reported since the team began using the bug tracker in 2007 (of which we loaded the
most recent 3,000 into PORCHLIGHT). One of his responsibilities is the triage and tracking
of new bugs that are reported, and making sure that they are assigned to milestones and
developers. He coordinates with other members of the team, including the assigned product
manager and QA resource, to verify and manage the large number of bugs and updates to

bugs.
Session 1

The first session lasted 58 minutes. The overview and tutorial portion lasted 7 minutes.
As with the product manager, the tutorial was significantly shorter since the participant
was already somewhat familiar with the features because he had also participant in the

preliminary use study.

Comment to Verify

131

After completing the tutorial, the participant remarked that the Quick Comment feature in
particular was useful, and that instead of right away assigning bugs to developers and mile-
stones, foresaw a model in which he would use an additional comment requesting feedback
from a teammate. Rather than assigning the bug to the user, he would prefer to leave a
comment and mention the specific user so that they receive a notification and review it. He
stated, “I won’t usually assign an issue to [QA] or [the Product Manager], but I'll ask them
to give me feedback to figure out how to assign it.” Only when the bug has been confirmed
will he assign the bug to a milestone and to a developer. This theme of validating bugs by
addressing comments to specific team members was discussed towards the end of the session

as well.
Email as a Bug Queue

This led us into our first topic, which was prompted by our question: do you maintain a list
of bugs that you have asked your teammates to review before triaging them? His response
was that he uses his email inbox as a work queue to keep track of bugs that are out for

review:

“The way that I usually track them, which works for me, is every update to
any issue I get an email notification for. An so I'll go through that queue of
a hundred plus emails a day as they come through, with updates, comments,
whatever, because I have it setup in JIRA so that I'm tracked on everything. I'll
go through each of those and see every update, I'll look at it and see if it pertains

to me, if it’s something that I care about.”

His email inbox becomes a launching point into a workflow that involves others on the team
responding to requests for verification or information, and his being notified of those changes
as a trigger to take the next triaging action. Sometimes the responses will be that the bug

is not actually a defect and can be closed, other times the defect is verified by QA and he

132

assigns the bug to the appropriate developer. He stated:

“I'd say 95% of the time I will just make sure that I have zero in my queue, which
is essentially just a filter in my email, by the end of day. So every morning I’ll
try and go through them, and then every afternoon I'll try and go through them,
because I usually have over a hundred updates a day. In my email it’s a work

queue, because I can see which ones I've read and which ones I haven’t read.”

We then transitioned to how he could potentially create this work queue using tag sets. We

used the following tag set as an example:

TAG "COMMENTS" WHERE FREQUENCY (comment) > 3

This tag set contained 288 bugs. The notion of having dynamic tags that are automatically
applied based on the BTL expression rather than manually having to tag them was well

received, as he stated:

“Frequency of comments I think is a good indicator to tell if an issue is important

to people. Even though there are other metrics in JIRA that should be used for

that, like votes and watchers.”

Since we now had the votes field available in BTL, we created a second tag set to find bugs

with votes:

TAG "VOTES" WHERE FREQUENCY (votes) > 2

This tag set contained zero bugs, which confirmed that votes were not used in this project to
indicate demand from the users of the bug tracker. We created a tag set for watchers based

on the participant’s suggested threshold:

TAG "WATCHERS" WHERE FREQUENCY (watcher) > 5

133

This tag set contained 115 bugs. The participant commented that this tag set is helping
him to “discover what other people think is important.” While browsing through the bug
list he noticed a particular bug that stood out based on it’s description and the activity in

the timeline:

“This is interesting. This issue that I'm looking at right now, I know for a fact
that this has been opened, closed, reopened, probably a dozen times. It’s had a
lot of problems in development (it’s a performance optimization) and so I would
expect this one to show up because it’s not just an important issue, but it’s had

a lot of issues, so it’s probably one that is good to keep an eye on.”

We then enabled the first tag set that we created showing the bugs that had received more
than three comments. Like in previous sessions, the participant noted that the presence of
multiple tag set indicators in the bug list represented the intersection of the enabled tag
sets, and he attempted to sort the bug list using that column header (this functionality was
not available). This was important because he wanted to see the bugs that matched by
criteria. He commented that the these two tag sets would not help him identify new bugs to
triage, but instead it helps to identify bugs that he knows have had “either complications or

problems or were heavily requested.”

He then enabled the open Quick Filter and narrowed the bug list down to the ones that were
in the COMMENTS and WATCHERS list and that were still open. We then discussed if
this list would be a good starting point for triaging, and he suggested an alternative tag set

that identified bugs that were:

e Assigned to him
e Unassigned
e Do not have a fix version (unassigned to a milestone)

134

He created the first tag set by transferring his username from the user list into the tag set
list. This created a tag set containing 109 bugs. He then enabled the Unassigned (Version)
Quick Filter to achieve the second part of the tag set. We continued the session by exploring

the bug list:

“Then I could take the intersection of those tag sets, say okay here’s everything
that’s not assigned to a fix version but has a lot of activity or comments or

watchers.”

Recent Activity

Recency also was identified as an important triaging factor, since “being able to figure out
how recent the activity is important because [a bug] might have dozens of comments from
years ago, but we ended up resolving it a different way and went back to the issue to close
it out.” We suggested creating a new tag set using the since 1AsT clause of the BTL
expression. The participant indicated that he would create multiple tag sets: one showing
bugs updated in the last 30-60 days, and one showing the ones updated in the last 6 months.
He also suggested that it would be useful to sort the bug list by the recency. We created a

new tag set using the sINCE LAST clause to demonstrate how this could be accomplished:

TAG "ACTIVITY" WHERE FREQUENCY (comment) > 3 SINCE LAST "30 days"

We noted that this tag set would identify bugs that had received at least three comments
and has been updated in the last 30 days. This tag set contained 288 bugs, which he enabled
along with the previously created Watchers tag set. He then proceeded to review the bugs
in the list, scanning the descriptions and rapidly traversing through the comments using the
timeline feature. He there after enabled the tag set containing issues that were assigned to
him that we created earlier, and began reviewing the bug list for bugs which belonged to all

three tag sets.

135

Stack Traces and Error Messages

We then transitioned to looking at specific fields in the bug and if they were useful for

triaging by creating a tag set to identify bugs which contained a stack trace:

TAG "STACK" WHERE HAS (stacktrace) = true

This resulted in an error in the console output and the tag set was not created. We noted
that there was a defect in this feature and mentioned we would attempt to address it in the
next session. We nevertheless discussed how a stack trace could help to identify bugs for

triage:

“I would use stack trace. Attachment maybe not, people post screenshots for a
lot of reasons, people post other things as attachments for other reasons. A stack
trace is something that I feel should never be seen. So, if someone reported an
issue and was able to provide a stack trace, to me it’s already a legitimate bug...
it’s something that someone on my team needs to look at because the stack trace

should never have appeared to the user.”

The presence of a stack trace in a bug automatically escalates the bug to him as something
that needs to be triaged. We continued to discuss other content in the bug that might
identify problems that the user should not see, including specific error messages. Based on
his comments, we suggested potentially creating a tag set that would identify bugs that either
had a stack trace, or contained in their description the phrase ‘Internal Server Error,” that
he could the use for regular triaging of those bugs. We then discussed the idea of identifying

bugs that are missing information and how they would be addressed.

Being Mentioned
Referring back to the ability to create tag sets based on if a person has commented on a

136

bug, the participant proposed a tag set that he thought would be useful for his team to
use, which would identify all of the issues that he had commented on in the preceding 30
days. This would ensure that they see his comments, which may contain concerns about a
proposed implementation or a complement for having addressed a problem in a creative way.
The participant requested that the sINCE LAST clause have the option to apply to specific

fields specified in the clause, rather than only checking the date the bug was last updated.

We then asked the participant if he found the ability to create tag sets based on either the
number of people watching, or a specific set of watchers. He responded, “I would want to
know if I was mentioned.” In JIRA, a user has the ability to add a comment referring to a
specific user, which then automatically notifies the user of the comment and makes them a
watcher on the bug. The participant wanted to write a tag set that would identify the bugs
which contained a comment in which he had been mentioned. We were unable to create this
tag set because the existing conTAINs function only searches the description and summary
fields for text. To continue the discussion, we instead implemented a tag set for the bugs

which he was watching.

TAG "PARTICIPANT" WHERE WATCHING (participant) = true

This tag set contained 176 bugs. The participant began reviewing each of the bugs in the
bug list and thinking out loud the reasons he thought he was added as a watcher on the
bugs. Some of the bugs he had created, others he had commented on, and others he had
been added as a watcher by someone else on the team. We suggested that he enable another
tag set which contained bugs that he had been assigned to be able to distinguish those in

the bug list. He enabled that tag set in the tag set list, and continued reviewing the list.

Validating Before Triaging

We then discussed his role in the triaging process, and he stated that on the large project

that he oversees he is not able to triage issues by himself, and that he required input in the

137

process from his teammates: “If it was [the smaller project], I could probably make 100%
of the decisions on my own. With [the larger project], with all the different pieces, and
especially with customer input, it’s not usually true. We have more bugs that may or may

not be actual bugs, so there is validation needed.”

We asked the participant to elaborate on the type of information he looks at to help make
triaging and validation decisions, especially on the larger project where there are numerous

bugs being created regularly. He responded stating:

“Sometimes the person that made it. Sometimes, whether or not it has infor-
mation like a stack trace. If it has information it’s not a garbage bug, so that’s
important.” However, he stated that rather than approaching from the angle of
cleaning up bugs that have reported, he stated that “rather than getting rid of
garbage bugs, I would prioritize bugs that have valuable information, like a stack

trace.”

We asked if the reporter field or other labels are useful for triaging. He responded “yes
to both” and described a tag set that identified issues that had been created by a specific
developer on the team that worked exclusively on bugs relating to a specific customer. As

he described this tag set, we implemented it using the following BTL statement:

TAG "DEVELOPER" WHERE reporter = "developer"

This tag set contained 104 bugs. He also identified labels used in the bug tracker to denote
bugs reported by, or related to, specific customers. He enabled those tag sets in the tag set
list and began reviewing the list. While reviewing the bug list, he used the Quick Filters
to ensure that he was only viewing bugs that were currently open. After reviewing a few
of the bugs, he confirmed that they were indeed the bugs that were relevant to a specific

customer and that they needed to be closely watched and triaged if not already assigned.

138

After reviewing the list, he also identified another developer that he could create a similar
tag set for that would identify bugs that were likely related to performance or scalability

bugs.

The participant then mentioned that he used the component field often to associate bugs
with different parts of the software. He commented that he would want the ability to easily
assigned multiple bugs to a component using the multi-select functionality that he used

earlier:

“If something comes in, and I'm triaging, and it is supposed to be [component]
related, I need to make sure the component is on it. I don’t do that enough right

now because it’s kind of a pain, but if I could bulk do that, that would be nice.”

Finally, the participant referred back to two ideas that we had discussed earlier. First, his
desire to be able to create a work queue using tag sets that would allow him to identify
the important bugs that needed to be reviewed and triaged on a regular basis. Second,
he suggested the possibility of using some of the tag sets that were created in the session,
in conjunction with the sINCE LaAST clause available in BTL, to limit the work queue to a
specific time window, like the last 24 hours, or the last time that he had reviewed the bug

queue.
Changes Made

Based on the feedback provided during the first session, we implemented a new function
called MENTTONED which allows users to tag bugs which in which the specified user has been
mentioned in the comments. Our implementation of this function, shown in Listing 6.2, is
specific to JIRA in that it uses a particular format to determine if the text is a mention,

which in the bug tracker is presented as a link to the user’s profile.

During the first session we encountered a defect in the BTL evaluation logic that resulted in

139

public class Mentioned implements Function {
public String evaluate (BugGraph bugGraph, Bug bug, String param) {
Pattern pattern = Pattern.compile ("\\[\\"" + param + "\\]",
Pattern.CASE_INSENSITIVE);

if (StringUtils.isNotEmpty (bug.getDescription()) &&
pattern.matcher (bug.getDescription()) .find()) {
return "true";

for (Comment comment : bugGraph.getCommentsForBug (bug.getKey ())) {
if (pattern.matcher (comment.getBody ()).find()) {
return "true";

return "false";

Listing 6.2: The MENTIONED function implementation.

a NullPointerException being thrown when invoking the HAS (stacktrace) function. Upon
inspecting the code we saw the same defect the affected the use of conTaINs: not taking into
account that some bugs had a blank description. We implemented a check for this condition

and were able to create a new tag set using the function.
Session 2

The second session was conducted with the same participant three days after the first session
and lasted 54 minutes. We began this session with a quick review of what we had discussed

in the first session, and we presented the new features that had been added to address some

of the feedback.

