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Abstract—We present EXPOSITOR, a new debugging envi-
ronment that combines scripting and time-travel debugging
to allow programmers to automate complex debugging tasks.
The fundamental abstraction provided by EXPOSITOR is the
execution trace, which is a time-indexed sequence of program
state snapshots. Programmers can manipulate traces as if they
were simple lists with operations such as map and filter. Under
the hood, EXPOSITOR efficiently implements traces as lazy,
sparse interval trees whose contents are materialized on demand.
EXPOSITOR also provides a novel data structure, the edit hash
array mapped trie, which is a lazy implementation of sets,
maps, multisets, and multimaps that enables programmers to
maximize the efficiency of their debugging scripts. We have used
EXPOSITOR to debug a stack overflow and to unravel a subtle
data race in Firefox. We believe that EXPOSITOR represents
an important step forward in improving the technology for
diagnosing complex, hard-to-understand bugs.

I. INTRODUCTION

“...we talk a lot about finding bugs, but really, [Fire-
fox’s] bottleneck is not finding bugs but fixing [them]...”

—Robert O’Callahan [1]

“[In debugging,] understanding how the failure came
to be...requires by far the most time and other resources”

—Andreas Zeller [2]

Debugging program failures is an inescapable task for soft-
ware programmers. Understanding a failure involves repeated
application of the scientific method: the programmer makes
some observations; proposes a hypothesis as to the cause of
the failure; uses this hypothesis to make predictions about the
program’s behavior; tests those predictions using experiments;
and finally either declares victory or repeats the process with
a new or refined hypothesis.

Scriptable debugging is a powerful technique for hypothesis
testing in which programmers write scripts to perform complex
debugging tasks. For example, suppose we observe a bug
involving a cleverly implemented set data structure. We can
try to debug the problem by writing a script that maintains
a shadow data structure that implements the set more simply
(e.g., as a list). We run the buggy program, and the script tracks
the program’s calls to insert and remove, stopping execution
when the contents of the shadow data structure fail to match
those of the buggy one, helping pinpoint the underlying fault.

While we could have employed the same debugging strategy
by altering the program itself (e.g., by inserting print state-
ments and assertions), doing so would require recompilation—
and that can take considerable time for large programs (e.g.,

Firefox), thus greatly slowing the rate of hypothesis testing.
Modifying a program can also change its behavior—we have
all experienced the frustration of inserting a debugging print
statement only to make the problem disappear! Scripts also
have the benefit that they can invoke to libraries not used by
the program itself, and may be reused in other contexts.

A. Background: Prior Scriptable Debuggers

There has been considerable prior work on scriptable de-
bugging. GDB’s Python interface makes GDB’s interactive
commands—stepping, setting breakpoints, etc.—available in a
general-purpose programming language. However, this inter-
face employs a callback-oriented programming style which,
as pointed out by Marceau et al. [3], reduces composability
and reusability as well as complicates checking temporal
properties. Marceau et al. propose treating the program as an
event generator—each function call, memory reference, etc.
can be thought of as an event—and scripts are written in the
style of functional reactive programming (FRP) [4]. While
FRP-style debugging solves the problems of callback-based
programming, it has a key limitation: time always marches
forward, so we cannot ask questions about prior states. For
example, if while debugging a program we find a doubly
freed address, we cannot jump backward in time to find the
corresponding malloc. Instead we would need to rerun the
program from scratch to find that call, which may be prob-
lematic if there is any nondeterminism, e.g., if the addresses
returned by malloc differ from run to run. Alternatively, we
could prospectively gather the addresses returned by malloc
as the program runs, but then we would need to record all
such calls up to the erroneous free.

Time-travel debuggers, like UndoDB [5], and systems for
capturing entire program executions, like Amber [6], allow a
single nondeterministic execution to be examined at multiple
points in time. Unfortunately, scriptable time-travel debuggers
typically use callback-style programming, with all its prob-
lems. (Sec. VI discusses prior work in detail.)

B. EXPOSITOR: Scriptable, Time-Travel Debugging

In this paper, we present EXPOSITOR, a new scriptable
debugging system inspired by FRP-style scripting but with
the advantages of time-travel debugging. EXPOSITOR scripts
treat a program’s execution trace as a (potentially infinite)
immutable list of time-annotated program state snapshots.
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Scripts can create or combine traces using common list op-
erations: traces can be filtered, mapped, sliced, folded, and
merged to create lightweight projections of the entire program
execution. As such, EXPOSITOR is particularly well suited
for checking temporal properties of an execution, and for
writing new scripts that analyze traces computed by prior
scripts. Furthermore, since EXPOSITOR extends GDB’s Python
environment and uses the UndoDB [5] time-travel backend for
GDB, users can seamlessly switch between running scripts
and interacting directly with an execution via GDB. (Sec. II
overviews EXPOSITOR’s scripting interface.)

The key idea for making EXPOSITOR efficient is to employ
laziness in its implementation of traces—invoking the time-
travel debugger is expensive, and laziness helps minimize
the number of calls to it. EXPOSITOR represents traces as
sparse, time-indexed interval trees and fills in their contents
on demand. For example, suppose we use the breakpoints
combinator to create a trace tr containing just the program
execution’s malloc calls. If we ask for the first element of tr
before time 42 (perhaps because there is a suspicious program
output then), EXPOSITOR will direct the time-travel debugger
to time 42 and run it backward until hitting the call, capturing
the resulting state in the trace data structure—the remainder
of the trace, after time 42 and before the malloc call, is not
computed. (Sec. III discusses the implementation of traces.)

In addition to traces, EXPOSITOR scripts typically employ
various internal data structures to record information, e.g.,
the set s of arguments to malloc calls. These data structures
must also be lazy so as not to compromise trace laziness—
if we eagerly computed the set s just mentioned to answer
a membership query at time t, we would have to run the
time-travel debugger from the start up until t, considering all
malloc calls, even if only the most recent call is sufficient to
satisfy the query. Thus, EXPOSITOR provides script writers
with a novel data structure: the edit hash array mapped trie
(EditHAMT), which provides lazy construction and queries
for sets, maps, multisets, and multimaps. As far as we are
aware, the EditHAMT is the first data structure to provide
these capabilities. (Sec. IV describes the EditHAMT.)

