
Building High Assurance Secure Applications using Security
Patterns for Capability-based Platforms

Author:
Rimba, Paul

Publication Date:
2016

DOI:
https://doi.org/10.26190/unsworks/18776

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/55596 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/https://doi.org/10.26190/unsworks/18776
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/55596
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Building High Assurance Secure Applications

using Security Patterns for Capability-based

Platforms

by

Paul Rimba

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

FACULTY OF ENGINEERING

March, 2016

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

c© 2016 by Paul Rimba

PLEASE TYPE

Surname or Family name: Rimba

First name: Paul

THE UNIVERSITY OF NEW SOUTH WALES
Thesis/Dissertation Sheet

Other name/s:-

Abbreviation for degree as given in the University calendar: PhD

School: Computer Science and Engineering Faculty : Engineering

Title: Building High Assurance Secure Applications using Security Patterns for Capability-based Platforms

Abstract 350 words maximum: (PLEASE TYPE)

Building a secure software system is difficult and requires significant expertise and effort. A secure system requires a secure design, a
secure implementation of that design, and a secure platform on which the implementation executes. Furthermore, it must also provide
assurances about its security properties. Security patterns have been proposed to help the design of secure systems. However,
security patterns are written independently of the specifics of the underlying platforms. This leaves a gap between security patterns and
the underlying platform. Furthermore, composition of security patterns is challenging because each pattern uses different design
elements and may target different security requirements.

The aim of this research is to improve our understanding of the design of high assurance secure applications. The main contributions
of this thesis are a pattern-based composition approach to incrementally build and verify application designs. The approach reuses
security knowledge from security patterns, and security mechanisms from secure underlying platforms. I propose the concept of a
design fragment as an instantiation of a security pattern for a specific platform. This allows for design-level verification to provide
assurance about security properties. Six primitive operations are provided for composition and are proven to preserve confidentiality. A
collection of 277 security patterns from existing literature is synthesized. Each pattern is defined in a new security pattern template
which is based on previous pattern templates.

The contributions are evaluated using two case studies from different domains, a Continuous Deployment (CD) pipeline and an
electricity Smart Meter. These case studies show that the approach applies across different domains. The design fragments and their
verification procedures are reusable and the composition tactics are sufficient to express steps in the design of a secure software
system.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all
property rights, such as patent rights . I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfil s to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only) .

I

... O.s./.~ ~.r.~.~. ~ .~
Signatur Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances andre uire the a roval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award :

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

ORIGINALITY STATEMENT

'I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from ot~ers ·n the project's design and conception or
in style, presentation and linguistic ex ssion is acknowledged.'

Signed

Date O .. ?../o.?./?9.fR

COPYRIGHT STATEMENT

'I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for~rtial restriction of the digital copy of
my thesis or dissertation.'

Signed (....

Date 0 :~ f.q. ?.! ~.qJ.&.

AUTHENTICITY STATEMENT

'I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations. in t rmatting, they are the result of the
conversion to digital format.'

Signed

Date 9. ~/. 03.1.?: q .1. ~

List of Publications by Thesis Author

The work presented in this thesis has resulted in the following formal publications. The-

sis author, Paul Rimba, is the main contributor of the papers where he is the first author.

He also presented the conference papers at the respective conference venues.

1. Paul Rimba. Building High Assurance Secure Applications Using Security Pat-

terns for Capability-based Platforms. In Proceedings of the 35th International

Conference on Software Engineering, 2013, San Francisco, California, USA. IEEE

Press.

• The thesis author is the sole author of this paper. The main idea in this paper

was developed by the thesis author and was improved with the help of his

supervisors, Dr. Liming Zhu and Dr. Mark Staples. The work in this paper

is reported throughout the thesis.

2. Paul Rimba, Liming Zhu, Len Bass, Ihor Kuz and Steve Reeves. Composing

Patterns to Construct Secure Systems. In Proceedings of the 11th European De-

pendable Computing Conference, 2015, Paris, France. IEEE Computer Society.

• The thesis author is the main contributor to this paper. He wrote the majority

of the paper and performed the modelling and analysis. The main idea was

developed by the thesis author and was improved with suggestions and feed-

backs from the co-authors. The co-authors also improved the quality of the

writing and formal notation in the paper. The work in this paper is reported

throughout the thesis.

3. Len Bass, Ralph Holz, Paul Rimba, An Binh Tran and Liming Zhu. Securing a De-

ployment Pipeline. In Proceedings of the 3rd International Workshop on Release

Engineering, 2015, Firenze, Italy. IEEE Computer Society.

• The thesis author helped to write several sections of the paper and contributed

to the idea in this paper, which is partly based on Rimba, Zhu, Bass, Kuz and

Reeves (2015). The work in this paper is reported in Chapter 7.

4. Paul Rimba, Liming Zhu, Xiwei Xu and Daniel Sun. Building Secure Applications

using Pattern-Based Design Fragments. In Proceedings of the 34th International

Symposium on Reliable Distributed Systems, 2015, Montreal, Canada. IEEE Com-

puter Society.

• The thesis author wrote the majority of the paper and performed the mod-

elling and analysis. The main idea was developed by the thesis author and

his supervisors. The co-authors improved the quality of the writing in the

paper. The work in this paper is reported in Chapter 7.

5. Paul Rimba, Liming Zhu, Mark Staples and Steve Reeves. Property Preserving

Composition Tactics for Building Secure Systems. to be submitted.

• The thesis author is the main contributor to this paper. He wrote the majority

of the paper. The formal notation was improved with the help of the co-

authors. The co-authors also helped to improve the quality of the paper.

Dedicated to God, my parents and my brother

Abstract

Building a secure software system is difficult and requires significant expertise and ef-

fort. A secure system requires a secure design, a secure implementation of that design,

and a secure platform on which the implementation executes. Furthermore, it must also

provide assurances about its security properties. Security patterns have been proposed to

help the design of secure systems. However, security patterns are written independently

of the specifics of the underlying platforms. This leaves a gap between security patterns

and the underlying platform. Furthermore, composition of security patterns is challeng-

ing because each pattern uses different design elements and may target different security

requirements.

The aim of this research is to improve our understanding of the design of high as-

surance secure applications. The main contributions of this thesis are a pattern-based

composition approach to incrementally build and verify application designs. The ap-

proach reuses security knowledge from security patterns, and security mechanisms from

secure underlying platforms. I propose the concept of a design fragment as an instantia-

tion of a security pattern for a specific platform. This allows for design-level verification

to provide assurance about security properties. Six primitive operations are provided

for composition and are proven to preserve confidentiality. A collection of 279 security

patterns from existing literature is synthesized. Each pattern is defined in a new security

pattern template which is based on previous pattern templates.

i

The contributions are evaluated using two case studies from different domains, a

Continuous Deployment (CD) pipeline and an electricity Smart Meter. These case stud-

ies show that the approach applies across different domains. The design fragments and

their verification procedures are reusable and the composition tactics are sufficient to

express steps in the design of a secure software system.

ii

Acknowledgements

First of all, I would like to thank my Heavenly Father who taught me that in Him, all

things are possible. He is my cornerstone and provider in times of darkness during the

course of this thesis.

I would like to thank my parents for instilling principles of life and perseverance in

me, which is essential for this journey. I owe my deepest gratitude to my parents for their

enormous sacrifice to be apart from me in order to allow me pursue my future. Also, I

would like to thank my brother, Johan, for his unconditional support and encouragement

during the course of my PhD.

I am most indebted to my two supervisors Dr. Liming Zhu and Dr. Mark Staples

for their conscientious and dedicated supervision over the years. Their guidance and

wisdom were invaluable, which have improved this work tremendously more than I can

say. I want to thank Dr. Zhu for trusting me to embark on this journey with complete

freedom to explore different possibilities and for the support to attend different events

and conferences. In addition, I would like to thank Dr. Staples for patiently examining

my dissertation. I could not have asked for better supervisors.

I would also like to thank Prof. Len Bass for his guidance over the years in NICTA,

especially in the initial stages in defining the research directions. I am thankful for

Dr. Ihor Kuz for allowing me to be a part of the security architecture project, for the

guidance and for examining parts of my thesis. I would also like to thank Dr. Toby

iii

Murray for the valuable discussions about security and formalism and moral support. I

want to also thank Prof. Steve Reeves for the opportunity to collaborate on the formalism

of the composition tactics in Chapter 5.

I would like to express my gratitude to the anonymous reviewers of the papers pub-

lished. They have provided invaluable suggestions and comments, which have vastly

improved this research.

I would like to thank the co-authors of all my publications. Your invaluable sugges-

tions, comments and perceptions have taught me patience, open-mindedness and profes-

sionalism.

A number of people have provided enormous support to me during the course of this

thesis. My heartfelt appreciation goes to my friends, both in Sydney and back home,

for their love and support. I am grateful for these wonderful folks: Anthony Kotanto,

Adi Kurniawan, Daniel Dermawan, Michelle Widjaja, Yufi Tukiaty, and Stephanie Gu-

nawan, whose constant support have kept me sane and pushed me to completion. My

colleagues at NICTA, Dr. Xiwei Xu, Dr. Liang Zhao, Dr. Daniel Guimarans, Dr. Daniel

Sun, Dongyao Wu, An Binh Tran, and Dr. Dana Kusumo, you have been a constant

source of inspiration and encouragement. To my friends and colleagues whose names

are not mentioned, you are also an essential part of this journey and thank you for adapt-

ing your schedule to accommodate mine and for bearing with me over the years.

iv

Contents

Abstract i

Acknowledgements iii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Research Aim and Questions . 3

1.2 Research Contributions . 3

1.3 Research Method . 5

1.4 Thesis Organization . 8

2 Background and related work 11

2.1 Capabilities . 11

2.1.1 Capability Implementation Schemes 13

2.1.2 Distributed Capability-based Systems 15

2.1.3 Single Machine Capability-based Systems 20

2.1.4 Serscis Access Modeller (SAM) 24

2.1.5 Conclusions . 26

v

2.2 Security Patterns . 27

2.2.1 Organization and Recognition of Patterns 27

2.2.2 Selection of Patterns . 32

2.2.3 Verification of Security Requirements with Patterns 34

2.2.4 Application of Patterns . 37

2.2.5 Composition of Patterns . 38

2.2.6 Conclusion . 40

2.3 Assurance Cases . 40

3 A New Security Pattern Catalog 43

3.1 Security Pattern Template . 43

3.2 Search Strategy . 47

3.3 Security Pattern Catalog . 50

4 Capability-specific Design Fragments 57

4.1 What is a Design Fragment? . 58

4.2 Capability-specific Design Fragment 59

4.3 Design Fragment Representations . 60

4.4 Deriving Design Fragments from Security Patterns 61

4.5 Examples . 63

4.5.1 Secure Logger Pattern . 63

4.5.2 Encrypted Storage Pattern . 68

5 Composition of Design Fragments 75

5.1 Composition Tactics . 77

5.1.1 Connect Tactic . 78

5.1.2 Disconnect Tactic . 79

5.1.3 Create Tactic . 80

vi

5.1.4 Delete Tactic . 80

5.1.5 Grant Tactic . 81

5.1.6 Revoke Tactic . 82

5.2 Composition Tactic Soundness . 82

5.2.1 Connect Tactic . 83

5.2.2 Disconnect Tactic . 84

5.2.3 Create Tactic . 85

5.2.4 Delete Tactic . 86

5.2.5 Grant Tactic . 87

5.2.6 Revoke Tactic . 88

5.2.7 Sequences of Tactics . 89

5.3 Higher-level Composition Tactics . 89

5.4 Composing Design Fragments to Support an Assurance Case 91

6 Verification Procedures 93

6.1 Points-To analysis using Binary Decision Diagrams (BDD) as Database

Queries . 94

6.2 Verification Procedure . 95

6.3 Security Property Template . 96

6.4 Discussion . 100

7 Evaluation 103

7.1 Continuous Deployment Pipeline . 104

7.1.1 Background . 105

7.1.2 Existing Security Mechanisms 108

7.1.3 Threat Model . 110

7.1.4 Securing the Continuous Deployment Pipeline 111

vii

7.1.5 Discussion . 123

7.2 Smart Meter . 124

7.2.1 Background . 125

7.2.2 Secure Smart Meter Design 128

7.2.3 Discussion . 146

8 Verified Design to Implementation 147

8.1 SAM to CapArch . 147

8.1.1 Verification Procedure to Taint Analysis 153

8.2 CapArch to CAmkES . 156

8.3 Discussion . 160

9 Conclusion and future work 162

9.1 Discussion . 164

9.2 Future work . 166

Bibliography 168

A Smart Meter Requirements 184

B Sample Security Patterns Catalog 192

C Security Patterns Catalog 197

C.1 Security Patterns . 197

C.2 Non-Design Security Patterns . 226

viii

List of Figures

1.1 Overview of my research method . 7

2.1 Amoeba Capability Structure . 16

2.2 Password Capability Structure . 16

2.3 Annex Capability Structure . 18

2.4 Cambridge CAP Process Hierarchy. (redrawn based on (Levy, 1984)) . 23

2.5 Cambridge CAP Capability and Access Rights Format (redrawn based

on (Levy, 1984)) . 23

2.6 Assurance case with Claim-Argument-Evidence Notation 41

2.7 Assurance case with Goal Structure Notation 41

3.1 Security Properties Distribution . 54

3.2 Pattern Publication Year Trends . 56

4.1 Secure Logger Graphical Representation (baseline) 68

4.2 Encrypted Storage Design Fragment 74

6.1 Verification Procedure from template 98

6.2 Checksum Calculator . 101

7.1 Generic Continuous Deployment pipeline (Bass et al., 2014) 106

7.2 Continuous Deployment Assurance Case (subset) 113

ix

7.3 Initial design of the CD pipeline. This shows the structure of the initial

design of the pipeline, where an arrow pointing to a component repre-

sents holding a capability to it. 114

7.4 Initial design of the CD pipeline with infiltrated Jenkins. This figure

shows the model after all the possible accesses are propagated. There

are four security violations in this figure, which are represented as four

red arrows. These arrows are: operator to imageBucket, operator to

codeBucket, operator to credentialBucket, and operator to configBucket.

The operator is not allowed to have access to these four components but

gained access from the infiltrated jenkinsInstance. 116

7.5 Authentication Enforcer Design Fragment. All the arrows are in green,

which means that the functions of each component has been invoked. . . 117

7.6 Jenkins with the Authenticator Enforcer Pattern. The secureBaseAc-

tion intermediates and authenticates jenkinsInstance’s access to config-

Bucket, codeBucket, and credentialBucket. The jenkinsInstance has to

store its identification information in requestContext and then provides

the requestContext to secureBaseAction. 118

7.7 Jenkins with Image Builder and Integrity Checker. All the arrows are

in green, which means that the functions of each component has been

invoked. 119

7.8 Encrypted Storage Design Fragment. All the arrows are in green, which

means that the functions of each component has been invoked. 120

7.9 The testing environment of the Continuous Deployment (CD) pipeline.

All the arrows are in green, which means that the functions of each com-

ponent has been invoked. 122

x

7.10 Testing to Production disallowed. There is a security violation, which is

represented as one red arrow from the ec2Instasnce to the ProductionDB.

This is a security violation because any components in the testing envi-

ronment should not have access to a component in the production en-

vironment. The ec2Instance is a component in the testing environment

while the ProductionDB is in the production environment. 123

7.11 Smart Meter Architecture Full Perspective 126

7.12 AMI Architecture Full Perspective (The Advanced Security Accelera-

tion Project, 2010) . 127

7.13 Assurance Case for Smart Meter Logging 129

7.14 Model I . 131

7.15 Secure Logger Design Fragment and Model II 132

7.16 Model II with Malicious User Attack. This figure shows that the

malUser does not have access to file. The logger, loggerUnknown and

malUser components are components with untrusted behaviors. 133

7.17 Model II with External Access Attack. There are two security violations,

which are represented as two red arrows: malUser to file and loggerUn-

known to file. The box around the file component depicts that it is made

public, which means that all untrusted components are granted access to it.134

7.18 Encrypted Storage Design Fragment. All the arrows are in green, which

means that the functions of each component has been invoked. 135

7.19 Model III (with Secure Logger and Encrypted Storage). All the arrows

are in green, except the black arrow file to logger, which means that the

functions of each component has been invoked. The black arrow depicts

that file do not invoke any function of logger. 137

xi

7.20 Model III with Malicious User Attack. This figure shows the state of

Model III after all the possible accesses have been propagated in the

presence of the malUser. There is no component, except the encrypted-

Storage, that has an access to both the file and key simultaneously. . . . 138

7.21 Model III with External Access Attack. This figure shows the state of

Model III after all the possible accesses have been propagated in the

presence of the malUser and the external access attack. There is no

component, except the encryptedStorage, that has an access to both the

file and key simultaneously. The box around the file component depicts

that it is made public, which means that all untrusted components are

granted access to it. 139

7.22 Authentication Enforcer Design Fragment 140

7.23 Authorization Enforcer Design Fragment 141

7.24 Model IV . 142

7.25 Model IV with Malicious User Attack. This figure shows the state of

Model IV after all the possible accesses have been propagated in the

presence of the malUser. There is no component, except the encrypt-

edStorage, that has an access to both the file and key simultaneously.

Furthermore, only the authorizationProvider that has an access to the

accessStore component. In addition, there is no component, except the

authenticationEnforcer, has an access to userStore. The box around the

file component depicts that it is made public, which means that all un-

trusted components are granted access to it. 144

xii

7.26 Model IV with External Access Attack. This figure shows the state of

Model IV after all the possible accesses have been propagated in the

presence of the malUser and the external access attack. There is no com-

ponent, except the encryptedStorage, that has an access to both the file

and key simultaneously. Furthermore, only the authorizationProvider

that has an access to the accessStore component. In addition, there is

no component, except the authenticationEnforcer, has an access to user-

Store. The box around the file component depicts that it is made public,

which means that all untrusted components are granted access to it. . . . 145

8.1 Verified design to executable code process. The design in SAM is trans-

formed to CapArch. This is then transformed to CAmkES, which pro-

vides a framework to execute code on an underlying platform. The Dat-

alog rule is translated to CapArch taint analysis specification. 148

8.2 SAM to CapArch fields mapping . 150

8.3 An overview of SAM to CapArch Translation 153

8.4 Verification Procedure to CapArch Taint Analysis mapping 155

8.5 CapArch to CAmkES Translation . 159

xiii

List of Tables

3.1 Existing templates where each of the included fields appears 46

3.2 Existing templates where each of the excluded fields appears 48

3.3 Pattern Metadata . 50

4.1 Secure Logger Design Fragment Actors and Interactions 64

4.2 Encrypted Storage Design Fragment Actors and Interactions 69

7.1 AWS Services used in the pipeline . 109

7.2 Smart Meter Logging Security Requirements 128

7.3 Authentication & Authorization Requirements 140

8.1 Attributes of a component in CapArch 149

8.2 Attributes of an interface in CapArch 149

8.3 Attributes of a connection in CapArch 149

8.4 SecureLogger—isA Relationship . 152

8.5 SecureLogger—hasRef Relationship 152

8.6 The elements and attributes in a CapArch taint analysis specification . . 154

8.7 Attributes of a connection in CAmkES 158

A.1 Smart Meter Requirements . 184

C.1 Pattern Catalog — Design . 197

xiv

xv

C.2 Pattern Catalog Non-Design . 226

xvi

Chapter 1

Introduction

Building a secure software system is difficult and requires significant expertise and effort.

A secure system requires a secure design, a secure implementation of that design, and a

secure platform on which the implementation executes. Furthermore, it is not sufficient

that an system be secure, it must also be seen to be secure. That is, the argument that

a system is secure is essential for providing assurance about the level of security of a

system. I examine these four elements in slightly more detail now.

• Secure platform — A secure platform provides the foundation for building

large security-critical systems (Klein et al., 2009; Neumann and Watson, 2010;

Woodruff et al., 2014). Such a platform consists of a combination of hardware

and software that provide security mechanisms and policies usable by the system.

While this provides a solid base for building secure systems, it does not by itself

guarantee that systems constructed on top of this platform are secure.

• Secure design — The use of security patterns (Yoder and Barcalow, 1997), tactics

(Bass et al., 2012) and best practices can help in the design of security-critical

software systems. A security pattern is an encapsulation of expert knowledge and

best practices in the area of secure software design (Fernandez-Buglioni, 2013).

1

2 Chapter 1

While security patterns can reduce required expertise, there are several difficulties

in applying them. Firstly, a single security pattern normally cannot meet all the

security requirements of an system. Therefore, a developer needs to apply multi-

ple security patterns to a design. Composition of security patterns is challenging

because each pattern may target different security requirements and have its own

elements (e.g. actors involved and their interactions). Secondly, security patterns

are written independently of the specifics of the underlying platforms. This leaves

a gap between security patterns and the underlying platform.

• Secure implementation — Systems that have strong security requirements also

require assurance that their implementation satisfy those requirements. Formal

verification can provide a high level of assurance. However, formally verifying

a large complex system is very costly. Therefore, reducing the effort of verifica-

tion by verifying the system design at an early stage of system development can

be beneficial (Kuz et al., 2012). Furthermore, verifying the design might result

in system-level properties if there are good isolation guarantees provided by the

platform.

• Security assurance — A security-critical system requires assurances about its se-

curity properties. Formal verification can provide a high level of assurance. An

assurance case is a way to structure informal arguments to provide evidence of a

system’s assurance. The safety-critical system community uses assurance cases

extensively to structure arguments demonstrating safety claims about systems

(Bloomfield and Bishop, 2010; Kelly, 1999). Assurance cases have also been used

to support security claims. Weinstock et al. (2013) state that a security assurance

case presents arguments, supported by evidence, of claims that systems exhibit

certain security properties. Security assurance cases can rely on arguments or ev-

idence derived from the use of analytical techniques and tools. These techniques

Chapter 1 3

and tools can differ from one portion of the assurance case to another.

1.1 Research Aim and Questions

The aim of this research is to improve our understanding of high assurance secure appli-

cation design utilizing existing security knowledge from security patterns, and security

mechansims from secure underlying platforms. The following research questions guide

research in this thesis:

RQ-1: How can I specialize security patterns as reusable design fragments targeting

particular platforms?

RQ-2: How can I verify that security properties hold of these design fragments?

RQ-3: How can many design fragments be applied to the design and verification of

secure software systems?

1.2 Research Contributions

The main contributions of this thesis can be summarized as follows:

A New Security Patterns Catalog

• A new security pattern template is proposed that are based on five commonly used

pattern templates. I unify these templates by adopting common fields and merging

the overlapping fields.

• A collection of 279 security patterns is synthesized from existing literature. This,

to the best of my knowledge, is the largest collection of security patterns reported.

4 Chapter 1

• An analysis of the metadata of the patterns in the catalog is performed. This pro-

vides insights into the spread of security properties addressed by the patterns and

the trend of pattern proposal.

Capability-specific Design Fragments

• I propose the concept of a design fragment as an instantiation of a security pat-

tern for a specific platform. This allows for design-level verification to provide

assurance about its properties.

• I provide guidance on how to derive design fragments from security patterns.

Composition of Design Fragments

• I propose a pattern-based composition approach to incrementally build and verify

an application design using verified security patterns and composition primitives

for design fragments.

• I provide a proof that the composition primitives preserve security (confidential-

ity). This provides a formal basis to build more complex composition tactics that

also preserve security.

• I describe examples of higher-level tactics (combination of composition primi-

tives) that preserve security.

Verification Procedure

• I describe verification procedures for design fragments.

• I describe an abstract general security property, Protected By.

Chapter 1 5

The contributions are evaluated using two case studies, a Continuous Deployment

(CD) pipeline and a Smart Meter. The CD pipeline case study evaluates the applicability

of the approach and the expressiveness of the composition primitives to compose systems

together to build a secure system. The pipeline case study shows that my approach can

secure a system in the presence of threats, defined in a threat model. The case study also

indicates that the composition primitives are sufficient to express design steps required

to secure the pipeline. The Smart Meter case study is based on industrial requirements

and evaluates the expressiveness of the higher-level composition tactics to design secure

systems. There are several commonly-used combinations of primitives used in the case

study, which I refer to as higher-level tactics. This case study shows that my approach

can help design a secure system and that the higher level tactics are feasible to be applied.

Furthermore, the case studies shows that the approach is applicable in different domains.

