
Towards Automated Testing and Fixing of
Re-engineered Feature Models

Christopher Henard∗, Mike Papadakis∗, Gilles Perrouin†,♦, Jacques Klein∗, and Yves Le Traon∗
∗Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, Luxembourg

†Precise Research Center In Software Engineering (PReCISE), University of Namur, Namur, Belgium

∗{firstname.lastname}@uni.lu; †{firstname.lastname}@fundp.ac.be

Abstract—Mass customization of software products requires
their efficient tailoring performed through combination of fea-
tures. Such features and the constraints linking them can be
represented by Feature Models (FMs), allowing formal analysis,
derivation of specific variants and interactive configuration. Since
they are seldom present in existing systems, techniques to re-
engineer FMs have been proposed. There are nevertheless error-
prone and require human intervention. This paper introduces an
automated search-based process to test and fix FMs so that they
adequately represent actual products. Preliminary evaluation on
the Linux kernel FM exhibit erroneous FM constraints and
significant reduction of the inconsistencies.

Index Terms—Feature Model, Testing, Fixing, Search-based

I. INTRODUCTION

Variability-intensive Systems (VIS) form a vast class of
software whose role is to support mass-customization of
(software) products and adaptation to increasingly more com-
plex situations formed by mixes of versatile environments,
challenging user needs and time-to-market constraints. We all
use such systems when we buy a product online (there exists
more than 800 web-based configurators [1]) or configure an
operating system kernel such as Linux [2] for a particular need.
Variability is key to these systems but difficult to handle given
the large number of constraints linking the features. It is also
a great source of combinatorial headaches as the number of
possible configurations exponentially grows with the number
of options offered. Furthermore, variability is rarely treated
as a first-class concept, raising issues for VIS analysis, (re-)
engineering and quality assurance.

In sharp contrast, Software Product Line Engineering
(SPLE) handles variability as a first-class concept through
Feature Models (FMs) [3]. In essence, a FM aims at defining
legal combinations of features authorized or supported by a
system (configurations) using hierarchical decomposition and
additional constraints. FMs are now equipped with formal
semantics [4], automated reasoning operations and bench-
marks [5], tools [6] and languages [7]. There are also used
to derive products [5], configure them [8] and for automated
quality assurance [9]. A FM can also be converted to a boolean
formula [10] to be used within SAT solvers [11] for reasoning
and analysis. We will use this representation for our reasoning

♦FNRS Postdoctoral Researcher.

on their correctness. A recent survey on the analysis of FMs
and its use in literature can be found in [5].

To bring the benefits of feature modeling to VIS, several
re-engineering techniques [2], [12], producing FMs from var-
ious systems artifacts have been proposed. These techniques
are partly automated and often require human intervention.
Such re-engineered FMs may thus not be accurate, yielding
incorrect analyses decisions about VIS, in turn hampering their
correct re-engineering. As an example of such inaccurate re-
engineering, our experiments show that none of the 1,000
configurations generated from the Linux kernel FM [2], [13]
is consistent with respect to actual kernel configuration rules.
This context motivates our two research questions:

[RQ1] How to detect inconsistencies between the re-
engineered FM and its source VIS? Inconsistencies fall into
two categories. On the one hand, system configurations derived
from the FM are incorrect with respect to the system. On the
other hand, existing valid configurations do not satisfy the FM
formula. We refer as testing the process of finding these flaws.
When detected, dealing with these discrepancies may require
an automated correction of the FM.

[RQ2] How to automatically make a FM consistent with
its real system? Digging manually through thousands of fea-
tures and dealing with hundred thousands of possibly faulty
constraints in a FM is not an option. Thus, one must devise
automated ways to correct inconsistencies in the FM so that
it reflects its system. The process of correcting a FM is
referred to as fixing. Current re-engineering approaches either
do not validate the re-engineered FMs or use simulation of
the configuration process [2]. This practice, as our experiment
shows, is insufficient to detect all the problems of the FM.

