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Abstract—Performance bugs are programming errors that cre-
ate significant performance degradation. While developers often
use automated oracles for detecting functional bugs, detecting per-
formance bugs usually requires time-consuming, manual analysis
of execution profiles. The human effort for performance analysis
limits the number of performance tests analyzed and enables
performance bugs to easily escape to production. Unfortunately,
while profilers can successfully localize slow executing code,
profilers cannot be effectively used as automated oracles.

This paper presents TODDLER, a novel automated oracle
for performance bugs, which enables testing for performance
bugs to use the well established and automated process of
testing for functional bugs. TODDLER reports code loops whose
computation has repetitive and partially similar memory-access
patterns across loop iterations. Such repetitive work is likely
unnecessary and can be done faster. We implement TODDLER

for Java and evaluate it on 9 popular Java codebases. Our
experiments with 11 previously known, real-world performance
bugs show that TODDLER finds these bugs with a higher accuracy
than the standard Java profiler. Using TODDLER, we also found
42 new bugs in six Java projects: Ant, Google Core Libraries,
JUnit, Apache Collections, JDK, and JFreeChart. Based on our
bug reports, developers so far fixed 10 bugs and confirmed 6
more as real bugs.

I. INTRODUCTION

Software performance is critical for how end-users perceive

the quality of the deployed software. Performance bugs1 are

programming errors that create significant performance degra-

dation [1]. Even when software is mature and written by expert

programmers, performance bugs have been known to cause

serious and highly publicized incidents [2]–[5]. The state-of-

the-art techniques for detecting and testing for performance

bugs are still preliminary. As a result, performance bugs

easily escape to production runs, hurt user experience, degrade

system throughput, and waste computational resources [6], [7].

Because performance bugs are difficult to find, they affect even

well tested software such as Windows 7’s Windows Explorer,

which had several high-impact performance bugs that escaped

detection for long periods of time, despite their severe effects

on user experience [8].

A key reason why performance bugs escape so easily to

production is that testing for performance bugs cannot use

the well established process of testing for functional bugs

1“Performance bug” is a well accepted term in some communities, e.g.,
Mozilla Bugzilla defines it as “A bug that affects speed or responsiveness” [1].
However, others prefer “performance problem” or “performance issue”, be-
cause these problems differ from functional bugs. We take no position on this
and use “performance bug” and “performance problem” interchangeably.

with automated oracles. An automated oracle detects if a test

triggers a (functional or performance) bug, in which case the

developer needs to inspect the test. To test for functional bugs,

developers usually follow three steps: (1) write as many and

as diverse tests as allowed by the testing budget, (2) run these

tests and use automated oracles (e.g., crashes or assertions) to

find which tests fail, and (3) inspect only the failing tests. To

test for performance bugs, developers typically write a small

number of tests, use a profiler to localize code regions that

take a lot of time to execute, and then reason whether these

regions can be optimized and if the effort spent for optimizing

(time, added code complexity) is worth the potential speed gain

(which may be difficult to ascertain before actually performing

the optimization). In contrast to functional bugs, the lack of

reliable automated oracles for performance bugs means that

developers cannot easily find which tests fail, as in step (2).

As a result, because developers need to inspect all tests/profiles

in step (3), they can use only a small number of performance

tests in step (1). In sum, developers follow the current process

of testing for performance bugs not because it has advantages,

but because developers have no reliable alternatives.

An automated oracle for performance bugs would enable

developers to test for performance bugs using the well estab-

lished process of testing for functional bugs. Unfortunately,

profilers cannot be used as effective oracles for three reasons.

First, profilers give a report for each test, thus running many

tests results in many reports, not just a few failing tests as

for a typical functional oracle. Second, profilers may miss a

performance bug even when it is executed: if the buggy code is

not slow compared to the rest of that execution, it is not ranked

high by the profiler and is likely ignored by the developer.

Many performance bugs manifest by significantly degrading

performance only for particular input conditions [8]–[11], and

the profiled inputs cannot cover all possible conditions. Third,

profilers report what takes time but not what wastes time,

i.e., they do not distinguish truly necessary (albeit expensive)

work from the likely unnecessary computation. In other words,

profilers are highly useful when the developer wants to localize

a slow code region but are not effective when the developer

needs to decide if a test likely exposes a performance bug and

thus needs further inspection.

This paper presents TODDLER, a novel oracle for perfor-

mance bugs. In brief, TODDLER reports tests that execute

loops whose computation is repetitive and very similar across

iterations. The intuition is that such loops are likely perfor-
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mance bugs that waste time: because the work is repetitive

and similar, it could be done faster. We designed TODDLER

based on two observations about performance bugs. First,

many severe performance bugs (over 50% in the study in

Section II) are contained by nested loops: if an inefficient

code region is executed outside of a nested loop, then the

inefficiency itself needs to be very severe (e.g., slow I/O) for

the code region to have a real impact on the overall program

performance. Second, wasted computation is often reflected by

repetitive and partially similar memory accesses across loop

iterations: if a group of instructions repeatedly accesses similar

memory values, then those instructions probably compute

similar results.

We implemented a full-blown TODDLER tool for Java and

a simple prototype for C/C++. Our experiments with 11

previously known, real-world performance bugs from 9 Java

projects show that TODDLER is able to find all these bugs. Our

C/C++ prototype also finds 6 previously known bugs in GCC,

Mozilla, and MySQL. Moreover, using TODDLER helped us

identify 42 new real-world bugs in six popular Java projects:

Ant, Google Core Libraries, JUnit, Apache Collections, JDK,

and JFreeChart. Based on our reports, developers so far have

fixed 10 bugs and confirmed 6 more as real bugs, and the

Apache Collections developers even invited the first paper

author to become a project committer. Our bug reports are

linked from http://mir.cs.illinois.edu/toddler.

II. STUDY OF PERFORMANCE BUGS

We study over 100 performance bugs from open-source

projects to identify how these bugs depend on loops. We

study both Java and C/C++ projects to obtain more generality

of our findings. These bugs were collected independently of

TODDLER in a recent study on performance bugs [9], but their

relationship to loops was not analyzed in detail.

