
NavClus: A Graphical Recommender for Assisting
Code Exploration

Seonah Lee∗, Sungwon Kang∗, Matt Staats†

∗Department of Computer Science
KAIST

Daejeon, Republic of Korea
{saleese|kang}@cs.kaist.ac.kr

†Division of Web Science and Technology
KAIST

Daejeon, Republic of Korea
staatsm@kaist.ac.kr

Abstract—Recently, several graphical tools have been proposed
to help developers avoid becoming disoriented when working with
large software projects. These tools visualize the locations that
developers have visited, allowing them to quickly recall where
they have already visited. However, developers also spend a sig-
nificant amount of time exploring source locations to visit, which
is a task that is not currently supported by existing tools. In this
work, we propose a graphical code recommender NavClus, which
helps developers find relevant, unexplored source locations to
visit. NavClus operates by mining a developer’s daily interaction
traces, comparing the developer’s current working context with
previously seen contexts, and then predicting relevant source
locations to visit. These locations are displayed graphically along
with the already explored locations in a class diagram. As a
result, with NavClus developers can quickly find, reach, and
focus on source locations relevant to their working contexts.
http://www.youtube.com/watch?v=rbrc5ERyWjQ

I. INTRODUCTION

Developers, as humans, occasionally forget what they have
done and plan to do. On a daily basis, developers perform
multiple tasks, with interruption being an unavoidable part
of software development. In order to understand and modify
large, complex software systems, they must visit many source
locations. While visiting these locations, two problems can
occur. First, as the number of visited locations increases,
developers may struggle to recall where they have already
visited, and thus become disoriented in the code base [1].
Second, developers generally cannot remember the detailed
structure of complex code bases, and must actively explore to
understand how to modify the system, a task that can be quite
challenging [2].

To assist developers confronted with these problems, several
graphical tools have been developed to visualize the locations
developers have visited in the code base. For example, Relo
visualizes methods and fields visited by a developer in a
class diagram [3]. Similarly, Code Bubble visualizes the code
fragments and documents visited by a developer [4]. However,
these tools only address the first problem, developer disorienta-
tion [1]: these tools remind developers where they have visited,
but cannot suggest unvisited locations to explore further.
NavTracks suggests files to visit, but limits its visualization
to showing clusters of visited files [5].

In this paper, we propose a new graphical code recom-
mender to visualize source locations that developers have
already visited, as well as suggest source locations that
developers are likely to find relevant. This tool addresses
the second problem [2] by suggesting unvisited locations for
further exploration. It is based on our previous work on the
technique that mines developer interaction traces, identifies the
developer’s working context, and uses this information to rec-
ommend other relevant source locations [6]. The demonstrated
tool NavClus implements this recommendation technique with
the extension of a graphical user interface based on class
diagrams with the goal of improving the usability of our
recommendations [6][7].

To the best of our knowledge, the NavClus tool is the first
tool to visualize source location recommendations in a class
diagram, and the first to both visualize already visited source
locations and recommended source locations. We believe the
addition of recommendations in a class diagram will greatly
facilitate developers’ code exploration activities.

This paper is organized as follows. Section II presents
an example use case for NavClus. Section III describes the
architecture of NavClus. Section IV explains our evaluation
plan, and Section V discusses how this work can be extended
with additional functionality. Section VI concludes this paper.

II. EXAMPLE USE CASE

Let us suppose that Jim, a developer, is working on the
JHotDraw 6.01 editor. Jim is trying to fix a menu in the
editor which fails to draw the correct arrow tip1. Jim begins by
opening the file that includes the main function, and searches
for possibly relevant source locations in a top-down fashion.
He eventually discovers the method “createArrowMenu()”,
but does not understand how to modify it, as the method
consists of over ten other methods scattered across several
files. Accordingly, Jim navigates over ten paths through the
source code to determine which methods should be edited to
correct the bug. During this extensive exploration process, Jim
becomes disoriented, and forgets which source code locations
he has investigated. Furthermore, Jim must continually identify

1This example is derived from a programming task outlined in [8].