Before the session, we created two new tag sets based on the suggestions from the previous
session. One was a a tag set to identify bugs that contained a stack trace (which failed the

previous session):

TAG "STACKTRACE" WHERE HAS (stacktrace) = true

140

This tag set contained 58 bugs. The other was a tag set that contained bugs in which the

participant was mentioned in a comment on the bug.

TAG "MENTIONED" WHERE MENTIONED (participant) = true

This tag set contained 73 bugs. With both tag sets enabled, the participant took control
of the tool and began browsing through the bugs list. His first step was to again use the
Quick Filter to make sure that he was only looking at the open bugs, excluding ones that
had already been resolved or closed. While bugs belonging to both tag sets were in the bug
list, he wanted to first look at the ones in the STACKTRACE tag set, so he used the tag

set indicators and the row color to identify the ones belonging to that tag set.

He began to review the bugs and immediately identified one that he had not seen before,
stating: “[PorchLight] would help because this is an open issue that I apparently should
close.” Based on the comments on the issue, and his knowledge of the history of the bug, he
knew that it was not longer a problem and it had already been resolved in a prior release.
As he continued down the list, he identified another pair of bugs that he did not know were
still open. He stated, “They have not been triaged, and they should have been. They should
have been closed, they should not still be open, so it’s just cluttering our JIRA.” He then
proceeded to use the Quick Comment feature to change the status of the bug to close, and

added a comment “No longer an issue.” He repeated the action for the second bug.

Before moving on the remaining bugs, he commented that he did not see much overlap
between the two tag sets that were enabled (MENTIONED and SCREENSHOT, so he
disabled the MENTIONED tag set from the tag set list to only view the ones that had
contained a screenshot. This action reduced the bug list down to only 13 bugs. As he
continued down the list, he identified another issue that should have been closed, and again
used the Quick Comment feature to close the bug and comment that it was no longer an issue.

When we asked how he was making the decision to close the bug, he recalled information

141

that he knew again about the history of the bug and how it had been addressed in some
other way in a prior release. He also referenced the age of the bug, referring to the timestamp

in the timeline, and commented that the bug was too old to be relevant any longer.

As he reviewed the bugs, the participant continuously referred to the assignment indicators
in the user and milestone lists to determine if a bug had been assigned, and who it had been
assigned to. He observed that many of the bugs that had been identified in the SCREEN-
SHOT tag set were also assigned to a product manager that was no longer on the team. He

stated:

“There are probably ones that need to be looked at, but never were caught. This
is shortly before [the product manager| left, so these would be important to check

out and see. I wouldn’t have been able to find these, I don’t think.”

When we asked the participant about how he was making decisions about a bug in the list,
he would frequently use the timeline to traverse through the comments and to tell a narrative
about the history of the bug. This included questions that he had asked others on the team,
and decisions that had been made through the conversation. He came across another bug
that he thought was not valid, so he used the Quick Comment feature to leave a comment

asking “What’s the use case for this test?” Why are you linking directly into an action page?”

For the next bug in the list the participant decided that it should be assigned to the next
development sprint, so he used the drag-and-drop feature to drag it from the bug list and
drop it onto the milestone. He then also assigned it to a developer on his team. He used the
drag-and-drop assignment and Quick Comment feature several more times as he reviewed

the remaining bugs in the list.
Ad Hoc Tag Sets

When discussing his triaging decision for one of the bugs, the participant commented that

142

the bug was of a class of bugs that he was content to “just let sit there” because he knew that
they would be resolved indirectly. He stated, “I could start closing them, but I haven’t been.”
We suggested he use the ad hoc tag set feature to create a new tag set for holding these
issues, and he created it by dragging the single bug from the list. The next bug he reviewed
he identified as also belonging to a an ad hoc tag set, so he proceeded to drag-and-drop it

into the ad hoc tag set in the tag set list.

The participant then used the multi-select feature in the bug list to select three bugs and
assign them to a development sprint, and to himself, so that he would know to come back
to it and assign the individual bugs to specific developers. He also requested an option to
disable milestones that had been released in the milestone list, which at the time displayed
both released and unreleased versions. He then disabled the STACKTRACE tag set in
the tag set list and enabled the MENTIONED tag set, which contained bugs that he was

“mentioned in.” Upon seeing the list, he stated that:

“These I feel like they're helpful, but to be more useful I'd almost need a work
queue so that I can work through them. Usually if someone mentions me that
means I have to respond to them. So, it would be nice if I could say okay I've

responded and get it out of my work queue.”

Working the Queue

He described how he would make a triaging decisions about each bug in his work queue:
“Assuming it’s a work queue, I would want to look at the very latest comment on each of
these, because that’s probably where someone is saying ‘look at this’. And so I'd look at the

latest comment and mark it as read, or do something with it.”

We asked how he keeps track of the bugs that he needs to assign to development sprints. He

described his workflow for managing these bugs: “First I pick everything that goes into a

143

sprint, and keep it [assigned] to myself if I'm not sure. I'll review them and some of them I'll
move out, some of them I'll add more information, and some I'll assign to people.” When we
pointed out that he could potentially use ad hoc tag sets to track the bugs that needed review
before being assigned to a sprint, he responded “that would be nicer because it wouldn’t

mess up our metrics as much,” referring to the bug distribution across milestones.

He realized that there was another situation in which ad hoc tag sets could be useful. He
described a set of bugs related to a specific type of enhancement request that he frequently
triages in the same way. He normally identifies each bug individually, and only mentally
knows that it belong to that group. He points out that he could create an ad hoc tag set for
those bugs, and then refer to that tag set periodically while triaging to keep tabs on their
status. He commented, “Creating a tag set for those would be really helpful. I don’t do that
now because I have to go to each one and tag it and I just don’t do that.” This avoid having
to “hand-pick the 7 or 8 issues” each time he reviews the bugs assigned to a milestone, since

it is normally “really hard to find them again.”

The participant also created a new tag set to identify bugs that had been assigned to him
for the next milestone. He then, with our guidance, created a tag set using the following

BTL statement:

TAG "SPRINT20" WHERE assignee = ’participant’ AND fixVersion = "2.5 S20"

This resulted in an error, and the tag set contained zero bugs. We later confirmed that this
was a bug in PORCHLIGHT, exposed by the space in the milestone name. Recognizing that
there was a different way to create the same tag set, he used the drag-and-drop functionality
to drag the 2.5 S20 milestone from the milestone list onto the tag set list, which created
the tag set containing bugs assigned to that development sprint. To find the milestone, he
used the search function in the milestone list which narrowed down the number of items.

He then began to review the bug list, referencing the user list to identify the ones that had

144

been assigned to him.

He identified several bugs in the list that belonged to one of the themes that he described
earlier, and he proceeded to drag-and-drop them onto the tag set list, creating a new ad hoc
tag set called Improvements. He did this for four of the bugs in the list. We pointed out that
he could enable only the Improvements tag set to view those bugs, and multi-select them to
perform a triaging action. He replied that he found that feature useful since he could assign
that group of bugs to the next development sprint if needed, adding, “because I do that all

the time.”

Forgotten Improvements

We then suggested that he create a tag set containing bugs that were still assigned to the
product manager that had left the project, and which he as the project lead had inherited.
He did this by dragging her user name from the user list onto the tag set list, which created

a tag set using the following BTL statement:

TAG "PM" WHERE assignee = ’'productmanager’

This tag set contained 283 bugs. Commenting on the large number of bugs in the list, the
participant joked that “This list represents the list of stuff I don’t want go through.” He
then proceeded to enable the Unassigned (version) Quick Filter to identify the bugs that
the product manager had not yet assigned to a version. This did decrease the size of the
bug list, but the participant observed that it was still “a little overwhelming.” When we
asked how he would approach a large list of bugs he replied that he would “normally narrow
it down by version,” meaning he would look at the custom milestones (like Enhancements)
that had been created to track unassigned bugs. To find this milestone in the list, he again
used the search feature to narrow down the list. Once he found it, he dragged it onto the

tag set list which resulted in a new tag set based on the following BTL statement:

TAG "PM’s Enhancements" WHERE fixVersion = ’'PM’s Enhancements’

145

This tag set contained 151 bugs. Like the participants in the previous sessions, the partic-
ipant remarked that it would be useful to be able to view the intersection of multiple tag
sets, even if it could be accomplished by enabling multiple tag sets and sorting the bug list
based on the tag set indicator column. This would allow him to use the PM tag set as a
base list, and then enable the tag sets that represented the types of bugs in which he was

interested.

Using the bug list, which now contained bugs in both the PM and PM’s Enhancements tag
sets, he proceeded to review each of the bugs and think out loud about what triaging action
he should take. His objective with this list was to essentially perform cleanup of bugs that
he knew had not been reviewed by anyone in some time. He identified several bugs during
this review that he then assigned to himself for the next development sprint, again using the
drag-and-drop functionality. As with previous reviews of the bug list, he also made heavy use

of the timeline to review comments, and of the Quick Comment feature to add a comment.

At one point he came across a bug that he thought had a duplicate, and he wanted to see if
he could find it somehow. We suggested using the Search feature at the top of the bug list
which would search the contents of the bug in the bug list in real time. He began entering
keywords into the search box, which narrowed down the bug list to matching bugs. He was
not able to find the bug that he had thought of, however, since it likely was not in the bug
list with the tag sets and Quick Filters that he had enabled. He then identified a bug that
described a defect which resulted in a Nul1PointerException being thrown. The participant
commented that he would need the full stack trace from the reporter to be able to triage it,
and we reminded him of the pre-defined responses available in the Quick Comment feature.
He then used the Quick Comment feature to then add a comment to the bug requesting a

stack trace.

Validating Old Bugs

146

He also remarked on the fact that the age of a bug is a factor when triaging, stating “A
bunch of these may still be valid, and this point I don’t know. A lot of these issues have
probably been reported again, as a new ticket, and we’ve probably solved it six months after
it was created. If these are nine months old like this one we’ve probably resolved it a different
way or as a part of a different issue.” He frequently referred to the date when the bug was
created, along with the amount of activity on the timeline, to determine if it he considered it
a valid issue, adding “every issue I go to, I look how old it is first.” He then proposed a tag

set to help identify these types of bugs that needed validation, using the following criteria:

“I"d probably look at anything that’s open, that is reported as a bug, that is not
assigned to me or an actual fix version... that would be to whittle this down from

300 to hopefully like 20 or 30.”

Finding Duplicates

We ended the session with an open discussion on identifying duplicate bugs, and how the
participant approaches the problem. While he had no specific technique for identifying
duplicates during triaging other than his own memory of the bugs that he had seen, he

commented:

“It would be nice when triaging an issue to see a list of suggested possibly related
issues. And then from there you could look at the related open issues and possibly

close one as a duplicate, or link them.”

6.3 Discussion

In this section, we analyze the narrative from the sessions presented in Section 6.2 and distill

the main themes and lessons learned about triaging with PORCHLIGHT. We have structured

147

our analysis in three parts. First, we summarize the features used and tag sets that were
created during the participatory observation sessions, and discuss the types of tag sets. Then,
we analyze the same sessions at a higher level and look at how the participants talked about
and used tag sets, and the role tag sets could play in triaging, to identify the themes that
were present across the sessions. Finally, we present an analysis of the observations from

both studies across six assessment criteria.

6.3.1 Feature and Tag Set Usage

As a first step in our analysis of the data collected from each session, we to simply look at
how the basic features, and especially tag sets, were used throughout. Table 6.3 summarizes

the features that were used during the sessions.

Feature Dev Co-Leads | Prod Manager | Dev Manager
User assignment
Milestone assignment
Multi-select

Timeline

Viewing comments
Quick Comment
Quick Filters

Search

Tag sets

Ad hoc tag sets

SSENENEN

\
SSENESENENENENENENEN

ASENENEN
(\

Table 6.3: Summary of PORCHLIGHT feature usage by participant.

We see that, while all of the notable features of PORCHLIGHT were used throughout the
sessions, they were not used by all of the participants. For example, the product manager did
not use the assignment features, though he did use the timeline and tag sets to explore bugs.
As another example, the development co-leads did not make use of the Quick Comment
feature while triaging, but the development manager did. In the analysis below, we review

each of the features, highlight its key role, and the feedback we received. For this, we

148

include observations from the preliminary user study, which exposed users to the entire
range of functionality available in PORCHLIGHT, and facilitated more direct feedback on

those aspects.