We have used EXPOSITOR to write a number of simple
scripts, as well as to debug two more significant problems.
Sec. II describes how we used EXPOSITOR to find an ex-
ploitable buffer overflow. Sec. V explains how we used EX-
POSITOR to track down a deep, subtle bug in Firefox that
was never directly fixed, though it was papered over with a
subsequent bug fix (the fix resolved the symptom, but did not
remove the underlying fault). In the process, we developed
several reusable analyses, including a simple race detector.
(Sec. V presents our full case study.)

In summary, we believe that EXPOSITOR represents an
important step forward in improving the technology for di-
agnosing complex, hard-to-understand bugs.

II. THE DESIGN OF EXPOSITOR

We begin our presentation by describing EXPOSITOR from
the perspective of the debugging script writer. Due to lack of

1 class execution:
2 get at(t): snapshot at time t
3 breakpoints(fn): snapshot trace of breakpoints at func fn
4 syscalls(fn): snapshot trace of breakpoints at syscall fn
5 watchpoints(x, rw):
6 snapshot trace of read/write watchpoints at var x
7 all calls(): snapshot trace of all function entries
8 all returns(): snapshot trace of all function exits
9

10 cont(): manually continue the execution
11 get time(): latest time of the execution
12

13 class trace:
14 len (): called by “ len(trace)”
15 iter (): called by “ for item in trace”
16 get at(t): item at exactly time t
17 get after(t): next item after time t
18 get before(t): previous item before time t
19

20 filter(p): subtrace of items for which p returns true
21 map(f): new trace with f applied to all items
22 slice(t0, t1): subtrace from time t0 to time t1
23

24 merge(f, tr): see Fig. 2a
25 trailing merge(f, tr): see Fig. 2b
26 rev trailing merge(f, tr): see Fig. 2c
27 scan(f, acc): see Fig. 2d
28 rev scan(f, acc): see Fig. 2e
29

30 class snapshot:
31 read var(x): value of variable x in current stack frame
32 read retaddrs(): return addresses on the stack
33 . . . and other methods to access program state . . .
34

35 class item:
36 time: item’s execution time
37 value: item’s contents

Fig. 1. EXPOSITOR’s Python-based scripting API (partial). The get X and
len methods of execution and trace are eager, and the remaining methods

of those classes return lazy values.

space, we defer some details of the design, implementation,
and results to our technical report [7].

Fig. 1 lists the key classes and methods of EXPOSITOR’s
scripting interface (we elide some methods for space), which
is written as a library inside UndoDB/GDB’s Python envi-
ronment. The execution class, of which there is a single-
ton instance the execution, represents the entire execution
of the program being debugged. The trace class represents
projections of the execution at points of interest, and items
in traces are indexed by their time in the execution. The
snapshot class represents a program state at a particular point
and provides methods for accessing that state, e.g., reading
variables, reading the return addresses on the stack, and so on.
There are several methods of execution that produce traces of
snapshots. Finally, the item class represents arbitrary values
that are associated with a particular point in the execution.

Given a debugging hypothesis, we use the EXPOSITOR
interface to apply the following recipe. First, we derive one
or more traces from the execution that contain events rele-
vant to the hypothesis; such events could be function calls,
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Fig. 2. Illustration of complex trace operations.

breakpoints, system calls, etc. Next, we combine these traces
as appropriate, applying filters, maps, and so on to see if our
hypothesis holds. Finally, we query the traces to find the result
we are looking for.

A. Example: Reverse Engineering a Stack-Smashing Attack
We illustrate the use of EXPOSITOR with a concrete ex-

ample: reverse engineering a stack-smashing attack, in which
malware overflows a stack buffer in the target program to
overwrite a return address on the stack, thereby gaining control
of the program counter [8].

We develop a reusable script that can detect when the stack
has been smashed, which will help pinpoint the attack vector.
Our script maintains a shadow stack of return addresses and
uses it to check that only the top of the stack is modified
between function calls or returns; any violation of this property
indicates the stack has been smashed.

We begin by using the all calls and all returns methods on
the execution to create traces of just the snapshots at function
calls and returns, respectively:
38 calls = the execution.all calls()
39 rets = the execution.all returns()

Next, we combine these into a single trace so that we can
compare consecutive calls or returns. To do so, we use the
tr0.merge(f, tr1) method, which creates a new trace containing
the events from tr0 and tr1; any items from tr0 and tr1 that
occur at the same time are combined with function f (Fig. 2a).
Since function calls and returns can never coincide, we can
pass None for f (as it will not be called):
40 calls rets = calls.merge(None, rets)

Now, we map the read retaddrs method, which returns the
list of return addresses on the call stack, over call returns to
create a trace of shadow stacks at every call and return:
41 shadow stacks = calls rets.map(
42 lambda s: map(int, s.read retaddrs()))

We also use map to cast the return addresses to Python ints.
Then we need to check that, between function calls or

returns, the actual call stack matches the shadow stack except
for the topmost frame (one return address may be added or
removed). We use the following function:
43 def find corrupted(ss, opt shadow):
44 if opt shadow.force() is not None:
45 for x, y in zip(ss.read retaddrs(), opt shadow.force()):
46 if int(x) != y:
47 return x # l-value of return address on stack
48 return None

Here, find corrupted takes as arguments a snapshot ss and
its immediately preceding shadow stack in opt shadow; the
opt prefix indicates that there may not be prior shadow stack
(if ss is at the first function call), and we need to call the
force method on opt shadow to retrieve its value (we will
explain the significance of this in Sec. III). If there is a prior
shadow stack, we compare every return address in ss against
the shadow stack and return the first location that differs, or
None if there are no corrupted addresses. (The zip function
creates a list of pairs of the respective elements of the two
input lists, up to the length of the shorter list.)