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Formal Demonstrations

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1315



Fig. 1. NavClus User Interface

new source code locations to explore, a challenging process
given the large number of candidate methods.

NavClus is designed to help Jim both in coping with
disorientation during exploration [1] and in identifying
new source locations to explore [2]. To reduce disorien-
tation, NavClus incrementally displays where the devel-
oper has visited. For example, as Jim explores beyond
DrawApplication.createArrowMenu(), this method is
shown in a class diagram, with relationships to newly visited
classes and methods displayed. This was done by a previous
tool Relo [3], and we have adopted their approach for help-
ing developers understand how their current source locations
relates to already visited ones.

To aid in identifying new source locations, NavClus
recommends relevant but unexplored methods. For example,
when Jim visits DrawApplication.createArrowMenu(),
other relevant methods to visit such as Poly-

LineFigure.setAttribute() and ChangeAttribute-

Command.execute() are recommended in a class diagram,
as shown in Figure 1. By referring to these locations, Jim can
easily determine the source locations to visit and examine.

To the best of our knowledge, NavClus is the first tool to
implement this function in a class diagram. By using the same
format for both displaying explored source code locations
and for recommending new locations to visit, we believe
developers can more easily explore the code base.

III. NAVCLUS OVERVIEW

NavClus is built around the notion of navigation contexts,
which roughly corresponds to a network of method views and
edits [6]. This approach is implemented as an extension to
the Eclipse IDE for easy use by developers. Figure 1 shows
the user interface of NavClus, which can be separated from
the Eclipse IDE. This separation helps a developer who uses
multiple monitors be able to refer to the diagram in the side

monitor, while performing coding tasks in the main monitor.
Within this interface, NavClus performs five core functions:

• Display history: As a developer navigates the code base,
the methods and classes already explored incrementally
appear in a class diagram.

• Create and display recommendations: Based on the
current working context and previously seen working
contexts, recommendations for additional methods to
explore are presented in the class diagram.

• Update diagram layout: Developers can manually rear-
range the class diagram via the mouse, or can let NavClus
automatically update the layout for readability.

• Jump to source locations: Previously visited or recom-
mended source locations can be visited by double clicking
on the methods in the class diagram.

• Collecting interaction traces: As a developer visits and
edits methods and classes, the developer’s actions are
recorded as interaction traces. This information is used
to improve later recommendations.

Figure 2 shows the architecture of NavClus, which consists
of four components: the user interface, the mining engine, the
recommendation engine, and the data collector.

A. User Interface

The user interface monitors the developer’s actions and
updates the displayed class diagram, showing two types of
locations. First, the interface displays source locations that
have been visited or edited by the developer, providing an at-a-
glance record. Second, the interface displays source locations
that may be relevant to the developer’s current task, with
the goal of reducing the effort and time needed to complete
the task. Both previously visited source locations and recom-
mended source locations can be visited by double clicking on
the appropriate graphical element. The user interface consists
of two components: the monitor and the visualizer.

2
1316



• Monitor: Keeps track of developer actions such as visits
and edits, and creates the records of these actions. The
monitor was implemented using Mylyn2.

• Visualizer: Receives source locations as input and and
presents them in a class diagram. The visualizer was
implemented using zest and draw2d libraries of the
GEF3.

Note that NavClus currently has two separate modes of visu-
alization: displaying history, and displaying recommendations.
History is displayed in scenarios where recommendations can-
not be made (i.e., when not enough data has been collected).
During recommendation already explored locations are not
suggested. This separation was done to avoid overly cluttering
the diagram and confusing the developer.

B. Mining Engine

The mining engine mines contextual collections of source
code locations in interaction traces [6]. Essentially, the mining
engine performs clustering over sets of source locations,
represented as methods [6]. This set is passed to the collection
database as mined collections. Three steps are performed
during mining:

1) Sequence Generator: Creates short navigation se-
quences using a developer’s interaction trace. The trace
is cut when a developer revisits a method, resulting in
a short navigation sequence.