Basic triaging and features (layout, assignment, and multi-select). We received
positive feedback from the participants on overall user interface, particularly the layout and
the drag-and-drop user and milestone assignment functionality, which they found useful for
triaging. One of the participants stated that, “it’s useful to have the list and users and the

versions right apparent to you,” referring to the user and milestones lists. He also stated:

“We typically have our list of JIRA issues and then we open them up one at
a time as tabs in the browser. Then we go through each one and assign them
one after the other. That’s typically how we do it, but it’s nice to have all this
information at once so that we can quickly flip between issues without having to

go to different tabs in a browser.”

We also observed heavy of the ability to multi-select bugs from the bugs list and either assign
them, or create new ad hoc tag sets from them. The participants found the interaction to
be intuitive and preferable to their current approach, which involves a multi-step process of

identifying the bugs and then performing a bulk action with them.

Timeline, viewing comments, and Quick Comment. We also received positive feed-
back on the timeline, since it provided an at-a-glance overview of activity on the bugs, and
allowed the participants to easily review the comments and other actions that had been
performed. One of the participants noted the number of comments on a particular bug and
remarked on the usefulness of the timeline, stating: “Activity [in the timeline] conveys a
general sense of the density of people commenting.” Another participant also commented

on the usefulness of the timeline, stating:

149

“I think the timeline is useful because you can see if the comments are all con-
centrated in one period time two years ago, versus an issue where its spread out
evenly and there are recent comments, and so that would tell me that it’s prob-
ably more important, [if] the activity has been spread out across the last year or

2

SO.

We also observed heavy use of the Quick Comment feature during one of the sessions. The
participant used the feature to both change the status of a bug (from Open to Closed),
and also to add a comment requesting additional information or a stack trace for the error

described in the bug.

Quick Filters and search. We also saw use of the Quick Filters and search features
throughout the sessions. In many cases, the participants used the Quick Filters to narrow
down a bug list created from selecting tag sets, rather than additionally specifying a clause for
the status of the bug in the BTL statement. This allowed them to easily switch, for instance,
between the open and closed bugs in the bug list. The search features were also used to find
bugs based on specific keywords or based on their unique identifier. The filter attached to
the milestone list was used on several occasions to narrow the list of milestones when looking
for a specific one to assign to. One participant commented during the preliminary user study

that:

“T would honestly use [PORCHLIGHT|. With the timeline and the filters, it has

the information I need. 1 would just have it open all the time.”

Tag sets. Beyond the basic feature usage, we wanted to analyze both the number and
type of tag sets that were created. In total, there were 32 tag sets that were created, either
directly by the participants or indirectly via the researcher with input from the participants,
during the 6 sessions. Below is a summary of the tag sets that were created during each of

the sessions.

150

[\

[\

>~ w

S T W N~

N OO W N~

TAG "ACTIVE" WHERE FREQUENCY (comment) > 3 SINCE LAST "2 months"

TAG "3.4.0" WHERE fixVersion = "3.4.0"

TAG "WS" WHERE STATUS = "Open" AND CONTAINS ("web service") = true OR
CONTAINS ("socap") = true OR CONTAINS ("http") = true

TAG "STARTING" WHERE STATUS = "Open" AND CONTAINS ("web service") = true OR
CONTAINS ("socap") = true OR CONTAINS ("rest") = true AND FREQUENCY (votes)
5

>

Listing 6.3: Tag sets created during first session with development co-leads.

TAG "VOTES" WHERE FREQUENCY (votes) > 1
TAG "VOTES2" WHERE FREQUENCY (votes) > 4

TAG "31WS" WHERE fixVersion = "3.1.0" AND CONTAINS ("web service") = true OR
CONTAINS ("soap") = true OR CONTAINS ("rest") = true

TAG "COMMENTED" WHERE COMMENTED (userl) = true OR COMMENTED (user2) = true
OR COMMENTED (userlb5) = true

TAG "USER" WHERE reporter = "user"

Listing 6.4: Tag sets created during second session with development co-leads.

TAG "ACTIVE" WHERE FREQUENCY (comment) > 3

TAG "ZIP" WHERE CONTAINS ("zip") = true AND HAS (screenshot) = true AND
FREQUENCY (comment) > 2

TAG "ZIP" WHERE CONTAINS ("zip") = true

TAG "CHALLENGING" WHERE FREQUENCY (comment) > 2 AND FREQUENCY (watchers) > 2

TAG "CLEANUP" WHERE HAS (screenshot) = false AND FREQUENCY (comments) = 0 and
FREQUENCY (labels) = 0

Listing 6.5: Tag sets created during first session with product manager.

TAG "EYEBALLS" WHERE FREQUENCY (watchers) > 3
TAG "EYEBALLS2Z" WHERE FREQUENCY (watchers) > 3 AND FREQUENCY (comments) > 3

TAG "ARCHITECTURE" WHERE component = "LDAP" OR component = "API"
TAG "STAKEHOLDER1" WHERE WATCHING (stakeholderl) = true
TAG "STAKEHOLDER2" WHERE WATCHING (stakeholder2) = true
TAG "STAKEHOLDER2" WHERE COMMENTED (stakeholder2) = true

Listing 6.6: Tag sets created during second session with product manager.

TAG "COMMENTS" WHERE FREQUENCY (comment) > 3

TAG "VOTES" WHERE FREQUENCY (votes) > 2

TAG "WATCHERS" WHERE FREQUENCY (watchers) > 5

TAG "ACTIVITY" WHERE FREQUENCY (comment) > 3 SINCE LAST "30 days"

TAG "STACK" WHERE HAS (stacktrace) = true
TAG "PARTICIPANT" WHERE WATCHING (participant) = true
TAG "DEVELOPER" WHERE reporter = "developer"

Listing 6.7: Tag sets created during first session with development manager.

151

T W N =

TAG "STACKTRACE" WHERE HAS (stacktrace) = true

TAG "MENTIONED" WHERE MENTIONED (participant) = true

TAG "SPRINT20" WHERE assignee = "participant" AND fixVersion = "2.5 S20"
TAG "PM" WHERE assignee = "productmanager"

TAG "PM’s Enhancements" WHERE fixVersion = "PM’s Enhancements"

Listing 6.8: Tag sets created during second session with development manager.

We first look at the frequency with which the features of BTL were used in the creation of
tag sets in Table 6.4. Note that, if a feature was used more than once in a single statement,

we only count it once.

Feature Type Instances
FREQUENCY | Function 14
CONTAINS Function 5
HAS Function 4
watchers Field (custom) 4
votes Field (custom) 4
fixVersion Field 4
WATCHING Function (custom) 3
COMMENTED | Function (custom) 2
SINCE LAST Time Window 2
reporter Field 2
assignee Field 2

Table 6.4: Summary of BTL feature usage.

From this analysis we can make several observations. First, the most frequently used feature
of BTL was the rFrEQUENCY function. This function was used in conjunction with fields like
watchers, votes, and comments. Based on the feedback we received during the session, this
observation correlates with the notion that tag sets allow triagers to offload complex search
criteria that they can then use to explore the bugs. The tag sets become a proxy for specific
concerns that are brought to bear when triaging. For example, the participants used actions
like comments and votes, in conjunction with the FREQUENCY function, as proxies for demand.

Or, they used just comments as a proxy for activity, and watchers as a proxy for importance.

Second, we note that, while a number of fields and functions were used multiple times, very

few of the fields available in the entire bug data model were used to create tag sets. For

152

instance, the summary, type, priority, and resolution fields that are part of the bug model
were not used directly. We think this is partly due to the fact that some of the functions that
are provided by PORCHLIGHT encapsulate multiple of these fields in their implementation.
For example, the conTaIns function searches both the summary and description fields, so
there may just be no need to be more specific. However, we also think that the small number
of fields that were used suggests that triagers were focused more on identifying trends and

patterns in the bugs, rather than focusing on individual ones and identifying them by their

fields.

Tag set types. Taking this analysis one step further, we grouped the tag sets that were
created into three categories: simple, advanced, and custom. Simple tag sets are ones that
use basic fields or actions that are already available in the bug tracker. Advanced tag sets
use functions or time windows to identify bugs. Custom tag sets are ones that require the
addition of new functionality to BTL using the plugin framework. Table 6.5 summaries the

frequency of the tag set types across all sessions.

Type Frequency
Simple 7
Advanced 13
Custom 12

Table 6.5: Frequency of tag sets created by type.

We can make some initial observations about these results. Both advanced and custom tag
sets were used more than basic ones. This may be due to the fact that the participants felt
that they could already identify bugs based on simple criteria using their bug tracker, and
wanted to explore the more interesting ones using the advanced functionality. It could also
be that the standard Quick Filters for identifying the open and unassigned bugs mitigated
the need to include these fields when creating the tag sets. This also correlates with the fact
that FREQUENCY and HAS were two of the most frequently used functions, which suggests that

the triagers are identifying bugs based on their metadata rather than the data contained

153

explicitly in the fields.

Another observation we can make from these numbers is that tag sets are more useful when
created using the more advanced functionality that is not readily available when triaging with
traditional triaging tools, such as the frequency of actions or time windows. An example is
the #as function, which could be used in conjunction with specific fields. One participant

commented on the usefulness of the HaAS (stacktrace) function when he stated:

“I think the stack trace [tag set] was really useful. I could actually use that list
of changes I made, I wouldn’t have really had another good way to find those

that I know of.”

Plugins to support new tag sets. For the custom plugins that we developed, we also
counted the number of lines that were needed to implement the extensions in PORCHLIGHT
and BTL once the desired functionality was specified by the participant. Table 6.6 sum-
marizes each of the custom plugins that were developed, with Listing 5.8 and Listing 6.1

showing the source code for the Commented and Watching implementation, respectively.

Plugin Name | Type Description Lines of Code

Commented Function | Returns true if the specified user | 31 (Shown in Listing 5.8)
has commented on a bug.

Votes Field Return the number of votes at- 14
tributed to a bug.

Watching Function | Returns true if the specified user | 26 (Shown in Listing 6.1)
is watching a bug.

Watchers Field Returns the number of watchers 52
subscribed to a bug.

Mentioned Function | Returns true if the specified user | 34 (Shown in Listing 6.2)
has been mentioned in the com-
ments for a bug.

Table 6.6: Summary of custom plugins developed.

In the situations where a new plugin was needed to create the desired tag set, the number

of lines of code needed to implement the functionality was relatively low. The one exception

154

was the Watchers field, which required more significant changes to the PORCHLIGHT imple-
mentation beyond what the plugin mechanism afforded. This was due to the fact that the
desired field from the bug tracker, in this case watchCount, was stored in a schema that was
only available through another request to the REST API. The plugin mechanism that we
had designed assumed that the data would be available in the bug schema that is provided

by the initial request for a bug report.

Even with the limitations in the implementation, we note that we were able to incorporate
the new field into the bug data model and make it available for use in a relatively short period
of time. The fact that we were able to implement five new capabilities in our approach to
address the needs of triagers using different approaches in the span of a few weeks speaks
to the design decisions we had made during our implementation. Looking at Table 6.6,
we can state that the changes that we had to make, even outside of the scope of the plugin
architecture, were minimal. We did not have to start from scratch, or change the architecture
significant to incorporate a new function into the tagging language. In one instance, we were

able to incorporate a new field and make it available for use with only 14 lines of code.

Summary

While we did observe commonalities in how tag sets were used across the sessions, we did
not see a large number of tag sets created directly by the participants. This could be in part
due to a learning curve associated with using BTL to express ideas for tag sets. Or, it may
be because the fields and functions that we chose for our initial data model only partially
addressed the desire for more metadata-based tag sets. It is important to note, however,
that the tag sets that were created are persisted and can be used across triaging sessions.
This means that once the initial work of creating the tag set, or implementing the custom
plugin, is complete, the value of the tag set can be realized many times. Furthermore, the
tag sets created by others can be shared, enabling other triagers to benefits from the thought

that went into their creation.

155

6.3.2 Thinking In Tag Sets

Throughout the sessions, we observed that tag sets became a useful model for thinking about
how groups of bugs could be composed to explore the entire collection. Even in instances
where the functionality was not available in PORCHLIGHT or in BTL, the participants had
no trouble proposing potential tag sets using new attributes and functions that they thought
would be useful during their triaging. Furthermore, the participants built upon this idea,
and began modeling their own latent workflows for triaging to better understand how tag

sets could help them improve their process.