Finally, we generate a trace of corrupted memory locations
by applying find corrupted on calls rets and shadow stacks
using the tr0.trailing merge(f, tr1) method. This method creates
a new trace by calling f to merge each item from tr0 with the
immediately preceding item from tr1, or None if there is no
preceding item (Fig. 2b). We filter None out of the result:

49 corrupted addrs = calls rets \
50 .trailing merge(find corrupted, shadow stacks) \
51 .filter(lambda x: x is not None)

The resulting trace contains exactly the locations of corrupted
return addresses at the point they are first evident in the trace.

B. Mini Case Study: Running EXPOSITOR on tinyhttpd

We used the script just developed on a version of tinyhttpd
[9] that we previously modified to include a buffer overflow
bug as an exercise for a security class in which students
develop exploits of the vulnerability.

As malware, we deployed an exploit that uses a return-to-
libc attack [10] against tinyhttpd. The attack causes tinyhttpd
to print “Now I pwn your computer” to the terminal and then
resume normal operation. Finding buffer overflows using stan-
dard techniques can be challenging, since there can be a delay
from the exploit overflowing the buffer to the payload taking
effect, during which the exploited call stack may be erased by
normal program execution. The payload may also erase traces
of itself from the stack before producing a symptom.

To use EXPOSITOR, we call the expositor launcher with
tinyhttpd as argument, which will start a GDB session with
EXPOSITOR’s library loaded, and enter the Python interactive
prompt from GDB:1

52 % expositor tinyhttpd
53 (expositor) python-interactive

1GDB contains an existing python command that is not interactive; python-
interactive is a new command that we have submitted to GDB.
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Then, we start running tinyhttpd:

54 >>>the execution.cont() # start running
55 httpd running on port 47055

When tinyhttpd launches, it prints out the port number on
which it accepts client connections. On a different terminal,
we run the exploit with this port number:

56 % ./exploit.py 47055
57 Trying port 47055
58 pwning...

At this point, tinyhttpd prints the exploit message, so we
interrupt the debugger and use EXPOSITOR to find the stack
corruption, starting from the time when we interrupted it:

59 Now I pwn your computer
60 ˆC
61 Program received signal SIGINT, Interrupt
62 >>>corrupted addrs = stack corruption()
63 # function containing Sec. II-A code
64 >>>time = the execution.get time()
65 >>> last corrupt = corrupted addrs.get before(time)

Items in a trace are indexed by time, so the get before
method call above tells EXPOSITOR to start computing
corrupted addrs from the interrupted time backwards, and find
the first function call or return when the stack corruption is
detected. We can print the results:

66 >>>print time
67 56686.8
68 >>>print last corrupt
69 Item(56449.2, address)

This shows that the interrupt occurred at time 56686.8, and
the corrupted stack was first detected at a function call or
return at time 56449.2. We can then find and print the snapshot
that corrupted the return address with:

70 >>>bad writes = the execution \
71 .watchpoints(last corrupt.value, rw=WRITE)
72 >>> last bad write = bad writes.get before(last corrupt.time)
73 >>>print last bad write
74 Item(56436.0, snapshot)

We find that the first write that corrupted the return address
occurred at time 56436.0. We can then inspect the snapshot
via last bad write.value. In this case, the backtrace of the very
first snapshot identifies the exact line of code in tinyhttpd, a
socket recv with an out-of-bounds pointer, that causes the
stack corruption. Notice that to find the bug, EXPOSITOR
only inspected from time 56686.8 to time 56436.0. Moreover,
had last corrupt not explained the bug, we would then call
corrupted addrs.get before(last corrupt.time) to find the prior
corruption event, inspecting only as much of the execution as
needed to track down the bug. Notice also that this script can
be reused to find stack corruption in any program.

This mini case study also demonstrates that, for some
debugging tasks, it can be much faster to search back-
ward in time. It takes only 1 second for corrupted addrs
.get before(time) to return; whereas if we had instead searched
forward from the beginning (e.g., simulating a debugger with-
out time-travel):

75 first corrupted = corrupted addrs.get after(0)

it takes 4 seconds for the answer to be computed. Using
EXPOSITOR, users can write scripts that search forward or
backward in time, as optimal for the task.

C. Additional API Methods

The example so far has covered much of the API in Fig. 1.
Most of the remaining methods are straightforward. In addition
to the methods discussed before, the execution class includes
a method get at to return a snapshot at a particular time, and
methods syscalls and watchpoints to return traces at system
call entries and when memory values are read or written.

The trace class contains several simple methods for working
with traces, such as len for computing the length of a
trace. In addition to map and filter, the trace class also includes
slice, which returns a subtrace between two times, letting us
avoid computation over uninteresting portions of a trace.

The trace class also contains several more complex
operations on traces. We have already seen merge and
trailing merge. The rev trailing merge method is the same as
the latter, except it merges with future items rather than past
items (Fig. 2c). The scan method performs a fold- or reduce-
like operation for every prefix of an input trace (Fig. 2d). It
is called as tr.scan(f, acc), where f is a binary function that
takes an accumulator and an item as arguments, and acc is
the initial accumulator. It returns a new trace containing the
same number of items at the same times as in the input trace
tr, where the nth output item outn is recursively computed as:

outn =

inn f outn−1 if n > 0

inn f acc if n = 0

where f is written infix as f . The rev scan method is similar,
but deriving a trace based on future items rather than past items
(Fig. 2e). rev scan computes the output item outn as follows:

outn =

inn f outn+1 if 0 ≤ n < length − 1

inn f acc if n = length − 1

We will see sample uses of these methods in section IV.