Our study shows that about 90% of performance bugs

involve loops, and more than 50% of performance bugs involve

at least two levels of loops. The bugs that involve nested loops

can be categorized along two dimensions:

• Is the performance problem in the inner or the outer loop?

• Is the performance problem caused by redundant com-

putation or inefficient computation? We define redundant

computation as the same computation being unnecessarily

repeated on the same set of data with the same result.

We next describe the four types of real-world performance

bugs categorized along the above two dimensions, and then

discuss how this understanding of real-world bugs can guide

our bug-detection design. For space reasons, we will give code

examples only for two categories (but covering both inner and

outer loops, as well as redundant and inefficient computation).

A. Categories of Severe Performance Bugs

Category 1 (Redundancy in Outer Loops): Redundant

computation is conducted across iterations of an outer loop.

This redundant computation involves an expensive inner loop,

which makes the performance problem severe. Problems of

1 // Simplified from the XYPlot class in JFreeChart
2 public void render(...) {
3 for (int item = 0; item < itemCount; item++) { // Outer Loop
4 renderer.drawItem(...item...); // Calls drawVerticalItem
5 }
6 }
7 // Simplified from the CandlestickRenderer class in JFreeChart
8 public void drawVerticalItem(...) {
9 int maxVolume = 1;
10 for (int i = 0; i < maxCount; i++) { // Inner Loop
11 int thisVolume = highLowData.getVolumeValue(series, i).intValue();
12 if (thisVolume > maxVolume) {
13 maxVolume = thisVolume;
14 }
15 }
16 ... = maxVolume;
17 }

Fig. 1. A JFreeChart bug with a redundancy in the outer loop

this type are usually difficult for compilers to optimize, be-

cause they involve nested loops and usually many functions.

They are usually fixed by storing and reusing results from

previous loop iterations.

Figure 1 demonstrates such a bug from JFreeChart, a popu-

lar Java framework for drawing charts. This bug is particularly

severe, because it causes the chart display to freeze. The outer

loop iterates over all the items in a data set (line 3) and for

each item calls the method drawItem, which in turns calls

the method drawVerticalItem. The inner loop (line 10) in

drawVerticalItem computes the maximum volume (line 12)

of all the items in the data set. The repeated computation

of maximum is redundant, because the volumes of the items

do not change between calls. Thus, the inner loop can be

performed only once, not in every iteration of the outer loop.

Indeed, to fix this bug, the developer changed the code to

cache and reuse the maximum volume.

Category 2 (Redundancy in Inner Loops): Redundant

computation is conducted across iterations of an inner loop.

This computation waste is amplified by outer loops that

dynamically call the inner loop many times. Performance

problems of this type are difficult for compilers to optimize

when the redundant computation involves function calls. They

are usually fixed by hoisting computation out of the loop.

Category 3 (Inefficient Outer Loops): The program has

an expensive but necessary inner loop. Unfortunately, this loop

is inefficiently used by an outer loop, which leads to severe

performance problems. Problems of this type cannot be opti-

mized by compilers, because they require deep understanding

of code. They are usually fixed by changing outer loops so

that the inner loop will execute less frequently.

Category 4 (Inefficient Inner Loops): The inner loop

conducts an inefficient, but not redundant, computation. This

inefficiency is amplified by an outer loop that uses each

iteration to execute the inner loop on a slightly different data

set. Again, problems of this type cannot be optimized by

compilers, because they require deep understanding of code.

Their patches need to find a more efficient or incremental

algorithm to replace the inner loop, which often can be

achieved with a more appropriate data structure for the data

set under operation.
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1 // SetDecorator class in Google Core Libraries contained this method call
2 set.removeAll(arrayList);
3 // Simplified from the AbstractSet class in the standard Java library
4 public boolean removeAll(Collection〈?〉 c) {
5 if (size() > c.size()) {
6 for (Iterator〈?〉 i = c.iterator(); i.hasNext(); )
7 remove(i.next());
8 } else {
9 for (Iterator〈?〉 i = iterator(); i.hasNext(); ) { // Outer Loop

10 if (c.contains(i.next())) {
11 i.remove();
12 }
13 }
14 }
15 }
16 // Simplified from the ArrayList class in the standard Java library
17 public boolean contains(Object o) {
18 for (int i = 0; i < size; i++) { // Inner Loop
19 if (o.equals(elementData[i]))
20 return true;
21 }
22 return false;
23 }

Fig. 2. A Google Core Libraries bug with an inefficient inner loop. This
was a previously unknown bug found by TODDLER.

Figure 2 demonstrates an example from Google Core Li-

braries (GCL). This is a previously unknown bug found by

TODDLER. After we reported it, GCL developers not only

fixed this bug but also searched through their entire codebase

for similar code patterns and fixed 8 other classes affected

by similar bugs. (We count these 9 instances as one bug not

9 bugs.) The GCL code called the removeAll method on a

Set object, passing it an ArrayList object as a parameter.

The removeAll method removes from the set this all the

elements contained in the specified collection c. The method

has a performance optimization that chooses whether to iterate

over the set this or the collection c based on their sizes

(line 5), under the assumption that the cost of contains and

remove operations are similar for the set and the collection

when they have similar sizes. In the else branch, the outer

loop iterates over each element of this and checks if c

contains the element (lines 9–13).

When c is an ArrayList, contains performs a linear

search (lines 18–21), which is inefficient, so it would have

been better to iterate over c and call remove on the set because

it has a more efficient inner loop. Indeed, the GCL developers

changed their code, replacing the call to removeAll by

conceptually inlining the body of removeAll and keeping only

the then branch from the body. In general, the solution for

this category is to simplify the inner-loop computation.

B. Implications

Why do developers need automated support for per-

formance testing? The above examples demonstrate that

many performance bugs are difficult to avoid, because they

involve library functions or APIs whose performance fea-

tures are opaque to developers. In addition, a lot of time-

consuming computation, such as many inner loops in our

examples, is embedded in code written by different developers.

As shown in Figure 2, GCL developers did not initially

consider that the performance of the Java library method

AbstractSet.removeAll is sensitive to the data structures

used for parameters, and this information is not even stated in

the documentation for removeAll. Tool support is needed to

help developers detect these hard-to-avoid performance bugs.