In this paper, we propose an automated approach to both
test and fix re-engineered FMs. It relies on a continuous loop
where FMs are iteratively tested and fixed. This loop forms a
search process that gradually improves (fixes) the FMs. The
search is guided by the number of inconsistencies found during
a continuous testing process. Early results on the Linux kernel
FM shows that more than 50% of the problems encountered
in the re-engineered FM can be eliminated.

The remainder of this paper is organized as follows: Section
II presents the proposed approach. Section III reports on
the empirical evaluation. Finally, Section IV discusses related
work before Section V concludes the paper.

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1245

II. TEST-AND-FIX LOOP

Our approach involves two entities: the system and the re-
engineered FM. To find and correct the problems of the FM,
such as erroneous constraints, this approach requires two steps.
The first one aims at testing the FM to highlight the problems.
The second step uses feedback information from the testing
process to fix the FM. The repetition of these two steps form
a test-and-fix loop illustrated by Figure 1.

A. Testing the Feature Model

Testing a FM consists of two parts: 1) the evaluation of the
FM consistency using valid configurations of the system1 and
2) the evaluation of configurations generated from the FM with
respect to the system. This process is depicted by the upper
box of Figure 1.

1) Evaluating the Consistency of the FM with Respect to
Valid Configurations of the System: This evaluation goes from
the system to the FM. To this end, we assume the existence (or
the possibility to obtain by some means) of working and actual
configurations of the system. The FM is evaluated over these
configurations to find existing constraints in the FM which
are not compatible with the existing configurations. This first
step gives feedback information on existing wrong constraints
(EWC) in the FM. These EWC of the FM, as long as the
existing system configurations that fail (SCF) to be validated
through the feature model, are returned.

2) Evaluating Configurations Generated from the Feature
Model with Respect to the System: This evaluation goes from
the FM to the system. Valid configurations of the FM2 are
randomly generated using a SAT solver [14]. These configu-
rations are then evaluated on the system side. To this end, the
tester decides whether the configurations are valid with respect
to the system and provides feedback when configurations
fail. We will consider that generally, the tester defines an
oracle which uses abstract rules to decide upon the validity of
configurations. The oracle depends on the system: for instance,
it can use execution information or compilation result, and
represents the task usually done by the tester. The oracle rules
that fail (ORF) as long as the generated configurations that
fail (GCF) according to the oracle are returned.

B. Fixing the Feature Model

This second step aims at fixing the FM based on the
feedback information collecting during the testing part. This
step is represented by the lower box of Figure 1.

In the following, a generic FM of n features and m clauses
or constraints is considered, with the formula of the FM in
conjunctive normal form (CNF). Thus, each constraint C is a
disjunction of k ≤ m literals, where a given literal represents
a selected or unselected feature of the FM. The formula of the
FM is of the form

∧n
i=1 Ci.

To fix the FM, three operations are considered:

1A valid configuration refers to a working configuration of the system.
2Here, a valid configuration is a configuration that satisfies the FM formula.

FMSystem

2) Evaluate generated configurations

1) Evaluate existing configurations

ORF, GCF EWC, SCF

)0¶

5HSODFH�)0�E\�)0¶�LI�

better feedback at the

next evaluation

Alter / remove / insert constraint

FM

config.

System

config.

Testing the FM

Fixing the FM

Feedback

Fig. 1. Test-and-Fix Loop. ORF are oracles rules that are violated on the
system side, GCF are the configurations generated from the FM that fail to
be validated on the system side, EWC are existing wrong constraints in the
FM and SCF are system configurations that do not satisfy the FM,

• Altering an existing constraint of the FM. Using the
EWC, a constraint of the FM is selected based on a
fitness proportionate selection and a randomly selected
literal of the selected constraint is negated,

• Removing an existing constraint of the FM. Using the
EWC, a constraint selected based on a fitness propor-
tionate selection is removed,

• Inserting a constraint in the FM. Using the ORF , a
constraint is added to the FM.

Performing one of this operation depends on a probability.
After having performed one of this operation, an updated FM,
FM’, is produced.

