
HAL Id: hal-00814296
https://inria.hal.science/hal-00814296

Submitted on 6 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Case for Human-Driven Software Development
Emilie Balland, Charles Consel, Bernard N’Kaoua, Hélène Sauzeon

To cite this version:
Emilie Balland, Charles Consel, Bernard N’Kaoua, Hélène Sauzeon. A Case for Human-Driven Soft-
ware Development. ICSE’13: Proceedings of the 35th International Conference on Software Engineer-
ing (NIER track), May 2013, San Francisco, United States. �hal-00814296�

https://inria.hal.science/hal-00814296
https://hal.archives-ouvertes.fr


A Case for Human-Driven Software Development

Emilie Balland, Charles Consel, Bernard N’Kaoua, Hélène Sauzéon

Inria/University of Bordeaux, France

Abstract—Human-Computer Interaction (HCI) plays a critical
role in software systems, especially when targeting vulnerable
individuals (e.g., assistive technologies). However, there exists
a gap between well-tooled software development methodologies
and HCI techniques, which are generally isolated from the
development toolchain and require specific expertise.

In this paper, we propose a human-driven software devel-
opment methodology making User Interface (UI) a full-fledged
dimension of software design. To make this methodology useful in
practice, a UI design language and a user modeling language are
integrated into a tool suite that guides the stakeholders during the
development process, while ensuring the conformance between
the UI design and its implementation.

I. INTRODUCTION

Human-Computer Interaction (HCI) defines a range of

principles and methodologies to design User Interfaces (UIs),

aiming (1) to improve the interaction between users and

computers, (2) to address how interfaces are implemented,

leveraging techniques such as program generation and compo-

nent architectures, and (3) to propose methods to evaluate and

compare interfaces.

Despite the many successes of HCI, when it comes to

software development, this domain expertise often does not go

beyond guidelines (e.g., addressing the needs of the elderly and

users with disabilities [1]). Sometimes, guidelines are mapped

into UI design artifacts. However, for a lack of tools, these

artifacts remain contemplative. As a consequence, there exists

a gap between UI design and software development. This gap

is not typical of the HCI domain. Yet, its consequences are

dramatically increasing in importance as software systems

intertwine with our daily activities, both professional and

domestic. Nowadays, a host of systems are playing a critical

role for users in terms of safety, privacy, etc. Let us examine

manifestations of the gap between UI design and software

development.

UI design conformance. A UI design can be flawless but

incorrectly implemented by the programmer. Indeed, UI design

is poorly integrated in the software development process,

leading to inconsistencies [2]. Some aspects of the UI design

may be misinterpreted or overlooked by the programmer. For

example, the programmer may omit to put the user in the loop

when sharing sensitive data, leading to a privacy breach.

Under/over specification of UI design. Even if the UI design

is rigorously followed, it can still be under/over-specified

regarding the user preferences and capabilities. On the one

hand, under specification can lead to implementation mistakes.

For example, the programmer can implement an interaction

using a least favorite modality, or imposing an inadequate

cognitive burden on the user. This situation is illustrated by

a visually impaired user prompted with a textual message

or, the operator of the X-ray machine required to memorize

configuration parameters. On the other hand, over specification

can lead to an implementation that is completely tailored for

specific users and unable to accommodate others.

Out-of-sync UI design. Like any design artifacts, the UI design

can be out of sync with the software implementation, after a

few evolutions. These discrepancies can create undesirable or

unexpected features. For example, assistive technologies have

to adapt to the evolution of the user’s capabilities (e.g., an

increasing hearing impairment).

The above-mentioned problems are mainly due to the

contemplative nature of the design artifact. As such, a UI

design is an informal specification, which can be partial and

ambiguous. As well, the concepts and notations used to specify

UI design artifacts may not compose well with the design

concerns of the overall software system. In an attempt to

address these problems, practitioners may resort to manually

ensuring some level of conformance between the design and

the software being developed or evolved. This process is error

prone and human intensive. It is known not scale in size and

over time [2].