1.3 Research Method

This section explains the research approach adopted in this thesis. Figure 1.1 illustrates

the steps undertaken as a sequence of the major research activities. Although this reflects

the overall approach, each step may have had multiple iterations. For instance, when

searching for existing security patterns (Step 1 and Step 2), I performed several iterations

of literature search to collect patterns into a catalog.

Step 3 was the development of the concept of a design fragment that can be special-

ized to a particular platform. A design fragment is a partial realization of a design pattern

in the context of a particular platform. In this step, I formalise security patterns’ realisa-

tion for capability-based secure platform into reusable design fragments. This research

activity addresses my first research question (RQ-1).

Step 5 was the development of a pattern-based composition approach to incremen-

6 Chapter 1

tally build and verify an application design using platform-specific design fragments.

This approach uses six primitive tactics. These six tactics were then proven by induction

to preserve confidentiality. This research activity addresses RQ-3.

Steps 4 and 6 investigate the assurances of design fragments and application designs.

This research activity has resulted in the concept of design fragment verification proce-

dure. Besides verifying individual design fragments, I also verify the overall application

design to provide assurance that its security goals are satisfied. I perform design-level

verification as a step to reduce the cost of potential subsequent implementation verifi-

cation. In verifying the application design, I reuse the verification procedures that are

associated with design fragments in order to reduce the overall effort. The use of a veri-

fication procedure for a design fragment helps identify localized problems, and the reuse

of that procedure for the application design helps to ensure that the overall application

achieves its security goals. I embed these steps inside a security assurance case that

allows for different verification techniques for different aspects of the design. The re-

sult of verification, performed using the verification procedures of the design fragments,

provides evidence for one or more security claims in the assurance case. This research

activity addresses RQ-2 and (partially) RQ-3.

Step 7 evaluates the composition approach using two case studies from different

domain, a Continuous Deployment (CD) pipeline and a Smart Meter. The Smart Meter

case study is based on industrial requirements

In this thesis, I am not concerned with the implementation of a design, but rather with

the construction and assurance of the design. Designs can be thought of as formal spec-

ifications in the usual software engineering sense. This means that the implementation

also need to correctly implement the design.

This approach helps to bridge the gap between security patterns and the underlying

platform by providing platform-specific design fragments. A design fragment is repre-

Chapter 1 7

Step 1
Perform literature review

Step 2
Collect security patterns

Step 3
Specialize patterns into

design fragments for
specific platform

Step 4
Define verification

procedure for design
fragment

Step 5a
Propose

composition
approach

Step 5b
Define

composition
tactics

Step 6

Define
verification

procedure for
composition

Step 7a
Conduct

Continuous
Pipeline case study

Step 7b

Conduct Smart
Meter case study

Step 5 Composition

Step 7 Evaluation

My Design Approach

Figure 1.1: Overview of my research method

sented by a model that allows for design-level verification. This model consists of a com-

ponent specification, which includes each component’s behaviors, and the interactions

between components in the model. Design fragments reduce the required step of manu-

ally translating the resulting application design to a specific platform for implementation

purposes. Each design fragment is associated with reusable design-level verification pro-

cedures, which are used to verify that the design fragment satisfies the desired security

properties. These security properties capture the informal security-related claim of the

8 Chapter 1

security pattern. When a design fragment is selected and composed with an existing

application design or another design fragment, the key challenge is specifying the com-

position. I tackle this through the identification and specification of pattern-composition

primitives, which I call composition tactics.

My design fragments currently target platforms that adhere to the capability-based

security model (Dennis and Van Horn, 1966). The general idea should be applicable to

other kinds of platform, but exploring this is future work.

1.4 Thesis Organization

Chapter 2 provides a literature review of three bodies of work that are related to this

thesis. The first is capability-based security and capability-based systems. The second

is the area of security patterns. I start with the literature on organization and recognition

of security patterns. Then, I review selection methods for security patterns and existing

work on the verification of security patterns. I end by examining the application of

security patterns to support security requirements. Finally, I review existing work on

assurance cases.

Chapter 3 presents a security pattern template to capture existing security patterns,

which are obtained from searching existing literature on the topic of security patterns. A

search strategy that is inspired by systematic literature review is presented in this chapter.

I synthesize a collection of 279 security patterns from existing literature. Finally, an

analysis on the metadata of the pattern catalog is presented in this chapter.

Chapter 4 proposes the general concept of a design fragment, which is a partial in-

stantiation of a design pattern for a particular platform. This thesis focuses on platforms

that adhere to the capability-based security model. Capability-based design fragments

are instantiations of security patterns for capability-based platforms which allow for for-

Chapter 1 9

mal verification. A capability-based design fragment can be represented in textual and

graphical forms. A methodology to derive a capability-based design fragment from a

security pattern is also presented in this chapter.

Chapter 5 proposes a composition approach to build secure systems using six compo-

sition primitives (tactics). These primitives are proven by structural induction to preserve

a particular security property, Protected By. This proof provides a basis to define more

complex property-preserving tactics based on the six primitives. The definition of the

Protected By property is presented in this chapter.

Chapter 6 provides the concept of a design fragment verification procedure, and

presents a template to express the intended security properties.

Chapter 7 evaluates my composition approach using two case studies of different

domains. Section 7.1 evaluates the applicability of the composition approach and the ex-

pressiveness of the six composition primitives to harden an existing system and to extend

its functionalities. Verified capability-based design fragments are applied to a generic

Continuous Deployment (CD) pipeline using the composition primitives to harden the

security of the pipeline. The pipeline is then verified to be secure in the presence of

various attacks. The approach is shown to be feasible to be applied in the context of a

CD pipeline and to secure the pipeline. Furthermore, the composition primitives are suf-

ficient to express the intended compositions. Section 7.2 evaluates the effectiveness of

the higher-level composition tactics to design a secure smart meter, based on industrial

requirements. Starting with a simple model, the composition tactics are applied to com-

pose capability-based design fragments with the model in order to be withstand different

attacks. The approach is shown to be feasible to be applied in a different domain and

that the composition tactics are sufficient to express the necessary compositions.

Chapter 8 describes one possible solution to transform a verified application design

into runnable code. I transform the design into a component-based framework specifi-

10 Chapter 1

cation and require several pieces of additional information to make the code executable.

This chapter provides evidence that it is feasible to implement our designs constructed

using the approach proposed in this thesis.

Chapter 9 concludes and describes opportunities for future research.

Chapter 2

Background and related work

This chapter provides background on capability-based security, existing work in the area

of security patterns and assurance cases. Section 2.1 provides an overview of capability-

based security and existing capability-based systems. These systems include those that

are distributed and those on a single machine. Section 2.2 reviews past and present liter-

ature in the area of security patterns. This starts with the literature on the organization of

security patterns. Then, selection methods for security patterns are reviewed. I then ana-

lyze work on the verification of security patterns and examine the application of security

patterns to support security requirements. Section 2.3 provides background on assurance

cases.

2.1 Capabilities

Dennis and Van Horn (1966) introduced the concept of capabilities. A capability can be

defined as “a token, ticket or key that gives the possessor permission to access an entity

or object in a computer system” (Levy, 1984, p. 3). A simple analogy is with a key and

locked doors. A valid key (i.e. capability) is needed to unlock the door in order to access

the resource behind the locked door. A key can also be given to and redistributed by a

11

12 Chapter 2

person.

Designing and building secure systems can be very difficult. Realisation of security

relies on the features and mechanisms provided by the underlying system/platform. A

capability-based system has several advantages. It offers a fine-grained control of access

rights, which helps solve the Confused Deputy problem. The Confused Deputy Prob-

lem (Hardy, 1988) happens when a program which has permissions given to it for one

purpose applies those permissions for some other purpose that is contrary to the orig-

inal intent of the permission, and therefore allows something that it should not allow.

A classic example (Hardy, 1988) of this problem involved a program that is allowed to

write into a directory, which contains a log file and billing information file. The program

takes a parameter of a file to which it will write debugging information. A user can

then supply the billing information file into the program and thus overwriting the billing

information. This may not have been intended during system design, but if the program

has the necessary permissions, it may perform this action, perhaps under malicious or

erroneous user control.

It is also easier to apply the Principle of Least Privilege (Saltzer and Schroeder, 1975)

with a capability system. This principle requires that a user be given no more privilege

than is necessary to perform a job. The system designer must determine the minimum

set of privileges required for that user to perform a particular job and grant that user

only those privileges. When a particular job is completed and no longer needed to be

performed by the user, the privileges will be to be removed from the user. Removing a

privilege is referred to as capability revocation.

Capability can be propagated or passed around. The Confinement Problem (Lamp-

son, 1973) occurs when there is a leakage of capability, which results from inability to

restrict capability propagation.

Chapter 2 13

2.1.1 Capability Implementation Schemes

Capability systems have been used as an the underlying platform for building secure

systems (Klein et al., 2009; Mullender et al., 1990; Shapiro et al., 1999). One of the

earliest systems is the Cambridge CAP (Levy, 1984) in the 1970s. These systems have

different implementation schemes. There are four different capability implementation

schemes: tagged, partitioned, sparse and password. These are described below.

Tagged

In the tagged capability implementation scheme, Tags identify capabilities, which are

used like normal pointers. Special hardware checks permissions on dereferencing ca-

pabilities and provides fast validation of capabilities. User code can copy capabilities.

When a modification occurs, the modification turns the tag off, reverting capabilities to

plain data. The tag can only be turned on by privileged instructions used by the operat-

ing system to make new capabilities. Distribution of capabilities is done by copying. A

few shortcomings of this scheme are that capability hardware is complex and revocation

is difficult to achieve due to inability to scan memory address space of other processes.

The Cambridge CAP (Levy, 1984) was built using the tagged capability scheme.

Partitioned

In the partitioned capability implementation scheme, the operating system stores capa-

bilities in a capability list. User code uses indirect references to the capabilities, i.e. a

capability list index. The kernel is responsible for creating new capabilities, removing

capabilities from capability lists and copying capabilities between different capability

lists. Revocation can be supported easily as the kernel maintains the capability list. Sys-

tems that implement this scheme include EROS (Shapiro and Hardy, 2002; Shapiro et al.,

1999), KeyKOS (Hardy, 1985), and seL4 (Klein et al., 2009; Sewell et al., 2011).

14 Chapter 2

Sparse

Mullender and Tanenbaum (1986) proposed the scheme of sparse capabilities in 1986.

In this scheme, a capability is typically made up of different pieces of information, each

of which is represented in a fixed number of bits. A capability is stored as normal

data. A sparse capability provides a probabilistic security, similar to an encryption. A

bit-string is added to references to make valid capabilities a very small subset of the

capability space. In this scheme, capabilities are pure user-level objects, which can be

passed around like other data. The main protection is the sparseness of the capability

space, which is large. Due to this sparseness, exhaustive search of the capability space

by an attacker is infeasible. Encryption can be used as a second-line of defense to prevent

unauthorized use and forgery of valid capabilities. Revocation can be done in this scheme

by changing one of the bits. Amoeba (Mullender et al., 1990; Mullender and Tanenbaum,

1986) implemented a sparse capability scheme.

Password

In this scheme, a capability is made up of different pieces of information, each of which

is represented in a fixed number of bits. One of the pieces of information that make up

a capability is a password. A password is a large random number that designate access

to an object. The size of the password is the main protection of this scheme and thus

this scheme provides a probablisitic security of its capabilities, similar to sparse capabil-

ities. A capability is stored as normal data. Password capability scheme is a flavour of

the sparse capability scheme described above. The Monash password capability system

(Anderson et al., 1986) was built using the password capability scheme.

Chapter 2 15

2.1.2 Distributed Capability-based Systems

In this section, existing distributed capability-based systems are reviewed. Four of the

systems are reviewed in great depth to identify the following: 1) capability representa-

tion; 2) capability protection mechanism; 3) capability revocation mechanism. The aim

is to conclude that there is an abstract model of capabilities to represent most of the

capability-based systems.

Amoeba

Amoeba (Mullender et al., 1990; Mullender and Tanenbaum, 1986) is a distributed

capability-based operating system, which implements the sparse capabilities scheme.

There are four main components of the hardware architecture: workstations, processor

pools, specialized servers and gateways. Workstations allow users to access the Amoeba

system. The processor pool provides the computing power, which can be dynamically

allocated to the Amoeba system and users. Specialized servers distribute the processes

to the compute power. Finally, gateways connect to other Amoeba Systems over wide

area networks.

The software architecture is a client-server architecture. Its basic components are

processes, messages and ports. Processes are active entities, communicating with one

another by exchanging messages through their ports. Each of the objects in Amoeba is

identified and protected by a capability. As shown in Figure 2.1, a capability consists of

four different pieces of information: Port ID (48bits), Object ID (24bits), Access Rights

(8 bits) and Check field (48 bits). The Port ID identifies the server. Knowledge of the

Port ID implies send rights.

All communication in Amoeba starts with a client sending a request to a server.

Clients send requests to server processes to carry out operations on objects. The server

then accepts the request, does the work and replies back to the client. Operations in

16 Chapter 2

48

Port ID

24

Object ID

8

Access
Rights

48

Check field

Figure 2.1: Amoeba Capability Structure

Amoeba are implemented by making remote procedure calls.

The key protection mechanism in Amoeba is to keep capabilities secret by embed-

ding them in a huge address space. Amoeba uses the sparseness of the address space as

its main protection mechanism. The knowledge of a port number provides users with

access rights to a particular service in Amoeba.

Amoeba makes no guarantees about message delivery. It does not provide acknowl-

edgments to the sending process. Furthermore, it is impossible to differentiate which bits

are data and capabilities in Amoeba. This makes it difficult to implement revocation and

leads to the Confinement Problem. The system will not know if capabilities are leaked.

Monash Password Capability System

The Monash Password Capability System (Anderson et al., 1986; Castro et al., 2008)

was the first capability system to implement the password capability scheme. In this

system, a capability is represented as a 128-bit binary value as shown in Figure 2.2. The

first 64 bits contain the name of the object while the remaining 64 bits contain the access

rights, which is represented by a password, to the object. Capabilities pointing to the

same object with the same rights will have the same first 64 bits but will have distinct

passwords (i.e. distinct last 64 bits).

64

object name

64

password

Figure 2.2: Password Capability Structure

Chapter 2 17

There are two types of capabilities in this system: master and derived. A master

capability is a capability that is created and given to the creator of an object. The creator

specifies the rights for the master capability. A derived capability is a capability that is

created either based on a master capability or an extant derived capability. A derived

capability inherits all the rights of the capability it derives from. If a capability is de-

stroyed, all capabilities that are derived from it are no longer valid, i.e. allows no access

to an object in the system.

The Monash Password Capability System cannot provide absolute guarantee of se-

curity, i.e. it provides probabilistic security. In this system, any 128-bit value may be a

valid capability. The authors argue that the probability of guessing a valid 64-bit pass-

word is very low, which is 10−15. To prevent more optimized password guessing attack,

the system generates a password using a random value obtained from a thermal noise

peripheral.

The authors introduces the concept of “money” to dispose garbage, which are objects

with no remaining owner capabilities. The rent collector (essentially a garbage collector)

periodically scans the master capability for each object and deducts rent from its money.

If the object has insufficient money, it will be regarded as garbage and destroyed.

A limitation of the Monash Password Capability System is that it cannot differentiate

between capabilities and data. This leads to the Confinement Problem. Furthermore, the

probability of 10−15 to guess a valid password was considered to be safe in the 1980s

but is now not recommended by NIST (Barker et al., 2007). NIST recommends at least

a 128-bit key.

Annex System

The Annex system (Grove et al., 2007) is a distributed capability-based system that im-

plements a password capability scheme. It extends the partitioned capability scheme

18 Chapter 2

with the password capability scheme. The capabilities are stored as regular data but re-

sides within the protective bound of the kernel. Objects outside the kernel invokes the

capabilities through handles, which are created by the kernel when an object receives a

new capability. This capability is then swapped with the newly created handle, transpar-

ent to the object. The kernel keeps a mapping between the capability and the handle.

A capability in the Annex system is a 384-bit value. Figure 2.3 shows the structure

of an Annex capability. The first 64 bits contain information about the host of the object

(deviceID). The next 48 bits represent the identifier of the object in its host (objectID).

Then, 16 bits are reserved for a capability identifier which is assigned when a capability

is created. This is used to differentiate capabilities that refer to the same object but have

different rights. The last 256 bits contain the access rights.

64

deviceID

48

objectID

16

capability
ID

256

password

Figure 2.3: Annex Capability Structure

The authors argue that revocation is the only way to invalidate a capability and that

the challenge is to determine who holds a capability. They developed a kernel-based

algorithm to keep track of the capability propagations that happen in each device. These

propagations are stored in a graph. When a particular capability needs to be revoked, the

device will be notified to remove the capability from its graph. Then, a recursive flushing

mechanism is used to delete all copies of that capability from all devices.

CapAuth

CapAuth (Cai et al., 2010) is a capability-based handover scheme for mobile towers,

which aims to minimize latency and network traffic. It implements the sparse capability

scheme.

Chapter 2 19

CapAuth allows users to play an enhanced role by acquiring signed capabilities

(signed assertions of context) from access points. During a handover, users ensure that

their new access point has the necessary authenticated context by providing their capa-

bilities. The use of capabilities allows fast and simple context transfer as it involves only

a simple message exchange to transfer a capability from a user to an access point.

In CapAuth, a user only needs a valid capability to authenticate to an access point.

CapAuth implements a mechanism to limit the usage of a capability to only once. This

prevents potential problems when a malicious user clones his capability to access ser-

vices simultaneously at multiple access points.

In order to support revocation of capability, CapAuth includes a time-to-live (expira-

tion) in the capability. A centralized server is then responsible for re-issuing capabilities.

Summary

Distributed capability based systems generally follow either the sparse or password im-

plementation scheme. They share a common problem, which is the Confinement Prob-

lem. This is when the system cannot limit or prevent access leakage (i.e. of capabilities).

Both sparse and password schemes cannot differentiate between capabilities and data.

Therefore, there is no way to prevent access leakage.

The systems reviewed above contribute to the idea that there exists a general capa-

bility model. Firstly, there are similarities of information in capability representation.

For instance, the ObjectID in Amoeba and Object Name in Monash Password Capabil-

ity. Secondly, both schemes depend on sparseness for their protection. Sparse scheme

depends on the sparseness of the address space (port numbers in Amoeba) and password

scheme depends on the sparseness of the valid password values.

20 Chapter 2

2.1.3 Single Machine Capability-based Systems

There are capability-based systems that are targeted for single machines. The Cambridge

CAP computer (Levy, 1984), developed in 1970s, was the first system to demonstrate the

use of capabilities for security. Capabilities were implemented in hardware. KeyKOS

(Hardy, 1985) is a capability-based operating system. Capabilities are protected by the

kernel (partitioned scheme). KeyKOS has influenced the design of EROS (Shapiro and

Hardy, 2002; Shapiro et al., 1999), and in turn seL4 (Klein et al., 2009; Sewell et al.,

2011). The aim of this review is to conclude that there is an abstract model of capabilities

to represent most of the capability-based systems.

KeyKOS

KeyKOS (Hardy, 1985) is a capability-based operating system that implements the par-

titioned capability scheme. In KeyKOS, a capability is referred to as a key. Entities in

KeyKOS communicate with each other by sending a message via a key. A key to the

recipient is required before messages can be sent to it. Sending a message to an entity

using a key means invoking a function of the receiving object, together with the intended

parameters. Using a key is to be seen as invoking a function while the accompanying

message contains the parameters for that function invocation. As an entity can be re-

ferred to by many keys, each key contains an 8-bit field that is used by the recipient to

identify the sender. Note that if an entity, Alice, does not own a key to another entity,

Bob, Alice cannot communicate with Bob.

There are three ways for invoking a key: Fork, Call and Return. Fork sends a message

without waiting for the response, while Call waits for the response. Return is used to

send back response by using the message’s resume key, which is created when Call is

used to send the initial message.

In KeyKOS, only the kernel that has access to keys and creating a key to an entity is

Chapter 2 21

a privileged operation. An entity is allowed to duplicate keys that it holds. A key is not

associated with read or write rights but it signifies that the holder is allowed to invoke a

particular function of the recipient.

EROS

EROS (Shapiro and Hardy, 2002; Shapiro et al., 1999) is a capability-based kernel that

is inspired by KeyKOS. It implements the partitioned capability scheme, which means

that it is secure through kernel protection. A capability in EROS is represented as a

pair that contains an object identifier and a set of permissions. The authors claim that

the capabilities are unforgeable and tamper proof. Each objects and its capabilities has a

version number. The capability is valid (i.e. convey authority) if both the version number

of the object and its capabilities match.

All resource accesses are performed by invoking capabilities. Capability invocation

is the only way to perform function calls in EROS and each invocation is checked by the

kernel.

EROS uses two mechanisms to limit access propagation: weak access rights and

access indirection. A weak access right is a read-only right. Any capabilities that are

obtained using a weak access right will always be granted a read-only access and are

tagged as “weak”. This ensures transitive read-only access and limits access propagation.

Access indirection is a mechanism whereby an indirection object is supplied in place of

the real capability. The access can then be revoked by destroying the indirection object.

seL4

seL4 (Klein et al., 2009; Sewell et al., 2011) is a formally verified microkernel that draws

inspiration from EROS. It implements the partitioned capability scheme, which means

that it is secure through kernel protection. It is the first microkernel whose source code

22 Chapter 2

has been formally verified for functional correctness, i.e. its implementation always

follows an abstract high-level specification of the kernel behavior. This provides high

assurance that the kernel will never perform an unsafe operation. The proof relied on

assumptions that some assembly code, boot code, management of caches and hardware

are correct.

In seL4, capabilities are associated with access rights. The possible access rights

are Read, Write and Grant. A Read right allows the holder to read or receive data from

the object. A Write right allows the holder to write or sent data to the object. A Grant

right allows the holder to create new capabilities that refer to the same object but have

different properties. All newly created capabilities have all the possible access rights,

but these can be reduced by the MINT operation. This produces a new capability from an

existing capability with the same or fewer access rights. This operation can also be used

to add “tags” to a capability. A tag is used to identify the invoker of an object.

Access propagation can be limited in seL4 by deleting any capabilities using DELETE

operation. REVOKE operation deletes each child of the specified capability but not the

capability itself.

Cambridge CAP

The Cambridge CAP computer (Levy, 1984) used a capability-based operating system

and hardware architecture. It implemented the tagged capability scheme.

The hardware architecture of the CAP computer consisted of a microprograming

control unit, micro-control storage and arithmetic unit. The CPU kept evaluated capa-

bilities (capabilities and the primary location they address) in a 64-entry capability unit

(Levy, 1984).

The CAP system provided a process tree structure, as illustrated in Figure 2.4. A

master coordinator, which controls all system hardware resources, is at the root of the

Chapter 2 23

process tree (level-1). The master coordinator allocates resources to its subprocesses

(level-2). A level-2 subprocess can also create further subprocesses.

Master
Coordinator

Subprocess
Subprocess

(Coordinator)

Subprocess

Level 1

Level 2

Level 3

Figure 2.4: Cambridge CAP Process Hierarchy. (redrawn based on (Levy, 1984))

Each capability contains a type field in the two high-order bits which differentiates

different capability types. As shown in Figure 2.5, bits marked W and U are set by

hardware to indicate that a segment has been written or accessed respectively. There are

five access rights in the CAP system: write capability (WC), read capability (RC), read

data, write data and execute data.

Figure 2.5: Cambridge CAP Capability and Access Rights Format (redrawn based on
(Levy, 1984))

24 Chapter 2

Summary

Single machine capability systems are restrictive in terms of sharing capabilities, as ca-

pabilities live inside the protective bounds of the kernel. There is a trade-off between

restrictiveness, which means degree of ability to share capabilities freely, and security.

In distributed capability systems, which generally follow either the sparse or password

capability schemes, it is easier to share a capability but it is almost impossible to restrict

capability propagation and thus to control leakage of capabilities (the Confinement Prob-

lem). The Confinement Problem is not an issue with single machine capability systems

that implemented the partitioned scheme, as the creation of every capability needs the

intervention of the kernel. In a system that implements the tagged scheme, the Con-

finement Problem occurs as capability propagation cannot be restricted and revocation

is infeasible.

The partitioned systems reviewed have similar capability representations, which con-

tributes to the goal of having a general capability model. This is due to one drawing

inspiration from the other.