2) Micro-cluster Generator: Collects navigation se-
quences beginning with the same method. As each
sequence starts with the same method, this results in
collections of code that have elements connected via
developer navigation actions, so-called micro-clusters.

3) Macro-cluster Generator: Clusters similar collections
of code using a cosine similar metric, which produces
a similarity value between zero and one [9]. Two col-
lections of code are assumed to be similar if they show
higher than 0.5 cosine similarity value. The resulting
collections of code are called macro-clusters. To cre-
ate a macro-cluster, the k-nearest neighbour clustering
algorithm is used [9]. In this algorithm, each micro-
cluster is merged with the first similar macro-cluster in
a comparison loop. If there is no similar macro-cluster,
the micro-cluster becomes a macro-cluster.

C. Recommendation Engine

The recommendation engine recommends locations to visit
after a developer visits several locations [6]. The recommen-
dation engine selects the set of locations which best matches
the developer’s current context. This set is passed to the
user interface as a recommendation. Two steps are performed
during recommendation:

1) Context Former: Forms a query after a developer has
performed three actions (visiting or editing source code).

2http://www.eclipse.org/mylyn/
3http://www.eclipse.org/gef/

Fig. 2. NavClus Architecture

The query represents the developer’s current context.
The query is then passed to the next step.

2) Collection Selector: Retrieves the results matching the
query. The best result is passed to the user interface.

D. Data Manager

Collections of code are kept for later recommendations. The
data manager consists of two components: Collection Retriever
and Collection DB.

• Collection Retriever: Retrieves the macro-clusters that
have the highest similarity value when being compared
with the query. To best judge the similarity of macro-
clusters with a few locations of the query, the TF/IDF
similarity metric is used [9]. For performance, an inverted
index algorithm is used when accumulating and retrieving
macro-clusters [10].

• Collection DB: Stores macro-clusters, updating whenever
user actions occur. We intend to implement this as a
database eventually, but the current prototype uses history
files mined during NavClus startup.

IV. EVALUATION PLAN

To evaluate and understand NavClus’s effectiveness, we
intend to explore two questions:

1) Can the recommendation of source locations help a
developer navigate the code base more effectively?

2) How many days of development are required before the
initial recommendations can be made?

To answer these questions, we have planned a diary study. In
a diary study, subjects are asked to keep a long-term record of
their everyday experiences, from which researchers can infer
underlying patterns [11].

We plan to recruit ten or more subjects for our diary study.
The subjects will be required to develop their projects in
the Java language using the Eclipse IDE in conjunction with
NavClus. Three phases are currently planned.

3
1317



In the first phase, preparation, the subjects will be asked
to list background information, such as their development
histories and information related to their projects. The subjects
will then be asked to install NavClus and a screen capture
program.

In the second phase, reporting, the subjects will be asked
to write a daily diary report. In each diary report, they will be
asked to describe situations in which they select to use Nav-
Clus, to describe NavClus recommendations they found useful
or interesting, and to provide open-ended, honest feedback on
NavClus’s effectiveness and usefulness. The subjects will be
asked to send more than seven diary reports within 3 weeks.

In the final phase, the subjects will be interviewed. Each
subject will be asked to numerically evaluate NavClus (1-
5) and to describe about any past experience dealing with
diagramming tools and experience with NavClus.

By conducting this diary study, we intend to determine
the effectiveness of NavClus in daily routine development,
both quantitatively and qualitatively. In particular, we hope to
determine which aspects of NavClus are preferred by users:
the functionality for tracking where the developer has visited,
the functionality for recommending new source locations to
visit, or both.

V. FUTURE WORK

NavClus is focused on improving individual developers’
ability to explore and understand large code bases, and our
evaluation reflects this. However, we believe NavClus can also
improve software development teams’ ability to understand
their code bases. In particular, we believe we can improve the
current NavClus system by reducing the time required for new
team members to understand the code base, and by using data
from developers simultaneously working on the code base.