III. LAZY TRACES IN EXPOSITOR

As just discussed, EXPOSITOR allows users to treat traces as
if they were lists of snapshots. However, for many applications
it would be impractical to eagerly record and analyze full
program snapshots at every program point. Instead, EXPOS-
ITOR uses the underlying time-travel debugger, UndoDB, to
construct snapshots on demand, and to discard them when
they are no longer used (since it is expensive to keep too
many snapshots in memory at once). Thus the major challenge
is to minimize the demand for snapshots, which EXPOSITOR
accomplishes by constructing and manipulating traces lazily.

More precisely, all of the trace generators and combi-
nators, including execution.all calls, trace.map, trace.merge,
etc., return immediately without invoking UndoDB. It is only
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when final values are demanded, with execution.get at, trace
.get at, trace.get after, or trace.get before, that EXPOSITOR
queries the actual program execution, and it does so only as
much as is needed to acquire the result. For example, the
construction of corrupted addrs in Sec. II-A induces no time
travel on the underlying program—it is not until the call to
corrupted addrs.get before(time) in Sec. II-B that EXPOSITOR
uses the debugger to acquire the final result.

To achieve this design, EXPOSITOR uses a lazy, interval-
tree-like data structure to implement traces. More precisely,
a trace is a binary tree whose nodes are annotated with the
(closed) lower-bound and (open) upper-bound of the intervals
they span, and leaf nodes either contain a value or are empty.
The initial tree for a trace contains no elements (only its
definition), and EXPOSITOR materializes tree nodes as needed.

As a concrete example, the following trace constructs the
tree shown on the right, with a single lazy root node spanning
the interval [0,∞), which we draw as a dotted box and arrow.

76 foo = the execution.breakpoints(”foo”)
0 ∞

Now suppose we call foo.get before(100). EXPOSITOR sees
that the query is looking for the last call to foo before time
100, so it will ask UndoDB to jump to time 100 and then run
backward until hitting such a call. Let us suppose the call is at
time 50, and the next instruction after that call is at time 50.1.
Then EXPOSITOR will expand the root node shown above to
the following tree:

0 ∞

0 ∞

50.1 ∞

100 ∞50.1 100

0 50.1

foo 50.1500 50

Here the trace has been subdivided into four intervals: The
intervals [0, 50) and [100,∞) are lazy nodes with no further
information, as EXPOSITOR did not look at those portions of
the execution. The interval [50, 50.1) contains the discovered
call, and the interval [50.1, 100) is fully resolved and contains
no calls to foo. Notice that if we ask the same query again,
EXPOSITOR can traverse the interval tree above to respond
without needing to query UndoDB.

Likewise, calling get at(t) or get after(t) either returns im-
mediately (if the result has already been computed) or causes
UndoDB to jump to time t (and, for get after(t), to then execute
forward). These methods may return None, e.g., if a call to
foo did not occur before/after/at time t.

In the scripts we have written, we find that if we request 30-
50% of items in a trace, computing traces lazily takes less time
than computing eagerly. The performance varies depending
on the query pattern, e.g., get before is more expensive than
get at or get after, since the former requires UndoDB to
search backward, as well as the kind of computations done,
e.g., an expensive map helper function will overshadow the
cost of laziness (see our technical report for details [7]).

A. Lazy Trace Operations

We implement filter, map, and slice lazily on top of the
interval tree data structure. For a call tr1 = tr0.map(f), we
initially construct an empty interval tree, and when values are
demanded in tr1 (by get X calls), EXPOSITOR conceptually
calls tr0.get X, applies f to the result, and caches the result
for future reuse. Calls to tr0.filter(p) are handled similarly,
constructing a lazy tree that, when demanded, repeatedly gets
values from tr0 until p is satisfied. Note that for efficiency,
EXPOSITOR’s implementation actually does not directly call
get X on the underlying traces, but instead manipulates their
tree data structures directly.

The implementation of tr0.merge(f, tr1) also calls get X
on tr1 also as required. For a call tr.slice(t0, t1) EXPOSITOR
creates an interval tree that delegates get X calls, asking for
items from time t0 to time t1 to tr, and returns None for items
that fall outside that interval.

For the last four operations, [rev ]trailing merge and
[rev ]scan, EXPOSITOR employs additional laziness in the
helper function argument f. To illustrate, consider a call to
tr.scan(f, acc). Here, EXPOSITOR passes the accumulator to f
wrapped in an instance of class lazy, defined as follows:

77 class lazy:
78 force(): return the actual value
79 is forced(): return whether force has been called

The force method, when first called, will compute the actual
value and cache it; the cached value is returned in subsequent
calls. Thus, f can force the accumulator as needed, and if it is
not forced, it will not be computed.

To see the benefit, consider the following example, which
uses scan to derive a new trace in which each item is a count of
the number of consecutive calls to foo with nonzero arguments,
resetting the count when foo is called with zero:

80 foo = execution.breakpoints(”foo”) # void foo(int x)
81 def count nonzero foo(lazy acc, snapshot):
82 if snapshot.read var(”x”) != 0:
83 return lazy acc.force() + 1
84 else:
85 return 0
86 nonzero foo = foo.scan(count nonzero foo, 0)

Notice that if lazy acc were not lazy, EXPOSITOR would have
to compute its value before calling count nonzero foo. By the
definition of scan (Fig. 2d), this means that it must recursively
call count nonzero foo to compute all prior output items
before computing the current item, even if it is unnecessary
to do so, e.g., if we had called nonzero foo.get before(t), and
the call to foo just before time t had argument x=0. Thus, a
lazy accumulator avoids this unnecessary work. EXPOSITOR
uses a lazy accumulator in rev scan for the same reason.

Likewise, observe that in tr0.trailing merge(f, tr1), for a
particular item in tr0 the function f may not need to look in
tr1 to determine its result; thus, EXPOSITOR wraps the tr1
argument to f in an instance of class lazy. The implementation
of rev trailing merge similarly passes lazy items from tr1 to
f. Note that there is no such laziness in the regular merge
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operation. The reason is that in tr0.merge(f, tr1), the items from
tr0 and tr1 that are combined with f occur at the same time.
Thus, making f’s arguments lazy would not reduce demands
on the underlying time-travel debugger.