2.1.4 Serscis Access Modeller (SAM)

Serscis Access Modeller (SAM) (Leonard et al., 2013) is a modelling tool and notation

for defining and verifying capability-based systems. A SAM model represents the dis-

tribution of capabilities across the components that make up a capability-based system.

SAM has a textual representation and a graphic representation. The textual represen-

tation consists of three specifications, namely component, initial capability distribution,

and security goal. In the component specification, components are represented as classes

defined in a Java-like language. The behaviors of each component are represented as

functions. The key characteristic of the behavior that we are interested in is the invoca-

tion of other components and the capability propagation through those invocations. The

Chapter 2 25

initial capability distribution specification defines the capabilities held by each compo-

nent at the start of the system’s execution. The security goal specification consists of

Datalog (Ceri et al., 1989) rules and queries that are used to verify the system.

The graphical representation of SAM shows the state of the system/model where

all the possible capabilities have been propagated and shows whether there is any se-

curity violation. A model is a directed graph with nodes representing components and

directed edges (arrows) representing access. An arrow pointing to a component repre-

sents holding a capability to it. Holding a capability to a component in SAM provides

all the permissions, i.e. read, write, invoke and grant, to that component. In SAM no-

tation, an arrow has different styles (dotted and solid) and different colors (green and

black). A solid arrow signifies that the capability is obtained as part of the initial ca-

pability distribution, while a dotted arrow means that it is obtained at runtime. This is

useful for tracing how access has been passed from one component to another. Con-

sider a system with two components Alice and Bob. A green arrow from Alice to Bob

means that Alice has invoked functions of Bob, while a black arrow indicates Alice does

not invoke functions of Bob. Furthermore, components can be trusted (black) or un-

trusted (blue). Trusted components have assumptions about their behavior (i.e. they will

only call methods as instructed) while untrusted components may call any method of

the components that they have access to. In addition, untrusted components may try to

pass around any capabilities they possess to the components they can access. Note that

a SAM model defines the upper bounds on the behaviors of the trusted components and

is an over-approximation of the real system.

One of the limitations of SAM is that it cannot model timing properties. SAM can

be used to verify that an attacker does not invoke a function in a component. However, it

cannot verify that the attacker will not learn about the content of a file via timing attacks.

The second limitation is that SAM cannot model dynamic deletion. Once the model

26 Chapter 2

is executed, a component cannot be removed. Deletion of a component can be done

during design time (i.e. before the model is executed). SAM does, however, allow

dynamic creation of components.

2.1.5 Conclusions

Most capability systems follow the object capability model (Miller, 2006). All of the

single machine capability-based systems that are reviewed follow the object capability

model. As for the distributed capability-based systems, the Annex system is an example

of a distributed object capability model. Object capability models can be paired with

password capabilities to support distributed capability computing. There are similari-

ties between the different capability concepts, even though they are implemented differ-

ently. The similarities are that: 1) capabilities are transferable and are one-directional;

and 2) access rights, represented by capabilities, are corroborated by the principals/ac-

tors. Therefore, I conclude that there is a general capability model to represent most

of the capability-based systems. As introduced earlier, Serscis Access Modeller (SAM)

(Leonard et al., 2013) is a modeling tool for capability-based systems that follows the

object capability model and thus will be used to model designs in this thesis.

The difference in capability representations matters a great deal in implementation.

At the design level, one will care about whether this component has read capability/rights

to a component, without much focus spent on how these capabilities are represented.

However, the differences between capability implementation schemes sometimes do af-

fect designs. This is true when it comes to limiting capability propagation, which is

harder to limit with sparse or password capability systems than with the partitioned

scheme. On the other hand, a partitioned scheme might not be easy to implement for

a distributed capability system. It may not be possible for a design to be readily im-

plemented under all capability schemes. However, understanding different capability

Chapter 2 27

schemes and capability representations, we will be better able to judge which scheme is

more suitable to realize a given system design.

2.2 Security Patterns

This section reviews literature in the area of security patterns. It is divided into two

main parts. Section 2.2.1 reviews literature on organization and recognition of security

patterns to aid designing a secure system. Section 2.2.2 assesses the existing selection

method of security patterns. Section 2.2.3 analyzes work that have been done on the

verification of security patterns. Application of security patterns to support security

requirements is discussed in Section 2.2.4.

2.2.1 Organization and Recognition of Patterns

A pattern is an encapsulation of a solution to a recurring problem (Alexander et al.,

1977). A pattern has four essential elements, including pattern name, problem, solution

and consequences (Gamma et al., 1995). The pattern name conveys the essence of the

pattern concisely. The problem field describes when to apply the pattern together with

its explanation and context. The solution field identifies the elements that make up the

pattern and their relationships. The consequences field shows the trade-offs and results

of using the pattern. The other fields in their template are: intent, also known as, mo-

tivation, applicability, structure, participants, collaborations, implementation, sample

code, known uses, and related pattern. The also known as field captures aliases of a

particular pattern. As different authors have proposed different security patterns, some

patterns use different names for the same information. The motivation field illustrates a

scenario, which contains design problem, and shows how the pattern solve the problem.

In addition, the related patterns field lists other patterns that are closely related to the

28 Chapter 2

pattern and outlines their differences. The known uses field describes examples of the

pattern used in real systems.

The template that is proposed by Gamma et al. (1995) is a baseline that has been

adapted for security patterns. Yoder and Barcalow (1997) used fields from Gamma

et al. (1995), namely pattern name, also known as, motivation, known uses, related

patterns and consequences. Yoder and Barcalow (1997) split the known uses field into

two: known uses and non-security known uses, and introduce two new fields, forces and

examples, to enrich the description of a security pattern. The forces field highlights the

impact of the pattern and the examples field demonstrates the pattern in use.

Konrad et al. (2003) incorporated a new field, supported principles, into their pat-

tern template. This field details which of the ten security principles, proposed by Viega

and McGraw (2011), are supported by the pattern. These principles are fundamental

to the development of secure systems. These ten principles are “securing the weakest

link”, “defense in depth”, “secure failure”, “least privilege”, “compartmentalization”,

“simplicity”, “promote privacy”, “it’s hard to hide secrets”, “don’t extend trust easily”,

and “trust the community”. They also added the behavior field, which consists of UML

sequence and state diagrams, to represent the behavioral aspect of a pattern, and, the con-

straints field, which contains global conditions that needs to be upheld for the security

pattern to achieve its intended goal. The authors adopted the idea of classifying patterns

into the categories from Gamma et al. (1995). However, this work does not consider the

relationship between security patterns and an underlying platform.

VanHilst et al. (2009) proposed a classification of security patterns based on a multi-

dimensional matrix of concerns, where each dimension represents a distinct list of con-

cerns. One important dimension proposed is the Software Lifecycle Stage. The stages

are defined as follows: Domain Analysis, Requirements, Problem Analysis, Design,

Implementation, Integration, Deployment, Operation, Maintenance and Disposal. This

Chapter 2 29

dimension allows software architect in selecting the appropriate patterns for the right

development stage of the software. Another interesting dimension is Architecture Layer.

The Architecture Layer consists of Client, Logic, Data, Operating System, Distribution,

Transport and Network Layer. This dimension enables software architect to filter pat-

terns based on different layers of the architecture (VanHilst et al., 2009).

Alvi and Zulkernine (2011) proposed a pattern classification scheme based on secu-

rity flaws. Their classification scheme is associated with software development lifecycle,

in particular the requirement stage, design stage and implementation stage. They pro-

pose different parameters for each stage: security flaws and security objectives for the

requirement stage, security flaws and security properties for design stage and security

flaws and attack patterns for the implementation stage.

Based on their proposed classification parameters, they added fields to their security

pattern template for security objectives and properties, related security flaws and related

attack patterns. The security objectives and properties field contains the main objectives

and properties of the security pattern, which are essential for solving problem. The

related security flaws field lists all the related security flaws from a public software flaws

database called Common Weakness Enumeration (CWE)1. The related attack patterns

field identifies the related attacks and attack patterns to the pattern. This classification

aims to allow developers to filter security patterns based on a security flaw.

Hafiz et al. (2007) proposed a new classification schema based on different di-

mensions: fundamental concepts of security, application context, Zachman framework

(Zachman et al., 1987) and Microsoft STRIDE threat model (Swiderski and Snyder,

2004). The fundamental concepts of security, proposed by Avizienis et al. (2004), cate-

gorized security patterns into the security issues addressed (i.e. Confidentiality, Integrity

and Availability). The application context classifies patterns according to the part of the

1https://cwe.mitre.org/

30 Chapter 2

system that they are securing, which are core, perimeter and exterior. The core patterns

consider the security mechanisms inside a system. The perimeter patterns consider the

authentication and authorization issues while the exterior patterns are concerned with

data transmission. The Zachman framework is used to classify the patterns based on

stakeholders and concerns. The STRIDE threat model classifies security threats into six

categories: Spoofing, Tampering, Repudiation, Information disclosure, Denial of ser-

vice, and Elevation of privilege.

Laverdiere et al. (2006) surveyed and evaluated a number of security patterns cat-

alogs and discovered that there is a recurring issue with the patterns: most man-

ifest some undesirable characteristics. These characteristics are over-specification,

under-specification, lack of generality, lack of consensus and misrepresentation. Over-

specification means that the specification provides too much information and properties

than needed or has some variants. According to the authors, having some variants could

create confusion, especially in determining which variants to use and thus is considered

as over-specification. Under-specification is when the pattern does not have sufficient

properties or is incomplete. There are four levels of abstraction for patterns (Kienzle

and Elder, 2002), namely Concepts, Classes of patterns, Patterns and Examples. Lack of

generality means that the pattern claims to be at different level of abstractions than it is

in actuality. This means that it is not general enough to be applied in multiple contexts.

Lack of consensus occurs when a pattern has a different concept than its name, or when

either the intent or solution of a pattern is not uniform across the literature. Misrep-

resentation of a pattern occurs when a pattern’s name or intent is inconsistent with the

other properties of the pattern. Based on these undesirable characteristics, the authors

proposed a trade-off field for security patterns. This field explains both the positive and

negative effect the pattern can have on quality attributes. It can help architects when

applying the pattern to a system, as he/she is well informed of the impact that the pattern

Chapter 2 31

has.

Rosado et al. (2006) presented a framework to compare patterns. The comparison

is based on predefined criteria for the most commonly used security attributes. These

include confidentiality, integrity, availability, authentication, authorization and maintain-

ability among others. They also included some evaluative criteria: performance, imple-

mentation costs and security degree. Performance and implementation costs indicate the

impact of the pattern on the performance of the system and the cost of implementing it

respectively. The number of security properties covered determines the degree of secu-

rity. A higher security degree signifies that more properties are covered by the pattern.

However, Rosado et al. (2006) did not mention how the comparison is done nor the

technique that they use.

Washizaki et al. (2009) defined two new types of models, Dimension Graph and

Patterns Graph, to improve the classification of patterns. The Dimension Graph relates

patterns to predefined dimensions, based on the work of VanHilst et al. (2009). These

dimensions are Software Lifecycle Stage, Architectural level, Concern, Type of Pat-

tern, Domain and Constrain. The Dimension Graph is useful in exploration and analysis

of possible dimensions for target patterns. The Patterns Graph shows the relationship

between different patterns. Relationships can be either Association, Generalization or

Aggregation. Association relationships are where the pattern provides or receives some

features from other patterns, while Generalization and Aggregation signify that the pat-

tern is abstract or is composed of other patterns respectively.

A limitation with this work is that only two patterns, RBAC and Authorization, were

used as examples in the evaluation of the framework. Although the authors focus on

relationships between patterns, they do not relate security patterns to underlying imple-

mentation platforms.

32 Chapter 2

Summary

Many authors have investigated recognizing patterns and organizing patterns. This in-

cludes enriching security patterns with additional information. Classification of patterns,

which groups patterns into small correlated sets, is an aspect of pattern organization

(Hafiz et al., 2007). However, most research has not considered the relationship between

security patterns and underlying platforms. This leaves a gap. Furthermore, some pat-

terns are underspecified, as pointed out by Laverdiere et al. (2006). This might result

in patterns not fulfilling their aim when being implemented, as developers need to make

assumptions and personal interpretation of the patterns.

2.2.2 Selection of Patterns

There have been a large number of security patterns proposed, so selecting the appro-

priate pattern can be a difficult task (Hafiz et al., 2012). Weiss and Mouratidis (2008)

attempt to mitigate this problem by presenting a formalized approach to select secu-

rity patterns and to reason that the selected patterns satisfy security requirements. The

authors implemented a search engine to search for security patterns based on security

requirements. Goal-oriented Requirements Language (GRL) is used to reason about re-

quirements and Prolog is used to reason about the type and strength of contributions

made by each pattern to security-related Non-Functional Requirements. Although this

approach automates parts of the pattern selection process, it fails to consider security

models in which the security patterns will be implemented. Moreover, the Prolog rules

that authors have handcrafted have limitations. The types and strengths of the contribu-

tions a pattern provides are not precise. In their work, one of the possible strengths of

contributions is unknown, which defined as indicating that there is a contribution from

a pattern but the extent and sense of the contribution is unknown. Furthermore, the

performance and accuracy of the approach has not been evaluated.

Chapter 2 33

Hasheminejad and Jalili (2009) proposed an automatic selection approach for se-

curity patterns by using text classification and information retrieval techniques. This

approach consists of two phases, namely Learning Classifiers of Security Patterns and

Security Pattern Suggestion. In the Learning Classifier phase, the problem and context

sections of security patterns are preprocessed, i.e. removing stop words and removing

suffix using Porter’s stemmer algorithm (Porter, 1997), before creating a training set

for each security pattern class. Then, they choose 70% of the documents at random

and evaluate the learned classifiers for the next phase. The Security Patterns Sugges-

tion phase starts with preprocessing the security problem and then applies the weighting

method selected in the learning classified. Then, the similarity is computed with a cosine

similarity technique. A pattern is only recommended when the similarity between the

security pattern vector and security problem vector is above the threshold.

This approach has a number of limitations. Firstly, it fails to consider the relationship

between security patterns and security models. This is crucial as security patterns need

to be built on top of a system, which adheres to a particular security model. Secondly, the

approach does not consider other aspects of the patterns, such as relationships with other

patterns. It will not help the composition of patterns just by considering only the problem

and context of the security patterns. For example, Single Access Point pattern solves the

problem of having multiple entry points to a system but it depends on the Check Point

pattern to perform the necessary security checks. These limitations make the approach

insufficient in assisting an architect to pick out the right set of security patterns.

Yskout et al. (2012) carried out an empirical study to investigate whether annotations

on security patterns are beneficial. This experiment was done with 90 master students

who were asked to a reinforce software architecture with security patterns and to com-

plete a questionnaire after the experiments. The students were divided into pairs and

half of them (22 pairs) were given the plain pattern catalog while the remaining 23 pairs

34 Chapter 2

were provided with the annotated pattern catalog. The experiment evaluated metrics for

selection time, selection efficiency and the number of irrelevant patterns discarded. The

expected outcome was that the annotated group would perform the tasks more efficiently

and quickly. Surprisingly, the annotated group did not complete the tasks faster than the

other group. It did however operate more efficiently than the plain group. The result of

the survey shows that the annotated group consider the relationship among patterns as

helpful in selecting the appropriate pattern.

Summary

Selection of security patterns is an essential step (Heyman et al., 2007) in designing a

secure system with security patterns. The large number of security patterns makes this

a difficult task for software architects (Kubo et al., 2007). Most studies in the area of

security patterns have not considered the relationships between different patterns, but

this is important in assisting architects to compose security patterns to build systems.

2.2.3 Verification of Security Requirements with Patterns

Formal methods are mathematically-based techniques for the specification, modeling

and verification of a system. They help to increase the assurance that the security re-

quirements in a secure system are upheld by mathematically proving them (e.g. by

means of model checking). A model checker does an exhaustive search of all possible

states that a system can reach during its execution and provides any counterexamples

found. Despite their potential contribution to the assurance of systems, these methods

are not widely used software architecture design (Heyman et al., 2012).

Chapter 2 35

Verification of security requirements in patterns

Preliminary work on verifying security requirement properties has been undertaken by

Konrad et al. (2003). This extended previous work (McUmber and Cheng, 2001) on a

framework and tool to formalize UML. UML diagrams are checked for consistency and

transformed to Promela, a formal language, by Hydra (McUmber and Cheng, 2001).

A state-of-the-art model checker, SPIN (Holzmann, 1997), is used on the generated

Promela code to determine whether the properties are satisfied. Any counterexamples

produced by SPIN are visualized in terms of UML diagrams by a visualization tool,

Minerva. A revised model maybe passed on to Hydra and the process is repeated until

no counterexample is generated by SPIN.

The work contributes a complete tool suite to formalize security requirements that

are embedded inside a pattern. However, one possible issue with this approach is scala-

bility, because of the possibility of state explosion. The case study used is a simple one.

As the complexity of the system increases, the number of possible states to check grows

exponentially. Furthermore, in the case study, a class represents a pattern. In a real sys-

tem, a pattern can be applied to many classes and each class may require the composition

of several patterns, i.e. require the information about the relationships between security

patterns. This is missing from this work.

Heyman et al. (2012) presented an approach to formally verify that security require-

ments in a security pattern are satisfied. They model the pattern as an abstract model in

Alloy (Jackson, 2012), a first order logic language for describing structures and verifying

model properties. The Alloy analyzer will then verify the abstract model and generate

counterexamples to check properties of the model. A counterexample may indicate that

there is a flaw in the architecture that the security requirement is underspecified, or that

there is some other limitations that the architect did not take into consideration. The

abstract model can then be refined. The refined model is intended for a security expert

36 Chapter 2

while the abstract model is targeted for software architect, as it is easier to understand.

The introduction of trust assumptions in a pattern is an interesting contribution of

this work. Trust assumptions can be characterized as either expectations or residual

goals. Expectations are assumptions that a component will behave in a certain way,

while a residual goal describes the security concerns that need to be addressed but are

not in the scope of the pattern. This concept of trust assumption is tightly coupled with

a relationship between security models and security patterns. It assumes that there is a

security model or system that enforces or supports the expectation.

One limitation of this approach is scalability. Furthermore, there are several concerns

about the evaluation of this approach. Firstly, it uses a very small sample size, i.e. two

participants. Secondly, both participants have vast experience in security patterns and

software security. Evaluating an approach with security experts would taint the result of

the experiment. The evaluation could be improved by experimenting with the approach

using a larger number of participants who are less experienced in the area of software

security.

Verification of security requirements in whole system with patterns

Dong et al. (2010) proposed an automated approach to verify the composition of security

patterns by means of model checking. They specify the behavioral aspect of a security

pattern, which is captured in a UML sequence diagram, in Calculus Communicating

Systems (CCS). The behavioral aspect includes synchronous messages, asynchronous

messages and alternative flows. They provide a guideline to specify the behavior in CCS

and define different message types into CCS specification. They have also provided a

proof that their CCS specification is faithful with respect to the behavioral model of

patterns in a sequence diagram. A CCS-based model checker, CWB-NC, is used to

perform the analysis and verify that the characteristics of each security pattern still hold

Chapter 2 37

after their compositions.

A limitation of this approach is that a user needs to manually transform sequence

diagrams to CCS using the proposed guidelines. This requires expertise in both security

patterns and CCS. Furthermore, there might be scalability issues if the complexity of the

system increases as this approach is using a model-checking technique. Finally, their

guidelines do not include any information on transforming loops, which are common in

real systems.

Summary

All of the previously mentioned methods suffer from some limitations. One common

limitation is scalability which is a major concern for model checking. Furthermore,

an underlying platform is required to realize security patterns. As mentioned in Heyman

et al. (2012), expectation and trust assumption are required for the system. A relationship

between patterns and security models is essential, but prior most studies in the area of

security patterns have not focused on this.

2.2.4 Application of Patterns

Shiroma et al. (2010) proposed an automated application technique for security patterns

in model driven software development. The software architect first manually defines the

abstract model and then translates it into a more concrete model with model transforma-

tion rules. These rules, which are handcrafted by the architect, consist of a precondition,

an argument and operation. The precondition varies according to the dependencies be-

tween patterns, i.e. a pattern P that is relied upon by another pattern Q becomes the

precondition of that pattern Q. This dependence can be obtained from the Related Pat-

terns field of the pattern. Some dependence is not stated clearly and therefore needs to

be inferred from the patterns’ Context and Problem field. The Argument is a parameter

38 Chapter 2

that the user needs to provide. The Operation is the mapping of classes and relations

between classes in the model during the application of the pattern. This approach checks

for dependencies between patterns at each application of a pattern and produces a model.

Then, a mark will be left in the model after it is transformed. This helps the architect to

keep track of the existing application of patterns in the system.

Surprisingly, this work claims to saves 71% of time spent compared to manual appli-

cation of the patterns. Unfortunately, it does not report on the accuracy of the application

and whether the models satisfy security requirements. Furthermore, manual extraction

of dependencies from the patterns leaves room for error and is not straightforward. Expe-

rience and ample time are required to deduce dependencies, especially from the Context

and Problem field of patterns. A limitation of their study is that it only used four unique

patterns. As mentioned by Hafiz et al. (2007) and Rosado et al. (2006), there are overlaps

and variants of patterns and extracting dependencies from these variants of pattern will

be difficult.

Mourad et al. (2010) put forward a pattern development and deployment approach

based on Aspect Oriented Programming. This approach consists of two phases. The

first phase requires security experts to devise security solutions, which consist of aspects

and patterns, and give detailed information on how and where to integrate each pattern.

Then, the second phase is performed by users by implementing aspects corresponding to

the patterns and integrating them into the system. One major limitation of this approach

is their first phase where security experts are required to draw up a solution and to detail

the integration. Thus, there is no reusable knowledge for designing a secure system.

2.2.5 Composition of Patterns

Bayley and Zhu (2008) investigated composing design patterns. Each of the design pat-

terns (Gamma et al., 1995) is defined in a formal specification in three parts: component,

Chapter 2 39

static condition and dynamic condition. The component contains a set of variables. The

static condition contains the structural part of the pattern, based on the class diagram for

the pattern, presented in the Structure field in the Gamma et al. (1995) template. The

dynamic condition contains behaviour of pattern based on sequence diagram, presented

in the Collaboration field in the template. They have defined three operators: specializa-

tion, renaming components in pattern and overlaps. They then compose patterns using

overlap operators. Specialization and renaming operators are not used for composition.

One of the limitations of their work is that their formal definition of the overlap oper-

ator and composition using overlaps are not precise (and not accurate). Their definition

for composition states that given two patterns, P and Q, and a set of overlapping com-

ponents, o, the result is the combination of a modified P, a modified Q, and the set of

overlapping components o. However, they do not define what modifications need to be

done on both P and Q. The steps for their composition: 1) identify an overlapping com-

ponent between the two patterns; 2) create a new component; 3) combine this component

with the two patterns. However, there are two implied steps of removing the overlapping

component from each patterns before combining the patterns with the new component

to form the composite design. These steps have not been defined.

Furthermore, the overlap operator is not sufficient to express other interesting compo-

sitions, i.e. composing two patterns without any overlapping components. For example,

the Single access point pattern (Yoder and Barcalow, 1997) requires the Checkpoint pat-

tern (Yoder and Barcalow, 1997) to perform the necessary security checks. However,

there are no overlapping components between them and thus they cannot be composed

with this operator.

Finally, they depend on the class diagram and sequence diagram for a pattern. While

the pattern template proposed by Gamma et al. (1995) includes these diagrams, other

pattern templates (Steel et al., 2005; Yoder and Barcalow, 1997) do not include them.

40 Chapter 2

2.2.6 Conclusion

Security patterns can contribute to building secure software systems. They encapsulate

accumulated knowledge and best practices of security experts’ solutions to recurring se-

curity problems. As security patterns become more popular, their numbers grew rapidly

and there were many overlaps. This can make selection of appropriate patterns more

difficult for architects. Furthermore, the lack of information on the implementation of

security patterns hindered its adoption within the industry (Ortiz et al., 2010).

Verification of security requirements for security patterns can raise the level of assur-

ance when designing a secure system. Building a system on top of verified patterns is

a step towards raising the assurance of a secure system. Formal verification techniques

can be applied to the whole system to increase the assurance of the system. However,

caution must be taken when applying formal methods as previous studies have shown

that they are prone to scalability issues.