Tag sets as proxies for concerns. We observed that tag sets provided a way for partici-
pants to offload complex search criteria that they then used to explore and understand the
myriad bugs. Tag sets became a shorthand, or proxy, for specific concerns. In this context,
we define a concern as a fact about a bug that is important when performing triaging. These
concerns can be ones held by the individual participant, or shared by a group or team. For
example, the participants used actions like comments and votes as proxies for demand, or the
number of comments as a proxy for activity, or watchers and specific commenters as proxies
for importance. One participant remarked that a bug with a large number of comments
“means it’s usually a heavily debated area, so there’s some importance to it” and that he

has to “look at it more closely” when triaging. Another participant commented:

“Let’s find the really interesting things. There are going to be tickets that it’s
not clear should this be in the product or not. It’s not clear how they should be
resolved. But people do have opinions, and there’s interest in this area, that’s
why there are so many comments, watchers, and activity. There are a lot of
things to work with here, so this is a great thing to review, this would be a

source of input.”

156

During one session, the participant commented that, because a bug had been tagged with a

specific tag, to him it represented multiple concerns, when he stated:

“I know more about the issue because it says that. I know that it’s a [customer]
issue, which means it came from specific [internal stakeholders|, and it’s probably
related to [code] changes that they want, which we’re not working on right now,

so that would impact my decision.”

A single tag became shorthand for that complex assessment process, and it could be used

by the participant through the triaging process.

In many instances, these concerns took on nicknames that were used throughout the dis-
cussion. Rather than being concerned about which individual bugs were being assigned
to specific users, the triagers began referring to higher level concepts like security bugs or
messy bugs. Vague terms that, when defined as a tag set, take on a specific meaning. In
another session, the participant listed criteria he would use to identify what he considered

embarrassing bugs, that is, those that users should never see, when he stated:

“The other thing I look for besides stack trace for the web application is I often
see someone say like ‘Internal Server Error 500.” And so when they paste server
an ‘Internal Server Error 500,” that’s also something I automatically say ‘this
should never appear in the application,” I don’t care the reason, therefore it’s
an issue that needs to be resolved. I would create a tag set for internal server

errors... that’s the most embarrassing thing.”

This tag set would then become a proxy for the embarrassing bugs, and could be used
throughout the triaging process to ensure that they are assigned and properly resolved in a
reasonable time frame. One participant used a tag set based on the assigned developer and

associated labels to identify bugs that were important for a specific customer. He stated:

157

“Neat. Yeah, so these are basically ones that matter for [customer]|, so yeah,
these would be important ones if they're still open. Yeah, this is useful. I didn’t

really have a way of doing this before.”

Front-loading decision making. The idea that tag sets become proxies for concerns,
represented by specific criteria, allowed triagers to front-load their triaging workflow. This
meant that they could perform the work of identifying the interesting or relevant bugs first,
and then work with the bugs as sets to triage. Once the bugs have been tagged as part of
a tag set, they can be assigned or modified together, and each one no longer needs to be
considered individually. The advantage is that this approach to triaging, though it can take
some time, will only need to be done once during the planning process, saving time later on.
If the bug is in the tag set, the triager has already made some decision about the quality of

the bug, and can assume that attribute when assigning it.

In one example, the participant used a tag set to represent a theme for a release. They
identified the bugs that contained the word “ZIP code.” Once the bugs that matched this
theme were identified, either by executing a BTL statement, or by manually creating ad hoc
tag sets, the resulting tag set could be considered shorthand for that theme. This allowed
the triager to work with more abstract tag sets, as one participant demonstrated by selecting

all of the bugs contained in a tag set and assigning them a future milestone.

Layering tag sets. Another theme that emerged from our observations was that tag sets
could serve as layers of information that could be enabled or disabled to reveal interesting
properties about the bugs in each layer. Because tag sets can represent concerns the triager
has, overlaying the tag sets in the bug list view is a way of overlaying the different concerns
as they explore the bugs, and they can use the layers to identify bugs that are the most
important for them. We designed the bug list in PORCHLIGHT such that, if multiple tag

sets are enabled in the tag set list, and the Has Active Tag filter is enabled, the bug list will

158

display the bugs that belong to the union of all of the tag sets. This design was intentional
to allow triagers to bring multiple tag sets into a single view. However, because the ability to
sort the bug list based on the number of associated tag sets was not available, the participants
were unable to easily view the bugs which belonged to the most number of tag sets, which

would be the ones associated with the most number of concerns.

One of the participants noted that a useful variation would be a mode that allows him to
enable specific tag sets and view their intersection in the tag set list. In one of the sessions, he
wanted the ability to create a “base list” of bugs using a tag set, and then build on top of that
by enabling additional tag sets which represent different criteria (such as COMMENTED or
VOTES). As new tag sets are enabled, the bug list would contain all of the bugs from the
original tag set, in addition to the intersection of the original tag set and the newly enabled
tag set. Both participants in one of the sessions agreed when one suggested that: “Once I
have [the base list], I want to overlay additional information that doesn’t change the list but
just provides me more information at a glance.” This functionality would eliminate the need
to sort the bug list and rely on the tag set indicators to determine which bugs belong to all

of the enabled tag sets.

These observations suggest that the participants began to adopt the idea of tag sets as a
construct that would allow them to simplify the triaging process. They wanted to use tag
sets to create a triaging list starting with a base set, and then build upon it using tag sets
of increasing importance to identify ones that should be assigned. Each tag set provides a

different lens on the original set, which can inform the triaging decision that is made.

Creating a work queue with tag sets. One recurring theme across all sessions was the
need for an inbox-style view of the bugs that needed to be triaged. The participants wanted
the ability to review the details of a bug, and then mark it as having been viewed, even if no
assignment action was made. This would allow users to track their progress while triaging.

The key question here is: how can such an inbox bug list be modeled and populated? This

159

is where tag sets are useful. Without tag sets, the inbox would be the entire list of bugs,
or an arbitrary selection, like just the most recent ones. With tag sets, however, it becomes
possible to define criteria that identify relevant bugs, and populate the work queue with

those bugs. One of the participants shares this belief, stating:

“Basically, the tag sets would allow me build, I think, a work queue. Or, the

criteria to include things that I want in a work queue.”

What emerged from our observations is a two step model of triaging. The first step is creating
tag sets. This can be done either using BTL or manually using ad hoc tag sets. Each tag
set is associated with some concern and has an implicit priority. The purpose of this step is
to identify the bug and add metadata, in the form of tags, without the pressure of having to
make a resource planning decision. This process of identification and refinement can happen
over multiple iterations, as bugs are tossed between developers in the project, or between

the triagers and the reporter, to provide additional information.

The second step is to then triage, or “work the list,” and to perform the actual assignment of
bugs to developers and milestones. This step can be done more easily once the inbox bug list
has been identified since the triager is assured that these bugs have been vetted and contain
the relevant information. In other words, there’s nothing missing that would prevent them

from making an informed triaging decision.

In this model, tag sets are not necessarily used while triaging, but rather in preparation
for triaging. The time spent up front to create these tag sets and to identify the relevant
bugs, whether that means important ones or ones that need cleanup, is time well spent if
the end result is a refined work list that can be more easily reviewed and triaged. The tag
sets provide crucial context to the process of building the work list, which offloads having to

maintain the complex mental model from the triager.

160

Release planning with tag sets. Another observation that we made is that tag sets can
also play a role in release planning. During one of the sessions in which we discussed creating
layers of tag sets, one of the participants noted that there were three distinct modes during

the development process during which triaging was done.

The first is triaging issues throughout the development process. Community members, QA,
and other developers create new bug reports that are added to the bug tracker. As devel-
opment leads, they receive email notifications about the new bug reports and, if they have
time, will often make some triaging decision at that moment. The triaging decisions made
during this process are typically simple and involve either requesting additional information
from the reporter, or sometimes even assigning it to a future release, typically using the
milestone as a placeholder so that it can be triaged at a later time. This real-time triaging is
possible in situations where the volume of new bug reports is manageable, and the triagers

can make a decision to “throw it into a version” without impacting the development process.

The second is when approaching the end of development for a version. The development leads
meet specifically to review the bugs that are still open and decided if they can be resolved
within the time remaining, or if they should be pushed out to future releases. Depending on
the length of the release cycle, this checkpoint triaging session can happen up to 2 months
prior to the release. The best set for this triaging session would contain the bugs assigned
to the current release, and additional layers of tag sets would be applied to determine which
of the remaining ones should be kept in the release. For example, the number of votes or
comments from the community could be a factor in deciding if a bug should be pushed out,

or kept in the release.

The third is when planning for the next major release. As new bug reports come in and are
initially triaged, they may find themselves distributed among multiple future releases. At
regular points during the development process the team leads meet and review issues, based

on themes or other criteria discussed earlier, and assign bugs to the next set of releases.

161

The base list for this triaging session would contain bugs that have been added to the next
several releases. For example, if the last release was for version 3.3.0, the following tag sets

may be used to identify bugs that will be assigned to 3.4.0:

e Bugs that are currently assigned to 3.4.0

e Bugs that are currently assigned to 3.5.0, 3.6.0, or 3.7.0

e Bugs that are related to a pre-determined theme for the 3.4.0 release

e Bugs that not assigned to a release and that describe a security related defect

e Bugs that have received a specific number of comments or votes from the community
e Bugs that have been commented on by specific users in the community

e Bugs that have been reported by specific users

Different combinations of these tag sets would allow the triagers to successively identify bugs

of importance to make the most informed triaging decision.

The participants also commented that the tag sets could potentially be used during these
checkpoints to create the base lists and enable additional tag sets to identify bugs. In this
model, milestones are not used as definitive assignments but rather as temporary buckets,
and there is a periodic review at the beginning and end of the development lifecycle to assess
if the triaging decision made as a real-time triaging decision, or during the early planning

phases, still makes sense.

Modeling workflow transitions using tag sets. We also noted that participants dis-
cussed not only how tag sets could be used to groups bugs, but how bugs transitioned
between the different groups. In one of the sessions, the participant presented his mental

model of how tag sets could be used to create the different “pools of bugs” that could be

162

drawn from at various points for release planning. Using a body of water analogy, the par-
ticipant outlined his process for triaging defects. The ocean represented bug reports before
they were created in the bug tracker. In some situations, bugs begin as support tickets from
customers, in others they originate from conference calls or internal meetings during which

a request for an enhancement is made.

After the bugs are created in the bug tracker, they “wash ashore” from the ocean onto the
beach. The beach represents volume: a large number of bugs are created while development
is ongoing and they are collecting on the shore. Bugs that have been “washed oftf” by the
triager, in this case the product manager, and have enough information to potentially be
assigned to a milestone, are moved into the pool. Once in the pool, bugs move into the
deep end after they have been prioritized based on various factors, like internal or external
demand. Finally, from the deep end the bugs move into the hot tub, which represents bugs
that have been assigned to developer and a development sprint, and are actively being worked
on. During each transition, the bugs are refined in preparation for further triage, which can

involve other members of the team, as the participant stated:

“I would present all of the hot tub bugs to [the lead product manager|, and we’ll
talk through it. There’s a triage level there, too, but she doesn’t care about the

three levels before that.”

While this model of a triaging workflow by itself is interesting, our observation is that tag
sets can be used to facilitate the transition between these different states. For example, the
CLEANUP tag set that was created during the session could be used to identify the bugs
that “wash up on the beach,” that is, bugs lacking basic information, like a long enough

description, a screenshot, or steps to reproduce the problem.

TAG "CLEANUP" WHERE HAS (screenshot) = false AND FREQUENCY (comments) = 0 and

FREQUENCY (labels) = 0

163

Once identified as part of this tag set, a bug can be refined with additional information
so that it can be transitioned into the pool, or it can “thrown back” onto the beach for
a multitude of reasons. Another participant commented on these types of bugs when he

stated:

“It would be nice to create a tag set for ‘don’t care right now, we’ll look at this
later’ [bugs]. Like the next major version, without actually putting it in the

version for now.”

Once a bug has made it into the pool, additional information is needed to transition it into
the deep end. Labels, fix versions, watchers, and comments can be factors that influence if
a bug works its way into the deep end where it is a candidate for an upcoming development
sprint. While bugs should not typically “jump right into the hot tub,” there are factors like
the priority of the ticket, or if it concerns a security related defect, that can move it there

immediately.

Tag sets as meta-states for collaboration. Another observation we made is that tag
sets can be used to facilitate collaboration between different members of the team. Some ad
hoc tag sets created during the session, like 7O BE VERIFIED, identified bugs that needed
to be seen by someone other that the triager. Rather than assigning it to that person, the
participant began to think about the tag sets as a way to identify these bugs, and then allow

another person to use that bug list as their inbox.