B. Tree Scan

Finally, EXPOSITOR provides another list combinator, tree-
scan, which is a lazier variant of scan that is sometimes more
efficient. Tree scan is invoked with tr.tscan(f), where f must
be an associative function that is lazy and optional in its left
argument and lazy in its right argument. The tscan method
generates an output trace of the same length as the input trace,
where the nth output outn is defined as:

outn = in0 f in1 f · · · f inn

Notice that there is no accumulator, and EXPOSITOR can apply
f in any order, since it is associative. When a value at time t
is demanded from the output trace, EXPOSITOR first demands
the item inn at that time in the input trace (if no such item
exists, then there is no item at that time in the output trace).
Then EXPOSITOR walks down the interval tree structure of the
input trace, calling f (only if demanded) on each internal tree
node’s children to compute outn. Since the interval tree for the
input trace is computed lazily, f may sometimes be called with
None as a left argument, for the case when f forces an interval
that turns out to contain no values; thus for correctness, we
also require that f treats None as a left identity. (The right
argument corresponds to inn and so will never be None.)

Because both arguments of f are lazy, EXPOSITOR avoids
computing either argument unnecessarily. The is forced
method of the lazy class is particularly useful for tscan, as it
allows us to determine if either argument has been forced and
evaluate it first. For example, we can find if a trace contains
a true value as follows:

87 def has true(lazyleft, lazyright):
88 return lazyleft.is forced() and lazyleft.force() \
89 or lazyright.is forced() and lazyright.force() \
90 or lazyleft.force() or lazyright.force()
91 has true trace = some trace.tscan(has true)
92 last has true = has true trace.get before(”inf”)

The best case for this example occurs if either lazyleft or
lazyright have been forced by a prior query, in which case
either the first clause (line 88) or second clause (line 89) will
be true and the unforced argument need not be computed due
to short-circuiting.

EXPOSITOR’s rev tscan derives a new trace based on future
items instead of past items, computing output item outn as:

outn = inn f inn+1 f · · · f in length−1

Here, the right argument to f is optional, rather than the left.

IV. THE EDIT HASH ARRAY MAPPED TRIE

Many of the EXPOSITOR scripts we have written use sets
or maps to record information about the program execution.
Unfortunately, a typical eager implementation of them could
demand all items in the traces, defeating the intention of

98 class edithamt:
99 find(k): Return the value for k or None if not found

100 find multi(k): Return an iterator of all values bound to k
101

102 # Static factory methods to create new EditHAMTs:
103 addkeyvalue(lazy eh, k, v):
104 Add binding of k to v to lazy eh
105 remove(lazy eh, k):
106 Remove all bindings for k from lazy eh
107 concat(lazy eh1, lazy eh2):
108 Concatenate lazy eh2 edit history to lazy eh1

Fig. 3. The EditHAMT API (partial).

EXPOSITOR’s lazy trace data structure. For example, consider
the following code, which uses Python’s standard (non-lazy)
set class to collect all arguments in calls to a function foo:

93 foos = the execution.breakpoints(”foo”) # void foo(int arg)
94 def collect foo args(lazy acc, snap):
95 return lazy acc.force().union( \
96 set([ int(snap.read var(”arg”)) ]))
97 foo args = foos.scan(collect foo args, set())

Notice that we must force lazy acc to call the union method
to create a deep copy of the updated set (lines 95–96). Unfor-
tunately, forcing lazy acc causes the immediately preceding
set to be computed by recursively calling collect foo args. As
a result, we must compute all preceding sets in the trace even
if a particular query could be answered without doing so.

To address these problems, we developed the edit hash
array mapped trie (EditHAMT), a new set, map, multiset, and
multimap data structure that supports lazy construction and
queries, to complement the trace data structure.

A. Using the EditHAMT

From the user’s perspective, the EditHAMT is an im-
mutable data structure that maintains the entire history of
edit operations for each EditHAMT. Fig. 3 shows a por-
tion of the API. The edithamt class includes find(k) and
find multi(k) methods to look up the most recent value or
all values mapped to key k, respectively. (We omit set/mul-
tiset operations and some multimap operations for brevity).
EditHAMT operations are implemented as static factory meth-
ods: calling edithamt.addkeyvalue(lazy eh, k, v) and edithamt
.remove(lazy eh, k) makes new EditHAMTs by adding or
removing a binding from their EditHAMT arguments; we can
pass None into lazy eh for an empty EditHAMT. The lazy eh
argument to both methods is lazy so that we need not force it
until a call to find or find multi demands a result.

The last static factory method, edithamt.concat(lazy eh1,
lazy eh2), concatenates the edit histories of its arguments.

For example:

109 eh rem = edithamt.remove(None, ”x”)
110 eh add = edithamt.addkeyvalue(None, ”x”, 42)
111 eh = edithamt.concat(eh add, eh rem)

Here eh is the empty EditHAMT, since it contains the ad-
ditions in eh add followed by the removals in eh rem. A
common EXPOSITOR script pattern is to map a trace to a
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sequence of EditHAMT additions and removals, and then use
edithamt.concat with scan or tscan to concatenate those edits.

As an example, we present the race detector used in our
Firefox case study (Section V). The detector compares each
memory access against prior accesses to the same location
from any thread. Since UndoDB serializes thread schedules,
each read need only be compared against the immediately
preceding write, and each write against all preceding reads
up to and including the immediately preceding write.