2.3 Assurance Cases

An assurance case is a structured argument that a system has certain properties (Bishop

and Bloomfield, 1998). It provides confidence that a system will function as intended

through evidence and reasoning (arguments) that link the pieces of evidence to the

claims. There are three main elements in an assurance case (Graydon et al., 2007):

claim, argument and evidence. A claim represents a desired security property that the

system should achieve. Argument is an explanation of how the evidence supports the

claim to be true. Evidence is a proof that the system has certain property and can be

obtained through testing, analysis or verification.

There are two commonly used notations to represent an assurance case (Bloomfield

and Bishop, 2010; Kelly, 1999), which are Claim-Argument-Evidence (CAE) and Goal

Chapter 2 41

Claim 1
Argument

2

Evidence
1

Claim 5

Claim 4

Claim 3

Claim 2 Argument
1

Argument
3

Evidence
2

Evidence
3

Figure 2.6: Assurance case with Claim-Argument-Evidence Notation

Structured Notation (GSN). The CAE notation has three elements, i.e. claim, argument

and evidence. A claim can be decomposed into multiple subclaims. A claim is true and

is supported by evidences if each of its subclaims is supported by an evidence. Figure 2.6

shows an example of an assurance case built with CAE notation. Claim 1 is true if Claim

2 and Claim 3, and by extension Claim 4 and Claim 5, are true.

Top-level
Goal ContextAssumption

Justification

Unsupported
Goal 2 Goal 3

Solution
1

Strategy 1

Figure 2.7: Assurance case with Goal Structure Notation

The GSN notation (Kelly, 1999; Kelly and Weaver, 2004) has more elements to ex-

press an assurance case. It has goal (claim), solution (evidence), strategies (argument),

42 Chapter 2

context, assumption, and justification. Context provides information in which the goals

are stated while Assumption indicates the assumptions made about the goal. Justifica-

tion provides support for why a strategy is adopted. Figure 2.7 shows an example of an

assurance case built with GSN notation. There is a notion of undeveloped goals, which

are goals that have not yet been supported by an evidence or a solution.

Although assurance cases have been used in the safety community for demonstrat-

ing safety claims about systems (Bloomfield and Bishop, 2010; Kelly, 1999), they have

also been used to support security claims. Weinstock et al. (2013) state that a security

assurance case presents arguments, supported by evidence, of claims that systems ex-

hibit certain security properties. Furthermore, assurance cases can be co-created with or

during design of a system.

Chapter 3

A New Security Pattern Catalog

In this chapter, I report on a study of existing literature for security patterns using a

strategy-based search. I have collected 279 security patterns into the catalog. In order

to allow a uniform definition of security patterns, a pattern template has been defined.

Many templates have previously been proposed using different fields to represent similar

information. However, there is no standard template for security patterns. Therefore, I

have proposed a new security pattern template, based on existing templates, to provide a

uniform definition for security patterns.

In Section 3.1, I present the definition of the template and its fields. In Section 3.2,

I describe our search strategy and lists the sources where I obtain the patterns. Finally, I

present a portion of the security pattern catalog and metadata extracted from our catalog

in Section 3.3.

3.1 Security Pattern Template

In order to allow a uniform definition of security patterns, a security pattern template

needs to be defined. However, there is no standard security pattern template. Different

authors have proposed their own templates. These templates vary in quality (Laverdiere

43

44 Chapter 3

et al., 2006). A standard security pattern template is required and thus I define a new

security pattern template that is based on several existing templates, and merges fields

that are similar.

Existing pattern templates from three books on security patterns (Fernandez-

Buglioni, 2013; Schumacher et al., 2006; Steel et al., 2005), one seminal work on se-

curity patterns (Yoder and Barcalow, 1997) and one book on design patterns (Gamma

et al., 1995) are analyzed. The design patterns book is included as their template is the

standard template in the design pattern community. There are 27 fields in total from

these five templates. Some of the fields are named differently. For example “Alias” is

used by Yoder and Barcalow (1997) to capture variant names for a pattern while Gamma

et al. (1995) and Schumacher et al. (2006) call this “Also Known as”. I adopt several

fields, labelled (A), and merge (and/or rename) fields from existing templates, labelled

(M). I propose a new field, Source, and label it (N). The fields for our security pattern

template are: Pattern Name (A), Intent (M), Problem (M), Solution (M), Alias (M),

Participants (M), Security Properties (A), Interactions (M), Known Uses (M), Re-

lated Pattern (M), and Source (N). The definition for each field is presented below.

Table 3.1 shows how each of the included fields corresponds to fields in existing tem-

plates.

• Pattern Name A pattern’s name is a pattern identifier. It should be unique and

meaningful. It should portray the essence of a pattern. This field is required as a

pattern needs a unique identifier.

• Intent A short summary of the security problem(s) that the pattern is addressing

and how it is solved. This field is included to allow for easy perusal of the pattern

catalogue and understand the pattern quickly.

• Problem A recurring security problem that this pattern is addressing.

Chapter 3 45

• Solution Solution to solve the problem that the pattern in addressing.

• Alias Different names that may be used for the pattern. This field is also used to

capture variations of a pattern that are essentially the same but named differently.

• Participants The actors that are involved in the pattern. This field contributes

to understanding the Solution.

• Interactions The interactions between actors. This field contributes to the Solu-

tion field.

• Security Properties The security properties that are affected, both positively

and negatively, by the pattern.

• Known Uses This field provides examples of the pattern. It provides good evi-

dence that this is a pattern, not just a once-off problem and solution.

• Related Pattern This fields shows the relationship of the pattern with other

patterns. This includes other patterns that solve similar problems or that help to

improve the pattern. This field also helps identify potential composition of pat-

terns.

• Source This field identifies literature where a pattern has been introduced and

described. A reference to the source enables others to look at the original text of a

pattern and its broader context not captured in this template.

The fields that are excluded are: example, context, example resolved, implementa-

tion, applicability, sample code, reality check, and security risks and factor. For each

field, its definition and justification for exclusion from our pattern template are provided

below. Table 3.2 shows the existing templates where these excluded fields appear.

46 Chapter 3

Table 3.1: Existing templates where each of the included fields appears

My Field Existing Field Schumacher Fernandez Gamma Yoder Steel

Name Name x x x x x

Intent Intent x x

Problem

Problem x x x x

Motivation x x

Forces x x

Solution Solution x x x x

Participants
Structure x x x x

Participants x

Interactions
Dynamics x x

Collaboration x

Security
Properties Consequences x x x x x

Related
Pattern

See Also x x

Related Pattern x x x

Known Uses
Known Uses x x x x

Non-Security
Known Uses x

Alias

Also Known As x x

Variant x

Alias x

Strategies x

Source -

• Example This field specifies a scenario where the problem that the pattern is

addressing exists. Since the pattern has been used in existing system, the problem

that the pattern is addressing exists. Therefore, this field is obviated by Known

Uses field.

• Context This field suggests in which situation/condition the pattern is applica-

Chapter 3 47

ble. Situation in which a pattern can be applied varies and this field might not

cover all the possible situations. A pattern might still be applicable even if this

field does not cover a particular situation. Therefore, I leave out this field.

• Example Resolved This field shows a scenario how the pattern solves the prob-

lem it is addressing. The Intent field includes the solution provided by the pattern

and thus this field is omitted.

• Implementation This field elicits implementation hints and common implemen-

tation pitfalls. We dealt with implementation through design fragments and thus

this field is dropped.

• Applicability see Context field. This field is the same as Context.

• Sample code This field provides code snippets to implement the pattern. This

field is excluded as we dealt with implementation trhough design fragments. Fur-

thermore, there are not many security pattern descriptions that provide sample

code.

• Reality Check This fields contains information to demonstrate that the pattern

is practical and feasible. This is covered by the Known Uses.

• Security Risks and Factors This field provides several considerations to be

mindful of when applying/choosing the pattern. There is only one existing template

that contains this field and thus I omit this field.

3.2 Search Strategy

In this section, I discuss our search strategy for collecting literature that introduce and

describe security patterns. I have not done a systematic literature review (Kitchenham,

48 Chapter 3

Table 3.2: Existing templates where each of the excluded fields appears

Field Schumacher Fernandez Gamma Yoder Steel

Example x x x

Context x x

Example Resolved x x

Implementation x x x

Applicability x

Sample Code x

Reality Check x

Security Factor & Risks x

2004) or a systematic mapping study (Petersen et al., 2008). I use a search strategy based

on those methods.

First, the databases as sources to search for literature are identified. Then, the key-

words to search for existing literature are defined. After which, the inclusion criteria

to determine whether or not a particular literature is relevant are detailed. Finally, the

criteria to filter out irrelevant literature are described.

The databases are used are:

• ACM Digital Library (DL) – dl.acm.org

• IEEE Xplore – http://ieeexplore.ieee.org/Xplore/home.jsp

• Science Direct – http://www.sciencedirect.com/

• Google Scholar – https://scholar.google.com

The databases listed above are used in the literature search. Science Direct and

Google Scholar are included to expand the literature search space as they cover liter-

ature that are not published in either ACM or IEEE.

A list of relevant search strings are identified:

dl.acm.org
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.sciencedirect.com/
https://scholar.google.com

Chapter 3 49

• (“Security” OR “design”) AND (“pattern” OR “patterns”)

• (“Secure” OR “security”) AND (“design pattern”)

In the first search string, “security” OR “design” is used to broaden the search to

include either of these two terms. The term “pattern” OR “patterns” is used to include

singular and plural forms of the term “pattern”. Then, the four terms are joined together

using AND conjunction to query the databases. The second search string is included

to search for literature that mentions either “secure design pattern” or “security design

pattern”. The databases are queried using these search strings to search for relevant lit-

erature that are published between (inclusive) 1997 and 2014. 1997 is included because

that is the year when the seminal paper on security patterns was published.

The inclusion criteria are:

• report studies in the security patterns context;

• propose solutions to address security problems and relate them to either security

patterns or concepts similar to security patterns;

• adopt the concept of security pattern; or

• are written in English.

The exclusion criteria are:

• investigate implementation of existing security patterns but do not propose a secu-

rity pattern;

• do not explicitly describe a security pattern; or

• only propose sample code implementation of a pattern without describing the pat-

tern itself.

50 Chapter 3

I have shortlisted 40 publications after filtering the search results based on the inclu-

sion and exclusion criteria.

3.3 Security Pattern Catalog

In this section, I present a collection of security patterns, gathered from the literature

survey. First is an illustrative example of our security pattern catalog. Then, the metadata

of literature sources for these patterns is presented, including the publication type and

number of patterns proposed, in Table 3.3, and distribution of security properties affected

by the patterns in the catalog.

Table 3.3: Pattern Metadata. Most of these publications are conference papers, with the

exception of some published as books (*) and technical reports (+)

Publication Title Reference # patterns

Password Patterns Riehle et al. (2002) 16

A collection of privacy design pattern Hafiz (2006) 9

Design Patterns for Fault Containment Saridakis (2003) 3

Even more patterns for secure operating

system
Fernandez et al. (2006) 3

privacy patterns for online interactions Romanosky et al. (2006) 3

Privacy-aware network client pattern Sadicoff et al. (2005) 1

Reverse Proxy Patterns Sommerlad (2003) 3

A pattern language for firewalls Fernandez et al. (2003) 2

Continued on next page

Chapter 3 51

Table 3.3 – continued from previous page

Publication Title Reference # patterns

Securing the broker pattern
Morrison and Fernandez

(2006b)
1

Security Design Patterns Romanosky (2001) 8

Patterns for the extensible access control

markup language

Delessy and Fernandez

(2005)
3

A pattern language for security models Fernandez and Pan (2001) 4

Architectural Patterns for enabling ap-

plication security
Yoder and Barcalow (1997) 7

Credential Pattern
Morrison and Fernandez

(2006a)
1

Firewall Patterns Schumacher (2003) 3

More patterns for operating systems ac-

cess control

Fernandez and Sinibaldi

(2003)
4

Patterns for managing internet-

technology systems
Dyson and Longshaw (2003) 5

Remote Authenticator/Authorizer
Fernandez and Warrier

(2003)
1

A Pattern Language for designing and

implementing role-based access control
Kodituwakku et al. (2001) 6

Continued on next page

52 Chapter 3

Table 3.3 – continued from previous page

Publication Title Reference # patterns

Controlled Access Patterns Elsinga and Hofman (2002) 2

Security Design Patterns+ Blakley and Heath (2004) 13

Security Taxonomy Pattern Language Elsinga and Hofman (2003) 2

Security Patterns for Web Application

Development+
Kienzle and Elder (2002) 29

The Authenticator Pattern F. Lee Brown et al. (1999) 1

Object Filter and Access Control Frame-

work
Hays et al. (2000) 1

Core Security Patterns: Best Practices

and Strategies for J2EE, Web Services,

and Identity Management*

Steel et al. (2005) 23

Security Patterns: Integrating Security

and Systems Engineering*
Schumacher et al. (2006) 45

Two patterns for web services Security Fernandez (2004) 2

Patterns for Access Control in Dis-

tributed Systems
Delessy et al. (2007) 3

Pattern Language for specification of

communication protocols

Pärssinen and Turunen

(2002)
17

Continued on next page

Chapter 3 53

Table 3.3 – continued from previous page

Publication Title Reference # patterns

Credential Delegation: Towards Grid

Security Patterns
Weiss (2006) 1

Security Patterns and Security Stan-

dards - Selected security patterns for

anonymity and privacy

Schumacher (2002) 2

Tropyc: A pattern language for crypto-

graphic software
Braga et al. (1998) 10

Session Patterns Sørensen (2002) 7

A Pattern Language for Cryptographic

Key Management

Lehtonen and Pärssinen

(2001)
11

Patterns for operating system access

control
Fernandez (2002) 5

Security Patterns for Agent Systems Mouratidis et al. (2003) 4

Patterns for Application Firewalls Delessy-Gassant et al. (2004) 2

Secure Design Patterns+ Dougherty et al. (2009) 15

Total number of patterns 279

After analysing all the patterns in the catalog, 79 patterns were classified as not being

design patterns. These are either recommendations (patch software frequently), proce-

dural (such as how to generate good encryption keys securely) or naming schemes (e.g.

54 Chapter 3

Alice and Friend by Lehtonen and Pärssinen (2001)). This leaves 200 security design

patterns. These patterns were analyzed to identify which security properties are affected

by each of the patterns. Figure 3.1 shows the distributions of security properties that are

affected by the patterns in our catalog. The majority of the patterns in the catalog affect

the confidentiality property (107), followed by integrity (90) and then availability (63).

Note that a pattern can affect one or more properties. Furthermore, several patterns in

the catalog do not affect confidentiality, integrity and availability but rather other prop-

erties such as maintainability and non-repudiation. These properties have been included

as “Others”.

Confidentiality
107

Integrity
90

Availability
63

Others
56

Confidentiality Integrity Availability Others

Figure 3.1: Security Properties Distribution

Below is an illustrative example security pattern from the catalog, using the template

proposed in Section 3.1. Multiple prior descriptions of a pattern are captured in the Alias

field. As an example, the Authorization Enforcer that is proposed by Steel et al. (2005)

is similar to Authorization (Schumacher et al., 2006) and Remote Authorizer (Fernandez

and Warrier, 2003).

• Pattern Name Authorization Enforcer

Chapter 3 55

• Intent Defines the access policy for resources

• Alias Authorization (Schumacher et al., 2006), Remote Authorizer (Fernandez

and Warrier, 2003)

• Problem Components need to verify that each request is properly authorized. A

way to control access to resources is needed.

• Solution For each active entity, indicate which resources it can access and how.

• Participants Client, SecureBaseAction, Subject, PermissionCollection, Au-

thorizationProvider, AuthorizationEnforcer, AccessStore. Each of these can be

viewed as a component

• Interactions The Client requests authorization from SecureBaseAction and

sends Subject. SecureBaseAction uses the credential information in Subject and

invokes AuthorizationEnforcer’s authorize method. AuthorizationEnforcer then

requests the permissions of the client from AuthorizationProvider. Authoriza-

tionProvider retrives permission from AccessStore, creates PermissionCollection,

stores it into Subject and returns Subject to AuthorizationEnforcer. Authorizatio-

nEnforcer then sends Subject back to Client.

• Security Properties Authorization, if done properly, promotes separation of

responsibility through access rights. It defines which resources an entity can access

and with what access rights. That positively affects confidentiality, integrity and

availability.

• Known Uses It is used as the basis for access control in many products, such as

Windows, UNIX, MySQL (Schumacher et al., 2006).

• Related Pattern Authentication Enforcer (Steel et al., 2005) is required to au-

thenticate users.

56 Chapter 3

• Source Steel et al. (2005)

Figure 3.2 shows the number of publications per year. The seminal work on security

patterns was published in 1997 by Yoder and Barcalow. The publication number peaks

in 2002 and 2003, with 9 and 10 publications respectively that describe/propose security

patterns.

0

1

2

3

4

5

6

7

8

9

10

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

#	

of
	
 P
ub
lic
ac
tio
ns

Year	
 of	
 publication

Figure 3.2: Pattern Publication Year Trends

Chapter 4

Capability-specific Design Fragments

In this chapter, I show how a security pattern can be formalized as a platform-specific

design fragment, which allows for design-level verification. Although a security pattern

provides a solution to a recurring security problem, its informal nature does not allow

reasoning about its properties. A design fragment is a partial realization of a design

pattern in the context of a particular platform. I describe the general concept of design

fragments in Section 4.1.

In Section 4.2, I explain the concept of capability-specific design fragments: design

fragments that target capability-based computing platforms. A capability-specific design

fragment has two representations, i.e. graphical and textual, which are described in

Section 4.3. I then describe how capability-specific design fragments can be derived

from security patterns in Section 4.4. In Section 4.5, I provide examples of capability-

specific design fragments derived from some of the security patterns from the catalog

presented in Chapter 3.

57

58 Chapter 4

4.1 What is a Design Fragment?

Design fragments are proposed in this thesis as a partial realization of a design pattern

in the context of a particular platform. They specialize the solution field of a pattern

to describe how the mechanisms in that platform are used to address the intent of the

pattern. Design fragments aim to be reusable within this context. A design fragment can

be represented either using a drawing of components and connections, or using a formal

specification language. A pattern is generally informal and does not allow for reasoning

about its properties. A formal specification of a design fragment allows for verification

to provide assurance that it achieves its intended goal, including correctness or security

properties.

The quality of patterns’ documentation varies (Laverdiere et al., 2006). Insufficient

documentation can lead to many interpretations, which may lead to design flaws and

affect the assurance that is provided for the patterns (Heyman et al., 2012). Providing as-

surance about the properties of a system is essential, especially systems that are security-

critical. As patterns are generally informal, formal reasoning about their properties to

provide assurance is infeasible. Therefore, I introduce the concept of a design fragment

to provide assurance about patterns through reasoning about its properties, within the

constraint of a particular platform.

Another advantage for having a design fragment is that it incorporates the mecha-

nisms provided by the underlying platform. This reduces the required step of manually

translating the design to a specific platform for implementation purposes.

In many pattern templates (Fernandez-Buglioni, 2013; Gamma et al., 1995; Schu-

macher et al., 2006; Yoder and Barcalow, 1997), the Known Uses field is included to

capture examples of the pattern being used in existing systems, sometimes in differ-

ent domains. Different systems may use different platforms. However, the content of

the Known Uses field is often very high level. For instance, the Known Uses field of

Chapter 4 59

the authenticator security pattern (Fernandez-Buglioni, 2013, p. 56) contains (quoting

the authors): “e-commerce sites, such as eBay and Amazon,” and “Commercial operat-

ing systems use some form of authentication, typically passwords, to authenticate their

users”. In the design patterns book (Gamma et al., 1995, p. 329-330), the Known Uses

field of the Template Method pattern says that “template methods are so fundamental

that they can be found in almost every abstract class.”.

4.2 Capability-specific Design Fragment

A capability-specific design fragment is a specialization of a design pattern for

capability-based platforms. A capability-specific design fragment takes into consider-

ation the security mechanisms provided by the underlying capability-based platform,

especially the access rights of the platform.

As discussed in the literature review in Chapter 2, there are similarities between

the different capability concepts, even though they are implemented differently. The

similarities are that: 1) capabilities are transferable and are one-directional; and 2) access

rights, represented by capabilities, are corroborated by the principals/actors. Different

platforms might have different levels of granularity for access rights. A pure capability-

based platform, such as EROS (Shapiro et al., 1999) and KeyKOS (Hardy, 1985), has

only one access right, where having a capability means having all the access rights (i.e.

read, write, grant). In contrast, seL4 (Klein et al., 2009), which implements the object-

capability concept, has four different access rights: read, write, grant and mint. This

difference affects how patterns will be instantiated.

In my proposed approach for incrementally building and verifying an application

design, I instantiate security patterns for specific capability-based platforms. Each secu-

rity pattern has security goal(s) that its instantiation needs to satisfy. Capability-based

60 Chapter 4

design fragments allow for verification to provide assurance that the patterns’ goals are

met. This verification is done using techniques referred to as a verification procedure.

Verification procedures are intended to be reusable and will be discussed in Chapter 6.

As pointed out by Miller et al. (2003), the vast majority of implemented capability-

based systems implements the object-capability model. Serscis Access Modeller (SAM)

(Leonard et al., 2013) is a modeling tool for object-capability systems and thus I have

used SAM as a modeling tool for capability-based design fragments in this thesis.

4.3 Design Fragment Representations

There are two representations of the capability-specific design fragments: textual and

graphical. The textual representation consists of component specifications, initial ca-

pability distributions for component, component initialization, initial triggers and the

intended security goal.

Component specifications consist of the component structure, exported functions,

and the behavior of those functions. Each function has a return value, function name,

function parameters and function body. The key characteristic of the behavior that I

am interested in is the invocation of other components and the capability propagation

through those invocations.

The security goals of the security pattern are captured using the security property

template defined in Section 6.3. This is then checked by defined verification procedures,

which are used to verify that the design fragment achieves its intended goals.

A graphical representation of the design fragment can also be generated. This shows

the capability distribution among components of the design fragments and shows a state

of the design fragment where all the possible capability propagations are executed. The

transitive closure of all capability propagations is then checked against the verification

Chapter 4 61

procedure to verify whether the design fragment achieves its security goal.

In SAM, the component specification is written in a Java-like language. There are

three return types that a function can have, which are Void, Value and Ref. Void means

the function returns normally but does not supply a value. Value is a special type that

encompasses every data structures, such as string, integer. Ref means the function re-

turns a capability to a particular component that the component has access to. Function

parameters can either be Value or Ref types. The function body contains the implemen-

tation detail of that particular function. In the function body, the focus is on specifying

the invocation of other components. The implementation details of the function are left

to the developer to complete.

The security goal of a security pattern is represented using Datalog rules (Ceri et al.,

1989). The Datalog rules are the procedures in the verification procedure the verification

procedures of the design fragment, which will be detailed in Chapter 6. Datalog is an

example of formal representations of the security goals.

The graphical representation of the design fragment is generated from its textual rep-

resentation in SAM. It is represented as a graph whose nodes represent components and

whose directed edges represent capabilities (with an arrow pointing from one component

to another if the source component holds a capability to the destination component).

4.4 Deriving Design Fragments from Security Patterns

I develop design fragments by extracting important information from security patterns.

The extracted information includes the goal of the pattern, the actors involved, the main

functionalities of each actor, the interaction between different actors in the pattern, and

the implicit assumptions of the pattern.

First, the actors that are involved in a pattern are determined by going through the

62 Chapter 4

text manually, focusing on nouns that perform at least one action. Each actor is modeled

as a component in the design fragment. The actors are then classified into one of four

different types: initiator, member, controller, and sub-controller. Initiator is a type

of component that triggers the flow of a pattern. Member is a type of component that

provides specific functionalities. Controller is a type of component that coordinates the

flow of a pattern and invokes the functionalities of its members. It is also the entry

point of a pattern. A sub-controller is a type of component that coordinates the flow of

the pattern, by invoking the functionalities of its members. A sub-controller must be a

member of a controller.

Once the actors have been identified, their interactions are identified. This is done in

a review of the pattern’s text. The interactions determine the initial capability distribution

for the design fragment. After which, the actors classification is checked to ensure that

the actors are classified correctly and the actors are reclassified to rectify any errors.

Identifying interactions also helps to establish the main functionalities of each actor.

The functionalities of each actor are mapped on to the behaviors of the corresponding

component.