Additionally, tag sets can be used to create a highly adaptable layer of metadata that is not
restricted by the rules of the bug workflow, and thus can be adapted to the needs of different
projects. For example, both the product manager and the development manager used tag
sets to create lists of bugs that needed further review by a team mate. Rather than setting
that person as the assignee, which would throw off the project workload, tagging is used to

define a new meta state and tag sets can be used to manage these meta states. For example,

164

the development manager proposed a tag set that he would recommend his development

team to use to keep track of bugs that he has commented on:

“If T see [a bug] that comes through and catches my eye and concerns me, I
comment on it. So, I would I think a filter that [my development team| could
use would be to look at anything that I've commented on in the last 30 days. It
really has to pique my interest for some reason for me to comment on an issue

7

now.

Triaging is a context-dependent activity. A final observation that we made is that
triaging is a highly context-dependent activity. Looking strictly at the tag sets that were
created during each session, we can see that no two sessions make use of the same collection
of tag sets, and each session makes use of different features of both PORCHLIGHT and
the tagging language. We see that the participants not only adopted tag sets as a way of
understanding and working with collections of bugs, but they adapted the approach to their

specific context and use cases.

Where we might have expected to see a standard set of tags reflecting a defined group of
concerns emerge from the sessions, shared by all of the triagers, our observations show that
the types of tag sets created reflected many dimensions. The approach to triaging varied
based on the individual, on their role in the project, on the type of project (open source
versus commercial). This uniqueness led to the variety of tag sets that were created. For
example, the participants working on an open source project created tag sets that used the
number of votes from the community as a criteria. On the other hand, participants working
on commercial product used criteria like the number of watchers and comments rather than

votes.

Summary

165

From our discussion, it should be clear that our participants all transitioned from thinking
about individual bugs to thinking about them in sets. We observed numerous possible uses of
tag sets, from proxies for concerns, to an approach to creating a bug inbox, to metadata that
could be used to model workflows. Each of the participants discussed these applications
of tag sets in a natural way, suggesting that they had adopted the approach of thinking
about bugs in tag sets, if not entirely the tool for creating them. Given that, we believe this
analysis begins to show the possible usefulness of PORCHLIGHT in presenting bugs in a way

that triagers can begin to explore and manage them using tag sets.

We also note that the themes we have observed could not have emerged if our observation
had focused on the individual bugs being triaged. The conversations around proxies for
importance and transitions between “pools of bugs” were only possible as the participants

were able to reify their mental models of their triaging process using tag sets.

6.3.3 Making Triaging Better

In the previous analysis, we identified ways in which triagers began to think about bugs in
terms of sets. A subject of future work clearly is to determine if conclusive evidence can be
obtained on the impact of tag sets on the triaging process. In this final analysis, we present
some observations in this regard, and look at what it means to work with bugs in sets rather

than individually in terms of what might eventually be more quantifiable criteria.

We chose a set of six criteria to initially explore. Some of the criteria are more objective.
For example, does improving the triaging process make it faster, meaning triagers spend
less time performing the assignment action? Does it decrease the volume of bugs that need
to be triaged in the first place by grouping them? Or, does it improve the accuracy of the
assignments to the developers and milestones, so that there are fewer reassignments made

later on?

166

Other criteria are more subjective, but nonetheless indicate an improvement to the triaging
process. Does improving the triaging process result in assignments to milestones being more
evenly distributed, producing a more balanced development roadmap? Does it cause triaging
to find the relevant bugs that can have a bigger impact during triage? Does it result in fewer
bugs “slipping through the cracks,” giving triagers confidence that they are catching more

of them before they are lost?

Criteria Question

Efficiency Does the approach reduce the time needed to perform triaging?

Volume Does the approach reduce the number of bugs that should be
triaged?

Accuracy Does the approach improve the accuracy of the triaging assignment?

Balance Does the approach results in a more balanced distribution of bugs

across milestones?

Relevancy Does the approach result in more relevant bugs being found during
triaging?

Confidence Does the approach results in fewer bugs being lost or forgotten?

Table 6.7: Criteria for analysis.

Other criteria exist as well. One could imagine assessing improvement by measuring the
number of related bugs were triaged together, or by the average time between when a bug
is created and it is eventually assigned. In this analysis however, we focus on the six we
introduced above, and summarize in Table 6.7. Figure 6.5 plots the relative subjectivity
and objectivity of the selected criteria. Again, we perform our our analysis knowing that
conclusive evidence is not possible through our study. Rather, we seek to find supporting

patterns in the conversations and observations to guide future detailed studies in where to

focus.
g Efficiency Accuracy Relevancy g
6 y) \ %
O N ?
2 a
Ne) [
O Volume Balance Confidence S

Figure 6.5: Spectrum of analysis criteria.

167

If we look at the narrative from the participant observation sessions, we can see early sup-
porting evidence for improvement across all six of the criteria. We observed use of the tool,
and noted comments made and thoughts shared by the participants, that seemed to indicate
the PORCHLIGHT has indeed improved the triaging process across multiple dimensions. In
this analysis, we discuss each of the criteria and the supporting evidence. We group several

of the criteria in instances where the evidence we identified supported both.

Efficiency and Volume. We can look to the comments made by the participants, par-
ticularly on the usefulness of the layout and the assignment functionality, as evidence that
the features implemented in PORCHLIGHT do indeed provide notable improvements to the
efficiency of triaging. For example, by not having to constantly switch between tabs with
individual bugs, or quickly navigating through the comments for a bug, or by being able
to drag-and-drop a bug immediately on a user or milestone, we believe that triagers will
be more efficient when triaging with PORCHLIGHT. From our observations, and from the
comments by the participants, we can tentatively confirm that it might be faster and more
efficient. During one of the sessions, one of the participants commented on the use of ad hoc

tag sets to organize bugs prior to triaging, stating:

“That’s cool because I don’t have to stress about how we're going to verify it. [

can just put it in the tag set and deal with it later.”

We can look at how participants used tag sets as proxies for concerns to support an improve-
ment in the volume of bugs during triaging. Tag sets provided an abstraction mechanism
that was used to front-load the decision making process. Initially, the number of bugs that
the triager reviewed may have been larger, since their use of tag sets helped to identify bugs
that would have previously not been reviewed. However, once the bugs were grouped into
tag sets based on concerns, the overall volume seems to be less because the participants are

working with meaningful groups of bugs rather than individual bugs during the assignment

168

process. One participant supported this finding when he stated:

“Instead of worrying about a thousand bugs, I get to worry about a couple of
hundred tag sets. And so I've reduced my whole workload down to just the tag

sets. I’'m making the problem smaller.”

We also observed extensive use of the multi-select feature to assign bugs from the bug list as
a group to users or milestones. When combined with tag sets, this relatively simple feature
had an impact on both the efficiency and volume of triaging. Tag sets allowed the triagers
to identify and organize bugs up front during the process, and the multi-select capability
allowed them to quickly perform an assignment action on all or many of the identified bugs.

One participant, after using the feature, commented:

“Yes, [this is useful] because I do it all the time.”

Accuracy and Balance. We also observed that tag sets probably improve the process of
release planning, which is a specific type of triaging that occurs at various points during
development. We saw several examples of how tag sets helped triagers achieve a more bal-
anced distribution of bugs across milestones by identifying bugs that could be redistributed
to future milestones. For instance, the participants working on the open source project
presented an approach to release planning that involved reviewing the bugs assigned to the
current release at multiple points during the development sprint, and they created tag sets
to help identify ones that could be “pushed out” to future milestones. Other participants
saw the ability to use ad hoc tag sets to create temporary milestones as a way to prevent

future milestones from being overloaded.

We believe that tag sets also helped triagers to perform more accurate assignments to mile-

stones. By allowing triagers to create layers of tag sets, PORCHLIGHT enabled a more precise

169

approach to identifying bugs belonging to themes for a release. Rather than having to iden-
tify the bugs belonging to a theme one-by-one as they come across them, tag sets allow
the triager to identify related bugs based on criteria and assign them to the appropriate
milestone. Additionally, tag sets helped one participant to identify bugs that should have
been triaged but were not, allowing him to more accurately assign them to the appropriate
milestone. Another participant observed that tag sets could be used to identify bugs that

belong to a theme for release planning when he stated:

“There are groups [of bugs| based on urgency of customers asking for it, or groups
based on themes, like architecture [bugs|. And so, the theme of this release is

customer facing, let’s look at that tag set and see what’s in that pool and see what

we should fix.”

Similarly, another participant commented on his approach to identifying bugs for release

planning when he stated:

“I would probably create a couple of tag sets and layer them on top of each

other.”

One aspect of improving accuracy that we do not have enough evidence for in our observations
is the accuracy of assignments to developers. PORCHLIGHT prominently displays the list
of users along with the number of bugs that have been assigned to them. It also makes
important information about the bug, including the comments made by stakeholders, readily
available. While we assume that access to these features would support the triager in making
better and more accurate assignments to developers, there were not enough assignments of

bugs to developers or feedback on that aspect to suggest an improvement.

Relevancy. We observed that tag sets became proxies for concerns throughout the triaging

process. The concerns brought to bear on the process by the triagers are the criteria which

170

determine relevant bugs. By providing a mechanism which can embody these concerns,
tag sets allow triagers to attach relevancy to a list of bugs. Making it easier to identify
the bugs that have attracted attention, or have significant activity, increases the relevance
of the triaging actions being performed. Participants made reference to “interesting” or
“embarrassing” bugs that were more relevant and could be more easily identified and triaged
by using tag sets. For example, one participant commented on the use of tag sets to identify

bugs that had a large number of watchers and comments:

“If it has multiple watchers, it increases the amount of people that care about
it. It means it should probably be looked it ... if six people care about this, then
there’s got to be something there, let’s figure out what that thing is... If there are
a lot of watcher and a lot of comments, I think of the ticket that’s a really hard

problem to solve, and is causing customer issues.”

Confidence. Finally, we observed that tag sets seem to increase the triager’s confidence
in the triaging process by providing a way to more thoroughly explore and organize the
bugs. Because tag sets, once specified, can be persisted and reused through the development
process, it provides triagers a way to quickly review and assess groups of bugs to prevent

them from slipping through the cracks. One participant stated that:

“I think I really did find some that kind of slipped through the cracks. Keeping in
mind, this is already a managed project, I mean, if I had been using PORCHLIGHT
the whole time it would have made it easier in the first place. 1 already thought
I had gone through everything, so those [that I just triaged] slipped through the

cracks.”

This is particularly important in projects that have a large number of bugs that need to be

reviewed and triaged regularly. Even with a development process in place, meetings dedicated

171

to reviewing the backlog of bugs that need to be assigned, there is still the potential that
some can be forgotten. This can be made worse when users of the bug tracker use different
mechanisms to temporarily categorize bugs. One participant commented on the usefulness of
tag sets in identifying bugs that have been dispersed across multiple impermanent versions,

components, and assignees in the the project:

“Yeah, definitely. What I usually use for that is version, which is probably why
we have so many weird versions. We have Holding, we have Backlog, we have
Alice’s Enhancements, Alice’s Backlog. [Laughs|. She created her own because

she wanted her own little buckets to play with. So, yes, [tag sets] would help.”

Summary

From these observations, together with the features we discussed in Section 6.1 and the
kinds of tag sets we presented in Section 6.2, we have some early verbal indication that
PORCHLIGHT seems to have a positive impact on the quality of triaging along all six of the

criteria we selected for our analysis.

The basic features of PORCHLIGHT, like the activity timeline and bug multi-select, provided
triagers with access to the information they need to identify bugs that need triage, and once
identified, the ability to quickly assign them. Tag sets contributed to making the process
more efficient by allowing triagers to front-load their workflow. By spending more time early
on to organize the bugs, they felt they were able to more efficiently perform assignments.
This also impacted the volume of bugs that needed to be triaged, though indirectly. With
tag sets, participants were able to transition from having to make successive small triaging

decisions about individual bugs, to making larger decisions about how to triage sets of bugs.

Once the participants became comfortable with the tool, they began to think about bugs

in terms of tag sets, and they began to explore ways in which their triaging process could

172

be modeled and improved using this concept. The study participants were triagers with
extensive experience and intimate knowledge of the projects and their bugs, yet with a few
tag sets specified using BTL statements, they were able to quickly identify bugs that would
otherwise have been lost. This resulted in an increase in their confidence that the bugs
that needed to be identified and triaged would be. On several occasions we observed the
participants’ surprise as they came across bugs that they believed should have already been
triaged, and their reassurance that our approach would have helped them identify those bugs

sooner.

Our approach also had an impact on identifying relevant bugs during the triaging process.
Tag sets provided a way for triagers to express and proxy specific concerns using criteria.
Some of the concerns could be expressed more simply, like looking for specific keywords in
the description, or for labels with customer names. Other concerns were more abstract and
made use of the more advanced features in our approach. For instance, looking at the level
of activity on a bug to make sure the most active ones receive attention, or assessing the
importance of a bug based on the number of watchers, or even based on who the specific
watchers are. These concerns are crucial to the triaging process, and our approach provides

a way for triagers to express them, and then monitor the bugs that are most relevant.