To bridge the gap between UI design and software devel-

opment, our approach consists in making UI design a full-

fledged dimension of software design. We introduce a language

dedicated to designing UIs in a high-level manner, while

capturing the key requirements of user interaction. We go

beyond a contemplative approach and process a UI design

artifact to produce a dedicated programming framework that

supports the implementation of all the dimensions expressed

in a design artifact. This programming framework guides the

stakeholders during the development process, while ensuring

the conformance between the UI design and its implementation

over time.

II. WORKING EXAMPLE

We illustrate our development approach with an example

from the domain of assisted living; it is one of numerous

scenarios that came out of our collaboration with a province-

wide organization for elderly care. Our proposed scenario

addresses the vital need for the elderly to use new communi-

cation mediums, such as email and social networks, towards

preventing their social isolation, especially with respect to the

younger generations. We thus started designing an application

that would allow the elderly to check their email without

requiring them to invest mental resources to operate new



technologies [3]. To do so, we strove to use familiar devices

such as a TV set and its remote control, whenever possible.

The overall scenario of our application is as follows. At

selected times during the day, the user is notified of new email

messages. The user controls which messages to display and

reply to, interacting with the available features of familiar

devices, such as the screen, speakers and remote control of a

TV set, matching his/her preferences, and sensory and cognitive

capabilities.

III. OVERALL APPROACH

Our approach integrates a model of the user and the UI

design of an application. It provides languages and tools to

support the stages ranging from user modeling to software

development.

At user-modeling time. Given a target population, user re-

quirements are specified in a model, making explicit their

preferences, and sensory and cognitive resources. This user

model plays a pivotal role to ensure that a given application

matches the specifics of a target population.

At design time. Given an application to be developed, its UI

design addresses the interaction and presentation aspects, as is

conventional in HCI [4]. Interaction design defines when and

what user interactions are required by the application, whereas

presentation design defines the static requirements of the UI,

such as the modality and the UI components (e.g., size and

color). Accordingly, our UI declarations are decomposed into

two layers: (1) interaction declarations and (2) presentation

declarations, including the sensory and cognitive requirements.

Besides documenting the design, UI declarations permit various

verifications, such as matching an application against a user

model.

At programming time. Because our approach compiles a design

artifact into a customized programming framework, program-

ming support can be generated and the host programming

language can be leveraged to enforce the design both in terms

of programming obligations and restrictions. For example, an

interaction design is compiled into a set of Java types that are

used in the abstract classes of the programming framework.

By extending these abstract classes, the developer is forced to

meet the interaction design. This generative approach ensures

the conformance between the design and the implementation

stages, while offering high-level programming support to the

developers.

At deployment time. When the software system is deployed,

the user needs to anticipate what interactions are enabled and

required. This is critical information when the application

is intertwined with the individual’s activities. Our approach

can guarantee that an application correctly announces its

user interactions. This guarantee relies on the fact that UI

declarations are part of the application design and are used to

generate the underlying programming framework. Furthermore,

when an application is deployed, the user model can be checked

against the application interactions to detect a mismatch.

At run time. When constraints cannot be checked at compile

time, this process is performed at run time. For example, getting

a user input prior to sending sensitive information. Run time

checks are included in the generated programming framework.

Default policies are invoked to deal with constraint violations.

To make our approach useful in practice, it is being integrated

into DiaSuite, a tool-based development methodology [5], [6].

DiaSuite is dedicated to a specific design paradigm, namely

Sense/Compute/Control (SCC) [7]. This design paradigm

applies to any application that interacts with an external

environment. Such applications are pervasive in domains such

as telecommunications, home automation, and avionics. The

DiaSuite compiler generates a Java programming framework

dedicated to an application design; it guides the programmer

while ensuring the conformance between the application design

and the implementation.