All this information is utilized to manually create the capability-specific design frag-

ments. Each actor and their corresponding functionality is represented as a component

type and corresponding behavior. The interactions between the actors also helps to

identify the initial capability distribution of the design fragment. An initial capability

distribution is an initial state of the design fragment where each component is granted

necessary capabilities.

The goal of the pattern is extracted following a template defined in Section 6.3 and

translate it into a verification procedure. This verification procedure is used to verify

whether the design fragment satisfies its intended security properties.

Chapter 4 63

4.5 Examples

In this section, I present two examples of realizing security patterns into capability-

specific design fragments.

4.5.1 Secure Logger Pattern

The secure logger security pattern (Steel et al., 2005) has two goals:

• decouple logging functionality for maintainability; and

• ensure that the contents of log file remains confidential from unauthorized access.

The first goal is a non security-related goal and is aimed at improving the maintain-

ability of a system. The second goal is a security-related goal, which concerns confiden-

tiality.

There are several actors in this pattern: client, secureLogger, logManager, logFac-

tory and logger. Each actor is modeled as a component class in the design fragment.

The interactions between different actors define what functions each component class

will need to export and invoke. Furthermore, these interactions also inform the initial ca-

pability distribution required for the baseline model to work. The baseline model is one

in which every component behaves as specified, i.e. all components are trusted. The

constructor for each component class is defined based on the initial capability distribu-

tion.

The interactions between the actors in the secure logger pattern are as follows: Client

sends a log command to secureLogger, together with the data to be logged. Upon receipt,

the secureLogger, whose main responsibility is to collect the data, sends the data with a

log command to the logManager. The logManager will request a new instance of logger

from logFactory. The logger is the component that logs data. It creates a new file and

64 Chapter 4

writes data into that file. Client is classified as an initiator, secureLogger is classified as

a controller, logManager is classified as a sub-controller while logFactory, logger and

file are classified as members.

Table 4.1 shows the functions that different components need to implement and in-

voke and the capabilities required.

Table 4.1: Secure Logger Design Fragment Actors and Interactions

Component Role Fn Required
(Params)

Fn
Return
Type

Components &
(Fns) Invoked Capabilities

client initiator
log
(Value:data) Value

secureLogger:
(logMsg) secureLogger

secureLogger controller
logMsg
(Value:data) Value

logManager:
(logMsg) logManager

logManager
sub-
controller

logMsg
(Value:data) Value

logFactory:
(newLogger)

logger:
(write)

logFactory

logFactory member
newLogger
(void) Ref

logger:
(constructor) -

logger member
write
(Ref:file,
Value:data)

Value
file:

(write) -

file member
write
(Value:data) Value - -

The client has a capability to the secureLogger. The secureLogger has a capability to

the logManager. The logManager has a capability to both the logFactory and the newly

created logger.

The textual representation of the Secure Logger design fragment is as shown in List-

ing 4.1. The first part of the textual representation shows each component’s specifica-

tion. The code under config declares the necessary components while the code under

setup shows the initial capability distribution, e.g. logManager has an access to

Chapter 4 65

logFactory and file. Finally, the code under test triggers the flow of the pattern,

with client as the initiating component.

Listing 4.1: Secure Logger Design Fragment

1 class Client{

2 private Ref secureLogger;

3 public Client(Ref sl){

4 secureLogger = sl;

5 }

6 public Value log(Value data){

7 return secureLogger.logMsg(data);

8 }

9 }

10 class SecureLogger{

11 private Ref logManager;

12 public SecureLogger(Ref lm){

13 logManager = lm;

14 }

15 public Value logMsg(Value data){

16 return logManager.logMsg(data);

17 }

18 }

19 class LogManager{

20 private Ref logFactory;

21 private Ref file

22 public LogManager(Ref lf, Ref f){

23 logFactory = lf;

24 file = f;

66 Chapter 4

25 }

26 public Value logMsg(Value data){

27 Ref logger = new logFactory.newLogger();

28 return logger.write(file,data);

29 }

30 }

31 class LogFactory{

32 public LogFactory(){}

33 public Ref newLogger(){

34 Ref logger = new Logger();

35 return logger;

36 }

37 }

38 class Logger{

39 public Logger(){}

40 public Value write(Ref file, Value data){

41 return file.write(data);

42 }

43 }

44 class File{

45 public File(){}

46 public Value write(Value data){

47 //write to file

48 return "success";

49 }

50 }

51 config{

52 SecureLogger secureLogger;

Chapter 4 67

53 LogManager logManager;

54 logFactory logFactory

55 File file;

56 Client client;

57 setup{

58 logFactory = new LogFactory();

59 file = new File();

60 logManager = new LogManager(logFactory,file);

61 secureLogger = new SecureLogger(logManager);

62 }

63 test{

64 client = new Client(secureLogger);

65 Value data;

66 client.log(data);

67 }

68 }

We can verify that the user does not have direct access to the file. A Datalog rule for

the Points-To analysis engine in SAM can analyze this fragment to check that the user

does not have access to the file, using the query !hasRef(<user>,<file>).

Figure 4.1 shows the graphical representation of the design fragment that is generated

by SAM. It shows the state where the secureLogger has a capability to logManager. The

logManager has a capability to both the logFactory and the file. The logManager then

gained a capability to the logger, which is created during execution time.

68 Chapter 4

Figure 4.1: Secure Logger Graphical Representation (baseline)

4.5.2 Encrypted Storage Pattern

The encrypted storage pattern (Kienzle and Elder, 2002) aims to harden the confidential-

ity of a system. It encrypts data before storing it, and the encryption key must be stored

securely. This mitigates the impact of the loss of a file to an attacker, because the content

of the file remains confidential, as it has been encrypted.

There are several actors in this pattern, namely the client, encryptedStorage, storage,

encryptDecrypt and key. Each actor is modeled as a component class in the design frag-

ment. The interactions between different actors define what functions each component

class will need to export.

The interactions between the actors in the encrypted storage pattern are as follows:

Chapter 4 69

Client sends a store command to encryptedStorage, together with the data to be stored.

Upon receipt, the encryptedStorage, whose main responsibilities are to collect the data

and to orchestrate the appropriate process, sends the data to encryptDecrypt with an

encrypt command. encryptDecrypt then encrypts the data and return the encrypted data

to encryptedStorage. encryptedStorage then sends the encrypted data to storage with a

store command. storage then store the data. During the initial setup, encryptedStorage

loads the value of the key to encryptDecrypt and keeps to itself the capability to the key.

Table 4.2: Encrypted Storage Design Fragment Actors and Interactions

Component Role Fn Required
(Params)

Fn
Return
Type

Components &
(Fns) Invoked Capabilities

client initiator
write
(Value:data) Value

encryptedStorage
(write)

encrypted-
Storage

encrypted-
Storage controller

write
(Value:data) Value

storage
(write)

encryptDecrypt
(encrypt)

key
(getValue)

storage

encrypt-
Decrypt

key

storage member

write
(Value:data)
read
(Value:data)

void

Value
- -

encrypt-
Decrypt member

encrypt
(Value:data)
decrypt
(Value:data)

Value

Value
- -

key member
getValue
(void) Value - -

Table 4.2 shows the role that each component assumes and the functions that each

components needs to implement. It also shows different functions that each component

70 Chapter 4

invoke and the capabilities required.

The client has a capability to encryptedStorage. encryptedStorage has a capability to

storage, encryptDecrypt and key. In this design fragment, the client assumes the role of

an initiator and encryptedStorage assumes the role of a controller. storage, encryptDe-

crypt and key are members.

The textual representation of the encrypted storage design fragment is shown in List-

ing 4.2. The first part of the textual representation shows each component’s specifica-

tion. The code under config declares the necessary components while the code under

setup shows the initial capability distribution, e.g. the client has an access to the

encryptedStorage. Finally, the block of code under test triggers the flow of

the pattern, with the client as the initiating component invoking store command of

encryptedStorage.

Listing 4.2: Encrypted Storage Design Fragment

1 class File{

2 public void write(Ref data){}

3 public void read(){}

4 }

5 class Key{

6 Value myValue;

7 public Value getKey(){

8 return myValue;

9 }

10 }

11 class EncryptDecrypt{

12 private Ref myKey;

13 public EncryptDecrypt(){}

14 public void loadKey(Value key){

Chapter 4 71

15 myKey = key;

16 }

17 public Value encrypt(Value data){

18 /* do encryption */

19 return data;

20 }

21 public Value decrypt(Value data){

22 /* do decryption */

23 return data;

24 }

25 }

26 class Storage{

27 public void store(Ref data){}

28 public Ref retrieve(Ref data){

29 /* retrieve data (encrypted) */

30 return data;

31 }

32 }

33 class EncryptedStorage{

34 private Ref myKey;

35 private Ref myEncryptDecrypt;

36 private Ref myStorage;

37 private Value keyVal;

38 public EncryptedStorage(Ref key, Ref ed, Ref storage){

39 myKey = key;

40 myEncryptDecrypt = ed;

41 myStorage = storage;

42 }

72 Chapter 4

43 public void loadKey(){

44 keyVal = myKey.getKey();

45 myEncryptDecrypt.loadKey(keyVal);

46 }

47 public void storeData(Ref data){

48 Ref encryptedData = myEncryptDecrypt.encrypt(data);

49 myStorage.store(encryptedData);

50 }

51 public Object retrieveData(Ref Client){

52 Ref rawData = myStorage.retrieve(Client);

53 Ref data = myEncryptDecrypt.decrypt(rawData);

54 return rawData;

55 }

56 }

57 class Client{

58 private Ref server;

59 public Client(Ref serverAdd){

60 server = serverAdd;

61 }

62 public void store(Ref data){

63 server.storeData(data);

64 }

65 public void get(){

66 server.retrieveData();

67 }

68 }

69 config{

70 EncryptDecrypt encryptDecrypt;

Chapter 4 73

71 Key key;

72 Storage storage;

73 EncryptedStorage encryptedStorage;

74 Client user;

75 setup{

76 storage = new Storage();

77 encryptDecrypt = new EncryptDecrypt();

78 key = new Key();

79 encryptedStorage = new EncryptedStorage(key,encryptDec-

80 rypt,storage);

81 }

82 test{

83 Ref data;

84 user = new Client(encryptedStorage);

85 encryptedStorage.loadKey();

86 user.store(data);

87 }

88 }

We can verify that all the components, except encryptedStorage, do not have access

to the key. A Datalog rule for the Points-To analysis engine in SAM can analyze this

fragment. The listing below ensures that there is no component, except encryptedStor-

age, that has access to the key.

Figure 4.2 shows the graphical representation of the design fragment that is gener-

ated by SAM. It shows the state where user has a capability to encryptedStorage. The

encryptedStorage has a capability to storage, encryptDecrypt, and key.

74 Chapter 4

Listing 4.1: Verification Procedure of the Encrypted Storage Design Fragment

1 keyBreached(?Src,?T) :-

2 !MATCH(?Src, ?T),

3 !MATCH(?Src,<encryptedStorage>),

4 hasRef(?Src,?T).

5 assert !keyBreached(?Src,<key>).

storage encryptDecrypt key

encryptedStorage

user

Figure 4.2: Encrypted Storage Design Fragment

Chapter 5

Composition of Design Fragments

In this chapter, I show how to compose design fragments together to build a secure

application design. A design fragment can be composed with another design fragment

or with an existing design. I achieve this by utilizing the primitive tactics that are defined

in this chapter. Each of these primitives is then proven by induction to preserve a general

security property that is defined in this chapter, the Protected By property.

Designing a secure system may require the composition of several security patterns,

each concerned with different security properties. The first step is selecting the appropri-

ate security patterns, i.e. those that support the security requirements of the application

and that help mitigate attacks. These patterns are then specialized into design fragments

as described in Chapter 4, which can then be composed with each other or composed

with an existing application design. In both cases, I call this composition. The challenge

in composing design fragments is producing a design that provides the intended security

properties and does not break any security properties already present in the application.

There are two things I reuse when composing design fragments. First, I reuse the

structure and behavior of the design fragment. Second, I reuse the verification procedure

that I applied to the design fragment including both the query and Datalog rules defined

75

76 Chapter 5

for the design fragments (see Chapter 6).

Each system is made up of components and connections. A connection represents a

capability. It has two attributes, namely the source component and target component. A

connection signifies that the source component has a capability over the target compo-

nent.

In order to define this precisely, I make the following definitions.

Definition 1 A system is Σ = 〈C,N〉, where C is a component set {c1, c2, ..., cn}, and N

is a connection set, {n1, n2, ..., nm}, where each nj = 〈ci, ck〉 for some ci, ck ∈ C.

Each component set is divided into three disjoint subsets, namely S, T and all the

rest. S is a set of components which are or hold the secrets or attributes that need to be

protected in the system. T refers to a set of components whose behavior are trusted, i.e.

it will only behave as specified. The specified behavior of a trusted component should be

verified not to distribute capabilities to a secret. Each of the trusted components needs to

be verified to ensure that it behaves as specified. Each secret, s ∈ S, is associated with its

own set of components that are allowed access to it, Gs, which is referred to as a secret’s

granted set. For a component to be allowed access to a secret, that component needs to

be added into the granted set of that secret. Granted components can be though of as

internal to the system — protected operationally from direct access by external attack.

A component with trusted behavior blocks further access propagation of a secret. The

remaining components are neither secret nor a component with trusted behavior. I refer

to systems with these two subsets defined, and with the property that only components

in a secret’s granted set, Gs, can have access to it, as acceptable systems. The property is

called Protected By.

Definition 2 A system of interest Σint = 〈C,N,T, S,G〉 extends a system Σ = 〈C,N〉,

where T is a set of components that have trusted behavior, S is a set of components that

Chapter 5 77

need to be protected (secrets) and G is a indexed set of components, where ∀ s ∈ S,Gs ⊂

C s.t. Gs is a set of components allowed to have access to s.

Definition 3 ProtectedBy(Σint), is defined by 〈x, c〉 /∈ (N −B T)∗,where c ∈ S ∧ x /∈

Gc ∧ c ∈ C

Definition 4 An acceptable system is an interesting system that has the Protected By

property.

The Protected By property defines systems where only components that are in a se-

cret’s granted set can have direct access to it. In Definition 3, I consider all the possible

access propagations in a system that can be performed by all the untrusted components.

To define this, I first remove all the connections that point to a trusted component from

the set of connections (N) by using range subtraction operation, N −B T . Then, I take the

transitive closure of that set, (N −B T)∗, to propagate all the possible accesses. Finally, I

check that for each secret, there is no connection to it from a component that is not in its

granted set.

5.1 Composition Tactics

I have identified six primitives to compose design fragments, which I call composition

tactics. These tactics are connect, disconnect, create, delete, grant, and revoke.

Each tactic affects either the component and/or the connection set and thus affects the

verification procedures of the composite system. As mentioned in Chapter 4, each sys-

tem (including design fragments) is associated with verification procedures. These pro-

cedures are Datalog rules and queries that are used to verify that a system has certain

intended security properties, which are specified using the template that will be defined

in Chapter 6. Based on this template, components that are not in the granted set can-

not have access to a secret. To be more precise, each verification procedure acts on the

78 Chapter 5

component sets. I prove the soundness of the tactics in Section 5.2. I derive higher-level

tactics using these primitives and show several examples in Section 5.3. Finally, I dis-

cuss how composition of design fragments support a security assurance case in Section

5.4.

5.1.1 Connect Tactic

The connect tactic combines two systems together to form a larger system. This is

done by creating an edge between two nodes in the connection graph. Structurally, the

source component is granted a capability to the target component and invokes a particular

function of the target component. I define connect in Definition 5.

The connect tactic requires two parameters: the source component and the target

component.

Definition 5 Connects to

If Σa = 〈Ca,Na,Ta, Sa,Ga〉 and Σb = 〈Cb,Nb,Tb, Sb,Gb〉 then connecting Σa and Σb

through ca and cb means creating Σc = 〈Ca ∪ Cb,Na ∪ Nb ∪ {〈ca, cb〉},Ta ∪ Tb, Sa ∪

Sb,Ga ∪ Gb〉, where ca ∈ Ca and cb ∈ Cb and 〈ca, cb〉 /∈ Na ∪ Nb with the restrictions

that:

For all secret nodes, d, where d ∈ S and (cb = d) or (cb ∈ (Ga ∪ Gb)d), then:

ca ∈ (Ga ∪ Gb)d ∧ ((ca ∈ (Ta ∪ Tb)) ∨ (∀ c.〈c, ca〉 ∈ N → c ∈ (Ta ∪ Tb) ∧ c ∈

(Ga ∪ Gb)d))

There are two cases where the connect tactic are restricted: 1) the target component

is a secret; and 2) the target component is a component that is granted access to a se-

cret. In the first case, the source component needs to be in the granted set of the target

component (i.e. a secret). In the second case, where the target component is in a granted

set of a secret, the source component needs to be allowed access to that secret as well.

Chapter 5 79

Furthermore, the source component also needs to either have trusted behavior or each of

the components connected to the source component needs have trusted behavior and is

allowed access to that secret.

The restriction that is placed on the connect tactic is that the source component

needs to be in the granted set of a secret

The connect tactic affects a verification procedure in two different ways, depending

on the effect of the connect tactic on the structure of the system. First, if the connect

tactic joins two systems together, it increases the total number of components in the re-

sulting system (i.e. the sum of the number of components in each system). This increases

the number of checks that need to be performed for each verification procedures in the

resulting system. Second, if the connect tactic is performed between two components in

the same system, it does not affect the number of components in the system. It increases

the number of connections, including transitive connections, in the system.

5.1.2 Disconnect Tactic

The disconnect tactic removes a connection between a source component and a target

component. This is done by removing a connection between two nodes in the connection

graph. Structurally, a capability to the target component is revoked from the source

component. (It may be that this gives us two completely disconnected systems.)

The disconnect tactic requires two parameters, i.e. the source component and the

target component.

Definition 6 Disconnects from

If Σ = 〈C,N,T, S,G〉, then disconnecting ca ∈ C from cb ∈ C means deleting a

connection, 〈ca, cb〉 ∈ N, and creating Σ′ = 〈C,N ′, S,G〉, where N ′ = N \ 〈ca, cb〉

80 Chapter 5

5.1.3 Create Tactic

The create tactic creates a new component in the system. This is done by creating a

new node in the connection graph. Structurally, a new component is initialized without

holding any capabilities.

The create tactic requires two parameters, i.e the component name and the com-

ponent type. Component type can be either secret, trusted or non-trusted component.

Creating a secret requires an additional piece of information: a set of components that

are allowed to have access to that secret.

Definition 7 Creates

If Σ = 〈C,N,T, S,G〉, then creating a new non-secret, non-trusted component, c /∈

C∧c /∈ S∧c /∈ T, means creating Σ′ = 〈C∪{c},N,T, S,G〉. Creating a new non-secret

trusted component, c /∈ C ∧ c /∈ S, means creating Σ′ = 〈C ∪ {c},N,T ∪ {c},N, S,G〉.

Creating a new secret component, s /∈ C∧s /∈ S, means creating Σ′ = 〈C∪{s},N,T, S∪

{s},G′〉, where G′ = G ∪ {s 7→ {granted components to s}}

Definition 7 covers the case for creating the first component for a system. When cre-

ating the first component, regardless of the type, of a system, Σ = 〈{}, {}, {}, {}〉. After

the creation of that first component (c, the system will then be Σ′ = 〈{c},N,T, S,G〉,

where c may be in one of S or T or neither.

As the create tactic increases the number of components in the system, it increases

the number of checks that need to be performed in a verification procedure (or each of

the existing verification procedures if there are more than one verification procedure).

5.1.4 Delete Tactic

The delete tactic removes a component in the system. This is done by deleting a node

in the connection graph. Structurally, the target component is removed from the system

Chapter 5 81

at design time. However, the component needs to be isolated before the delete tactic

is allowed. A component is isolated when it has no capability with respect to other

components in the system and there is no capability pointing towards that component.

One way to isolate a component is to remove all the capabilities that the target component

has and also remove any capabilities that points towards this component.

The delete tactic only requires one parameter, i.e. the component to be removed.

Definition 8 Deletes

If Σ = 〈C,N,T, S,G〉, then deleting a non-secret, non-trusted component, c ∈ C ∧ c /∈

S ∧ c /∈ T, means creating Σ′ = 〈C \ {c},N,T, S,G〉. Deleting a non-secret, trusted

component, t ∈ T ∧ t /∈ S, means creating Σ′ = 〈C \ {t},N,T \ {t}, S,G〉. Deleting

a secret component, s ∈ S, means creating Σ′ = 〈C \ {s},N,T, S \ {s},G′〉, where

G′ = G \ {s 7→ {granted components to s}} Delete is allowed iff the component is

isolated, i.e. ∀ ci ∈ C . 〈c, ci〉 /∈ N ∧ ∀ ci ∈ C . 〈ci, c〉 /∈ N

As the delete tactic decreases the number of components in the system, it reduces

the number of checks that need to be performed in a verification procedure (or each of

the existing verification procedures if there are more than one verification procedure).

Furthermore, I check whether the component that is to be deleted, is part of the granted

set of a secret, s. If it is, I remove the (to-be-deleted) component from the secret’s granted

set.

5.1.5 Grant Tactic

The grant tactic allows a component to have access to a secret. This is done by adding

a component to the set of components that are allowed to have access to a secret. This

tactic requires two parameters: source component and target component. The restriction

is that the target component is a secret component. I define grant in Definition 9.

82 Chapter 5

Definition 9 Add to Granted set

If Σ = 〈C,N,T, S,G〉, then allowing (granting) ci access to cj means creating Σ′ =

〈C,N,T, S,G′〉, where G′ = G⊕ {cj 7→ Gcj ∪ {ci}} iff cj ∈ S. Otherwise, G′ = G.

The grant tactic loosens the restriction of the connect tactic. It affects the verifica-

tion procedure by excluding more components to be checked for a particular secret.

5.1.6 Revoke Tactic

The revoke tactic disallows a component to have access to a secret. This is done by

removing a component from the set components that are allowed to have access to a

secret. This tactic requires two parameters: source component and target component.

There are two restrictions for this tactic: 1) the target component is a secret component;

and 2) there is no connection from source component to target component. I define

revoke in Definition 10.

Definition 10 Revoke from Granted set

If Σ = 〈C,N,T, S,G〉, then revoking ci access to cj means creating Σ′ = 〈C,N,T, S,G′〉,

where G′ = G⊕ {cj 7→ {Gcj \ {ci}} with the restrictions:

• cj ∈ S ∧ ci ∈ Gcj ∧ 〈ci, cj〉 /∈ N

• if (ci /∈ T ∧ ci /∈ S) then @〈ci, c〉 ∈ N · c ∈ Gcj ∧ c /∈ T ∧ c /∈ S

The revoke tactic tightens the restriction of the connect tactic. It affects the verifi-

cation procedure by removing more components to be checked for a particular secret.

5.2 Composition Tactic Soundness

I prove that any sequence of the primitive tactics preserves the Protected By property by

inducting over this list of primitives. At each step, I show that the tactics will always

Chapter 5 83

preserve the Protected By property. When all interactions with a secret are mediated by

its trusted set of components, I say that the secret is Protected By its trusted set. I provide

the following definition to be more precise.

The structural induction performed will give assurance that, given each tactic is

property preserving, any combination of the tactics will always preserve the Protected

By property.

5.2.1 Connect Tactic

The connect tactic preserves the Protected By property.

Theorem 1 Connect tactic will always preserve the Protected By property

PROOF. Let Σa = 〈Ca,Na, Sa,Ga〉 and Σb = 〈Cb,Nb, Sb,Gb〉, and Σa,Σb have the

Protected By property by the inductive hypothesis.

Assume there are two components, ca and cb, where ca ∈ Ca and cb ∈ Cb.