We also identified likely improvements to the process with regards to the other assessment
criteria, though we do not believe it was as significant. Tag sets assisted triagers in per-
forming more accurate assignments to milestones by provided them with a way to create
ad hoc groups that could be used as temporary placeholders that they felt were important.
Assignments to specific milestones then were more accurate by definition, since triagers had
confidence that the bugs that would need to eventually be assigned could be found later on

using tag sets.

This also prevents triagers from overloading and cluttering actual milestones that are shared

by the entire project, and avoids skewing the workload distribution across milestones, thus

173

leading to a better balance, or distribution of bugs across milestones. Tag sets and multi-
select also provided triagers with a way to, at various points during the development process,
identify bugs within milestones and then easily “push out” or redistribute the bugs across

future milestones as necessary.

We did not, however, observe a similar improvement to the accuracy of assignments when
it comes to the developer. This may be due to the fact that, from our observations, the
assignment to the developer and milestones did not happen simultaneously. Rather, the
milestone must be determined first and only when the development sprint for the milestone
approaches is the developer assigned. We, thus, saw fewer developer assignments than mile-

stone assignments.

Stepping back, our approach provided a model that triagers used to become aware of and
effectuate their underlying process which, until now, they have been unable to adequately
express. Tag sets provided a way for triagers to accomplish things that it appears they
have long wanted to do, but could not, or could only do in an inefficient manner using
their existing techniques. We see this observation as an important outcome, and the most

significant improvement to the triaging process that was enabled by our approach.

6.4 Weaknesses

There were several weaknesses in our implementation of PORCHLIGHT and how it allowed the
participants to work with sets of bugs. We describe these weaknesses in two areas: weaknesses

with our concept and approach, and weaknesses with our technical implementation.

174

6.4.1 Conceptual

A weakness that we observed during the participant observation study was in how we chose
to present the relationship between the tag sets and the bugs. One recurring request was
for the ability to view the intersection of tag sets in order to progressively reveal the bugs
which were the most relevant based on the criteria defined in each tag set. Our use of tag set
indicators in the bug list, and the ability to selectively enable tag sets, was a small step in
this direction, but we think the use and comments by the participants revealed a weakness
in our conceptual approach to visualizing tag sets. More than just overlaying the tag sets,
the participants wanted a way to see the overlap. They wanted the criteria for each tag set
to be visible, and as more tag sets were enabled, they wanted to be able to visually identify
the concerns being expressed by the tag sets, and see the increasing relevancy of the bugs.
A complementary view (though not a replacement, since we believe the bug list has other
strengths) of the tag sets and bugs which emphasizes the overlapping nature of the tag sets

may address this weakness.

We observe that our approach failed to support some tag sets that participants requested,
and that the bug data model and tagging language we developed as part of our approach
was not sufficiently complete when we started. This was evident in the number of iterations
the researcher had to undergo when creating BTL statement during the sessions, or in the
various plugins that were implemented to extend the language. Even though the changes
needed to address many of these limitations were small in scope, requiring only a few dozen
lines of new code in some cases, it does suggest that there may be other weaknesses in the

tagging language that have yet to be uncovered.

We also observe that with our tagging language it was difficult to express some of the more
relative criteria that were used by the participants. For example, the desire to identify bugs

that were “unassigned to me” or “unassigned to the next milestone” was present in the

175

observations. The notion of “me” and “next milestone” are not easily expressed without
explicitly identifying those parameters in the BTL statement. One significant improvement
would be to automatically extract this metadata from the bug tracker, or other sources, and
make it available in the tagging language. Because of our approach to implementing the

tagging language, such an improvement would be straightforward.

Another weakness that we observed was in the high-level feature set we ultimately chose
to implement for PORCHLIGHT. While the features we implemented were sufficient for the
purposes of the study, there were numerous that we did not implement that would have
addressed several of the requests from the participants. Specifically, we could have explored
the concept of a more feature rich environment for triagers that would have allowed the
creation of temporary work queues based on tag sets. While possible, the triagers would
need to do much of this work themselves, which is not ideal. Another concept we could
have explored was incorporating duplicate detection techniques into BTL to allow triagers
to create bugs sets which identified similar bugs automatically. While we did not implement
these features, we feel like they would need to be an important part of a production version

of PORCHLIGHT.

6.4.2 Technical

One weakness of our technical implementation of PORCHLIGHT was in the integration be-
tween the server and the source bug tracker. For example, while the BTL evaluation process
described in Section 5.2.2 allowed for bugs to be tagged as part of the evaluation of a BTL
statement, we did not implement a mechanism for automatically keeping the tag sets up
to date if new bugs were added that met the specified criteria. For example, if a tag set
includes criteria for identifying bugs that have been assigned to a specific developer, and the

assignee is changed, the tag will not automatically be removed and, therefore, the tag set

176

will no longer accurately reflect that state of the bug tracker. This functionality was omitted
from the prototype since we did not think it was necessary for assessing our approach. More
specifically, we were able to receive sufficient feedback on the use of tag sets without this
ability. However, it was brought up in all of the sessions as the participants asked how the

tag sets were synchronized with the source bug tracker.

Another weakness of our implementation that emerged was the inability to sort the bug
list based on the tag set membership column. In hindsight, this should have been a basic
feature, but it was not implemented due to technical limitations of the Java library used to
render the table cell. As discussed earlier in this chapter, multiple participants requested
the ability to sort the bug list based on the number of tag sets to be able to visualize the

intersection between multiple tag sets.

Another weakness was in the limited number of actions that were displayed in the timeline.
Numerous additional activity types could have been shown in the timeline, such as votes
or field changes. However, we only implemented a subset of activities against the bug
tracker, specifically comments being added and certain status changes. While we feel this
was sufficient to convey the purpose of the timeline, and it still saw heavy use during the
participant observation study, we could have explored the information that can be conveyed

through the timeline more thoroughly if there were more actions displayed.

A final and more minor weakness that emerged was in the way we chose to indicate assign-
ment to a user or milestone in the respective lists. While browsing through the bug list,
the assignee and milestone for a selected bug were indicated by a green checkmark on the
associated icon in the list. While this did provide an indication of assignment, a consistent
point of feedback was that the indicator was not clear enough and should either be larger, or
the icon of the user or milestone itself should be changed to indicate assignment. To make
the assignment to a milestone more clear and to reduce visual clutter, we also should have

provided the ability to toggle the milestones that appear in the list to just those that have

177

not yet been released.

6.5 Threats to Validity

Several threats to both the internal and external validity of our analysis exist.

6.5.1 Internal Validity

The participants in both the preliminary user study and the participant observation study
included professional colleagues of the researcher at the time of the study, which took place
on site at the place of employment. The participants may have been favorably biased toward
the tool because of this relationship and setting. Though this threat exists, we do not believe
a strong favorable bias exists since, along with positive feedback, we also received numerous
requests for improvements, both to the PORCHLIGHT user interface and the underlying
tagging language. Furthermore, the fact that one of the participants began using the tool
to perform actual triaging suggests that he found it useful for his actual work and was not

just providing positive feedback due to a bias.

The researcher’s high level of involvement during the participatory observation may have
introduced an experimenter bias, since influences from the discussion and suggestions made
during the sessions may have led to certain results. Particularly, the openness with which the
researcher shared and discussed observations with the participants, and made suggestions
for tag sets during the participant observation study, may have caused the participants to
come to certain conclusions about the usefulness of the approach. The researcher was careful

in maintaining objectivity and not leading the discussion, but this threat remains.

178

6.5.2 External Validity

While a participant observation study allowed us to situate our approach in a real-world
setting with professionals reviewing actual bugs from active projects they were intimately
familiar with, the participants were not observed performing actual triaging in an actual
triaging meeting with their team, as the setting was more discussion oriented in its setup.
It is possible that the triaging tasks performed do not adequately represent the challenges
participants would normally encounter while triaging. Under these limitations, this is still
not a conclusive study. Rather it is an exploratory study of the use of the tool that has let
to a number of rich observations. It is precisely the depth of these observations, however,
that we believe is evidence of this threat being minimal. Participants clearly projected their
triaging roles during the sessions and actively engaged in meaningful discussion about bugs,

tag sets, and their approach to triaging.

Because the study was conducted in a single organization with a relatively small number
of participants, the generalizability across situations and people may be questionable. Our
findings may be localized to the single organization in which the study was conducted, or it
may be specific to the individuals that participated in the study. While we tried to mitigate
this threat by including participants with different roles working on different projects within
the organization, the workflows and models revealed during the sessions may not apply to
triagers elsewhere. On the other hand, the observations being made echo those of the triagers
we quoted in the beginning of tis dissertation, and the fact that different triaging approaches
were readily supported, implies that PORCHLIGHT is more broadly applicable because of

the versatility of tag sets.

179

Chapter 7

Conclusions

In the introduction to this dissertation we presented a volunteer triager who, out of frustra-

tion, resigned his role on a large open source project. He posted a message on his personal

blog, stating:

“Right now, there is no real way to triage except ‘Here is a list of 1700 bugs.
Start at the top and work your way down.” We need a way to mark bugs that

need triage ... But we also need to remember, BMO [Bugzilla@Morzilla] is being

used for things it never was created for.”

The former contributor appealed to the triaging community:

“We also need more coordination as a community so we can touch all these
bugs in an effective and professional manner. Having better tools for the Triage
community to find bugs that haven’t been replied to within a certain time pe-
riod. Having better communication between developers and triagers, and between

triagers themselves.”

180

If we look at the cause of his frustration, it was the lack of a tool that matches how they
want to work. As a research community, however, we know precious little about triagers
and their work. The primary purpose of this dissertation, then, is to develop more of an
understanding of triaging, specifically through the creation of PORCHLIGHT, a new triaging
tool based on the conjecture that working with tag sets better matches how triagers do their

work.

We began this dissertation by examining more deeply the source of the triager’s frustration.
We informally surveyed the current state of triaging support in popular bug trackers and in
the triaging community at large, and identified the problems that exist with the approaches.
In particular, we examined how search filters and tags are used as makeshift solutions to

address the problem of making large sets of bugs more manageable.

We then presented current research related to bug tracking. We investigated the most
active areas of research, which included duplicate detection, automated assignment, and
field studies. We learned that there are a variety of techniques that can be deployed to
improve the accuracy of assignments, or to reduce the number of bugs that must be triaged
by identifying duplications. From previous field studies we confirmed that triaging is an
important activity that occurs in both open source and commercial software development,
and that there are many roles that the bug tracker takes on in the development lifecycle.
Based on our survey of the current state of the art, we proposed the need for a dedicated
triaging environment based on sets of bugs in order to better match the needs of the triager.
We outlined a set of requirements for how working with sets of bugs should be reflected in

a tool along the dimensions of exploring, searching, inspecting, and taking action.

We implemented these ideas in PORCHLIGHT, particularly through the use of tag sets and a
specialized tagging language that, when used through the triaging interface, would be useful
in creating meaningful sets of bugs. We also described the capabilities of the environment

which would make the triaging actions, like commenting and performing assignments, more

181

efficient. We also described the implementation details behind our approach, noting the
design and technical decisions we made along the way. This included details of our plugin

architecture which allows others to extend our approach.

Finally, we performed a multi-part analysis consisting of two studies and an in-depth analysis
of, on one hand, the feasibility and usability of PORCHLIGHT, and on the other hand, the
impact of using tag sets as the primary mechanism for organizing and working with large sets
of bugs. We summarized the findings from the preliminary user study which we conducted
to validate our general direction. We also provided a narrative overview of a participant
observation study conducted with four participants across six sessions. We then presented an
analysis of the observations from both studies across six assessment criteria, and highlighted

key areas in which our approach had an impact on improving the triaging process.

Overall, through the studies we conducted, we were able to confirm our conjecture that work-
ing with tag sets better matches how triagers do their work. We now also know more about
the process of triaging than we knew at the beginning of this dissertation, and we uncovered
numerous findings about triaging and the needs of triagers when they work. Moreover, we
know that it is possible to build a dedicated triaging environment, based on the concept of
tag sets, to meet these needs. Below, we first focus the discussion on the feasibility of a
dedicated triaging environment, and then return to the overarching purpose of this disserta-
tion, which was the idea that allowing triagers to work with and organize bugs in sets better

matches what they want to do when they triage.