A. Contextual Knowledge Transfer

Software development teams often experience turnover, with
new developers struggling to understand an unfamiliar, com-
plex code base. We are interested if developer interaction his-
tories from more experienced developers can be used by new
developers to reduce the spinup time when joining a project,
allowing new developers to accomplish tasks with less effort
than if they had used their own interaction histories. Evaluating
this, however, requires both an extension of NavClus and a
substantially more complex evaluation, and thus we leave it
for future work.

B. Collaborative Comprehension

A software development team generally consists of two or
more developers, who collaborate together. From the perspec-
tive of computer supported cooperative work / collaborative
filtering research, NavClus is an attempt to resolve the cold
start problem of addressing who will be the first to provide
the data that others will use. When developing systems like
NavClus, information providers should receive a direct benefit,
as otherwise they will be reluctant to invest effort into the
system [12]. We achieve this by focusing benefiting individual

developers using NavClus. In later work, we plan to consider
how multiple programmers’ interaction traces can be best
combined to improve the productivity for multiple developers.

VI. CONCLUSION

In this work, we presented a graphical code recommender,
NavClus, for reducing disorientation when exploring large
code bases and for recommending additional locations to visit.
This approach is based on automatically visualizing source
code locations, both visited and recommended, in a class
diagram based on the developer’s current and past working
contexts. We believe that presenting this information alongside
the source code editor, will reduce the mental effort required
to understand the task at hand. As this approach is completely
automated, no additional burden is placed upon the developers.

We plan to evaluate our approach in a realistic development
environment using a diary study. This study is intended to help
us better understand how NavClus helps developers navigate
large code bases, and how it can be further improved. In future
work, we will also explore how the effort of several developers
working on the same project can be best aggregated to improve
source recommendations for all developers involved.

ACKNOWLEDGMENT

This research was funded by the Ministry of Knowledge
Economy (I2001-12-1095), and supported by the World Class
University program (R31-30007) and the Basic Science Re-
search Program (2012-0007069) funded by the Ministry of
Education, Science and Technology, Republic of Korea.

REFERENCES

[1] B. D. Alwis and G. C. Murphy, “Using Visual Momentum to Explain
Disorientation in the Eclipse IDE,” in IEEE Symposium on Visual
Languages and Human Centric Computing, 2006.

[2] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proc. of the 32nd ACM/IEEE Int’l Conf. on Software Engineering,
2010.

[3] V. Sinha, D. Karger, and R. Miller, “Relo: Helping users manage context
during interactive exploratory visualization of large codebases,” in Visual
Languages and Human-Centric Computing, 2006.

[4] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Ka-
plan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles:
rethinking the user interface paradigm of integrated development en-
vironments,” in Proc’ of the 32nd ACM/IEEE Int’l Conf. on Software
Engineering, 2010.

[5] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software,” in Proceedings of the 13th International Workshop on
Program Comprehension, 2005.

[6] S. Lee and S. Kang, “Clustering and recommending collections of code
relevant to tasks,” in 27th IEEE Int’l Conf. on Software Maintenance,
2011.

[7] ——, “A study on guiding programmers code navigation with a graphi-
cal code recommender,” Studies in Computational Intelligence, vol. 377,
pp. 61–75, 2012.

[8] I. Safer and G. C. Murphy, “Comparing episodic and semantic interfaces
for task boundary identification,” in Proc. of the 2007 Conf. of the Center
for Advanced Studies on Collaborative research, 2007.

[9] J. Han and M. Kamber, “Data mining : Concepts and techniques,”
Techniques, 2006.

[10] D. A. Grossman and O. Frieder, Information Retrieval: Algorithms and
Heuristics, 2004, vol. 461.

[11] W. Terry, “Everyday forgetting: Data from a diary study,” Psychological
reports, vol. 62, no. 1, 1988.

[12] J. Grudin, “Groupware and social dynamics: eight challenges for devel-
opers,” Communications of the ACM, vol. 37, no. 1, 1994.

4
1318