Connecting ca to cb means

Σ′ = 〈Ca ∪ Cb,Na ∪ Nb ∪ {〈ca, cb〉}, Sa ∪ Sb,Ga ∪ Gb〉 (5.1)

In order to prove Theorem 1, I need to identify all the possible cases where connect

tactic can be applied and to prove that connect preserves the property in each of these

cases. A connection has two parameters, i.e. source component (ca) and target compo-

nent (cb). For the components, ca and cb, there are three possible cases where connect

tactic can be applied:

• cb is not a secret. i.e. cb /∈ Sa ∪ Sb

• cb is a secret and ca is granted access to cb. i.e. (cb ∈ Sa ∪ Sb)∧ (ca ∈ (Ga ∪Gb)cb)

• cb is a secret and ca is not granted access to cb. i.e. (cb ∈ Sa∪Sb)∧ (ca /∈ Ga∪Gb)

The effect of the connect tactic for the first two cases is as shown in Function def-

inition 5.1. In these two cases, the resulting system has the property as there is no

84 Chapter 5

connection to any secrets from a component that is not in a secret’s granted set. In the

last case, connect tactic is not allowed due to the restriction for the definition of connect,

Definition 5. This restriction is that only component in the granted set of a secret can

make a connection to that particular secret. As I start with systems, Σa and Σb, that have

the Protected By property, the resulting system, Σ′, after applying the connect tactic

maintains its Protected By property.

The proof presented above assumes two existing systems. However, the same proof

also applies for one existing system, i.e. Σa = Σb. The effect of the connect tactic on

either two different systems or one system is the same.

5.2.2 Disconnect Tactic

The disconnect tactic preserves the Protected By property.

Theorem 2 Disconnect tactic will always preserve the Protected By property

PROOF. Let Σ = 〈C,N, S,G〉, and Σ has the Protected By property by the inductive

hypothesis.

Assume there is a connection n ∈ N, where n = 〈ci, cj〉 and ci, cj ∈ C.

Disconnecting ci from cj means

Σ′ = 〈C,N \ {〈ci, cj〉}, S,G〉 (5.2)

In order to prove Theorem 2, I need to identify all the possible cases where discon-

nect tactic can be applied and to prove that disconnect preserves the property in each

of these cases. A connection has two parameters, i.e. source component (ci) and target

component (cj). For the components, ci and cj, there are three possible cases to consider

for disconnect tactic:

• cj is not a secret. i.e. cj /∈ S

Chapter 5 85

• cj is a secret and ci is allowed to have access to cj. i.e. (cj ∈ S) ∧ (ci ∈ Gcj)

• cj is a secret and ci is not allowed to have access to cj i.e. (cj ∈ S) ∧ (ci /∈ Gcj)

For the first two cases, I remove the connection 〈ci, cj〉 as shown in Function defi-

nition (5.2). Removing a connection does not break the Protected By property as each

secret will still be Protected By its granted set. For the third case, a connection where

the target component is a secret and the source component is not allowed to have access

to that secret should not exist in an acceptable system. If such a connection exists, the

system does not have the Protected By property.

Removing a connection does not break the Protected By property. As I start with a

system Σ that has the Protected By property, the resulting system, Σ′, after applying the

disconnect operation maintains its Protected By property.

5.2.3 Create Tactic

The create tactic preserves the Protected By property.

Theorem 3 Create tactic will always preserve the Protected By property

PROOF. Let Σ = 〈C,N, S,G〉, and Σ has the Protected By property by the inductive

hypothesis.

Creating a new component ci means

Σ′ =


〈C ∪ {ci},N, S,G〉 ci is not a secret

〈C ∪ {ci},N, S ∪ {ci},G⊕ {ci 7→ {components granted to ci}}〉 ci is a new secret
(5.3)

In order to prove Theorem 3, I need to identify all the possible cases where create

tactic can be applied and to prove that create preserves the property in each of these

cases. There are two cases for creating a component: 1) creating a new non-secret

component; 2) creating a secret component; The difference between creating the two

86 Chapter 5

types is that creating a secret component will also create a new set which contains all the

components that are allowed to have access to that secret.

Function definition (5.3) provides the outcome of all the possible two cases to con-

sider for the create tactic. Creating a new component of any of the two types does not

break the Protected By property because the new component does not have any connec-

tions into and out of it. As I start with a system (Σ) that has the Protected By property,

the resulting system (Σ′) after applying the create tactic will maintain its Protected

By property.

5.2.4 Delete Tactic

The delete tactic preserves the Protected By property.

Theorem 4 Delete tactic will always preserve the Protected By property

PROOF. Let Σ = 〈C,N, S,G〉 and Σ has the Protected By property by the inductive

hypothesis.

Assume there is a component ci, where ci ∈ C.

Deleting a component ci means

Σ′ =


〈C \ {ci},N, S \ {ci},G \ {ci 7→ components granted to ci}〉 ci ∈ S

〈C \ {ci},N, S,G〉 ci /∈ S
(5.4)

subject to 〈ci, c〉 /∈ N ∧ 〈c, ci〉 /∈ N | ∀ c ∈ C

In order to prove Theorem 4, I need to identify all the possible cases where delete

tactic can be applied and to prove that delete preserves the property in each of these

cases. The delete tactic requires one parameter: the component to be deleted, ci.

There are two cases for deleting a component as shown in Function definition (5.4):

1) deleting a new non-secret component; 2) deleting a secret component. The difference

Chapter 5 87

between the two cases is that deleting a secret component will also delete the set of

components allowed to have access to the secret. Deleting a component of any of the

two types does not break the Protected By property as the delete tactic requires that the

component be isolated before deletion is allowed. As I start with a system (Σ) that has

the Protected By property, the resulting system (Σ′) after applying the delete tactic will

maintain its Protected By property.

5.2.5 Grant Tactic

The grant tactic preserves the Protected By property.

Theorem 5 Grant tactic will always preserve the Protected By property

PROOF. Let Σ = 〈C,N,T, S,G〉 and Σ has the Protected By property by the inductive

hypothesis.

Assume there are two components, ci and cj, where ci, cj ∈ C.

Granting a component ci for cj means creating

Σ′ = 〈C,N,T, S,G⊕ {cj 7→ Gcj ∪ {ci}}〉, where cj ∈ S (5.5)

In order to prove Theorem 5, I need to identify all the possible cases where grant

tactic can be applied and to prove that grant preserves the property in each of these cases.

A connection has two parameters, i.e. source component (ci) and target component (cj).

For the components, ci and cj, there are three possible cases where grant tactic can be

considered:

• cj is a secret and ci is allowed to have access to cj

• cj is a secret and ci is not allowed to have access to cj

• cj is not a secret

88 Chapter 5

For the first two cases, the effect of the grant tactic is as shown in Function definition

(5.5). In both these cases, the grant tactic preserves the Protected By property because

there is no new connection to cj created and given that the system has the Protected

By property to begin with, granting a component to have access to a secret does not

break the Protected By property. The last case, in which cj is a non-secret component, is

not a valid condition to apply the grant tactic.

5.2.6 Revoke Tactic

The revoke tactic preserves the Protected By property.

Theorem 6 Revoke tactic will always preserve the Protected By property

PROOF. Let Σ = 〈C,N,T, S,G〉 and Σ has the Protected By property by the inductive

hypothesis.

Assume there are two components, ci and cj, where ci, cj ∈ C.

Revoking a component ci from cj means

Σ′ = 〈C,N,T, S,G⊕ {cj 7→ Gcj \ {ci}}〉, where cj ∈ S (5.6)

In order to prove Theorem 6, I need to identify all the possible cases where revoke

tactic can be applied and to prove that revoke preserves the property in each of these

cases. Revoke tactic has two parameters, i.e. source component (ci) and secret compo-

nent (cj). For the components, ci and cj, there are four possible cases to consider for the

revoke tactic:

• cj is a secret and ci is not allowed to have access to cj

• cj is a secret, ci is allowed access to cj, and there is no connection from ci to cj

• cj is a secret, ci is allowed access to cj, and there is a connection from ci to cj

• cj is not a secret

Chapter 5 89

The effect of the revoke tactic for the first two cases is as shown in Function def-

inition (5.6). These two cases preserves the Protected By property as the effect of the

tactic does not introduce a new connection from a component not allowed access to a

secret, cj, to the secret. Given that the initial system, Σ, has the Protected By property,

the resulting system will also has the Protected By property. Thus, the revoke tactic

preserves the Protected By property. In the third case, revoke tactic is not allowed as

it is restricted by the restriction defined in 10. The last case, in which cj is a non-secret

component, is not a valid case to consider using the revoke tactic.

5.2.7 Sequences of Tactics

An empty system (i.e. system with no components) has the Protected By property. This

is because, in an empty system, there is no connection to a secret from a component not

in the granted set of that secret. I have shown that each of the primitives preserves the

Protected By property, so by induction, any sequence of applications of the primitives

will result in a system that has the Protected By property.

5.3 Higher-level Composition Tactics

Here, I introduce examples of higher-level composition tactics, which are derived from

multiple applications of the primitives that are introduced in Section 5.1. These derived

tactics preserve the Protected By property as the primitives have been proven to preserve

the Protected By property in all cases. The two tactics are proxy and replace. Proxy

inserts a new component in between two connected components. This can be achieved

through multiple application of the connect and disconnect tactics (i.e. connect the

new component to the two existing components and delete the existing connection be-

tween the two components). Replace substitutes a component with another component,

90 Chapter 5

which is referred to as the replacing component. This can be achieved through multiple

application of connect, disconnect and delete (i.e. connect the existing source com-

ponent(s) to the replacing component, disconnect and then delete the target component

from the source component).

Algorithm 5.1: Proxy Tactic
Data: Σ = 〈C,N,T, S,G〉

Input: source, target and proxy

1 Let source be src;

2 begin

3 disconnect source from target, i.e. Σ′ = 〈C,N \ 〈src, target〉,T, S,G〉;

4 connect source to proxy, i.e. Σ′ = 〈C,N ∪ 〈src, proxy〉,T, S,G〉;

5 connect proxy to target, i.e. Σ′ = 〈C,N ∪ 〈proxy, target〉,T, S,G〉;

6 end

7 Result = Σ′ = 〈C,N \ 〈src, target〉 ∪ 〈src, proxy〉 ∪ 〈proxy, target〉,T, S,G〉

8 Note: the tactic restrictions need to be checked at each usage

The Proxy tactic requires three parameters: source component, target component

and proxy components. First, the proxy tactic disconnects the connection, n, between

source and target, where n = 〈source, target〉 and source, target ∈ C. Therefore, the

intermediate system can be defined as Σ′ = 〈C,N \ 〈source, target〉,T, S,G〉. Then, the

proxy tactic checks the type of both source and proxy to determine whether the connect

primitive is permitted, given the restriction specified in Section 5.1.1. If the connect

primitive is permitted, a new connection, n, is created between source and proxy, where

n = 〈source, proxy〉 and proxy ∈ C. The intermediate system can be defined as Σ′ =

〈C,N \ 〈source, target〉 ∪ 〈source, proxy〉,T, S,G〉. Finally, the proxy tactic creates a

new connection from proxy and target, if the connect primitive is permitted. The final

Chapter 5 91

system is then Σ′ = 〈C,N \ 〈source, target〉 ∪ 〈source, proxy〉 ∪ 〈proxy, target〉,T, S,G〉.

The algorithm for the proxy tactic is shown in Algorithm 5.1.

The condition for proxy is:

For all secret nodes, d, where d ∈ S and (cb = d) or (cb ∈ (Ga ∪ Gb)d), then:

ca ∈ (Ga ∪ Gb)d ∧ ((ca ∈ (Ta ∪ Tb)) ∨ (∀ c.〈c, ca〉 ∈ N → c ∈ (Ta ∪ Tb) ∧ c ∈

(Ga ∪ Gb)cb))

The Replace tactic requires two parameters: the replacing component and the tar-

get component. First, I determine all the components that hold an access to the target

component. For each of these components, it is connected to the replacing component

and is disconnected from the target component. Then, the target component is deleted

if it is isolated after the connect and disconnect primitives have been applied. The algo-

rithm for the replace tactic is shown in Algorithm 5.2. The conditions for replace are

inherited from the connect tactic.

5.4 Composing Design Fragments to Support an Assur-

ance Case

When building an assurance case, I determine the security property that the system needs

to satisfy and set that as the root claim. Then, I identify potential attacks or loopholes

and make claims about how the system remains secure despite these possible attacks.

These claims are the subclaims of the root claim. These claims are then supported with

arguments organised according to the structure of the architecture and through evidence

provided by analyses.

When there is a security violation in the proposed system, verified capability-specific

design fragments are composed with the system to mitigate that attack. After this, the

92 Chapter 5

security properties of the composite design are analyzed. The verification of the com-

posite design feeds into the construction of the assurance case as evidence that supports

the claims about system security.

Algorithm 5.2: Replace Tactic
Data: Σ = 〈C,N,T, S,G〉

1 Let the replacing component be rep and target component be tar;

2 foreach connection, n, in the connection set N do

3 n = 〈a, b〉;

4 if tar ∈ n then

5 if tar == a then

6 disconnect tar from b, i.e. Σ′ = 〈C,N \ 〈tar, b〉,T, S,G〉;

7 connect rep to b, i.e. Σ′ = 〈C,N ∪ 〈rep, b〉,T, S,G〉;

8 end

9 else tar == b

10 disconnect a from tar, i.e. Σ′ = 〈C,N \ 〈a, tar〉,T, S,G〉;

11 connect a to rep, i.e. Σ′ = 〈C,N ∪ 〈a, rep〉,T, S,G〉;

12 end

13 end

14 end

15 if isIsolated(tar) then

16 delete tar, i.e. Σ′ = 〈C \ {tar},N,T, S,G〉

17 end

18 Note: the tactic restrictions need to be checked at each usage

Chapter 6

Verification Procedures

In this chapter, I consider how to analyse the security properties of capability-based

design fragments and application designs.

Each design fragment has associated verification procedures. A verification proce-

dure is a set of statements that is used to check security properties of a system. In general,

various analysis techniques can be used for verification procedures.

Verifying individual design fragments gives some assurance about the security prop-

erties of the fragments. Furthermore, it helps identify localized problems in an individ-

ual design fragment before those problems propagate to the whole application design

through composition. Since these fragments are composed together to form the appli-

cation design, analysis needs to be performed on the whole application as well as on

individual fragments. The composition tactics, defined in Section 5.1, are proven to

preserve security proterty assuming that the system has the security property to begin

with. If a system does not yet have the Protected By property, performing the analy-

sis is required. This is crucial because analysing the composite design indicates that it

retains the intended security properties, despite transformations introduced in design or

composition. The analysis performed on these designs will not only provide feedback to

93

94 Chapter 6

improve the designs but also provides evidence about the security properties.

In this work, I use Points-To analysis using Binary Decision Diagrams (BDD)

(Berndl et al., 2003) to verify the security properties of both the design fragments and

the application design resulting from the composition of design fragments. Section 6.1

will detail how Points-To analysis is used in the context of a SAM model. I then define

and explain what a verification procedure is in Section 6.2. I show my proposed template

to express security properties and its mapping to elements of a verification procedure in

Section 6.3 before concluding with a discussion in Section 6.4.

6.1 Points-To analysis using Binary Decision Diagrams

(BDD) as Database Queries

Points-To analysis using Binary Decision Diagrams (BDD) establishes which pointers

can point to which variables and has been shown to scale for analysis of large programs

(Berndl et al., 2003). Points-To analysis over-approximates the actual behavior of a pro-

gram, which means that a pointer might (but may not ever) point to a particular variable.

This means that a pointer might point to a particular variable in the analysis even if in

reality this may not happen in the system. It is conservative and considers the worst-

case scenario. Berndl et al. (2003) has implemented Andersen’s subset-based Points-

To analysis (Andersen, 1994), which is flow and context-insensitive. Flow insensitive

means that the analysis does not take into consideration the order of program statement

execution. Context insensitive analysis ignores the context in which the execution of

a program statement occurs. In order to allow for natural expressiveness and support

context-sensitiveness, Whaley (2007) used a declarative language, Datalog (Ceri et al.,

1989), and developed a Datalog engine (bddbddb) to analyze computer programs with

Points-To analysis and BDD. The analysis that is implemented in SAM is inspired by

Chapter 6 95

bddbddb. Thus, it is a flow-insensitive analysis with support for context sensitivity.

6.2 Verification Procedure

A verification procedure is a set of statements that is used to check security properties

of a system. It has five main elements: name, procedure (statements), a set of source

components, a set of target components, and a set of exclusions (optional). A name

is an identifier of a verification procedure. The components in the exclusion set are

trusted components that are allowed to have access to the target components and thus

are exempted from the analysis. I check whether a source component has an access to

a target component (secret), excluding the trusted components that are allowed to have

access to a secret, utilizing the three sets of components. Procedures are statements

that express the security property to be checked. The representation of the statements

depends on the choice of analysis technique.

In SAM, Points-To analysis establishes which components point to (i.e. have access

to) other components. This generates a mapping of which components have access to

other components. This includes propagating accesses during execution, based on the

behavior of each components that are involved. Security goals are specified as Datalog

rules. A Datalog rule consists of a rule head and a rule body. A rule head consists of a

name and a set of parameters for the rule. A rule body contains statements that define the

rule. First, the program behaviors in a SAM model (specified in Java-like language) are

translated to Datalog. This translation is provided and performed by SAM. Then, facts

are deduced from Datalog rules (i.e. the security goals) that are specified in the SAM

model. Finally, I check the Datalog query, using the mapping generated by the Points-

To analysis to check whether there exists a capability (direct access) from a component

to another component. Checking the Datalog query ensures that the design fragment

96 Chapter 6

satisfies its desired security properties.

Let us consider a security goal where a system is secure if a component meter

(source) does not have access to logFile (target). The hasRef(source,target)

predicate that is provided by SAM can be used to check whether meter has access to

logFile. As there are no exclusions, this predicate is sufficient to express the intended

security goal. I then check whether the security goal is checking that the source does

not have access to the target, assert !hasRef(meter,logFile). This will only

succeed if it is not inconsistent with the existing fact base.

More complicated security goals with multiple source components, target compo-

nents and exclusions can also be specified. This will be shown in the next section.

6.3 Security Property Template

I define a template for describing a security goal of a system to make it easier to specify

the verification procedures to check the intended security goal. The template requires

three parameters, namely source, secret, and exclusions. Source represents a set of com-

ponents to check on. secret is a set of components that needs to be protected while

exclusions is a set of components that are trusted to have access to the secret. The tem-

plate is as follows:

Source no access to secret, except exclusions

This template is then translated to a Datalog rule. The translated Datalog rule looks

at direct access to secrets, only after all possible accesses in the system have been prop-

agated. I rely on the Points-To analysis in SAM to propagate the accesses and assume

that the propagation is correct, i.e. maximum access propagation that is possible based

on the system’s behavior.

As discussed in the previous section (Section 6.2), a verification procedure has five

Chapter 6 97

elements: name, procedures, a set of source components, a set of target components,

and a set of exclusions (optional). In order to translate the template into a verification

procedure, a mapping between the parameters in the template and the elements of a

verification procedure is created. Source, secret and exclusions of the template map

directly to those in the verification procedure. The name of the verification procedure

can be auto-generated. The number of parameters that the Datalog rule requires are then

determined. This can be calculated by the number of secret (|{secret}|) + 1 (for source).

Next, the content of the Datalog rule body is determined by using the information

about exclusions and targets. For every exclusion, the negation of the MATCH(a, b)

predicate that is implemented in SAM is used. This predicate tests whether a is equal to

b. For every target, the hasRef(a,b) predicate is used to check whether a has access

to b.

Finally, the assertions are written to ensure that all the components in the system,

excluding the exclusions, have no access to the targets. The negation of the Datalog rule

is iteratively checked to be true for each source.

Figure 6.1 shows a generic verification procedure that is generated from my security

property template. Lines 2-4 exclude the trusted components from the check and Lines

5-7 check whether the source has access to the secrets. Note that ‘,’ here represents

logical conjunction. Lines 8-10 assert that the security property is not breached for each

source. A parameter that starts with ‘?’ is a Datalog variable.

Consider the security goal (SG-1) where a system is secure if meter does not have

access to logFile. This goal can be captured in the template as meter no access

to logFile, except none. This can be translated into a verification procedure

and can be named as accessMeterlogFile. Then, the number of parameters that

the Datalog rule requires are determined. As there is only one element in the target com-

ponent set, the Datalog rule requires two parameters (one parameter for source). There

98 Chapter 6

of lines determined
by |source|

of lines determined
by |exclusions|

of lines determined
by |target|

Figure 6.1: Verification Procedure from template

are no exclusions in this verification procedure. The resulting verification procedure is

shown in Listing 6.1.

Listing 6.1: SG-1 in Datalog

1 declare accessMeterlogFile(Ref Src, Ref S1).

2 accessMeterlogFile(?Src,?S1):-

3 hasRef(?Src,?S1).

4 assert !accessMeterlogFile(<meter>,<logFile>).

A more complicated security goal (SG-2) will be that all components in the system

do not have access to logFile, except logger and logManager. First, “accesslogFile” is

assigned as the name of the verification procedure. There is only one target component

and thus the Datalog rule requires two parameters. A Datalog variable (starts with ‘?’)

is used for the source component parameter. This variable represents a component in the

system. The Datalog engine will iteratively deduce facts from the specified Datalog rule,

noAccesslogFile, by querying each component in turn. The verification procedure

is shown in Listing 6.2.

I also define a generic Datalog representation of the Protected By property for SAM,

as shown in Listing 6.3. In this Datalog rule, I assume that the access propagation is done

by the Points-To analysis in SAM and thus is not represented in the rule. Lines 1-4 de-

Chapter 6 99

Listing 6.2: SG-2 in Datalog

1 declare accesslogFile(Ref Src, Ref S1).

2 accesslogFile(?Src,?S1):-

3 !MATCH(?Src,<logger>),

4 !MATCH(?Src,<logManager>),

5 hasRef(?Src,?S1).

6 assert !accesslogFile(?Src,<logFile>).

clare new predicates that are required to express the Protected By property. isSecret

tags a component as a secret and isGranted maps a component, which is allowed

to have access to a secret, to a secret. isValidGranted filters facts captured by

isGranted, only retaining facts where S is a secret. The isProtectedBy rule

checks that for each secret, there is no other component, apart from those which are

granted access to a secret, which has access to a secret.

Consider a system that calculates checksum, which is shown in Figure 6.2a. The

client invokes the calculateChecksum function of the orchestrator and sends the data to

be calculated on. Upon receipt, the orchestrator invokes the checksum function of the

checksummer, who then stores the result into checksumStore. The secret that needs to

be protected is the checksumStore and only checksummer is allowed to have access to it.

Both client and orchestrator are trusted.

Using the Datalog rule for the Protected By property in Listing 6.3, only two addi-

tional lines are required:

• isSecret(<checksumStore>) — specifies that checksumStore is a secret

• isGranted(<checksummer>,<checksumStore>) — specifies that

checksummer is in the granted set of checksumStore.

I can then write assert !isProtectedByBreached(?Src,?S) to ensure that

the Protected By property is not breached.

100 Chapter 6

Listing 6.3: Generic Datalog Rule for the Protected By property (access propa-

gated)

1 declare isSecret(Ref object).

2 declare isGranted(Ref object, Ref secret).

3 declare isValidGranted(Ref Src,Ref S).

4 declare isProtectedByBreached(Ref Src, Ref S).

5 isValidGranted(?X,?S):-

6 isSecret(?S),

7 isGranted(?X,?S).

8 isProtectedByBreached(?Src,?S):-

9 !MATCH(?Src,?S),

10 !isValidGranted(?Src,?S),

11 isSecret(?S),

12 hasRef(?Src,?S).

A malicious (untrusted) user that has an access to the checksummer is then intro-

duced, as shown in Figure 6.2b. The Protected By property is breached as malUser has

access to checksumStore and is not in the granted set of checksumStore. The red arrow

from malUser to checksumStore signifies a security violation while the orange arrow

from malUser to checksummer shows the cause of the violation.

6.4 Discussion

Reusing design fragment verification procedures for the application design might require

their modification. This modification is the effect of applying the composition tactic as

defined in Chapter 5. This is done to reflect the goals of the application, which might

differ from those of the individual design fragments. Such modification is done during

Chapter 6 101

(a) Baseline – All the arrows, except for the
black dotted arrow from checksumStore to
checksummer, are in green which means that
the functions of each component has been in-
voked. A black arrow signifies that checksum-
Store does not invoke any functions of check-
summer. checksummer is an untrusted compo-
nent (in blue color) that is allowed to have access
to checksumStore.

client

orchestrator

checksummer

checksumStore

malUser

(b) with malicious (untrusted) user, shown in
blue. The red arrow (from malUser to check-
sumStore) shows a security violation while the
orange arrow (from malUser to checksummer)
shows the cause of the violation. The dot-
ted arrows out of checksumStore are in black,
which signifies that checksumStore does not in-
voke any functions of malUser and checksum-
mer. The other arrows are in green, which means
that the functions of each component has been
invoked.