Why do we focus on nested-loop performance bugs?

Bugs that involve nested loops usually have severe perfor-

mance impact. The reason is that the inner loop represents

an expensive computation inside the outer loop, and the outer

loop amplifies the performance penalty of the inner loop. For

example, in the JFreeChart bug from Figure 1, the inner loop

is slow, but if executed only once, it cannot have a significant

effect on performance; however, if executed many times in the

outer loop, it causes the chart display to freeze.

How can we detect nested-loop performance bugs? A

common feature of above nested-loop performance bugs is

that they often involve repeated memory-access patterns. Bugs

from Category 1 conduct redundant computation across outer-

loop iterations. A big chunk of the computation in each outer-

loop iteration repeats the computation from an earlier iteration

with the same input and the same result. Hence, outer-loop

iterations share long sequences of memory reads that return

the same values. For example, the iterations of the outer

loop in Figure 1 share a long sequence of reads inside the

intValue method (line 11). Bugs from Category 2 conduct

redundant computation during every iteration of an inner loop,

which results in memory reads that repeatedly return the same

value. Bugs from Categories 3 and 4 have less regular patterns

than bugs from Categories 1 and 2, but the memory-access

similarities are still strong. The outer-loop iterations in bugs

from Categories 3 and 4 often work on similar data sets. That

is the reason why developers can effectively optimize these

bugs. That is also the reason why there are usually memory

reads that return similar sequences of values across outer-

loop iterations. In sum, looking for repeated memory-access

patterns is an effective way to look for performance bugs from

all four categories.

III. TODDLER DESIGN AND IMPLEMENTATIONS

Motivated by the study in Section II, we have developed

TODDLER, an automated oracle that finds likely performance

bugs by looking for loops that read similar sequences of

values across iterations. TODDLER considers such similar

sequences to be a strong indication of redundant or inefficient

computation and reports such loops as performance bugs.

TODDLER is a dynamic technique. It instruments the code

under test, runs each test from a given test suite, and reports

only the tests that contain loops with similar sequences. We

first describe the instrumentation that TODDLER adds. We then

describe the data structures and algorithms that TODDLER

uses for storing information about reads and finding similarity

among sequences. We finally discuss our two implementations

of TODDLER in a full-blown tool for Java and a simple

prototype for C/C++.

A. Instrumentation

To monitor loops and read instructions, TODDLER instru-

ments the code, both the application under test and the libraries
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1 StartLoop(L1)
2 StartIter Read(i1, v1)
3 StartLoop(L2)
4 StartIter Read(i2, v2)
5 StartIter Read(i2, v3) Read(i3, v4)
6 StartIter Read(i3, v5)
7 StartIter Read(i2, v6) Read(i3, v7)
8 FinishLoop(L2)
9 StartIter

10 StartLoop(L2)
11 StartIter Read(i2, v8)
12 StartIter Read(i2, v9) Read(i3, v10)
13 StartIter Read(i2, v11) Read(i3, v12)
14 StartIter Read(i3, v13)
15 FinishLoop(L2)
16 Read(i4, v14) Read(i5, v15)
17 FinishLoop(L1)

Fig. 3. Example events produced by running instrumented code

it depends on, because many performance bugs are caused

by the misuse of libraries. For loops, the instrumentation is

straightforward: TODDLER analyzes the code, assigns a unique

ID for each static loop, and inserts in the code three types

of method calls that inform the TODDLER runtime whenever

a loop starts, a loop iteration starts, or a loop finishes. For

read instructions, the instrumentation itself is also simple: for

each instruction that reads object fields or array elements

from the heap (e.g., Java bytecode instructions GETFIELD or

AALOAD), TODDLER inserts a method call that informs the

TODDLER runtime about the value read by the instruction and

the call stack within which the instruction is executed. Note

that TODDLER identifies a read instruction by both the static

occurrence of the instruction in the code and the dynamic

context (i.e., the call stack) in which the instruction executes.

We use the term IPCS (instruction pointer + call stack) to refer

to a static instruction with its dynamic context.

B. Collecting IPCS-Sequences

We use the term IPCS-sequence to refer to the sequence of

values read by all dynamic instances of an IPCS I during an

iteration of a loop L. Note that, when I is inside an inner loop

of L, the IPCS-sequence for the outer loop L is likely to contain

more than one element. Also note that TODDLER builds one

IPCS-sequence per IPCS rather than one IPCS-sequence per

the entire loop iteration, and thus a loop iteration has as many

IPCS-sequences as it has IPCSs.

To illustrate, Figure 3 shows an example stream of events

produced when some instrumented code is executed; iN
represents an IPCS, and vM represents a value read. From

these events, TODDLER creates IPCS-sequences of values read

by the same IPCS during a loop iteration. For example, for

the outer loop L1, TODDLER would create IPCS-sequences

i1:[v1], i2:[v2,v3,v6], and i3:[v4,v5,v7] for the first iter-

ation and i2:[v8,v9,v11], i3:[v10,v12,v13], i4:[v14], and

i5:[v15] for the second iteration.

Note that the IPCS-sequences for the innermost loops have

length 1, e.g., for the first dynamic instance of the inner loop

L2, the IPCS-sequences would be just i2:[v2], i2:[v3], and

i2:[v6] for i2 and similar for i3. Also note that an IPCS need

not occur in every iteration of a loop (e.g., i2 does not occur

in the third iteration of the first dynamic instance of L2). In

1 // Instruction pointer and its dynamic context
2 class IPCS { int IP; CallStackHash cs; }
3 // Value of a memory location
4 class Val { long val; }
5 // IPCS-sequence of values read by an IPCS in one iteration
6 class Seq { List〈Val〉 list; }
7 // Dynamic loop record
8 class DynLoop {
9 int id; // static id of the loop
10 CallStackHash cs; // calling context
11 int iterations; // number of iterations
12 // map each IPCS encountered during loop execution...
13 // ...to values read by the IPCS in the iterations
14 Map〈IPCS , List〈Seq〉〉 map;
15 }

Fig. 4. Data structures for storing and processing IPCS-sequences

that case, TODDLER still creates an IPCS-sequence (for L1)

of consecutive values read for the same IPCS even if these

values are not read in consecutive loop iterations (of L2).