To start, we define a function that uses the EditHAMT as a
multimap to track the access history of a given variable v:

112 def access events(v):
113 reads = the execution.watchpoints(v, rw=READ) \
114 .map(lambda s: edithamt.addkeyvalue( \
115 None, v, (”read”, s.get thread id())))
116 writes = the execution.watchpoints(v, rw=WRITE) \
117 .map(lambda s: edithamt.addkeyvalue( \
118 edithamt.remove(None, v), \
119 v, (”write”, s.get thread id())
120 return reads.merge(None, writes)

In access events, we create the trace reads by finding all
reads to v using the watchpoints method (line 113), and then
mapping each snapshot to a singleton EditHAMT that binds v
to a tuple of ”read” and the running thread ID (lines 114–115).
Similarly, we create the trace writes for writes to v (line 116),
but instead map each write snapshot to an EditHAMT that first
removes all prior bindings for v (line 118), then binds v to a
tuple of ”write” and the thread ID (lines 117–119). Finally, we
merge reads and writes, and return the result (line 120).

We are not done yet, since the EditHAMTs in the trace
returned by access events contain only edit operations cor-
responding to individual accesses to v. We can get a trace
of EditHAMTs that records all accesses to v from the begin-
ning of the execution by using scan with edithamt.concat to
concatenate the individual EditHAMTs. For example, we can
record the access history of var1 as follows:

121 var1 history = access events(”var1”).scan(edithamt.concat)

We can also track multiple variables by calling
access events on each variable, merging the traces, then
concatenating the merged trace, e.g., to track var1 and var2:

122 access history = \
123 access events(”var1”).merge(access events(”var2”)) \
124 .scan(edithamt.concat)

Since trace methods are lazy, this code completes immediately;
the EditHAMT operations will only be applied, and the
underlying traces forced, when we request a particular access,
e.g., at the end of the execution (time ”inf”):

125 last = access history.get before(”inf”)

To see laziness in action, consider applying the above
analysis to an execution depicted in Fig. 4, which shows two
threads at the top and the corresponding EditHAMT operations
at the bottom. Now suppose we print the latest access to var1
at time t4 using the find method:

126 >>>print last.find(”var1”)
127 (”read”, 2)

Read
var1

t0

thread 1

Read
var2

t1

thread 2

Write
var1

Add
var1
read,1

access_events("var1").merge(access_events("var2"))

Remove
var1

Add
var1
write,1

Write
var2

Read
var1

Add
var2
read,2

Remove
var2

Add
var2
write,1

Add
var1
read,2

t2 t3 t4

Fig. 4. Example execution with two threads accessing var1 (gray) and var2,
and the corresponding EditHAMT operations returned by access events.

Because ”var1” was just added at time t4, answering this
query will only force the EditHAMT and query the time-travel
debugger at time t4, and not before.

As another example, suppose we want to find all accesses
to var1 from the last access backwards using find multi:

128 >>>for mem access in last.find multi(”var1”):
129 print mem access
130 (”read”, 2)
131 (”write”, 1)

Here since all ”var1” bindings added prior to time t2 were
removed at time t2, the results are computed without forcing
any EditHAMTs or querying the debugger before time t2.

B. Implementation

The EditHAMT is inspired by the hash array mapped trie
(HAMT) [11]. Like the HAMT, the EditHAMT is a hybrid
data structure combining the fast lookup of a hash table and the
memory efficiency of a trie. Just as a hash table uses an array
of buckets to map keys to values, the HAMT uses an array
mapped trie (AMT)—a trie that maps fixed-width integer keys
to values—for the same purpose; hash collisions are resolved
using nested HAMTs with different hash functions.

We developed the EditHAMT by making two changes to
the traditional HAMT. First, we replaced the AMT with the
LazyAMT, which supports lazy, rather than eager, updates.
Second, we resolve hash collisions, as well as support remove
operations, using EditLists, which are lazy linked-lists of nodes
tallying edit operations on the EditHAMT; the tails are lazily
retrieved from the prior EditHAMT.

By representing a set as a list of edit operations rather than
by its elements, the EditList allows us to modify a set by
simply appending an add or remove operation to the list. This
eliminates the need to know the rest of the set or to force the
source EditList. (The same benefit holds for maps, multisets
and multimaps.) However, a query on an EditList is slow since
it takes O(n) time, where n is the number of edit operations.
Instead, we build multiple EditLists, each containing only edits
for values with the same hash, and use the LazyAMT to map
hashes to EditLists, reducing the cost of lookups to O(1) time
(assuming no hash collisions).

Furthermore, it is more memory efficient to make an up-
dated copy of a LazyAMT in the EditHAMT, since only nodes
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along the path to the updated binding need to be copied, than
it is to make a copy of the bucket array in a hash table,
which can be much larger. This makes it viable to store every
intermediate EditHAMT as it is created in a trace, as each
EditHAMT only requires an additional O(1) memory over
the prior EditHAMT. In our current implementation, a trace
of EditHAMTs is cheaper than a trace of Python sets (which
requires deep copying) if, on average, each EditHAMT or set
in the trace has more than eight elements.

Map lookups in EditHAMTs are similar to set membership
queries and take O(1) time as well (assuming no hash colli-
sions). Multiset and multimap lookups also take O(1) time per
added element or binding on average; however, if we remove
individual elements or bindings, then lookups will take O(n)
time where n is the number of remove operations.

V. FIREFOX CASE STUDY: DELAYED DEALLOCATION BUG

To put EXPOSITOR to the test, we used it to track down
a subtle bug in Firefox that caused it to use more memory
than expected [12]. The bug report contains a test page that,
when scrolled, creates a large number of temporary JavaScript
objects that should be immediately garbage collected. How-
ever, in a version of Firefox that exhibits the bug (revision
c5e3c81d35ba), the memory usage increases by 70MB (as
reported by top), and only decreases 20 seconds after a second
scroll. As it turns out, this bug has never been directly fixed—
the actual cause is a data race, but the official fix instead papers
over the problem by adding another GC trigger.