Figure 6.2: Checksum Calculator

composition. For instance, if the goal of a design fragment is to prevent unauthorized

access to the encryption key while the goal of the application is to prevent unauthorized

access to the encryption key and encrypted file at the same time, the goal of the appli-

cation subsumes that of the design fragment. The Datalog rule needs to be modified to

check for access to both key and file simultaneously. The goal of the application can

then be written, using the template defined in Section 6.3, as follows:

All no access to key,file, except encryptedStorage

This is then translated to into Datalog rule for analysis to ensure that the goals of

102 Chapter 6

the application are satisfied. Listing 6.4 shows the verification procedure for checking

the application. The underlined texts are the differences between this verification proce-

dure and the encrypted storage verification procedure. Line 4 excludes file from being

checked and line 7 checks whether a component has access to file.

Listing 6.4: Application Security Goal in Datalog

1 declare isSecBreached(Ref Src,Ref T,Ref T1).

2 isSecBreached(?Src,?T,?T1):-

3 !MATCH(?Src,?T),

4 !MATCH(?Src,?T1),

5 !MATCH(?Src,<encryptedStorage>),

6 hasRef(?Src,?T),

7 hasRef(?Src,?T1).

8 assert !isSecBreached(?Src,<key>,<file>).

One possible limitation to the template, which is defined in Section 6.3, is that I

rely on users to follow the principle of least privilege when allowing access to a secret,

i.e. only allow a component to have access to a secret if it is essential for the system.

Components that are granted access to a secret can be thought to be “internal” to the

system design — not directly exposed to attack.

Chapter 7

Evaluation

In this chapter, I evaluate my approach using two case studies of different domains,

which are presented in two separate sections. Section 7.1 evaluates the applicability of

the composition approach and the expressiveness of the six composition primitives to

harden an existing system and to extend its functionalities. Verified capability-based

design fragments are applied to a generic Continuous Deployment (CD) pipeline using

the composition primitives to harden the security of the pipeline. The pipeline is then

verified to be secure in the presence of various attacks. The approach is shown to be

feasible to be applied in the context of a CD pipeline and to secure the pipeline. Section

7.2 evaluates the effectiveness of the higher-level composition tactics to design a secure

smart meter, based on industrial requirements. Starting with a simple model, the compo-

sition tactics are applied to compose capability-based design fragments with the model

in order to be withstand different attacks. The approach is shown to be feasible to be

applied in a different domain and that the composition tactics are sufficient to express

the necessary compositions.

103

104 Chapter 7

7.1 Continuous Deployment Pipeline

In this section, I evaluate the feasibility of applying my pattern-based composition ap-

proach and the expressiveness of the composition tactics using a Continuous Deployment

(CD) pipeline. I define the possible threats that I consider in a threat model and evaluate

whether my approach can sure a CD pipeline in the presence of these threats. I also as-

sess whether the composition primitives are sufficient to express different compositions

that are required to secure the pipeline.

Many companies have embraced the concept of Continuous Deployment (Bass et al.,

2014), which aims to deploy code changes to a production environment multiple times

a day. Each change automatically goes through a set of tools that perform activities like

integration build, deployment (and testing) to various testing environments, and deploy-

ment to production environments. The tool chain performing these activities is referred

to as a Continuous Deployment (CD) pipeline.

A key challenge in a CD pipeline is the security of the pipeline itself (Bass et al.,

2014, chap. 8.1). First, different roles in the development team and the operation team

should have different access to different parts of the pipeline. For example, a developer

should not be able to deploy to production directly without her changes going through

the pipeline. Certain build and test jobs can only be triggered by certain roles. Second,

the testing and production environment should have total isolation. Major real world

outages have happened because a component in the testing environment is accidentally

connected to production database (Bass et al., 2014, chap. 2.3.). Third, a compromised

or misconfigured continuous deployment pipeline may have malicious code or unwanted

debugging/experimental code that ends up being deployed to production. A typical CD

pipeline is not designed with all the above security requirements in mind. Thus, the aim

of the case study is to use my approach to enhance the security design of a CD pipeline

satisfying the security properties derived from the above requirements.

Chapter 7 105

In order to make this work practical, I work under two real-life constraints. Firstly,

formally verifying, from scratch, all the components and systems that I use is infeasi-

ble. Secondly, I have to work with existing components to ensure that the changes are

minimal. In this work, I trust some specialised components, which can then be formally

verified. Securing a real-life system using formal or semi-formal techniques is both

challenging and necessary to make these techniques usable. The target platform is the

Amazon Web Services (AWS) and security model is capability-based. AWS provides

assurances about the correctness of their systems through formal verification and model

checking (Newcombe et al., 2015). Although the AWS implementation has not been for-

mally verified, I treat its security mechanisms as trusted because of real-life constraints.

Section 7.1.1 describes background information of a Continuous Deployment

pipeline. I outline the existing security mechanisms that can be utilised in a CD pipeline

in Section 7.1.2. Then, I formulate a threat model to be considered for the pipeline in

Section 7.1.3. I then describe the process of securing a continuous deployment pipeline

by applying my approach in Section 7.1.4 before concluding with a discussion in Section

7.1.5.

7.1.1 Background

Continuous Deployment pipelines vary from one company to another, depending on their

existing practices. However, each of these pipelines has a common sequence of stages,

which include building the code, testing the code and deploying the code to production.

Each stage may require different tools and shares some commonly used tools. Figure 7.1

shows the common stages that are performed in a Continuous Deployment pipeline. It

starts when a developer commits code into a code repository. This commit will trigger a

build server, which monitors the code repository, to perform an integration of the newly

committed code and the existing code and build the code into application binary. The

106 Chapter 7

server will then perform integration tests on the application binary.

Pulling the code, building the application binary from the code and performing inte-

gration tests are part of Continuous Integration (CI). Continuous Integration can be de-

scribed as progressing through the pipeline by means of automation until the integration

tests are performed. This differs from Continuous Deployment where the automation

helps progress to deployment of an application to production environment.

In this case study, Jenkins1 is chosen because it is the current state-of-art CI server. It

is an open-source application for continuously building and testing software applications.

It is typically used as a build server that performs and orchestrates several steps in a CD

pipeline, which include pulling the source code, building application binary from source

code, running the test suites, packaging the application binary into an image and storing

the image into a repository or storage. Storage uses AWS Simple Storage Service (S3)

Buckets2.

In the application building stage, the code is built and its binary is then packaged,

also called the build artifact, into an image. Packaging binaries into an image helps

to preserve consistency throughout the pipeline (i.e. from testing environment to pro-

duction environment). The consistency that is of concern is the environment that the

application is running on, which includes the software dependencies and configurations

Figure 7.1: Generic Continuous Deployment pipeline (Bass et al., 2014)

1Jenkins—http://jenkins-ci.org/
2S3—http://aws.amazon.com/s3/

Chapter 7 107

that are required by the application. This image is stored in a storage, such as AWS S3.

There are different types of tests required during the testing stages. These include

unit tests, integration tests and end-to-end tests of various lengths. They are often run

inside different environments. The testing environment is set up and the tests are then

run on the application image to ensure that the application demonstrates its intended

functionalities. A deployer is required to setup the various testing environments, which

includes installing the application and its dependencies inside a virtual machine, config-

uring and running the application, and triggering the tests. AWS Opsworks3 is a service

that helps to set up the environment and to install the application. It handles the pro-

visioning of resources (through AWS APIs) when setting up the environment and uses

Opscode Chef4 to configure environment inside a Virtual Machine (VM).

If the application image passes all the tests, it will then be deployed to the production

environment. Usually, a release manager, who is a human operator, has to approve the

deployment of a particular image into the production environment. Upon approval, a

deployer will then deploy the image to the production environment.

There are two popular strategies for deploying applications (Bass et al., 2014),

namely big flip and rolling upgrade. In a big flip strategy, N VM instances are provi-

sioned to run a new version of the application, VB, while N VM instances are running the

current version of the application, VA. Once all the instances running VB are provisioned,

the instances running version VA are terminated.

In a rolling upgrade, a small number of k instances at a time currently running version

VA are taken out of service and replaced with k instances running version VB. This

is repeated until all the instances have been upgraded and are running version VB. A

virtue of rolling upgrade is that it only requires a small number of additional instances to

perform the upgrade. Rolling upgrade is a widely used method for upgrading instances

3Opsworks—http://aws.amazon.com/opsworks/
4Chef — https://www.chef.io/chef/

108 Chapter 7

(Dumitraş and Narasimhan, 2009).

7.1.2 Existing Security Mechanisms

There are several security mechanisms that can be utilised in the pipeline, namely from

the platform (AWS in this case), operating system and the build server - Jenkins. AWS

Identity and Access Management (IAM)5 security mechanism binds authority to users

and roles. In IAM, each user and each role is associated with at least one security policy.

This security policy defines what actions can be performed by the holder of the policy on

specific AWS resources. Initially, AWS (implicitly) denies all actions on all resources.

Specifying in a policy that its holder has the right to perform an action on a particular

resource, e.g. write object to a specific S3 Bucket, takes precedence over the implicit

deny. An explicit deny takes the highest precedence, i.e. explicitly denying an action

will override any policies that allow the same action on the same resource.

Furthermore, IAM also provides the ability to change or assume roles at runtime.

Assuming a role creates a security credential tuple, consisting of an AWS access key id,

AWS secret access key and temporary security token, which is similar to a capability

since it can be passed to other instances granting them new access rights.

An EC2 instance6 running as a particular user or assuming a particular role will have

the corresponding authority to access resources or invoke AWS operations. An EC2

instance is a virtual machine running on top of AWS infrastructure.

There are three characteristics of a capability: 1) it provides access to an object in a

system; 2) it can be passed around; and 3) it is held by a principal or user. The first two

characteristics are provided by the security credential tuple in AWS, which is created

when assuming a role. AWS security model assigns the rights to a user or a role and thus

5IAM—http://aws.amazon.com/iam/
6EC2—http://aws.amazon.com/ec2/

Chapter 7 109

aggregating access at the principals or users. Note that the AWS security model is not

explicitly a capability-based model, however, it has the characteristics of such a model,

and so my approach and design fragments map well to it. In SAM models of Continuous

Deployment pipeline, the components are either running on EC2 instances and/or using

AWS resources (such as S3 buckets), and the capabilities are AWS role-based security

tokens.

The operating systems that are running on the EC2 instances also provide security

mechanisms to govern what operations, such as installing an application, can be per-

formed inside the instance. As mentioned in Section 7.1.1, AWS Opsworks is used to

setup the environment inside the instances. Opsworks requires root access in order to

perform these operations. For this reason, the security mechanisms offered by the oper-

ating system is disregarded as they are overridden by Opsworks’ root access.

Jenkins provides authentication and authorization mechanisms. Authentication can

be achieved by creating a user database for Jenkins. Matrix-based security is commonly

used as Jenkins’ authorization strategy. It allows administration of specific pre-defined

access rights to users or groups. The full list of pre-defined rights can be found online7.

Table 7.1 summarizes the AWS services that used in the CD pipeline.

Table 7.1: AWS Services used in the pipeline

AWS Service Description

Elastic Compute Cloud (EC2) a Virtual Machine (VM) in AWS infrastructure
Simple Storage Service (S3) a file storage service in AWS infrastructure
Identity and Access
Management (IAM)

a service to control access rights to AWS resources and
define security policy

OpsWorks
a service that helps to set up the environment and to
install the application in EC2 instances.

7https://wiki.jenkins-ci.org/display/JENKINS/Matrix-based+security

110 Chapter 7

7.1.3 Threat Model

One question to consider when attempting to secure any software system is how powerful

the attacker is. Another question is what are the data or parts of the system that must be

protected. With these questions in mind, I have defined a threat model for my Continuous

Deployment (CD) pipeline.

Defining a threat model starts with defining the assets (resources) to be protected.

The assets in the pipeline are Code bucket, credential bucket, config bucket, image

bucket, build server. Then, the potential attackers (malicious users) are identified. A

malicious user can call any method of the components that they have access to, with any

possible parameters. Furthermore, a malicious user can try to pass around any capabili-

ties they possess to the components they can access.

After defining the abilities of an attacker, different attacks that can happen are con-

sidered:

• A remote attacker may attempt to exploit a component in the build environment

that is directly accessible from outside of the environment. If successful, an at-

tacker can gain the privileges of the process. I do not consider further privilege

escalation (to administrative rights), as this would trivially compromise all pro-

cesses on the machine.

• A remote attacker may attempt to infiltrate the CI server (Jenkins). If successful,

an attacker can bypass the access rights enforcement and gain access to all the

assets. Example attacks that can happen include:

– The attacker can fetch the source code from the repository and modify it.

This introduces an exploit which can compromise the entire build process.

– The attacker can tamper with the build image and goes unnoticed.

– The attacker can deploy the wrong version of image.

Chapter 7 111

– The attacker can gain access to the credentials.

– The attacker can read and modify the configurations.

Finally, the existing countermeasures to the potential attacks and assumptions about

the threats are elicited, which include:

• Compiler is correct.

• No attacks on network links both on the public Internet (i.e. on the connections

between my machine and AWS) and on AWS infrastructure.

• Jenkins is installed on an EC2 instance.

• Matrix-based authentication and Project-based authentication in Jenkins can be

bypassed as shown by Bass et al. (2015). Furthermore, there are known vulnera-

bilities to bypass intended restrictions in Jenkins as reported in CVE-2014-36638

and CVE-2014-20589.

• AWS IAM policy can restrict access to the bucket only from the build server.

• Sufficiently strong cryptography is used for encryption.

7.1.4 Securing the Continuous Deployment Pipeline

The high-level security requirements that need to be satisfied are that malicious code is

not deployed through the pipeline and that there is no direct communication between

components in the testing and production environments. The first high-level security

requirement can be broken down into four requirements, one for each of the three stages

(see Section 7.1.1) of the pipeline and one requirement about credentials. These require-

ments are that the malicious user cannot have access (i.e. read, write and grant) to code,
8https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3663
9http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2058

112 Chapter 7

the correct version of build image is deployed for testing and is untampered with, the

tested image to be deployed to production is untampered with and credentials are not

leaked. The ability of the malicious user is defined in Section 7.1.3. An untampered

image is one that is the product of a successful execution of a process described in the

specification, and that no additional changes are made. These requirements can be fur-

ther broken down to be more specific.

The second high-level security requirement can be broken down into two require-

ments, namely that there is no component that has access to both production and testing

environments, and that the production environment is isolated from the testing environ-

ment. This requirement is specified to prevent components in the testing environment

from accessing anything in the production environment which may break the production

environment. After identifying these, an assurance case is built (Figure 7.2) in order to

capture and demonstrate that the pipeline satisfies its intended requirements. We claim

that malicious code is not deployed through the pipeline as the root claim in the assur-

ance case. In order for that claim to be true, all the sub-claims (i.e. the broken down

requirements) need to be true as well. The assurance case is presented in Figure 7.2.

We start off by modeling the existing pipeline model without any security consider-

ation and then harden the security of the pipeline. The pipeline starts with a developer

making a change in the form of a code commit. Jenkins then pulls that code commit

and builds the code. Building the code results in a build artifact, which is an application

binary. Jenkins then packages the build artifact into an image and stores it in AWS S3.

After that, Jenkins triggers a deployer to deploy the built image to a testing environment

for testing. The deployer is a simple application that uses AWS OpsWorks to set up the

testing environment, deploy and start the image inside the testing environment. The tests

are then triggered. The logs from the test are then stored in an S3 bucket.

In this model, Jenkins is the main orchestrator that has access to codeBucket, creds-

Chapter 7 113

Malicious code is not
deployed through the

pipeline

Malicious
user

cannot
have

access to
code

Correct
version of
built image
is deployed
for testing

and
untampered

Creden
tials

are not
leaked

Access
to code

is
authent
icated

Only
trusted
compon
ent has
direct

access
to code

Built
image
is not
tampe

red
with

Exact
path to
images
remain

s
confide

ntial

Direct
access

to
creds

is
limited

to
trusted
compo

nent

Request
for

creds
have to

be
authenti

cated

No direct
communication

between testing and
production

environments

Integrity
check

on
image

is
perform

ed by
trusted
compon

ent

Tested
image to be
deployed to
production

is not
tampered

with

Production
isolated

from
testing

Access
to

checks
um

limited
to

trusted
compon

ent

No
Component
has access

to both
testing and
production

environment

Access
to

image
bucket

is
limited

Legend

Claim

is a subclaim
of

Figure 7.2: Continuous Deployment Assurance Case (subset)

Bucket, imageBucket, configBucket and deployer. codeBucket, credsBucket, image-

Bucket and configBucket are all AWS S3 buckets, which are modelled to have put (write)

and get (read) functions. Figure 7.3 shows the initial model of the pipeline. The code-

Bucket, credsBucket and configBucket are identified as the secrets that need to be pro-

tected and only Jenkins (trusted) can have access to them. Furthermore, the image-

Bucket is identified as a secret and trust Jenkins and deployer to have access to it. In

order to check that these properties are satisfied, two Datalog rules, bktBreached and

imgBreached, are written as shown in Listing 7.1.

The initial model satisfies these rules, with the assumption that Jenkins is a trusted

component. Satisfying these rules provides evidence to support a subset of the claims in

the assurance case, in particular “only trusted component has direct access to code”,“only

a trusted component has access to an image” and “direct access to credentials is limited

114 Chapter 7

jenkinsInstance

deployer credentialBucket

imageBucket

configBucket codeBucket

ec2Instance

logBucket

awsOpsworks credentialFile codeconfigFile

operator

Figure 7.3: Initial design of the CD pipeline. This shows the structure of the initial
design of the pipeline, where an arrow pointing to a component represents holding a
capability to it.

to a trusted component”. One major weakness of this model is that we rely on the as-

sumption that Jenkins is trusted. If Jenkins is infiltrated and thus considered as untrusted,

the security properties of the pipeline will not hold, given that Jenkins is the main or-

chestrator in the model. Therefore, we have to model Jenkins as an untrusted component

to ensure that the pipeline is secure even if Jenkins is infiltrated.

Jenkins is modelled as an untrusted component in SAM, whereby an untrusted com-

ponent may invoke any methods on the components it has access to and tries to pass

around any capabilities it possesses to the components it can access. Figure 7.4 shows

a model of the continuous deployment pipeline when a malicious user infiltrated Jenk-

ins. The red arrows show the security violations in the model, where malicious user has

gained access to codeBucket, credsBucket, imageBucket and configBucket.

My process for hardening the security of the pipeline has the following steps:

1. Identify the security requirements for the pipeline.

Chapter 7 115

Listing 7.1: Verification Procedure of the initial design

1 bktBreached(?Src,?Target):-

2 !MATCH(?Src,?Target),

3 !MATCH(?Src,<Jenkins>),

4 hasRef(?Src,?Target).

5 imgBreached(?Src,?Target):-

6 !MATCH(?Src,?Target),

7 !MATCH(?Src,<Jenkins>),

8 !MATCH(?Src,<deployer>),

9 hasRef(?Src,?Target).

10 assert !bktBreached(?Src,<codeBucket>).

11 assert !bktBreached(?Src,<credsBucket>).

12 assert !bktBreached(?Src,<configBucket>).

13 assert !imgBreached(?Src,<imageBucket>).

2. Identify the trusted and untrusted components of the pipeline.

3. Repeat until all of the requirements have been satisfied OR can no longer decom-

pose the untrusted components:

(a) Model the interactions between the components.

(b) Analyze the model to check whether it satisfies its requirements.

(c) Decompose untrusted components causing an unsatisfied requirement into a

trusted and an untrusted portion.

This process is based on the idea that the actual building and deploying activities

are small pieces of code that can be encapsulated into trusted components and that the

trusted components can mediate access to the actual building and deploying activities.

116 Chapter 7

credentialBucket

credentialFile codeconfigFile

deployer

jenkinsInstance

operator

imageBucket

configBucket

logBucket

logFilecodeBucket

ec2Instance

awsOpsworks

Figure 7.4: Initial design of the CD pipeline with infiltrated Jenkins. This figure shows
the model after all the possible accesses are propagated. There are four security viola-
tions in this figure, which are represented as four red arrows. These arrows are: operator
to imageBucket, operator to codeBucket, operator to credentialBucket, and operator to
configBucket. The operator is not allowed to have access to these four components but
gained access from the infiltrated jenkinsInstance.

More detail about the formal portions of this process can be found in Rimba, Zhu, Bass,

Kuz and Reeves (2015).

We aim to harden the pipeline with Jenkins being untrusted. The first step is to add

authentication for the component that is retrieving the code, config file and credential

file. The current model is composed with the authentication enforcer (Schumacher et al.,

2006) design fragments. The authentication enforcer (Figure 7.5) aims to create a single

point of access to receive interactions of a subject and verify the identity of the subject.

The security property of the authentication enforcer design fragment is that the user store

should remain confidential. A Datalog rule, shown in Listing 7.2, is written to check that

only authenticationEnforcer can have access to userStore.

Chapter 7 117

Legend
has a capability to
(stored in global field)
& invoked its target

has a capability to
(stored in local field)
& invoked its targetrequest

Context
userStoresubject

authentication
Enforcer

user

secureBaseAction

Figure 7.5: Authentication Enforcer Design Fragment. All the arrows are in green, which
means that the functions of each component has been invoked.

Listing 7.2: Verification Procedure of the Authentication Enforcer

1 uStoreBreached(?Src,?T):-

2 !MATCH(?Src,?T),

3 !MATCH(?Src,<authenticationEnforcer>),

4 hasRef(?Src,?T).

5 assert !uStoreBreached(?Src,<userStore>).

We need to insert the authentication enforcer design fragment in between Jenkins,

codeBucket, credsBucket and configBucket, in order to moderate their interactions. First,

we use the connect tactic, connecting Jenkins to secureBaseAction. Then the discon-

nect tactic is used to detach codeBucket, credsBucket and configBucket from Jenkins.

As each of codeBucket, credslBucket and configBucket is a secret, Jenkins is removed

from each of their granted component sets using the revoke tactic. Then, secureBaseAc-

tion is added to the granted set of codeBucket, credsBucket, and configBucket using the

grant tactic and connect them. The resulting model is shown in Figure 7.6. The affected

Datalog rule (bktBreached in this case) is modified every time the tactic is applied.

The resulting rule is shown in Listing 7.3. We verify that the composite design satisfies

the uStoreBreached, imgBucketBreached and bktBreached rules.

118 Chapter 7

subject

secureBaseAction

request
Context

config
File

credential
Bucket

jenkinsInstance

authenticatorEnforcer

userStorecredential
File

code

code
Bucket

config
Bucket

Legend
has a capability to
(stored in global field)
& invoked its target

has a capability to
(stored in local field)
& invoked its target

Figure 7.6: Jenkins with the Authenticator Enforcer Pattern. The secureBaseAction in-
termediates and authenticates jenkinsInstance’s access to configBucket, codeBucket, and
credentialBucket. The jenkinsInstance has to store its identification information in re-
questContext and then provides the requestContext to secureBaseAction.

Listing 7.3: Verification Procedure of the Bucket (modified)

1 bktBreached(?Src,?T):-

2 !MATCH(?Src, ?T),

3 !MATCH(?Src,<Jenkins>),

4 !MATCH(?Src,<secureBaseAction>),

5 hasRef(?Src,?T).

In order to ensure that the build artifact is packaged into an image correctly, Jenkins

is relieved from this duty and a trusted image builder is used. Furthermore, we want to

be able to detect whether or not the image is tampered with during testing. We need an

imageBuilder that will build the image, request an integrity check calculation (check-

sum) from integrityChecker and store the checksum in a database, checksumStore. This

needs to be protected and which is thus classified as a secret. In order to achieve this,

we create imageBuilder and connect Jenkins to it. Then, imageBuilder is connected to

integrityChecker and checksumStore. As checksumStore is a secret and imageBuilder

is trusted to have access to it, imageBuilder is added to the granted component set of

Chapter 7 119

checksumStore using the grant tactic. Thus, a new Datalog rule is written (shown in

Listing 7.4) to verify that no other component, except those in its granted component set

(i.e. imageBuilder), can have access to checksumStore.

imageBuilder

imageBucketchecksumStore integrityChecker

image

jenkinsInstance

Legend
has a capability to
(stored in global field)
& invoked its target

has a capability to
(stored in local field)
& invoked its target

Figure 7.7: Jenkins with Image Builder and Integrity Checker. All the arrows are in
green, which means that the functions of each component has been invoked.