Figure 1 depicts the development lifecycle supported by

DiaSuite, extended with a user modeling language and a UI

design language. This paper focuses on user modeling and UI

design, both presented in the following section.

Distributed back-end
Programming framework

ApplicationDesigner

HCI Expert

Tester ApplicationDeveloper

SystemAdministrator

Compiler

Application Design 

ApplicationSimulation
Interface Design 

User Model

Interface

HCIDeveloper

Verification Tool

Figure 1. Our tool-based development process

IV. DESIGN

The design aspects of our approach rely on three languages:

(1) a user modeling language to specify the preferences, and

sensory and cognitive capabilities of the target user; (2) a UI

design language to define both the presentation and interaction

design; and (3) the application design language with interwoven

interaction design aspects, which abstract over presentation

details. These languages allow to separate design concerns,

making the same application adaptable to different target users

with different preferences and capabilities.

A. User Modeling Language

For a lack of space, we focus this presentation on the

cognitive dimension of the user, omitting user preferences. A

specific area of Cognitive Science is devoted to the definition of

theoretical models of the human mental activity. One approach

consists in abstracting the human mental activity as a simplified

computing process. HCI researchers have rapidly applied the

resulting computational models to reason about user interaction

during the design stage of a system [8]. For example, the



Tactile
Processor

Auditory
Processor

Visual
Processor Ocular Motor

Processor
Vocal Motor
Processor

Manual Motor
Processor

Long-Term
Memory

Production
Memory

Working
Memory

Production Rule 
Interpreter

Cognitive Processor

Figure 2. EPIC computational model (see [9])

Executive-Process Interactive Control (EPIC) architecture has

been used to evaluate the effects of ageing [9]. As shown in

Figure 2, the EPIC model represents the cognitive capabilities of

the user as the simplified components of a computing machine

(e.g., visual processor, cognitive processor, working memory).

We leverage this computational model to develop our modeling

language of the user.

Both the user modeling language and user-interaction decla-

rations are defined with respect to the EPIC model. Specifically,

a user is viewed as providing various resources, in terms of

EPIC components, to perform an interaction. A resource may

be void (absent), low, medium or high (ordinary). Symmetrically, an

interaction is defined as requiring a resource load from each

EPIC component involved.

Let us examine an example of a user model. Consider an

average elderly individual whose model is based on a study of

the common effects of ageing using EPIC [9].

user_model a v e r a g e _ e l d e r l y {

c o g n i t i v e _ p r o c e s s o r = medium ;

working_memory = medium ;

long_term_memory = medium ;

shor t_ te rm_memory = h i gh ;

v i s u a l _ p r o c e s s o r = medium ;

a u d i t o r y _ p r o c e s s o r = low ;

m a n u a l _ m o t o r _ p r o c e s s o r = low ;

v o c a l _ m o t o r _ p r o c e s s o r = h i gh ;

}

Let us illustrate how this user model translates in terms

of user interaction. An average elderly user has diminished

visual capability, advising against interactions via abundant

textual messages. In contrast, vocal capability is fully functional,

allowing interactions via vocal commands. Because the working

memory is reduced, interactions should be decomposed in

manageable steps.

Our approach is user-centric in that it starts by defining a

model of a user, or a group of users. This user model then

plays two roles with respect to software design: (1) it drives

the design of the application UI and (2) it is checked against

a design for conformance.

B. UI Design Language – Interaction Layer

To define an interaction design, we introduce a set of abstract

interactors that denotes the information exchange between the

application and the user. Three types of abstract interactors are

needed.

• output: information flows from the application to the user

(e.g., a notification of a new email message),

• input: information flows from the user to the application

(e.g., a user reply to an email message),

• prompt: information flows round-trip between the appli-

cation and the user (e.g., a dialog with the user to ask

whether an email message is to be replied to).