While this example illustrates TODDLER only on the loop

nesting depth of two, TODDLER handles larger nesting depths

in the same manner, by appending IPCS-sequences for the

same IPCS. For example, if one iteration of some loop L0

had the events shown in Figure 3, then for that iteration of L0,

TODDLER would create i1:[v1], i2:[v2,v3,v6,v8,v9,v11],

i3:[v4,v5,v7,v10,v12,v13], i4:[v14], and i5:[v15].

C. Data Structures

Figure 4 shows the data structures that TODDLER uses to

store information about loops. IPCS has an IP that statically

determines the instruction (e.g., its class, method, and byte-

code offset within the method in Java) and the call stack

that represents the dynamic context in which the instruction

executes. (Call stacks can be efficiently computed using hash-

ing [12].) Val represents a value read by an instruction, which

is either a primitive value or an object ID (obtained with

System.identityHashCode() in Java). Note that the ID is

of the object being returned by the read, not of the object being

dereferenced. For example, in e.next, the ID is of e.next not

of e. Seq is an IPCS-sequence of values read by the same IPCS

in one loop iteration. DynLoop records information about one

dynamic loop instance: the static loop ID (its class, method,

and bytecode offset within the method in Java), the call stack

in which the loop executes, the number of loop iterations, and

the IPCS-sequences across all iterations for each IPCS. For

example, for i2, the two IPCS-sequences of the outer (L1)

loop are i2:[[v2,v3,v6],[v8,v9,v11]].

D. Algorithm for Finding Performance Bugs

Figure 5 shows the pseudo-code of the top-level function.

TODDLER checks for potential performance bugs in each

dynamic loop that had more than a few iterations (by default,

minIter=10; this threshold is a configurable parameter of

our algorithm, and Section IV-D discusses the impact of the

parameters). For each DynLoop, TODDLER finds all IPCSs that

have similar IPCS-sequences across loop iterations. If there is

any such IPCS, TODDLER reports a performance bug.

Given a test suite, TODDLER runs each test, collects

DynLoop objects, and reports a set of static loops that have
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1 // One parameter for loops
2 int minIter; // absolute number of loop iterations
3

4 // Input: the record of a dynamic loop
5 // Output: whether this loop has performance bugs
6 boolean hasPerformanceBug(DynLoop loop) {
7 return !(computeSimilarIPCSs(loop).empty());
8 }
9

10 // Input: the record of a dynamic loop
11 // Output: IPCSs that read similar values across iterations
12 Set〈IPCS〉 computeSimilarIPCSs(DynLoop loop) {
13 Set〈IPCS〉 similarIPCSs = new Set〈IPCS〉();
14 // ignore very small loops
15 if (loop.iterations < minIter) return similarIPCSs;
16 for (curIPCS : loop.map.keyset())
17 // compare IPCS-sequences for iterations in which curIPCS occurs
18 if (areSimilarIterations(loop.map.get(curIPCS)), loop.iterations)
19 similarIPCSs.add(curIPCS);
20 return similarIPCSs;
21 }

Fig. 5. The top-level function for TODDLER

similar IPCS-sequences for at least one test. For each static

loop, TODDLER generates a set of records that help in under-

standing and debugging the problem. Each record contains the

test that executes the loop, the call stack for the loop, the static

IP of the instruction that reads similar values, the call stack

for that instruction, and statistics about similarity.

Note that TODDLER can find the same loop to be repetitive

for multiple tests. Rather than printing a report for each test

and each loop, TODDLER clusters these reports based on the

static outer loop. Clustering is commonly used for grouping

failure reports in testing [13], [14].

E. Measuring Similarity

Figure 6 shows the pseudo-code for finding similar IPCS-

sequences across loop iterations. TODDLER compares consec-

utive IPCS-sequences for the same IPCS. As mentioned in

Section III-A, an IPCS may not be executed in every iteration

of a loop. TODDLER computes the ratio of the number of IPCS-

sequences to the number of loop iterations and ignores IPCSs

that occur in a small ratio of iterations, because even if the

computation at these IPCSs is similar and could be optimized,

they may not be an expensive part of the entire loop. (By

default, minSeqRatio=45%.)

To compare the IPCS-sequences of an IPCS inside a loop

L, TODDLER determines whether these IPCS-sequences are

similar throughout L based on the relative number of similar

consecutive IPCS-sequences. The IPCS-sequences are consid-

ered similar throughout loop L if and only if the ratio is larger

than the threshold. (By default, minSimRatio=70%.)

Redundant and inefficient computation can be reflected not

only by IPCS-sequences that are exactly the same across

iterations, such as the IPCS-sequences from intValue()

in Figure 1, but also by IPCS-sequences that are slightly

different across iterations, such as the IPCS-sequences for

elementData[i] in Figure 2. Thus, we need to judge whether

two IPCS-sequences are similar enough to represent potential

performance problems.

Figure 7 shows the pseudo code of this algorithm. TOD-

DLER uses the longest common substring [15] to measure the

1 // Two parameters for loop iterations
2 float minSeqRatio; // relative number of IPCS-sequences in the loop
3 float minSimRatio; // relative number of similar iterations
4

5 // Input: IPCS-sequences for all iterations of a loop
6 // Output: whether IPCS reads similar values across iterations
7 boolean areSimilarIterations(List〈Seq〉 seqs, int iterations) {
8 // ignore IPCS that occurs in a small fraction of iterations
9 if ((seqs.size() / iterations) < minSeqRatio) return false;
10 int similar = 0;
11 for (int i = 0; i < seqs.size()−1; i++)
12 if (areSimilarSequences(seqs[i], seqs[i+1])) similar++;
13 return (similar / (seqs.size()−1)) >= minSimRatio;
14 }

Fig. 6. Checking the similarity throughout a loop

1 // Two parameters for IPCS-sequences of values
2 int minLCS; // absolute length of the longest common substring
3 float minLCSRatio; // relative length of the longest common substring
4

5 // Input: two IPCS-sequences
6 // Output: whether two IPCS-sequences are similar
7 boolean areSimilarSequences(Seq S1, Seq S2) {
8 lcs = longestCommonSubstring(S1, S2).size();
9 lcsRatio = lcs / min(S1.size(), S2.size());
10 return (lcs >= minLCS) && (lcsRatio >= minLCSRatio);
11 }

Fig. 7. Checking the similarity of two IPCS-sequences

similarity between two IPCS-sequences. (Note that substring

refers to the consecutive occurrences of values in the IPCS-

sequences, while subsequence would refer to the potentially

non-consecutive occurrences of values.) The longest common

substring can be computed in O(nm) time where n and m are

the lengths of the two IPCS-sequences [15]. We define two

IPCS-sequences to be similar if both the absolute and relative

length of their longest common substring are above thresholds.