C. Continuous Improvement

Basically, the global approach consists in the repetition
of the testing and fixing steps. To this end, the problem is
formulated as a search-based one and a hill climbing technique
[15] is used. The approach works as follows. From a given
FM, the testing step provides feedback information and the
fixing part produces a modified FM FM’. Then, to decide
which FM to keep, i.e. the original or the fixed one, the
fitness of the original FM and the fitness of the fixed FM’
are compared. This comparison is performed using the four
feedback information of the testing step:
• s1: the number of EWC or #EWC,
• s2: the number of SCF , or #SCF ,
• s3: the number of ORF , or #ORF ,
• s4: the number of GCF , or #GCF .
Let us consider as s1, ..., s4 the feedback information of an

FM and as s′1, ..., s
′
4 the feedback information of the fixed FM

FM’. The updated FM FM’ will replace the original FM if and
only if a better fitness is observed for FM’. A better fitness
for FM’ occurs if the following condition is satisfied:

[(
∑4

i=1 s
′
i <

∑4
i=1 si)∧ (s′1 ≤ s1 ∧ s′2 ≤ s2 ∧ s′3 ≤ s3 ∧ s′4 ≤

s4)] ∨ (s′2 < s2 ∧ s′4 ≤ s4) ∨ (s′2 ≤ s2 ∧ s′4 < s4).

This condition allows ensuring that a decrease in one of the
four feedback information does not engender any negative
impact on the others and keeping the focus on reducing the

1246

configurations that fail. Finally, after having replaced or not
FM by FM’, the process is repeated from step (1). It should
be noted that the loop is general and independent of both the
way FMs are represented and the use of SAT solvers.

III. PRELIMINARY EVALUATION

To evaluate the proposed approach, we consider the Linux
kernel 2.6.28.6 FM [2], [13].

A. The Linux Kernel

The Linux kernel is an operating system written in C with
about 6,000 features. The re-engineered FM of the Linux
kernel contains about 200,000 constraints. In the context of
this study, an oracle is needed on the system side to decide
whether a given configuration derived from the FM is valid
or not. In the context of this study, we use the make tool as
the oracle. Alternatively, the user could decide himself (play
the role of the oracle) about the validity of the configurations.
Make is a tool that assist the compilation process of system
sources. To this end, make check rules which are specified
by dependencies between the features in Kconfig files. These
files are placed in the source code directories of the system.
We parsed these files to extract these dependencies and to
transform them into CNF constraints. It represents around
8,000 constraints. Thus, for a given configuration generated
from the FM, it is checked whether this configuration satisfy
or not the oracle rules. If yes, the configuration is considered as
a valid configuration of the system. Otherwise, it is considered
as invalid. It is noted that the use of make as an oracle to test is
specific to this study. The test-and-fix loop does not generally
depend on this oracle.

B. Evaluation of the Re-engineered Linux Kernel FM

The re-engineered FM contains several problems that have
been found while performing the testing process. Recall that
the testing process allows evaluating the FM through the
EWC, SCF , GCF and ORF feedback information.

First, problems occur when evaluating the re-engineered FM
formula with respect to valid configurations of the system. An
alternative option provided by make is the generation of valid
configurations of the system. The re-engineered FM has been
evaluated over 1,000 working system configurations produced
by make. By evaluating the FM through these working con-
figurations of the system, we found that 50 constraints in the
FM were not satisfied and none of these 1,000 configurations
were able to satisfy the FM. In addition, major issues were

highlighted such as mandatory features in the FM which never
appear in any valid configuration of the system.

Second, configurations generated from the FM do not satisfy
the constraints checked by the make tool (the oracle rules).
We found that for, any 1,000 configurations generated from
the FM, more than 28% of these constraints were not satisfied
and that all these 1,000 configurations generated from the FM
were invalid for the system. These problems are summarized
in the column “Re-engineered FM” of Table I. The existence
of these problems motivate the proposed approach.