In our working example, the interaction design is defined

by the following abstract interactors:

prompt Ask_readMai l as M a i l I n f o −> Bool ;

output D i s p l a y _ m a i l as Mail ;

prompt Ask_rep ly as S t r i n g −> Bool ;

input M a i l _ r e p l y as Mail

output F e e d b a c k _ r e p l y as M a i l I n f o ;

The abstract interactor declarations define the type of the

input and/or output to be expected by the application logic. For

example, the input interactor named Mail_reply expects a user

input of type Email. These type declarations are leveraged by

the compiler. Indeed, each abstract interactor is compiled into

a Java interface that declares the input and output types.

Let us now show how these abstract interactors are inter-

woven with the application design language. In DiaSuite, an

application design follows the SCC paradigm whereby sensing

entities fuel context operators, which refine (aggregate and

interpret) these data before passing them to control operators.

These operators eventually trigger actions on entities.

In our approach, the DiaSuite design language leverages

abstract interactors, making explicit the user interactions.

Specifically, like an actuator, an output interactor is invoked

by controller operators to provide some information to the

user. Like a sensor, an input interactor fuels context operators

with a user reply. A prompt interactor is both invoked by a

control operator and sensed by a context operator. For example,

consider a prompt interactor, instantiated with a TV and its

remote control. When invoked, this interactor locks both devices

from the time the prompt message is rendered by the TV, until

the user inputs the reply with the remote control. In effect, a

prompt defines a cycle in the SCC graph of an application.

This semantics is more specific than sensors and actuators in

that it guarantees the coupling between a prompt message and

the reply. As a result, a prompt interactor must occur both in

a controller and context declaration.

Let us express our working example in the SCC paradigm.

To do so, we refine its functionalities: at an appropriate moment,

based on a calendar of the user activities and a motion detector,

if there are new email messages, the application prompts the

user to determine whether (s)he wants to read them. If so, the

email is displayed. As shown in Figure 3, the design can be

represented by a data-flow graph of SCC components.

In this design, the Availability context determines whether it

is an appropriate moment to read email messages based on the

Calendar and MotionDetector sensors. This information is combined

by the NewEmailToRead context with the output of the NewEmail

context that checks whether new messages have arrived. If these

conditions hold, the ReadMail controller is invoked to ask the user,

via the Ask_readMail prompt, whether (s)he wants to read email

messages. The ReadMailResponse context filters positive responses

from the user, via the Ask_readMail prompt. Finally, the DisplayMail



NewEmailToRead

Availability

motion
MotionDetectorCalendar

newEmail
Mailer

NewEmail

data flow

ReadMail

Ask_readMail
<actuator>

<control operator>

<context operator>

<sensor>

DisplayMail

Display_mail

Ask_readMailactivity

ReadMailResponse

Figure 3. Extract of the design of the email application

controller is invoked to allow the user to read messages via

the Display_mail output. As is required, the Ask_readMail prompt

occurs both in the ReadMail controller and ReadMailResponse context

declarations, ensuring that user interactions are consistent with

the application design.

The programming framework generated by the DiaSuite

compiler has been extended to ensure the conformance between

the interaction design and the implementation. Indeed, each

application component is compiled into an abstract class.

When a component depends on an abstract interactor, the

corresponding abstract class leverages the type generated from

the abstract interactor declaration.

C. UI Design Language – Presentation Layer

The presentation layer of the UI design language allows

to instantiate the abstract interactors with concrete devices

(whether hardware or software). Because there are concrete,

their required sensory and cognitive load must be specified. The

burden of these interactions can be the result of the analysis

of cognitive functions [10].

In our example, we can map the Ask_readMail interaction with

two distinct devices: the TV display, to render the question,

and the TV remote control, to acquire the reply:

prompt Ask_readMai l {

TVSet . d i s p l a y as output {

v i s u a l _ p r o c e s s o r = medium ;

c o g n i t i v e _ p r o c e s s o r = low ;

}

TVRemoteControl . command as input {

m a n u a l _ m o t o r _ p r o c e s s o r = low ;

c o g n i t i v e _ p r o c e s s o r = low ;

}

}

The conformance with the user model can be automatically

checked by performing a unitary matching between the

interaction cost of each EPIC component and the load supported

by the user.