(By default, minLCS=7 and minLCSRatio=70%.)

F. Filtering Reads

TODDLER can filter reads that have repetitive values but

are unlikely to indicate performance bugs. First, TODDLER

ignores IPCS-sequences that repeat only one value. For ex-

ample, an inner loop of the form for (int i = 0; i <

this.size; i++) repeatedly reads the value for this.size

but does not contain a performance bug. Note that this heuristic

may cause TODDLER to lose some Category 2 bugs. For

example, if this.size is returned by a synchronized getter

method, which is slower than just reading this.size, one

may want to pull the getter method call out of the loop.

TODDLER considers all operations to take an equal amount of

time, and therefore does not report the repeated getter method

calls as a performance bug. Future implementations can add

timing information to TODDLER.

Second, TODDLER for Java ignores reads that happen in

the class initializer methods because these are executed only

once per class loading, so even if the code contains a bug,

developers may not want to change it. Third, TODDLER

allows the users to specify a set of fields and methods to be

ignored, when the users do not expect them to be indicative of

performance bugs. TODDLER ignores IPCSs that either read a

specified field or execute in a context where a specified method
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ID Application Description LoC
Known New

Bugs Bugs

#1 Ant build tool 109,765 1 8

#2 Apache Collections collections library 51,416 1 20

#3 Groovy dynamic language 136,994 1 0

#4 Google Core Libraries collections library 156,004 2 10

#5 JFreeChart chart framework 64,184 1 1

#6 JMeter load testing tool 86,549 1 0

#7 Lucene text search engine 320,899 2 0

#8 PDFBox PDF framework 78,578 1 0

#9 Solr search server 373,138 1 0

JDK standard library 2

JUnit testing framework 1

SUM 11 42

Fig. 8. Applications used in experiments, previously known bugs, and new
bugs found with TODDLER.

is on the call stack. For example, some fields are used as

indexes and can appear in an inner loop as for (...) { ...

this.cursor++; ... }; if the outer loop resets cursor, the

IPCS-sequence would repeat, but repeatedly reading the index

itself does not indicate inefficient or redundant computation.

As another example, appending strings in a loop often leads

to repeated work, and in fact, it is an anti-pattern in Java to

append many String objects. However, to simplify coding,

many times developers do append strings in loops, and may

not want to be bothered with reports of such coding patterns.

By default, TODDLER ignores only three fields and four

toString /append methods from the standard JDK library

java.util classes. Note that specifying these library fields

and methods is done only once for all applications that use

the library.

G. Implementations

We implemented the TODDLER technique in a full-blown

tool for Java, which we also call TODDLER, and a simple

prototype for C/C++. Our Java implementation is based on

static Java-bytecode instrumentation, using Soot 2.4.0 [16].

TODDLER uses Soot to instrument every instruction that reads

an object field or an array element, the start of each loop,

the start of each loop iteration, and the exit of each loop.

The implementation closely follows the pseudo-code algo-

rithms presented earlier. It performs similarity checks online,

i.e., collects IPCS-sequences of values read in a DynLoop

object and, whenever the program exits a loop, calls the

hasPerformanceBug function from Figure 5 to process the

DynLoop object and decide if there is a performance bug.

Section IV-E discusses our C/C++ prototype.

IV. EXPERIMENTAL RESULTS

Our evaluation focuses on the Java version of TODDLER and

uses 9 popular Java codebases. Figure 8 lists basic information

about these codebases. We first evaluated TODDLER on 11

previously known real-world performance bugs and on over

173,000 existing functional tests from these codebases. We

then settled on the values for the TODDLER parameters

and evaluated it on newly written performance tests. Our

experiments found 42 real-world performance bugs in these

codebases (39 in the application code and 3 in the libraries

they use).

The rest of this section first presents our experiments with

the 11 previously known bugs. It then presents our experiments

with performance tests and the new bugs that we found.

It next presents the evaluation with the existing functional

tests. It finally presents a sensitivity analysis of the parameter

values. Unless otherwise specified, all the experiments use the

following default values: minIter=10, minSeqRatio=45%,

minSimRatio=70%, minLCS=7, minLCSRatio=70%.

We conduct all experiments where time is measured on an

AMD Athlon machine with 2.1GHz CPU, 3GB memory, and

Oracle/Sun JVM version 1.6.0. We also conduct experiments

where time is not measured on a cluster of machines; while

TODDLER does not need a cluster for regular use, we needed

it for our extensive experiments.

A. Experiments with Previously Known Bugs

To evaluate bug-detection coverage, accuracy, and overhead

of TODDLER, we first used 11 known real-world bugs from

the 9 codebases. We searched the respective bug-tracking

databases to collect these bugs; they were reported by the users

of these applications and the bug description clearly marks

them as performance bugs.

We run TODDLER on a performance test related to the

bug report for each of the 11 bugs. Because each test is

supposed to reveal a bug, we effectively evaluate if TODDLER

has false negatives that miss some bugs. We compare the

results of TODDLER with the results of a traditional profiler

ran on the same tests. As explained in Section I, profilers

are not designed to detect performance bugs, but are the only

traditional tool that developers could use without TODDLER.

Specifically, we use HPROF [17], the standard Java profiler.

It outputs a ranked list of methods (more precisely, calling

contexts) that consume the most time. We measure how highly

HPROF ranks the buggy method (that contains the buggy code

region). Additionally, for these 11 tests, we compare the run-

time overheads of TODDLER and HPROF.