C. Improving the FM

We executed our approach on the re-engineered FM. For all
the testing and fixing steps, we used 3 valid configurations of
the system. We could have use more valid configurations, but
in a realistic situation, only a small number of working con-
figurations should exist. These configurations were randomly
generated using make and used for all the repetitions of the
test-and-fix approach. For the generated configurations, 6 were
generated at each repetition of the approach. The probabilities
to execute one of the three operations were assigned as
follows: 0.5 for the alteration, 0.4 for the insertion and 0.1
for the removal.

Using the testing process, we evaluated the fixed FM at
different level of repetitions, as shown in Table I. The feedback
information were obtained using the same 1,000 valid system
configurations as those used for the evaluation of the re-
engineered FM and using 1,000 configurations generated from
the FM.

1) RQ1: The evaluation of the EWC, SCF , GCF and
ORF of the re-engineered FM emphasizes the inconsistencies
between this FM and the system. We believe that these simple
metrics characterize inconsistencies that may exist between
VIS, FMs representing their variability and oracles checking
the legality of VIS configurations. Yet, more detailed incon-
sistency types may be needed to improve user feedback and
drive the fixing process.

2) RQ2: The proposed approach uses both existing valid
configurations of the system and configurations generated from
the FM. By using only 3 valid configurations of the system,
the proposed approach allows reducing wrong constraints in
the FM while making the FM satisfiable towards existing
configurations of the system. After 5,000 repetitions of the
process, the proposed approach dropped system configurations
that fail from 1,000 to 455, and divided by more than the half
the violated rules of the system.

TABLE I
EVOLUTION OF THE FM PROBLEMS OVER THE REPETITIONS (TESTING FEEDBACK). EWC ARE EXISTING WRONG CONSTRAINTS IN THE FM, SCF ARE
SYSTEM CONFIGURATIONS THAT DO NOT SATISFY THE FM, ORF ARE ORACLES RULES THAT ARE VIOLATED ON THE SYSTEM SIDE AND GCF ARE THE

CONFIGURATIONS GENERATED FROM THE FM THAT FAIL TO BE VALIDATED ON THE SYSTEM SIDE.

Re-engineered FM Fixed FM at 2,000 runs Fixed FM at 3,000 runs Fixed FM at 4,000 runs Fixed FM at 5,000 runs
#EWC 50 46 43 41 39
#SCF 1,000 885 556 498 455
#ORF 2,468 1,646 1,395 1,236 1,084
#GCF 1,000 1,000 1,000 1,000 1,000

1247

IV. RELATED WORK

Efforts have been made to re-engineer FMs. She et al.
introduced procedures [2] to recover constructs such as manda-
tory features or implies edges to build graphs and provided
ranking heuristics to allow the modeler identifying the features
hierarchy. In the same context, an approach that builds FMs
from the feature sets describing the system variants based on
Evolutionary Algorithms has been proposed [12]. Acher et al.
[16] focused on maintaining a link with the products while
reverse engineering FMs. They also took into account the ar-
chitect’s knowledge to build FMs consistent with the software
architecture. The method presented in this paper complements
these approaches by introducing a way of validating the FM
they provide. In addition, our technique goes a step further by
automatically fixing the inconsistencies it identifies.

To debug configurations, Hubaux et al. [17] proposed a
fix-generation approach, called range fix to prevent wrong
configurations. Their strategy uses constraints solving to pro-
pose a list of valid assignments for enabling features. This
is done using an underlying model which contains the system
constraints. In [18], Tartler et al. presented an approach to find
and fix defects contained in implementations of configurations
of large-scale systems. It is a diagnostic tool which aims at
fixing the code. In the same lines, Segura et al. [19] presented
a framework for benchmarking and testing on the analysis of
FMs. This approach is able to automatically detect faults in the
analysis tools that operates on a FM. Our approach operates
on the FM itself and aims at testing whether its constraints
are consistent, and if they are not, to fix them.

Search-based techniques have also been used to perform
automatic program improvement. In [20], Langdon et al.
proposed an approach to improve the lines of code of a system.
Based on a fitness function and population of patches, they
evolved the original code into a faster version while keeping
the semantic of the code at least unchanged or better. Similarly,
in [21], Le Goues et al. presented a scalable genetic cloud
computing oriented technique to repair erroneous programs.