In terms of feasibility, we first note that we could design and implement the environment, and
that at one level, the basic features of the tool, including tag sets and BTL, were used. The
participants created a variety of tag sets in their exploration of the concept, and prompted
the addition of new features through plugins. At another level, we see that the participants
began thinking about the bugs differently, and began modeling their latent triaging process

using tag sets. At the highest level, we see through the feedback from the participants that

182

both tag sets and PORCHLIGHT appeared to have an impact on improving the quality of

the triaging experience.

We particularly learned that tag sets are a useful model for thinking about bugs. More
specifically, they are useful for breaking down a large collection of bugs into smaller sets that
are more meaningful to the triager. They can be used as proxies for specific concerns, or
as a way to temporarily represent the state of a bug in a triaging workflow. Additionally,
tagging itself has proven to be a useful technique by which to associate the name of a set
with the bugs contained in it. Because most bug trackers support tags or labels, the tag sets
created through PORCHLIGHT can be reflected in the source bug tracker, tying the concepts
that were explored in our study back to a larger process that potentially involves not only

triagers, but the entire development team.

While triaging is a common activity across software development projects, we learned that
the way in which it is performed can be unique to each project and individual. This is
partially due to the fact that so much of the decision making process is dependent on the
context in which the decision is made. There is an entire set of experience and historical
knowledge that is brought to bear on the decision making process that cannot yet be reflected
in any tool or bug tracker. For example, knowledge about the history of a bug as related
to a particular developer, or the theme of a milestone based on an understood agreement
within a small development team, are intangible factors that, as one participant in the study

mentioned, places the act of triaging somewhere “between an art form and a science.”

We learned that, while we initially set out to better support the work that triagers do, we
ended up with a realization that we still know less than we had anticipated about how triaging
is fundamentally done. While at the outset we were interested in the mechanics of how
often assignments are performed, or how often bugs are tossed between assignees, we soon
discovered that triaging is not a well defined process. Even within the same organization,

individuals approach triaging differently, based on their goals and the information they have

183

available to them. Beyond the context are the habits and practices that the triagers have
adopted over years of working with the bug tracker and assigning bugs. We caught a glimpse
of this through the models that were discussed, but there is certainly more that should be

explored in that area.

Tag sets were also a useful tool for revealing, modeling, and enabling the latent workflows
used by each individual triager. Tag sets provided the triagers a structure, both for describing
their triaging process, and for the types of bugs that are important to identify and review
during this process. During the course of the participant observation sessions, participants
began to reflect on their process, identifying the possible limitations in their approach, and
the gaps in the workflow where bugs could be lost. This is a significant finding, since
PorcHLIGHT allows triagers to express and, to some extent, apply the context that is
important during the triaging process. The variety of tag sets that we observed in our
participant observation study support the observation of bug triaging being idiosyncratic in

nature.

Finally, we conclude with the observation that, at the end of the day, some of the partici-
pants began using PORCHLIGHT to perform actual triaging during the study sessions. We
should not overlook the importance of this, especially given the context of this action. The
participants were being asked to consider the concept of tag sets, and to assess the usefulness
of a tool using a set of bugs they were familiar with. Without our prompting, some found
both the concept and the tool useful enough to take the initiative and close the gap between
a research evaluation and performing actual triaging for their work. We believe that this

simple observation is the most direct confirmation of the impact of our work.

184

Chapter 8

Future Work

In this section, we describe potential future directions for this work, as broken down into

three categories: conceptual, further studies, and technical improvements.

8.1 Conceptual

Automating contextual tag set creation. We believe there is strong potential for future
work to build on the concepts presented in this research that incorporates different aspects
of improving triaging into our approach. For example, the ongoing research in machine
learning and automation techniques could be incorporated into both PORCHLIGHT and the
bug tagging language. We can envision a version of our approach where, as bugs are created,
they are automatically assigned to a tag set based not only on criteria defined by the triager,
but new criteria that are discovered by the tool based on an analysis of the entire set of bugs
and based on learning how triagers handle different kinds of bugs. Similarly, state of the art
duplicate bug detection techniques could be incorporated into the environment so that tag

sets containing potential duplicates are automatically created and presented to the triager.

185

As a starting step in this direction, one could simply automate the process of categorizing

bugs into tag sets based on their age and when they were last viewed by the triager.

Tailoring the approach to individual triagers. Now that we know that triaging is a
context dependent activity that can be idiosyncratic in nature, we believe that both the
tool and the tagging language can be improved to better adapt to and support the different
mental models and workflows used by individuals and teams. One potential for work in this
direction would be to allow PORCHLIGHT to automatically detect the workflow and model
employed by a triager over some period of time, and then based on the patterns detected,
create or suggest tag sets that could assist in the triaging process. Rather than providing
triagers we a pre-defined set of “one size fits all” tag sets, this would allow the tool to provide
targeted and highly specialized tag sets that would address the triager’s specific needs. This
has the potential to have a significant impact on how triagers work on a daily basis. As this
may be difficult to achieve, a basic first step might be to package PORCHLIGHT with a set

of predefined workflows that a triager or triaging team may choose to adopt.

8.2 Further Studies

Field deployment in a professional setting. Due to the inherent weaknesses of using
a participant observation study, one direction for future work would be to deploy a more
robust version of PORCHLIGHT in a professional setting. Observing the tool in actual use
for an extended period of time would be an important extension of our research. Based on
the feedback we received during the participant observation study, PORCHLIGHT could be
used in a limited capacity to perform triaging during specific periods in the development
lifecycle. It would not replace the bug tracker used, but rather supplement it as a dedicated
triaging environment. An actual field deployment would ideally yield rich insights into how

tag sets can impact the triager’s workflow over a period of time, which would demonstrate

186

the long-term feasibility of our approach.

Field deployment in an open source community. Because this research was partially
motivated by the frustrations of triagers in the open source community, another direction
of future work would be to deploy PORCHLIGHT for use within a large open source project.
Deploying PORCHLIGHT to such a larger community would require enhancements that would
lower the threshold to use and adoption. Additionally, usage tracking functionality could be
incorporated to report the use of the tool, and how tag sets are employed. While this type of
study would be more difficult to conduct, it would provide the most comprehensive view of

how tag sets and the tool are being used to perform actual triaging in an authentic setting.

8.3 Technical

Support for additional bug trackers. A first need is to simply expand the number
of bug trackers supported by PORCHLIGHT. While the architecture and data model were
designed to support any bug tracker, implementing the importers and exporters to work
against another popular bug tracker like Bugzilla would help to reveal any possible additional
limitations in our bug data model, or in the capabilities of BTL. Additionally, it would expand

the potential user base for the tool, and lower the barrier for performing additional studies.

Enhanced plugin capabilities. We discovered situations where the data model could not
be easily modified using the plugin mechanism we had designed. For instance, the ability
to view source code commit events in the timeline was not utilized since the projects used
the Git version control system, while our approach had only implemented a Subversion
adapter. Similarly, our ability to extend the data model was limited when the source of the
information resided somewhere other than in the bug schema provided by the source bug

tracker. Expanding the capabilities of the plugin architecture to allow for more complex

187

extensions to the data model and to the functions would move the tool towards becoming
a platform for future work to expand on. For example, we can envision custom functions
that look to sources beyond the bug tracker to perform computations that can be used in

the evaluation of BTL statements.

Platform for evaluating triaging techniques. Finally, with some enhancements to the
plugin capabilities of PORCHLIGHT and BTL, one viable direction for future work would be
to transform the tool into a platform for exploring, implementing, and evaluating different
techniques for improving triaging. More specifically, PORCHLIGHT could become the ref-
erence environment in which techniques could be assessed. For example, the ongoing work
related to assignment automation could be incorporated into BTL. Multiple tag sets could
be created using different techniques, and participants in a study could use these tag sets to
perform triaging and provide feedback on the accuracy or usefulness. The basic functionality
in the user interface could be expanded to include ways to provide real-time recommenda-
tions based on the output of these techniques. Similarly, the research that is being done on
duplicate detection could be explored through PORCHLIGHT as tag sets identifying similar

bugs.

188

Bibliography

Bugzilla. http://www.bugzilla.org/, 2010.
FogBugz from Fog Creek Software. http://www.fogcreek.com/fogbugz/, 2010.
The Trac Project. http://trac.edgewall.org/, 2010.

MigLayout - Java Layout Manager for Swing, SWT and JavaFX 2! http://
miglayout.com, 2013.

Bugs Ahoy! http://www. joshmatthews.net/bugsahoy/, 2015.
Eclipsepedia - CDT/Bugs. https://wiki.eclipse.org/CDT/Bugs, 2015.
GitHub - Build software better, together. https://github.com, 2015.

GNOME Wiki! - Bug Days. https://wiki.gnome.org/Bugsquad/BugDays,
2015.

GNOME Wiki! - Finding bugs to triage. https://wiki.gnome.org/Bugsquad/
TriageGuide/FindingBugs, 2015.

GNOME Wiki! - Triage Guide. https://wiki.gnome.org/Bugsquad/
TriageGuide#Steps_of_Triaging, 2015.

Google Code. https://code.google.com, 2015.

How we organize github issues: A simple styleguide for tagging. http://bit.ly/
1QaKLiB, 2015.

JIRA - Issue & Project Tracking Software. https://www.atlassian.com/
software/jira, 2015.

JIRA REST API Reference. https://docs.atlassian.com/jira/REST/
latest/, 2015.

Mozilla Developer Network - Bug Triage Day. https://developer.mozilla.
org/en-US/docs/Mozilla/QA/Bug_Triage_Day, 2015.

Mozilla Developer Network - Triaging crash bugs. https://developer.mozilla.
org/en-US/docs/Triaging_crash_bugs, 2015.

189

http://www.bugzilla.org/
http://www.fogcreek.com/fogbugz/
http://trac.edgewall.org/
http://miglayout.com
http://miglayout.com
http://www.joshmatthews.net/bugsahoy/
https://wiki.eclipse.org/CDT/Bugs
https://github.com
https://wiki.gnome.org/Bugsquad/BugDays
https://wiki.gnome.org/Bugsquad/TriageGuide/FindingBugs
https://wiki.gnome.org/Bugsquad/TriageGuide/FindingBugs
https://wiki.gnome.org/Bugsquad/TriageGuide#Steps_of_Triaging
https://wiki.gnome.org/Bugsquad/TriageGuide#Steps_of_Triaging
https://code.google.com
http://bit.ly/1QaKLiB
http://bit.ly/1QaKLiB
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://docs.atlassian.com/jira/REST/latest/
https://docs.atlassian.com/jira/REST/latest/
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_Triage_Day
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_Triage_Day
https://developer.mozilla.org/en-US/docs/Triaging_crash_bugs
https://developer.mozilla.org/en-US/docs/Triaging_crash_bugs

[17]
[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[28]

[29]

Neodj, the World’s Leading Graph Database. http://neo4j.com, 2015.
Semantic Versioning 2.0. http://semver.org, 2015.

The Bugzilla Guide - Life Cycle of a Bug. https://www.bugzilla.org/docs/4.
4/en/html/lifecycle.html, 2015.

The Chromium Projects - Triage Best Practices. http://www.chromium.org/
for-testers/bug-reporting-guidelines/triage-best-practices,

2015.

The Chromium Projects - Triaging Bugs. http://www.chromium.org/
getting-involved/bug-triage, 2015.

Configuring Workflow: Workflow designer. https://confluence.atlassian.
com/jira/configuring-workflow-185729632.html, 2016.

M. Ames and M. Naaman. Why we tag: Motivations for annotation in mobile and online
media. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’07, pages 971-980, New York, NY, USA, 2007. ACM.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Proceedings of the
28th International Conference on Software Engineering, ICSE 06, pages 361-370, New
York, NY, USA, 2006. ACM.

J. Anvik and G. C. Murphy. Reducing the effort of bug report triage: Recommenders for
development-oriented decisions. ACM Trans. Softw. Eng. Methodol., 20(3):10:1-10:35,
Aug. 2011.

J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and omissions
in software repositories. In Proceedings of the 31st International Conference on Software
Engineering, ICSE 09, pages 298-308, Washington, DC, USA, 2009. IEEE Computer
Society.

D. Bertram, A. Voida, S. Greenberg, and R. Walker. Communication, collaboration,
and bugs: The social nature of issue tracking in small, collocated teams. In Proceedings
of the 2010 ACM Conference on Computer Supported Cooperative Work, CSCW 10,
pages 291-300, New York, NY, USA, 2010. ACM.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zimmermann. What
makes a good bug report? In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, SIGSOFT *08/FSE-16, pages 308
318, New York, NY, USA, 2008. ACM.