1) Bug Detection Results: Figure 9 summarizes the results

for the 11 bugs. TODDLER finds all the bugs (no false

negatives) and produces only one false positive. Specifically,

for bug #8, TODDLER produces two reports: one showing the

real bug and one being a false positive. (Section IV-C discusses

false positives.) TODDLER finds these 11 bugs because they

involve at least two levels of loops and have similar sequences

of values read across loop iterations. In fact, most of these bugs

have so strongly similar sequences that TODDLER can detect

them under a wide range of threshold settings. (Section IV-D

discusses sensitivity to threshold settings.)

Figure 9 also shows the results for HPROF. We use it with

the cpu=times option as it gives more accurate results than

cpu=samples, though at a higher overhead. However, even

with cpu=times, the results of HPROF for the same code

and same input can vary from one run to another. Therefore,
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Known Bug Detected? False P. Rank Slowdown

Bug TODD. HPROF TODD. HPROF TODD. HPROF

#1 X - 0 19.3 13.7 4.2

#2 X X 0 1.0 10.0 2.1

#3 X X 0 3.7 15.5 3.7

#4.1 X X 0 1.8 9.0 3.8

#4.2 X - 0 5.3 7.5 3.2

#5 X - 0 53.7 13.4 8.8

#6 X - 0 10.3 8.5 1.9

#7.1 X - 0 7.7 6.8 2.5

#7.2 X X 0 3.1 25.4 3.1

#8 X - 1 18.8 51.8 12.1

#9 X - 0 178.3 114.2 7.1

SUM 11 4 1 15.9X 4.0X

Fig. 9. Comparison of TODDLER and HPROF for bug-triggering tests.

we ran each test under HPROF 10 times and show the mean

ranking of the buggy method.

The developer is unlikely to inspect more than a handful

of methods reported by a profiler. If we consider that HPROF

correctly detects a bug when the buggy method ranks in top

5, then HPROF detects only 4 out of 11 cases that TODDLER

detects. On the positive, HPROF ranks bug #2 consistently as

number one. On the negative, for 5 out of 11 bugs, HPROF

does not rank the buggy method even in the top ten. For

example, bug #9 comes from a text-search server, Solr. The

method with the performance bug constructs a set of strings

that represent filter keywords. Under normal server setting, this

set is small, and the method consumes only about 0.1% of the

total search-query time. As a consequence, it ranks only about

178th in the profiling results.

A careful reader may wonder if an easier approach would

suffice to find the bugs that TODDLER finds: could we simply

report all nested loops as potentially buggy? We added code to

count nested loops during an execution, more precisely static

outer loops that dynamically execute at least one inner loop.

For the 11 tests, the number of such outer loops ranges from 1

to 12, and the total number of such loops is 38. Thus, a naı̈ve

technique that reports every nested loop as a performance bug

would have 27(=38-11) false positives for just these 11 bugs.

In contrast, TODDLER can identify truly performance-wasting

nested loops by analyzing memory-access patterns and reports

only one false positive for these 11 cases.

2) Performance Results: The last two columns of Figure 9

show the slowdown that TODDLER and HPROF have over

an execution with no tool for the 11 bug-triggering tests.

TODDLER causes, on average, a 15.9X slowdown that comes

from monitoring read accesses and comparing IPCS-sequences.

Our current implementation of TODDLER is about 4 times

slower than HPROF. In the future we plan to further reduce

the overhead of TODDLER through sampling techniques and

static analysis.

B. Experiments with New Bugs and Performance Tests

We further evaluate bug-detection coverage and accuracy of

TODDLER by applying it on performance tests, which is the

intended usage scenario for TODDLER. To avoid the bias of us

as tool authors manually writing tests, we use three sets of tests

not written by us: (1) automatically generated tests, (2) tests

manually written by an undergraduate student familiar with

performance testing (“expert”), and (3) tests manually written

in a controlled experiment by 8 graduate and undergraduate

students unfamiliar with performance testing (“novices”). We

use these different sets to assess how TODDLER works for

tests with various characteristics.

We focus our efforts on collection classes because they are

widely used and make both automated generation [18] and

manual writing of tests easier than domain-specific applica-

tions such as Groovy or Lucene. Ant, Apache Collections, and

Google Core Libraries (GCL) implement collection classes.

The performance tests for collections follow a simple pat-

tern: create some empty collection(s), insert several elements

into the collection(s), and finally call a method under test.

(Note that performance tests need not necessarily check the

functional results of the methods.) The collections for per-

formance tests should not be very small, e.g., when testing

Collection.removeAll(Collection c), both this and c

should have a reasonable number of elements, say, over 20

each; if they had a very small number, say, 2 each, it is unlikely

the test would be useful for performance testing.

We wrote a simple library to automate generation of perfor-

mance tests for collections. Our library can generate individual

collections of various types, sizes, element types, and element

values, e.g., generate an ArrayList<Integer>with elements

1-50. Moreover, our library can generate multiple collections

with various relationships in terms of types (collections of

same or different types), sizes (collections of same, smaller,

larger sizes), and intersection of elements (collections that

are disjoint, equal, or partially intersect), e.g., generate a set

with elements 1-50 and a list with elements 1-75. Our library

supports exhaustive and random selection of combinations of

these relationships. The design goal for the library was not to

extensively cover all the cases but to provide some reasonable

tests for TODDLER.

We collected two types of manually written tests. We asked

the “expert” to write tests for any methods in GCL and Apache

Collections. We asked each “novice” to spend an hour writing

tests for a given set of 10 methods in a class from Apache

Collections; one of these 10 methods contained a known

performance bug, and we wanted to check if the students

would write tests that find this bug.

Figure 10 shows the number of tests generated/written for

each codebase, the number of dynamic loops executed, and the

number of reports that TODDLER produces. We examined all

these reports to identify if they are real bugs or false positives.

We found 35 new, previously unknown performance bugs

in Ant, Apache Collections, GCL, and even in a JDK class

called from these projects; based on our reports, developers so

far have fixed 8 of these bugs and confirmed 6 more as real

bugs. TODDLER was highly effective in finding performance

bugs using both automatically generated and manually written

tests. Both types of tests found bugs, and sometimes found the

same bugs. (Our study used older versions of GCL and Apache
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Who App Tests
#Dyn.