Our initial hypothesis for this bug is that there is a problem
in the JavaScript garbage collector (GC). To test this hypothe-
sis, we first run Firefox under EXPOSITOR, load the test page,
and scroll it twice, temporarily interrupting the execution to
call the execution.get time() just before each scroll, tscroll1
and tscroll2 , and after the memory usage decreases, tend . Then,
we create several traces to help us understand the GC and track
down the bug, as summarized in Fig. 5.

We observe the GC behavior using a trace of the calls
to (gc call) and returns from (gc return) function js GC
(Fig. 5a).2 Also, we find out when memory is allocated or
released to the operating system using mmap2 and munmap
traces of the same-named system calls (Fig. 5b). Printing these
traces reveals some oddly inconsistent behavior: the GC is
called only once after tscroll1 , but five times after tscroll2 ; and
memory is allocated after tscroll1 and deallocated just before
tend . To make sense of these inconsistencies, we inspect the
call stack of each snapshots in gc call and discover that the
first js GC call immediately after a scroll is triggered by a
scroll event, but subsequent calls are triggered by a timer.

We now suspect that the first scroll somehow failed to trig-
ger the creation of subsequent GC timers. To understand how
these timers are created, we write a function called set tracing
that creates a trace for analyzing set-like behavior, using
EditHAMTs to track when values are inserted or removed,

2The index=-1 optional argument to execution.breakpoints indicates that the
breakpoint should be set at the end of the function.

and apply set tracing to create timer trace by treating timer
creation as set insertion, and timer triggering as set removal
(Fig. 5c). This trace reveals that each js GC call creates a
GC timer (between gc call and gc return snapshots), except
the js GC call after the first scroll (and the last js GC call
because GC is complete).

To find out why the first js GC call does not create a GC
timer, we inspect call stacks again and learn that a GC timer
is only created when the variable gcChunksWaitingToExpire is
nonzero, and yet it is zero when the first js GC returns (at
the first gc return snapshot). Following this clue, we create
a watchpoint trace on gcChunksWaitingToExpire and discover
that it remained zero through the first js GC call and becomes
nonzero only after the first js GC returns. It stayed nonzero
through the second scroll and second js GC call, causing the
first GC timer to be created after that (Fig. 5d).

We posit that, for the GC to behave correctly,
gcChunksWaitingToExpire should become nonzero at some
point during the first js GC call. Inspecting call stacks again,
we find that gcChunksWaitingToExpire is changed in a separate
helper thread, and that, while the GC owns a mutex lock,
it is not used consistently around gcChunksWaitingToExpire.
This leads us to suspect that there is a data race. Thus, we
develop a simple race detection script, one lock, that works
by comparing each access to a chosen variable against prior
accesses from different threads (Section IV-A explains how
we track prior accesses), and checking if a particular lock was
acquired or released prior to those accesses. For each pair of
accesses, if at least one access is a write, and the lock was not
held in one or both accesses, then there is a race, which we
indicate as an item containing the snapshot of the prior access.
We apply this race detector to gcChunksWaitingToExpire and
confirm our suspicion that, after tscroll1 , there is a write that
races with a prior read during the first js GC call when the
timer should have been created (Fig. 5e).

To give a sense of EXPOSITOR’s performance, it takes 2m6s
to run the test page to tscroll2 while printing the gc call
trace, with 383MB maximum resident memory (including
GDB, since EXPOSITOR extends GDB’s Python environment).
The equivalent task in GDB/UndoDB without EXPOSITOR
takes 2m19s and uses 351MB of memory (some difference is
inevitable as the test requires user input, and Firefox has many
sources of nondeterminism). As another data point, finding the
race after tscroll1 takes 37s and another 5.4MB of memory.

The two analyses we developed, set tracing and one lock,
take only 10 and 40 lines of code to implement, respectively,
and both can be reused in other debugging contexts.

VI. RELATED WORK

EXPOSITOR provides scripting for time-travel debuggers,
with the central idea that a target program’s execution can
be manipulated (i.e., queried and computed over) as a first-
class object. Prior work on time-travel debugging has largely
provided low-level access to the underlying execution without
consideration for scripting. Of the prior work on scriptable
debugging, EXPOSITOR is most similar to work that views the
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(a) R: gc_return = the_execution.breakpoints("js_GC", index=-1)

(b) U: munmap = the_execution.syscalls("munmap")

C R

70⨉M M

C R C R C R C R

70⨉U U

C R

timer_trace = set_tracing(A=timer-create, R=timer-fire)
A R A R A R A R

chunkswaiting_trace = the_execution.watchpoints(gcChunksWaitingToExpire-variable).map(read-gcChunksWaitingToExpire)
70⨉1 70 71⨉0 70

chunkswaiting_hb = one_lock(R=gcChunksWaitingToExpire-read, W=gcChunksWaitingToExpire-write, locks, unlocks)
R W

C: gc_call = the_execution.breakpoints("js_GC")

M: mmap2 = the_execution.syscalls("mmap2")

(c)

(d)

(e)

tscroll1 tscroll2 tend

Fig. 5. Timeline of items in traces used to debug Firefox.

program as an event generator—with events seeded from func-
tion calls, memory reads/writes, etc.—and debugging scripts
as database-style queries over event streams or as dataflow-
oriented stream transformers. None of this scripting work
includes the notion of time travel.

A. Time-Travel Debuggers

Broadly speaking, there are two classes of time-travel
debuggers. Omniscient debuggers work by logging the state
of the program being debugged after every instruction, and
then reconstructing the state from the log on demand. Some
examples of omniscient debuggers include ODB [13], Am-
ber (also known as Chronicle) [6], Tralfamadore [14], and
TOD [15]. In contrast, replay debuggers work by logging
the results of system calls the program makes (as well as
other sources of nondeterminism) and making intermediate
checkpoints, so that the debugger can reconstruct a requested
program state by starting at a checkpoint and replaying the
program with the logged system calls. Several recent de-
buggers of this style include URDB [16] and UndoDB [5]
(which we used in our prototype) for user-level programs,
and TTVM [17] and VMware ReTrace [18] for entire virtual
machines. EXPOSITOR could target either style of debugger in
principle, but replay debugging scales much better (e.g., about
1.7× recording overhead for UndoDB vs. 300× for Amber).
Engblom [19] provides a more comprehensive survey on time-
travel debugging techniques and implementations.