V. CONCLUSION AND FUTURE WORK

Fixing a re-engineered FM to make it in consistent with its
corresponding system is not an easy task. It requires a lot of
efforts to first check existing constraints and then correct them.
In practice, it represents a manual work difficult to realize.

In this paper, a test-and-fix loop to automatically improve
re-engineered FMs was presented. This loop is implemented
using a search-based technique, since the exploration space
makes impossible the application of other non-scalable ap-
proaches. The proposed approach tries to make the FM
conform to the real system. The novelty of this approach
is that it achieves to effectively automate the identification
and correction of FMs inconsistencies. It is the first ap-
proach, to the authors knowledge, that actually employs and
checks actual configurations on a real system while most re-
engineering techniques do not face the generation of real
system configurations. The preliminary study conducted on
the Linux kernel FM provides promising results as it allows

reducing the problems observed in the FM, thus making the
it reflect the real system.

Finally, there is room for improvement. We will first inves-
tigate inconsistency types to exhibit fine-grained ones to guide
more effectively the fixing process. We will then explore our
testing-and-fix approach in the context of VIS evolution.

ACKNOWLEDGMENT

This work is supported by the Fonds National de la
Recherche (FNR), Luxembourg, under the MITER project
C10/IS/783852.

REFERENCES

[1] http://www.configurator-database.com, 2011.
[2] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse

engineering feature models,” in ICSE, 2011, pp. 461–470.
[3] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-

oriented domain analysis (foda) feasibility study,” Technical Report
CMU/SEI-90-TR-21, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[4] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux, “Feature diagrams: A
survey and a formal semantics,” in RE, 2006, pp. 136–145.

[5] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, pp. 615–636, 2010.

[6] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz,
and S. Apel, “Featureide: A tool framework for feature-oriented software
development,” in ICSE, 2009, pp. 611–614.

[7] D. S. Batory, “Feature Models, Grammars, and Propositional Formulas.”
in SPLC. Springer, 2005, pp. 7–20.

[8] E. K. Abbasi, A. Hubaux, and P. Heymans, “A toolset for feature-based
configuration workflows,” in SPLC, 2011, pp. 65–69.

[9] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. L. Traon, “Pair-
wise testing for software product lines: comparison of two approaches,”
Software Quality Journal, vol. 20, no. 3-4, pp. 605–643, 2012.

[10] M. Mendonça, A. Wasowski, and K. Czarnecki, “Sat-based analysis of
feature models is easy,” in SPLC, 2009, pp. 231–240.

[11] D. Le Berre and A. Parrain, “The sat4j library, release 2.2, system de-
scription,” Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), vol. 7, pp. 59–64, 2010.

[12] R. E. Lopez-Herrejon, J. Galindo, D. Benavides, S. Segura, and
A. Egyed, “Reverse engineering feature models with evolutionary algo-
rithms: An exploratory study,” in SSBSE, vol. 7515, 2012, pp. 168–182.

[13] “Tools for analyzing variability in the linux kernel,” http://code.google.
com/p/linux-variability-analysis-tools/source/browse/?repo=formulas.

[14] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test suites for large software
product lines,” CoRR, vol. abs/1211.5451, 2012. [Online]. Available:
http://arxiv.org/abs/1211.5451

[15] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach, 1996.

[16] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire,
“Reverse engineering architectural feature models,” in ECSA, 2011, pp.
220–235.

[17] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range fixes
for software configuration,” in ICSE, 2012, pp. 58–68.

[18] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and
D. Lohmann, “Revealing and repairing configuration inconsistencies in
large-scale system software,” International Journal on Software Tools
for Technology Transfer (STTT), pp. 1–21, 2012.

[19] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-
Cortés, “Betty: benchmarking and testing on the automated analysis of
feature models,” in Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems, 2012, pp. 63–71.

[20] W. B. Langdon and M. Harman, “Genetically improving 50000 lines
of C++,” Department of Computer Science, University College London,
Research Note RN/12/09, 19 Sep. 2012.

[21] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in ICSE, 2012, pp. 3–13.

1248