Bugs
Bugs in False

Sum
Loops Test Pos.

#1 691 13,748 5 0 1 6

Auto #2 3,375 342,821 18 1 2 21

#4 1,703 423,406 9 0 0 9

Ex- #2 60 6,761 10 0 1 11

pert #4 60 6,319 2 0 0 2

#2 14 2,057 1 6 0 7

#2 20 3,043 2 0 0 2

#2 5 1,868 1 0 0 1

Nov- #2 18 3,269 1 0 0 1

ice #2 5 606 0 0 0 0

#2 28 4,502 2 0 0 2

#2 30 3,810 1 0 0 1

#2 5 1,996 1 0 0 1

Unique Bugs Found: 35 FPs: 4

Fig. 10. Experiments with performance tests. Note that the same bug may
be found by different automatically generated and manually written tests.

Collections, without the fixes for the bugs we reported.)

Surprisingly, some “novice”-written tests found two bugs in

a class that we expected to have only one bug.

We also found 7 performance bugs where the test code itself

is unnecessarily slow. For example, the “novice”-written tests

had assertions that check the method results, and the assertions

themselves use rather slow code, e.g., nested loops that search

in lists but could have searched in sets. If such loops appeared

in the code under test, they would be definite bugs that should

be changed.

C. Experiments with Functional Unit Tests

The first two sets of experiments used tests written for per-

formance, which is the intended usage scenario for TODDLER.

To further evaluate TODDLER, we run it on the functional

JUnit tests that come with the 9 codebases used in our

evaluation. Note that this is not the intended usage scenario:

a developer would not use functional tests for performance

testing and thus would not use TODDLER on the functional

JUnit tests. We perform these experiments only to stress-

evaluate TODDLER.

Our experiments use 173,439 tests shown in Figure 11.

These tests execute 24,810–3,526,496 dynamic loops (and

1,181,628–54,054,728 dynamic iterations) per codebase, a

challenge for the run-time monitoring scalability. The tests also

cover 21–919 unique static loops that contain nested loops per

codebase, a challenge for the bug-detection accuracy.

TODDLER successfully ran for this extensive evaluation and

reported 43 static loops as having similar memory accesses and

thus potential performance bugs. We examined all these reports

and found 7 real bugs. For JFreeChart (#5), one bug is in the

JFreeChart code itself and the other in the standard JDK library.

For Apache Collections (#2), one bug we reported is already

fixed, and the other three bugs are similar to three bugs we

previously reported and developers resolved by changing the

Javadoc documentation to clarify the performance problems.

For Ant (#1), all three bugs have been already fixed in the latest

release. (Our experiments use older versions of the codebases.)

App # Tests
# Dynamic

Bugs
Bugs in False

Sum
Loops Test Pos.

#1 675 877,362 3 0 3 6

#2 31,105 3,526,496 4 7 1 12

#3 464 281,596 0 0 0 0

#4 138,997 2,574,756 0 0 4 4

#5 332 514,824 2 0 1 3

#6 164 88,548 0 0 1 1

#7 675 1,488,977 0 0 4 4

#8 42 24,810 0 0 0 0

#9 985 1,395,494 0 0 13 13

Unique Bugs Found: 7 FPs: 27

Fig. 11. Experiments on JUnit functional tests. Note that this is not the

intended usage scenario for TODDLER; a developer would not use functional

tests for performance testing.

For Apache Collections (#2) we also found 7 performance

bugs in tests, where the test code is unnecessarily slow and

would need to be fixed had it been in the application code.

The remaining 27 reports are false positives due to three

causes. First, in 10 reports, the test input itself contains a

lot of repetition and similar values, so TODDLER detects

similarity due to the specific input provided, not because the

computation is repetitive in general. Such false positives could

be eliminated by using less repetitive test inputs. Second,

in 3 reports, the code performs some computation on all

possible pairs of values from two data sets. Such code is

naturally repetitive, but the repetitions are useful computation,

not performance bugs. Such false positives may be eliminated

by analyzing the data flow of computation results, but such an

analysis is beyond the scope of this paper. Third, in 14 reports,

the computation is truly repetitive, but removing the repetition

would be too complex or would not provide clear speedup, so

a developer is unlikely to change the code.

D. Parameter Sensitivity

The false-positive and false-negative rates of TODDLER

are affected by the values for the five parameters described

in Section III. All these parameters provide the minimum

threshold that loops/iterations/sequences need to satisfy to

be deemed indicative of performance bugs. Hence, larger

thresholds could lead to fewer false positives but more false

negatives, while smaller thresholds could lead to more false

positives but fewer false negatives. We experimented with

various threshold values to understand their impact.

Figure 12 shows the results for several configurations. For

each configuration, we change only one threshold value and

keep the other four at the default setting. To evaluate the

impact on false negatives, we apply TODDLER on the 11

bug-triggering tests for previously known bugs (Section IV-A)

and count the number of bugs found. To evaluate the impact

on false positives, we cannot use TODDLER in the intended

scenarios from sections IV-A and IV-B, because they have few

false positives. We thus use the functional tests (Section IV-C).

The default configuration finds all 11 known bugs in the

experiments from Section IV-A and reports 27 false positives

in the experiments from Section IV-C. Figure 12 plots the
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Fig. 12. Parameter-sensitivity experiments. Each configuration changes only
one threshold, with its value shown on the X-axis. The default values are
boxed. Two sets of experiments are conducted for each configuration: the
left/dark bar shows false positives on JUnit tests, and the right/light bar
shows bugs found on bug-triggering inputs. The Y-axis shows the numbers
normalized to the results under default setting.

number of bugs found (light/yellow bars) and false positives

(dark/blue bars) normalized to the values for the default

configuration. For bugs found, higher is better, and for false

positives, lower is better.

Impact on False Negatives: We increased the threshold

value for each parameter, and for only two of them such

increase has caused false negatives. The most sensitive is

minLCS, which measures the absolute length of the longest

common substring between two consecutive IPCS-sequences

for an instruction. When minLCS increases from the default

7 to 10, the number of bugs found steadily decreases from

11 to 6. The longest common substring is usually shorter

than the total number of inner-loop iterations, which is often

determined by the input scale. Therefore, when the input scale

is small, a high minLCS setting could miss many bugs.