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs in bug reports:
Improving cooperation between developers and users. In Proceedings of the 2010 ACM
Conference on Computer Supported Cooperative Work, CSCW ’10, pages 301-310, New
York, NY, USA, 2010. ACM.

190

http://neo4j.com
http://semver.org
https://www.bugzilla.org/docs/4.4/en/html/lifecycle.html
https://www.bugzilla.org/docs/4.4/en/html/lifecycle.html
http://www.chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices
http://www.chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices
http://www.chromium.org/getting-involved/bug-triage
http://www.chromium.org/getting-involved/bug-triage
https://confluence.atlassian.com/jira/configuring-workflow-185729632.html
https://confluence.atlassian.com/jira/configuring-workflow-185729632.html

[30]

[31]

[32]

[34]

[35]

[36]

37]

[38]

[39]

[40]

M. Cohn. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley
Professional, 1st edition, 2009.

T. Downer. Some Clarification and Musings. http://tylerdowner.wordpress.
com/2011/08/27/some-clarification-and-musings/, 2013.

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. "not my bug!” and other
reasons for software bug report reassignments. In Proceedings of the ACM 2011 Confer-
ence on. Computer Supported Cooperative Work, CSCW ’11, pages 395-404, New York,
NY, USA, 2011. ACM.

C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg. Designing task visualizations
to support the coordination of work in software development. In Proceedings of the

2006 20th Anniversary Conference on Computer Supported Cooperative Work, CSCW
'06, pages 39-48, New York, NY, USA, 2006. ACM.

G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with bug tossing graphs.
In Proceedings of the the 7th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of Software Engineer-
ing, ESEC/FSE 09, pages 111-120, New York, NY, USA, 2009. ACM.

R. Johnson, Y. Rogers, J. van der Linden, and N. Bianchi-Berthouze. Being in the
thick of in-the-wild studies: The challenges and insights of researcher participation. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
"12, pages 1135-1144, New York, NY, USA, 2012. ACM.

S. Just, R. Premraj, and T. Zimmermann. Towards the next generation of bug tracking
systems. In Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-
Centric Computing, VLHCC 08, pages 82-85, Washington, DC, USA, 2008. IEEE
Computer Society.

Y. Koren, E. Liberty, Y. Maarek, and R. Sandler. Automatically tagging email by
leveraging other users’ folders. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 913-921, New
York, NY, USA, 2011. ACM.

M. Li, M. Huang, F. Shu, and J. Li. A risk-driven method for extreme programming
release planning. In Proceedings of the 28th International Conference on Software En-
gineering, ICSE 06, pages 423430, New York, NY, USA, 2006. ACM.

J. E. Moore and S. E. Yager. Understanding and applying participant observation in
information systems research. In Proceedings of the 49th SIGMIS Annual Conference
on Computer Personnel Research, SIGMIS-CPR 11, pages 126-130, New York, NY,
USA, 2011. ACM.

E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan. The design space of bug
fixes and how developers navigate it. Software Engineering, IEEE Transactions on,
41(1):65-81, Jan 2015.

191

http://tylerdowner.wordpress.com/2011/08/27/some-clarification-and-musings/
http://tylerdowner.wordpress.com/2011/08/27/some-clarification-and-musings/

[41]

[42]

[43]

[49]

[50]

A. Ngo-The, G. Ruhe, and W. Shen. Release planning under fuzzy effort constraints.
In Proceedings of the Third IEEE International Conference on Cognitive Informatics,
ICCI ’04, pages 168-175, Washington, DC, USA, 2004. IEEE Computer Society.

T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. Prag-
matic Bookshelf, 2007.

D. Poshyvanyk, H. Dang, K. Hossen, H. Kagdi, M. Gethers, and M. Linares-Vasquez.
Triaging incoming change requests: Bug or commit history, or code authorship? In Pro-
ceedings of the 2012 IEEE International Conference on Software Maintenance (ICSM),
ICSM 12, pages 451-460, Washington, DC, USA, 2012. IEEE Computer Society.

I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media, Inc., 2013.

G. Ruhe and M. O. Saliu. The art and science of software release planning. IEEE
Softw., 22(6):47-53, Nov. 2005.

P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect reports
using natural language processing. In Proceedings of the 29th International Conference
on Software Engineering, ICSE *07, pages 499-510, Washington, DC, USA, 2007. IEEE
Computer Society.

K. Somasundaram and G. C. Murphy. Automatic categorization of bug reports us-
ing latent dirichlet allocation. In Proceedings of the 5th India Software Engineering
Conference, ISEC ’12, pages 125-130, New York, NY, USA, 2012. ACM.

W. Swierstra and A. Loh. The semantics of version control. In Proceedings of the
2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming € Software, Onward! 2014, pages 43-54, New York, NY, USA, 2014.
ACM.

A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen. Fuzzy set-based auto-
matic bug triaging (nier track). In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 884-887, New York, NY, USA, 2011. ACM.

C. Treude and M.-A. Storey. How tagging helps bridge the gap between social and
technical aspects in software development. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 12—22, Washington, DC, USA,
2009. IEEE Computer Society.

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting duplicate
bug reports using natural language and execution information. In Proceedings of the
30th International Conference on Software Engineering, ICSE '08, pages 461-470, New
York, NY, USA, 2008. ACM.

192

[S V)

© o N >

10
11
12
13
14
15
16
17
18
19
20

Appendix A

BTL Grammar

grammar BTL;

options {
language = Java;
output = AST;

ASTLabelType = CommonTree;

tokens {
TAG;
FUNCTION;
WINDOW;
SHOW;

DELETE;

@header {
package edu.uci.ics.sdcl.porchlight

}

.antlr;

193

21
22
23
24
25
26

27
28
29
30
31
32

33
34
35

36
37
38

39
40
41

42
43
44
45
46
47

@lexer::header {

package edu.uci.ics.sdcl.porchlight.antlr;

" (TAG Sname

(predicate |

(value=IDENT

type=’'YEARS’)

}
statement
"TAG" (name=IDENT | name=STRING) ’'WHERE’ clause ’;’? EOF —->
clause)
| "SHOW’ (name=IDENT | name=STRING) ’;’? EOF -> " (SHOW S$name)
| 'DELETE’ (name=IDENT | name=STRING) ’;’? EOF -> "~ (DELETE S$name)
7
clause
(predicate | function | ’SINCE LAST’! window) (BOOLEAN"
function | SINCE LAST’! window)) *;
predicate
name=IDENT rel=RELATION (value=IDENT | value=STRING) —-> " (Srel S$name
Svalue) ;
function
fn=IDENT '’ (’ (param=IDENT | param=INTEGER) ')’ rel=RELATION
| value=INTEGER) -> " (FUNCTION $rel $fn S$param S$value);
window
value=INTEGER (type=’'DAYS’ | type='WEEKS’ | type='"MONTHS’ |
-> " (WINDOW $value Stype);
RELATION : /=’ | />' | /</ | ’>=' | ’<=";

BOOLEAN : 'AND’ | 'OR’;

STRING : '\"’ (options { greedy=false; } : .)* "\"/

setText (getText () .substring(l, getText ().length()

194

{
=1))i b

48
49

50
51
52
53

107 .79 +;

"\f’)+ { Schannel

Appendix B

PorchLight User Study

B.1 Introduction

You are being asked to evaluate a new approach to bug triaging using a tool called PORCH-
L1GHT. Bug triaging is the process of reviewing a bug (defect or enhancement request) and
making some decision about it, whether it’s to assign it to a user or milestone, comment on

it and request more information, or close it.

PORCHLIGHT is based on a concept called tag sets. Tag sets let you group and name bugs
using a wide array of attributes. For example, a tag set could reference all unresolved bugs
that have had at least 3 comments in the last 2 months. To help you create tag sets, a new
language is available to express the attributes of the bugs you’d like to group. This language
is called BTL (Bug Tagging Language) and is available to you in PorchLight. For example,

this is the BTL statement to create the tag set described above:

TAG "Active Bugs" WHERE FREQUENCY (comment) > 3 SINCE LAST "2 Months"

You can use this tag set to explore all of your bugs that have significant comment activity

196

and may need attention. This allows you to narrow down your list of bugs into a more

manageable set and explore them in more detail.

Note that PORCHLIGHT is not intended to be a replacement for your issue tracker. Its
features are geared towards exploring the concept of tag sets and their potential value to
triaging. As a research prototype, it’s not as fully featured as JIRA or other bug trackers.

So, bear with us.

The purpose of this evaluation is to introduce you to tag sets and how they can be created,
managed, and used for triaging through the tool. This evaluation will be conducted in two
parts, and each session will be video and audio recorded for research purposes. No personal
information beyond your name and job role will be used, and this evaluation will not be used

to assess your work performance.

B.2 User Study: Part 1

The first part of this evaluation will familiarize you with the features in PorcuHLiGHT. To
make it easier, the tool has been loaded with bug reports from a project with which you are

already familiar.

B.2.1 Tutorial

1. Basics

(a) User list
(b) Milestone list
(c) Bug list

2. Bug detail view

197

(a) Summary

(b) Timeline
3. Quick filters and search
4. Actions

(a) Assign to a user and milestone
(b) Add to static tag set

(¢) Add comment or update status
5. Tag sets

(a) Static tags
(b) Dynamic tags

(c) BTL reference sheet

6. Review and commit dialog

Once you are familiar with the functionality in the tool, you will have the chance to explore
the bug reports available from the issue tracker. You are free to just browse through indi-
vidual bugs, or use the pre-populated tag sets. A BTL Cheat Sheet has been provided if you
are inclined to create a new tag set. During this part of the evaluation, we will prompt you
with questions about the types of bugs you look for when you typically triage or work with

bugs. We ask that you “think aloud” during this process.

If at any point during this session you have an idea for a tag set that you'd like to create to
help you explore the bugs, feel free to ask for assistance and we can discuss your goal and

help you create the tag set using the features in PorchLight.

198

B.3 User Study: Part II

In the second part of this evaluation we will explore tag sets and BTL in more depth by
looking at the types of tag sets you find interesting and potentially useful for triaging. To
help you get started, tag sets that were mentioned in Part I have been pre-populated for

you.

B.4 Bug Tagging Language (BTL) Reference

Statement

TAG name % Separate field in tag set dialog
WHERE predicates % Clauses, operators, and functions

[SINCE period] % Optional

Predicates

assignee = "Jjim"

status = "OPEN"

Operators

assignee = "jim" AND status = "OPEN"

(assignee = "jim" OR assignee = "sally") AND status = "OPEN"
Functions

Has more than 3 comments:

FREQUENCY (comment) > 2

Has been reassigned more than 3 times:

199

FREQUENCY (assignment) > 3

Has a Java stacktrace in the description:

HAS (stacktrace) = true

Has a screenshot attached:

HAS (screenshot) = true

Jim has authored a comment on the issue:

COMMENTED (jim) = true

Time Windows

SINCE LAST "2 months"

SINCE LAST "2 months 7 days"

200

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF LISTINGS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Thesis Structure

	Background and Motivation
	Bug Trackers
	Information Captured
	Bug Life Cycle
	Examples of Bug Trackers

	Bug Triaging
	Search Filters
	Tags/Labels

	Problems with Current Approaches
	Related Work
	Duplicate detection
	Assignment automation
	Field studies

	Requirements
	Requirement 1: Explore
	Requirement 2: Search
	Requirement 3: Inspect
	Requirement 4: Take Action
	Summary

	PorchLight
	Design Decisions
	Overview
	User List
	Milestone List
	Bug List
	Timeline
	Quick Filters
	Search
	Assigning Bugs
	Quick Comment
	Tag Sets

	BTL: Bug Tagging Language
	Functions
	Time Windows
	Custom Fields and Actions
	Custom Functions

	Scenarios
	Release Planning Session
	Individual Developer
	Volunteer Triager

	Discussion
	Conclusion

	Implementation
	Data Model
	Status
	Fields
	Actions
	Metadata

	Internal Architecture
	Client
	Server

	Plugin Architecture
	Implementation Challenges

	Analysis and Findings
	Preliminary User Study
	Setup and Procedure
	Observations

	Participant Observation Study
	Setup and Procedure
	Summary of Participant Observation Sessions

	Discussion
	Feature and Tag Set Usage
	Thinking In Tag Sets
	Making Triaging Better

	Weaknesses
	Conceptual
	Technical

	Threats to Validity
	Internal Validity
	External Validity

	Conclusions
	Future Work
	Conceptual
	Further Studies
	Technical

	Bibliography
	BTL Grammar
	PorchLight User Study
	Introduction
	User Study: Part I
	Tutorial

	User Study: Part II
	Bug Tagging Language (BTL) Reference