The above work focuses on implementing time travel effi-
ciently; most systems provide very simple APIs for accessing
the underlying execution, and do not consider how time travel
might best be exploited by debugging scripts.

Similarly, GDB’s Python environment simply allows a
Python program to execute GDB (and UndoDB) commands
in a callback-oriented, imperative style. This is quite tedious,
e.g., just counting the number of calls to a particular function
takes 16 lines of code and cannot be composed with other
scripts (e.g., to refine the count to calls that satisfy predi-
cate p). EXPOSITOR’s notion of traces is simpler and more
composable: function call counting can be done in one line
by computing the length of a breakpoint trace; to refine the
count, we simply filter the trace with p before counting.

Tralfamadore [20] considers generalizing standard debug-
ging commands to entire executions, but does not provide a
way to customize these commands with scripts.

Whyline is a kind of omniscient debugger with which users
can ask “why did” and “why didn’t” questions about the
control- and data-flow in the execution, e.g., “why did this
Button’s visible = true” or “why didn’t Window appear” [21].
Whyline records execution events (adding 1.7× to 8.5× over-
head), and when debugging begins, it uses program slicing [22]
to generate questions and the corresponding answers (impos-
ing up to a 20× further slowdown). Whyline is good at what
it does, but its lack of scriptability limits its reach; it is hard to
see how we might have used it to debug the Firefox memory
leak, for example. In concept, Whyline can be implemented
on top of EXPOSITOR, but limitations of GDB and UndoDB
(in particular, the high cost of software watchpoints, and
the inability to track data-flow through registers) makes it
prohibitively expensive to track fine-grained data-flow in an
execution. We plan to overcome this limitation in future work,
e.g., using EDDI [23] to implement fast software watchpoints.

B. High-Level (Non-callback Oriented) Debugging Scripts

EXPOSITOR’s design was inspired by MzTake [3], a
Scheme-based, interactive, scriptable debugger for Java based
on functional reactive programming. In MzTake, the program
being debugged is treated as a source of event streams consist-
ing of events such as function calls or value changes. Event
streams can be manipulated with combinators that filter, map,
fold, or merge events to derive new event streams. As such, an
event stream in MzTake is like a trace in EXPOSITOR. Compu-
tations in MzTake are implicitly over the most recent value of a
stream and are evaluated eagerly as the target program runs. To
illustrate, consider our example of maintaining a shadow stack
from Section II-A. In MzTake, when the target program calls
a function, a new snapshot event s becomes available on the
calls stream. The calls rets stream’s most recent event is the
most recent of calls and rets, so MzTake updates it to s. Since
shadow stacks is derived from calls rets, MzTake updates its
most recent event by executing map(int, s.read retaddrs())).

This eager updating of event streams, as the program
executes, can be less efficient than using EXPOSITOR. In par-
ticular, EXPOSITOR evaluates traces lazily so that computation
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can be narrowed to a few slices of time. In Section II-A,
we find the latest smashed stack address without having to
maintain the shadow stack for the entire program execution,
as would be required for MzTake. Also, EXPOSITOR traces
are time indexed, but MzTake event streams are not: there
is no analogue to tr.get at(i) or tr.slice(t0, t1) in MzTake. We
find time indexing to be very useful for interactivity: we can
run scripts to identify an interesting moment in the execution,
then explore the execution before and after that time. Similarly,
we can learn something useful from the end of the execution
(e.g., the address of a memory address that is double-freed),
and then use it in a script on an earlier part of the execution
(e.g., looking for where that address was first freed). MzTake
requires a rerun of the program, which can be a problem if
nondeterminism affects the relevant computation.

Dalek [24] and Event Based Behavioral Abstraction
(EBBA) [25] bear some resemblance to MzTake and suffer
the same drawbacks, but are much lower-level, e.g., the
programmer is responsible for manually managing the firing
and suppression of events. Coca [26] is a Prolog-based query
language that allows users to write predicates over program
states; program execution is driven by Prolog backtracking,
e.g., to find the next state to match the predicate. Coca provides
a retrace primitive that restarts the entire execution to match
against new predicates. This is not true time travel but re-
execution, and thus suffers the same problems as MzTake.

PTQL [27], PQL [28], and UFO [29] are declarative lan-
guages for querying program executions, as a debugging aid.
Queries are implemented by instrumenting the program to
gather the relevant data. In principle, these languages are
subsumed by EXPOSITOR, as it is straightforward to compile
queries to traces. Running queries in EXPOSITOR would
allow programmers to combine results from multiple queries,
execute queries lazily, and avoid having to recompile (and po-
tentially perturb the execution of) the program for each query.
On the other hand, it remains to be seen whether EXPOSITOR
traces would be as efficient as using instrumentation.

VII. CONCLUSION

We have introduced EXPOSITOR, a novel scriptable, time-
travel debugging system. EXPOSITOR allows programmers to
project the program execution onto traces, which support a
range of powerful combinators including map, filter, merge,
and scan. Working with traces gives the programmer a global
view of the program, and provides a convenient way to corre-
late and understand events across the execution timeline. For
efficiency, EXPOSITOR traces are implemented using a lazy,
interval-tree-like data structure. EXPOSITOR materializes the
tree nodes on demand, ultimately calling UndoDB to retrieve
appropriate snapshots of the program execution. EXPOSITOR
also includes the EditHAMT, which lets script writers create
lazy sets, maps, multisets, and multimaps that integrate with
traces without compromising their laziness. We used EXPOS-
ITOR to find a buffer overflow in a small program, and to
diagnose a very complex, subtle bug in Firefox. We believe

that EXPOSITOR is a useful tool for helping programmers
understand complex bugs in large software systems.
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