In addition, the UI design can be leveraged to ensure general-

purpose UI guidelines. For example, checking user feedback

consists in verifying that an input interactor is followed by an

output interactor in the UI design. In the email application, the

Mail_reply input is followed by the Feedback_reply output.

V. CONCLUSION AND FUTURE WORK

We have a prototype implementation of our approach,

integrated in DiaSuite. We are actively revisiting assistive

applications to validate our approach. As illustrated by the

email application, we are finding a host of UI properties that

can be automatically ensured by our approach.

We plan to make the UI design artifacts understandable

to non-technical users, enabling the selection of assistive

applications by end-users (e.g., caregivers). Another direction

is to leverage the UI design to provide specific instrumentation

code, supporting the evaluation of assistive applications with

real users.

Going beyond a unitary matching of an interaction against

an element of a user model, we are developing strategies to

compute an overall assessment of an application with respect

to its possible sequences of interactions. This line of work also

considers multimodal interactions.

Finally, we envision using our approach in the context of

safety-critical systems. In particular, we have been developing

various aircraft modules, such as an autopilot system, where

UI declarations should greatly contribute to guaranteeing safety

requirements involving the UI dimension.

ACKNOWLEDGMENT

We thank Martin Hachet, Fabien Lotte and Jean-Daniel

Fekete for their helpful comments. We also thank the anony-

mous referees for their valuable feedback.

REFERENCES

[1] “Ergonomics data and guidelines for application of ISO/IEC Guide 31 to
products and services to address the needs of older persons and persons
with disabilities,” International Standards Organization (ISO), TR 22411,
2008.

[2] S. Viswanathan and J. C. Peters, “Automating UI guidelines verification
by leveraging pattern based UI and model based development,” in
Proceedings of the 28th International Conference on Human Factors in

Computing Systems, 2010, pp. 4733–4742.
[3] U. Lindenberger, M. Lövdén, M. Schellenbach, S. Li, and A. Krüger,

“Psychological principles of successful aging technologies: A mini-review,”
Gerontology, vol. 54, no. 1, pp. 59–68, 2008.

[4] B. Shneiderman and C. Plaisant, Designing the User Interface - Strategies

for Effective Human-Computer Interaction (5. ed.). Addison-Wesley,
2010.

[5] D. Cassou, J. Bruneau, C. Consel, and E. Balland, “Towards a Tool-
based Development Methodology for Pervasive Computing Applications,”
IEEE TSE: Transactions on Software Engineering, vol. 38, no. 6, pp.
1445–1463, 2012.

[6] D. Cassou, E. Balland, C. Consel, and J. Lawall, “Leveraging Software
Architectures to Guide and Verify the Development of Sense/Com-
pute/Control Applications,” in Proceedings of the 33rd International

Conference on Software Engineering, ICSE’11. ACM, 2011, pp. 431–
440.

[7] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:

Foundations, Theory, and Practice. Wiley, 2009.
[8] J. Olson and G. Olson, “The growth of cognitive modeling in human-

computer interaction since GOMS,” Human-Computer Interaction, vol. 5,
no. 2, pp. 221–265, 1990.

[9] D. E. Meyer, J. M. Glass, S. T. Mueller, T. L. Seymour, and D. E. Kieras,
“Executive-process interactive control: A unified computational theory for
answering 20 questions (and more) about cognitive ageing,” European

Journal of Cognitive Psychology, vol. 13, pp. 123–164, 2001.
[10] G. A. Boy, “Cognitive function analysis for human-centered automation

of safety-critical systems,” in Proceedings of the 16th International

Conference on Human Factors in Computing Systems, CHI’98. ACM,
1998, pp. 265–272.