The other parameter whose increase caused false negatives

is minSeqRatio, which measures the ratio of loop iterations

that have executed the particular memory-read instruction. The

inner loop of bug #7.1 is buried inside an if statement that

is executed by about half of the outer-loop iterations. As a

result, this bug is missed once minSeqRatio gets over 50%.

We believe that this type of if/then/else situation is common

enough to have the default value under 50%. Note that, except

for this type of bugs, minSeqRatio can be increased to 60%

and beyond without losing any bugs.

Impact on False Positives: For the two parameters that

caused false negatives above, minLCS and minSeqRatio, we

both increased and decreased the threshold values. For the

other three parameters, we only increased the values. We

can see that increasing minIter and minSimRatio over

the default values decreases the number of false positives

by about 12% without loosing any bugs. In practice, one

may want to indeed increase these parameters, but we chose

conservative parameter values. In contrast, minLCSRatio is

the least sensitive: increasing it from 70% to 90% changes

neither false positives nor false negatives.

Choosing the Threshold Values: As seen from the dis-

cussion above, TODDLER can work well in a large range

of threshold values. Note that we did not choose the default

threshold values for TODDLER to obtain the best results for

false positives and false negatives. For example, we could

increase minIter and minSimRatio to get fewer false posi-

tives without missing any bug. Rather, we chose the default

values based on our intuition about the values that could give

reasonable results. Moreover, we settled on these values before

running TODDLER on performance tests (Section IV-B).

E. TODDLER for C/C++ Code

The performance bugs that TODDLER finds do not exist only

in Java code; as already mentioned in Section II, such bugs

also exist in C/C++ code. To further evaluate our technique, we

implemented a prototype TODDLER tool for C/C++ code. Our

prototype uses Pin [19] to automatically instrument memory

reads but currently does not automatically instrument loops;

we manually added loop events for six real-world bugs (three

from GCC, two from Mozilla, and one from MySQL). The

prototype logs values read and loop events, and computes

similarity offline by processing these logs using Python. The

results show that this prototype can find all these six bugs.

Because we do not instrument all the loops, we cannot measure

false positives for this prototype.

V. DISCUSSION

Loop Nesting: TODDLER misses bugs that are not in nested

loops. We intentionally focused on nested loops, because they

create more severe performance hits. However, non-nested

loops can also be slow, e.g., loops that contain I/O. TODDLER

can be extended to look for bugs in such loops by modeling the

native, I/O methods in Java [20] to make their loops explicit.

Other Performance Bugs: TODDLER misses several cate-

gories of performance bugs, including (1) performance bugs

specific to multi-threaded code such as lock contention [21],

load imbalance [22], or false sharing [23], (2) bugs related to

idle time [24], and (3) object bloat [25]. TODDLER finds per-

formance bugs involving loops, which the existing techniques

miss, so TODDLER complements these techniques.

Dynamic Technique: Just like profilers, TODDLER requires

a test input. Fortunately, developers already write some perfor-

mance benchmarks but typically measure only real time and

look for regressions. TODDLER provides an oracle to identify

performance bugs and encourages developers to write perfor-

mance tests. As our evaluation shows, performance tests are

relatively easy to write manually even by developers who are

not familiar with performance testing, and one can sometimes

even use automated test-generation techniques for performance

tests. Future work can focus on developing specialized test-

generation techniques for performance bugs.

Similarity Measures: Because the longest common sub-

string worked quite well for comparing similarity of IPCS-

sequences, we did not evaluate any other approach. Future

work could, for example, use edit distance to compare IPCS-

sequences or, even further, capture the memory accesses not

as IPCS-sequences of values but as execution trees that encode

loop iterations and then measure tree similarity.
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VI. RELATED WORK

Profiling, Visualization, and Computational Complexity:

Profiling and performance-visualization tools are critical for

developers to understand the performance features of different

software components. A lot of recent progress was made

to provide more accurate and efficient profiling [8], [10],

[26]–[32]. However, as discussed in Section I, profilers have

fundamental limitations in detecting performance bugs. Sev-

eral tools estimate the worst-time computational complexity

of code [33]–[35], but like profilers, these tools report that

some computation takes time, not if it wastes time. TODDLER

complements these techniques to find performance bugs.

Performance-Bug Detection: Several techniques detect the

excessive use of temporary objects, a common performance

problem in object-oriented software [36], [37]. Xu et al. use a

run-time analysis to detect low-utility data structures where the

effort to construct member fields outweighs the usage of these

fields [25]. Jin et al. study efficiency rules in performance-

bug patches and detect performance bugs that are similar

with previously patched ones [9]. Other techniques detect

performance problems caused by idle time [24], multi-thread

false sharing [23], or error recovery in distributed systems [38].

The success of these tools demonstrates the potential of

performance-bug detection, but the existing work only covers

a small portion of real-world performance bugs. TODDLER fo-

cuses on performance bugs caused by inefficient or redundant

computation across nested loops. Many of these bugs, such as

the real-world example bugs discussed in the paper, cannot be

detected by the existing performance bug detectors. Therefore,

TODDLER well complements these techniques.

VII. CONCLUSIONS

Performance testing would greatly benefit from automated

oracles for performance bugs. We presented TODDLER, a

novel oracle that detects performance bugs by identifying

repetitive memory read sequences across loop iterations. TOD-

DLER found 42 new bugs in 6 popular codebases: Ant,

Google Core Libraries, JUnit, Apache Collections, JDK, and

JFreeChart. So far developers have already fixed 10 of these

bugs and confirmed 6 more as real bugs. We also evaluated

TODDLER with 11 previously known, real-world performance

bugs, and the experiments show TODDLER can effectively

detect performance bugs with a much higher accuracy than

profiling tools. TODDLER can help expose more performance

bugs before software release by discovering problems even

before they manifest as slow computation found by profilers.

While these results are highly promising, TODDLER is just a

starting point in addressing loop-related performance bugs.
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Francesco Sorrentino, and Loránd Szakács for help with exper-
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