Listing 7.4: Verification Procedure of the Checksum store

1 cSumBreached(?Src,?T):-

2 !MATCH(?Src, ?T),

3 !MATCH(?Src,<imageBuilder>),

4 hasRef(?Src,?T).

5 assert!cSumBreached(?Src,<checksumStore>).

In order to satisfy the claim that the correct version of the built image is deployed

for testing and is not tampered with, we need to satisfy the claim that the exact path

to images remains confidential. This is to ensure that the correct version of the image

is deployed. We can consider two ways of protecting confidentiality of data: encryp-

tion and obfuscation. The encrypted storage pattern (Kienzle and Elder, 2002) aims to

harden the confidentiality of a system. It encrypts data before storing it, and the encryp-

tion key must be stored securely. This mitigates the impact of the loss of a file to an

120 Chapter 7

attacker, because the content of the file remains confidential, as it has been encrypted.

Figure 7.8 shows the capability-specific design fragment of the encrypted storage pat-

tern. The encryptedStorage component has access to the storage, encryptedDecrypt and

key components. The user (invoker) sends an encrypt command, together with the data,

to encryptedStorage. encryptedStorage loads the value of the key into encryptDecrypt

and sends an encryptData command, together with the data, to it. The encrypted data is

then returned to the encryptedStorage, which sends it back to the invoker, and it is stored

in storage. The security property that is of interest is the confidentiality of the data.

Since the data is encrypted, access to the encryption key needs to be minimized. Thus,

only encryptedStorage is given access to the key. The security property is reflected in

Listing 7.5. It checks whether any component in the design fragment, with the exception

of encryptedStorage, has access to the key.

storage encryptDecrypt key

encryptedStorage

user

Figure 7.8: Encrypted Storage Design Fragment. All the arrows are in green, which
means that the functions of each component has been invoked.

The existing model of the pipeline is composed with the encrypted storage design

fragment by connecting deployer to encryptedStorage with the connect tactic. The de-

ployer will generate a time-bound temporary URL of the image location in a bucket,

a mechanism provided by AWS S3, and then invoke the encryptData function of en-

cryptedStorage to encrypt the temporary URL. The temporary URL not only obfuscates

the real location of the image, but also puts a time-bound to limit access to the image.

Chapter 7 121

Listing 7.5: Verification Procedure of the Encrypted Storage Design Fragment

1 keyBreached(?Src,?T) :-

2 !MATCH(?Src, ?T),

3 !MATCH(?Src,<encryptedStorage>),

4 hasRef(?Src,?T).

5 assert !keyBreached(?Src,<key>).

However, we can only model the invocations and cannot check this property in SAM.

The deployer then invokes AWS OpsWorks, which instructs the ec2instance to pull the

image from the encrypted URL and then run that image on the instance. As the stor-

age componentis not used, we disconnect storage from encryptedStorage and delete the

storage, using the disconnect and delete tactics respectively. Once the test is com-

pleted, the release manager will be notified and has to make a decision whether or not

the latest build should be deployed to production. The release manager will perform an

integrity check on the latest build image to ensure that the image is untampered with.

The integrity check can be done by calculating the checksum for the build image and

comparing it with the entry in the checksumStore. If it matches, he can approve the latest

build image to be deployed to the production environment through a different deployer.

Having different deployers for the testing and production environments help ensure that

there is no invocation between these two environments. One assumption is that the EC2

instances have been already been launched by AWS OpsWorks. Figure 7.9 shows the

final model of the testing environment of the pipeline.

Finally, we want to ensure that there is no direct communication between the testing

and production environments. The execution domain pattern (Schumacher et al., 2006)

aims to restrict a process to specific resources by defining logical execution environments

(domains). We define three different domains, which are testing, production and shared.

The shared domain consists of utility components that are used by components in both

122 Chapter 7

dynamoDB

credential
Bucket

codeconfig
File

credential
File

request
Context

userStore subject

authenticationEnforcercode
Bucket

config
Bucket

secureBaseAction

jenkinsInstance

deployer

awsOpsworks

ec2Instance

testDBlogBucket

logFileencryptDecrypt

trustedProxy
image
Bucket

image

integrity
Checker

imageBuilder

Figure 7.9: The testing environment of the Continuous Deployment (CD) pipeline. All
the arrows are in green, which means that the functions of each component has been
invoked.

production and testing domains. For specifying a component belongs to a particular do-

main, we use hasIdentity(<component>,"domain name"). To ensure that

no component in the testing domain has access to the production domain, a Datalog rule,

Listing 7.6, is written to check this property. The Datalog rule specify that there is a

security flaw if a component in the testing environment has access to a component in the

production environment.

Listing 7.6: Verification Procedure for no cross domain access

1 haveBadAcess(?Src,?T):-

2 hasRef(?Src,?T),

3 hasIdentity(?Src, "Testing"),

4 hasIdentity(?T, "Production").

In order to demonstrate this property, we connect ec2Instance from the testing envi-

ronment to ProductionDB in the production environment. Figure 7.10 shows that there

is a red arrow, which signifies a security violation, from ec2Instance to ProductionDB.

This connection is considered as a bad access and is caught by the Datalog rule specified

Chapter 7 123

above (Listing 7.6).

logBucket
Production

Production Environment

Testing Environment

Shared Environment

releaseManager

deployerProduction

awsOpsworksProduction

ec2Instance3
Production

ec2Instance2
Production

ec2Instance
Production

dynamoDBencryptDecryptchecksummer image
Bucket

logFile
Production

trustedProxy
Production

ProductionDB

jenkinsInstance

imageBuilder

awsOpsworks

deployer

image

ec2Instance

trustedProxy logBucket

testDB

logFile

Figure 7.10: Testing to Production disallowed. There is a security violation, which
is represented as one red arrow from the ec2Instasnce to the ProductionDB. This is a
security violation because any components in the testing environment should not have
access to a component in the production environment. The ec2Instance is a component
in the testing environment while the ProductionDB is in the production environment.

The final pipeline design satisfies its security properties even though Jenkins and all

the buckets and ec2instances are untrusted. Each verification procedure of the pipeline

provides evidence to support the subclaims in the assurance case that is presented in

Figure 7.2.

7.1.5 Discussion

The pipeline case study shows that the proposed approach can secure a CD pipeline in the

presence of threats, which are defined in the threat model in Section 7.1.3. The pipeline

is secured by gradually composing capability-specific design fragments with the existing

124 Chapter 7

system design to eliminate the existing threats. This composition is done by using the

composition primitives, which are defined in Section 5.1.

The case study also indicates that the composition primitives are sufficient to express

different compositions that are required to secure the pipeline. The primitive tactics

have been exercised and utilised multiple times in the case study. Complex security-

critical systems can be built using combinations of these primitive tactics. However,

due to the tactics being very primitive, it might be tedious to perform commonly used

combinations, such as the proxy tactic, which I define in Section 5.3. The proxy tactic

is a higher-level tactic that helps to insert a new component in between two connected

components. This can be achieved through multiple application of connect and discon-

nect tactics. Building a catalog of these higher-level tactics is crucial as it may ease the

composition approach.

When I use a capability-specific design fragment for composition, I also reuse its

verification procedure to help verify the security properties of the application design.

Each design fragment has been verified individually before the composition to identify

and remove localized problems to an individual design fragment before those problems

propagate to the whole application design through composition. This is intended to

reduce the verification effort and design effort.

7.2 Smart Meter

In this section, I evaluate the applicability of my approach and the higher level tactics

that are defined using the composition primitives using a Smart Meter with requirements

derived from industrial standards. These higher level tactics are derived from multiple

applications of the primitives that are introduced in Section 5.1.

Section 7.2.1 introduces the concept of a smart meter, which is part of the Advanced

Chapter 7 125

Metering Infrastructure (AMI), and provides background, including an overview of the

requirements and architecture. Section 7.2.2 describes the application of my process in

designing a secure smart meter before concluding this chapter with discussion in Section

7.2.3.

7.2.1 Background

A smart meter is an electronic device that records energy usage and supports two-way

communication with utility providers. It transmits information back to utility providers

and receives information from utility providers. A smart meter is installed in the home

of an end user and is part of the Advanced Metering Infrastructure (AMI). Figure

7.12 shows the architecture design of the AMI, in which a meter has to communicate

with AMI Head End, a display device, AMI communications network device and field

tool/device.

I use the Advanced Metering Infrastructure (AMI) (The Advanced Security Acceler-

ation Project, 2010) is used as a context for a realistic smart meter example. The AMI

Security Profile (The Advanced Security Acceleration Project, 2010) has 130 security

requirements, based on NIST 800-53 (Joint Task Force Transformation Initiative, 2010),

a US Federal document defining the security and privacy controls for information sys-

tems and organizations. The AMI is large, so the focus is on a particular component, the

smart meter. A smart meter is an electricity meter capable of two-way communications

with a utility company. From the use cases provided by Smartgridipedia10 and security

requirements from the security profile, a model of a smart meter supporting the func-

tionality and the security features of the meter is derived. The operational (e.g. update

regularly) and organizational (e.g. personnel training) requirements are filtered out and

the requirements concerning all components in the AMI and those specific to the meter

10http://www.smartgridipedia.org

126 Chapter 7

NIC_HeadEndNIC_CommNetDev

NIC_HAN

Timer

Filter_HeadEnd

Filter_HAN

Filter_CND

Display

Monitor

Connection
Manager

Secure Logger
(event)

BootloaderElectric Switch

AMI
Communications
Network Device

Head End

HAN Display Device

Client Data
Storage

Meter Reader

Meter

Encryptor/
Decryptor

Exception Handler

Policy
Enforcement

Point

Field Tool

NIC_FieldTool

Filter_FieldTool

Figure 7.11: Smart Meter Architecture Full Perspective

are concentrated on. Based on these criteria, there are 53 relevant security requirements.

All the relevant security requirements are listed in Appendix A. From these relevant se-

curity requirements and use cases, a smart meter architecture design is devised as shown

in Figure 7.11.

C
hapter

7
127

Figure 7.12: AMI Architecture Full Perspective (The Advanced Security Acceleration Project, 2010)

128 Chapter 7

7.2.2 Secure Smart Meter Design

Here, I focus on the design and evaluation of components implementing the logging

requirements. The logger is the component with the most connections to other com-

ponents. This is due to a security requirement, DHS-2.14.4, which specifies that all

components in the AMI shall log all security events.

Table 7.2: Smart Meter Logging Security Requirements

Requirement Requirement Detail

DHS-2.14.4 Components of AMI shall log all security events
DHS-2.15.20 Unsuccessful login attempts shall be logged
DHS-2.16.2 AMI components shall generate log files
DHS-2.16.9 Protect audit information (log files) from unauthorized access

Table 7.2 shows relevant logging-related requirements. DHS-2.16.2 requires the cre-

ation of a log file, while DHS-2.14.4 and DHS-2.15.20 describe some of the log contents.

Requirement DHS-2.16.9 states that the log file has to be protected from unauthorized

access. Based on this requirement, the security property that is of interest is the confi-

dentiality of the contents of the log file. Covert channels and other access properties are

not dealt with in this work.

The assurance case for the logging mechanism in Figure 7.13. It is built with the

ASCE tool11, using the Claim-Argument-Evidence (CAE) notation (Bloomfield and

Bishop, 2010). Claims represent what must be demonstrated by the system. An argu-

ment provides reasoning as to why the claim has been met by the supporting evidence. In

Figure 7.13, the blue oval shape represents the claims and subclaims. The green rounded

rectangles and pink rectangles represent the arguments and evidence respectively. The

black hexagons represent assumptions. The requirement DHS-2.16.9 is set as the top-

level claim. Subclaims are then identified to support the top-level claim. These subclaims

11ASCE — http://www.adelard.com/asce/

Chapter 7 129

File content remains
confidential if

externally accessible

Encryption
hard to break

Proof:
Untrusted

components
no access

to key

Proof:
Encryption
is complex

Analysis
using SAM,
untrusted

components
no access

to key

Complexity of
AES-256:

2^254.4 [32]

Analysis
using SAM,

Trusted
components

 isolated

Legend

Trusted
components
don't leak file

File content is not leaked
from smart meter

Log file (audit
information) is

confidential - DHS -2.16.9

No access for
untrusted

components to
file

Proof:
Untrusted

components
no access

to file

Analysis
using SAM,
untrusted

components
no access to

file

Proof:
Trusted

components
isolated

Assumption:
Key can't be

accessed
from external

Only encrypted
file is stored

Encryption key
cannot be
accessed

No external
access to key

Key not leaked
by meter

Trusted
components

don't leak
key

No access
for untrusted
component

to key

Assumption:
Trusted

component
implementation

doesn't
leak file

Note:
Details omitted

for brevity

Trusted
components
isolated from

untrusted
components

Assumption:
Trusted component

implementation doesn't
leak key

Encryption protects
confidentiality of the content

of file

Claim

Proof

Evidence

Assumption
or Note

Figure 7.13: Assurance Case for Smart Meter Logging

demonstrate that the meter remains secure despite possible attacks. Arguments and evi-

dence for the claim are then provided. During the design process, the assurance case is

incrementally evolve as the design changes to defeat new attacks.

The log file can be accessed either from within the device or external to the device.

External access is direct access to the storage without the controls provided by the system

design. Internal access is within the device, i.e. behind the interfaces to the device. We

claim that the contents of the file will remain confidential even if it is externally accessi-

ble. This is supported by subclaims about the encryption that protects the confidentiality

130 Chapter 7

of the log file. One assumption is that the key cannot be accessed externally (e.g. by

being stored in a tamper-resistant store). Each of these subclaims is supported by an-

other subclaim or an argument and associated evidence. For instance, we argue that the

key is not leaked by the meter, and support this by three other subclaims. One of them

is that untrusted components do not have access to the key. An untrusted component

might potentially communicate the contents of the key if it has access to it. Therefore,

it is essential to ensure that only trusted components have access to the key. An analy-

sis in SAM that only trusted components have access to the encryption key is provided

as a piece of evidence. Furthermore, the fact that encryption is hard to break, e.g. as

Bogdanov et al. (2011) have shown, the computational complexity of a full key recovery

attack on AES-256 is 2254.4, is added as a subclaim of the “encrypted protection” claim.

A claim can be used as subclaim to more than one claim (or subclaim). For instance,

the claim “trusted components are isolated from untrusted components” is a subclaim

to both the “file content is not leaked from smart meter” and “key is not leaked by the

meter” claims.

We start by building a model that satisfies the requirements for the need of logging

(DHS-2.14.4 and DHS-2.15.20). This model is referred to as Model I and is shown

in Figure 7.14a. However, this model does not sufficiently address the requirement to

protect log files from unauthorized access (DHS-2.16.9). This is shown by introduc-

ing an attack from a malicious user assumed to have access to the logger. As both

the malicious user and logger are untrusted (blue in SAM notation), they will pass

and take any capability that they are able to. The logger grants file access to itself.

The malicious user (malUser) grants the logger and the file access to itself. The se-

curity violation is caused by the malicious user taking the loggers capability to the

file. The model resulting from the analysis is shown in Figure 7.14b.A Datalog query

hasRef(<malUser>,<file>) is defined to check whether there is a reference from

Chapter 7 131

file

logger

meter

(a) Baseline. In this figure, the meter has
an access to logger and invoked its func-
tions. The logger has an access to file and
has invoked its functions. The file gained
an access to logger but does not invoke any
functions of logger

file

logger

malUser

meter

Invoked functions

Does not invoke

functions

Security violation

Cause of violation

Stored in Global

Variable
Stored in local

Variable

Trusted component

Untrusted component

Legend

(b) Model I with malUser Attack. There is a security vi-
olation in this figure, which is represented as a red arrow
from the malUser to the file. The cause of this violation
is represented as an orange arrow from the malUser to the
logger. The malUser should not have an access to the file
but gained it from the logger

Figure 7.14: Model I

malicious user to file. The result from the query shows that the design of Model I has

not satisfied the requirement DHS-2.16.9. The red arrow from malUser to file in Figure

7.14b indicates that the malicious user has access to the file, which is a security violation.

One of the subclaims of the assurance case is that there is no access for untrusted

components to the file. We use the secure logger design fragment that has been shown

in Section 4.5 to mitigate this attack. One of the goals of the secure logger pattern is

to decouple the logging functionality from the application, so that only authorized users

are able to view the contents of the log file, as shown in Figure 7.15a. We aim to use the

secure logger design fragments verified property that only authorized users can access

the file.

In this design fragment, a user sends a log command to secureLogger with data.

Upon receipt, the secureLogger, whose main responsibility is to collect the data, sends

the data with a log command to the logManager. The logManager will request a new

132 Chapter 7

logFactory

logger

logManager

secureLogger

user

file

(a) Secure Logger design fragment.
All the arrows are in green, which
means that the functions of each com-
ponent has been invoked.

logFactory

logger

logManager

file

secureLogger

meter

Invoked functions

Does not invoke

functions

Stored in Global

Variable

Stored in local

Variable

Trusted component

Untrusted component

Legend

(b) Model II baseline. All the arroows, except file to
logger, are in green. The arrow from file to logger
is black, which means that file does not invoke the
functions of logger.

Figure 7.15: Secure Logger Design Fragment and Model II

instance of logger from logFactory. The logger is the component that logs the data.

As shown in Figure 7.15a, the secureLogger has a capability to logManager, and the

logManager has a capability to both the logFactory and the newly created logger. We

verify that the user does not have direct access to the file. A Datalog rule is written for

the Points-To analysis engine built into SAM to analyze this fragment. This rule defines

whether there is an access from user to file. We check that the user does not have access

to the file with the query !hasRef(<user>,<file>).

The secure logger design fragment is applied to Model I, and the resulting model is

called Model II (with secure logger). Figure 7.15b depicts Model II in SAM. Reusing

the Datalog rule defined for the secure logger design fragment, hasRef(<meter>,

<file>), we can check that the meter does not have access to the file. This step is

essential to ensure that composing with the secure logger pattern does not break the

Chapter 7 133

property previously achieved, which is that meter does not have access to file.

The malicious user attack that broke Model I is then reintroduced. Figure 7.16 de-

picts Model II after the introduction of the malicious user assumed to have access to the

secureLogger. The malicious user has access to secureLogger, loggerUnknown and file-

Unknown in the figure. The loggerUnknown and fileUnknown components are a logger

instance and a log file dynamically created for the malicious user respectively. Using

the Datalog query !hasRef(<malUser>,<file>), we confirm that the malicious

user does not have access to the log file. Therefore, the secure logger design fragments

has mitigated that attack and satisfies the claim that untrusted components do not have

access to file. An argument supporting this claim is added to the assurance case with the

verification as supporting evidence.

logFactory

logger

loggerUnknown

logManager

secureLogger

file fileUnknown

malUser

meter

Invoked functions

Does not invoke

functions

Stored in Global

Variable

Stored in local

Variable

Trusted component

Untrusted component

Legend

Figure 7.16: Model II with Malicious User Attack. This figure shows that the malUser
does not have access to file. The logger, loggerUnknown and malUser components are
components with untrusted behaviors.

One major subclaim in our assurance case is that file remains confidential even if

there is external access to it. To demonstrate that this subclaim is valid, the malUser is

granted a capability to the log file directly. This can be achieved in SAM by making the

log file public, which means that all untrusted components are granted access to it. This

134 Chapter 7

attack is introduced to Model II and analyze whether the confidentiality property of the

model stays intact. As seen in Figure 7.17, the malicious user has access to the file and

thus the assertion for the Datalog query !hasRef(<malUser>,<file>) fails. So,

the information inside the log file can be read by the malicious user. Actions must be

taken to mitigate this attack and harden the system.

logFactory

logger

loggerUnknown

logManager

secureLogger

file

fileUnknown

malUser meter
Invoked functions

Does not invoke

functions

Security violation

Cause of violation

Stored in Global

Variable

Stored in local

Variable

Trusted component

Untrusted component

Legend

Figure 7.17: Model II with External Access Attack. There are two security violations,
which are represented as two red arrows: malUser to file and loggerUnknown to file.
The box around the file component depicts that it is made public, which means that all
untrusted components are granted access to it.

The encrypted storage pattern (Kienzle and Elder, 2002) aims to harden the confi-

dentiality of a system. It encrypts data before storing it, and the encryption key must

be stored securely. This mitigates the impact of the loss of a file to an attacker, be-

cause the content of the file remains confidential, as it has been encrypted. Figure 7.18

shows the capability-specific design fragments of the encrypted storage pattern. The

encryptedStorage component has access to storage, encryptor decryptor and key com-

ponents. The user sends a write command, together with the data, to encryptedStorage.

Chapter 7 135

encryptedStorage loads the value of the key to the encryptor decryptor and sends an

encryptData command, together with the data, to it. The encrypted data is then returned

to encryptedStorage, which will send the encrypted data to be stored by storage. The

security property that is of interest is the confidentiality of the data. Since the data is

encrypted, access to the encryption key needs to be minimized. Thus, only encrypted-

Storage is given access to the key. A new Datalog rule, isSecBreached, is defined

as shown in Listing 7.7, to verify this property.

storage encryptor_decryptor key

encryptedStorage

user

Figure 7.18: Encrypted Storage Design Fragment. All the arrows are in green, which
means that the functions of each component has been invoked.

Listing 7.7: Encrypted Storage Verification Procedure

1 declare isSecBreached(Ref Source, Ref Target).

2 isSecBreached(?Source,?Target) :-

3 !MATCH(?Source, <encryptedStorage>),

4 !MATCH(?Source,?Target),

5 hasRef(?Source,?Target)

6 assert !isSecBreached(?Source,<key>).

The rule specifies that the security is breached if there is a component in

the model, other than encryptedStorage, that has access to the key and stor-

age at the same time. The design fragment model is checked using the query

!isSecBreached(?Source,<key>,<storage>). When the model satisfies

the rule, we compose it together with Model II and call it Model III. It is the composite

136 Chapter 7

model consisting of the Model I, secure logger design fragment and encrypted storage

design fragment.

For the composition, we use the connect and replace tactics defined in Chapter 5.

The encrypted storage design fragment is connected to the secureLogger component of

the secure logger pattern. Then, the storage component of the encrypted storage pattern

is replaced with the logManager component. Figure 7.19 shows Model III (with secure

logger and encrypted storage design fragments). The secureLogger component has a ca-

pability to the encryptedStorage instead of the logManager. The encryptedStorage will

encrypt, which is done by the encryptor Decryptor, the data that are received from the

secureLogger and will send it with the log command to the logManager. The logMan-

ager will request a new instance of logger from the logFactory and will command the

logger to log the encrypted data.

Listing 7.8: Verification Procedure of Model III

1 declare isSecBreached(Ref Source, Ref Target, Ref T2).

2 isSecBreached(?Source,?Target, ?T2) :-

3 !MATCH(?Source, ?Target),

4 !MATCH(?Source, ?T2),

5 hasRef(?Source,?Target),

6 hasRef(?Source,?T2).

7 assert !isSecBreached(?Source,<key>,<file>).

8 assert !hasRef(<meter>,<file>).

First, this model is analyzed with the malicious user attack to make sure that it does

not break the properties that Model II already has. We run the same analysis as for

Model II and update the Datalog rule, isSecBreached, for Model III (with secure

logger and encrypted storage). The verification procedure (line 7 in Listing 7.8) from

the secure logger design fragments is reused to verify Model III. The Datalog rule,

Chapter 7 137

Functional

Secure

meter

secureLogger

encryptedStorage

encryptor_decryptor key logManager

logFactory

logger

file

Invoked functions

Does not invoke

functions

Stored in Global

Variable

Stored in local

Variable

Trusted component

Untrusted component

Legend

Figure 7.19: Model III (with Secure Logger and Encrypted Storage). All the arrows
are in green, except the black arrow file to logger, which means that the functions of
each component has been invoked. The black arrow depicts that file do not invoke any
function of logger.

defined for encrypted storage fragments, is reused to verify Model III. The rule for

Model III is updated to state that security is breached if there is a component, other

than encryptedStorage, that has access to the key and file at the same time. This is be-

cause the content of the file has been encrypted and the key is required to decrypt the

file. The rule is updated by modifying the declaration of the rule and update the rule,

as shown in lines 1-6 of Listing 7.8. We then check the rule with a query in SAM,

!isSecBreached(?Source,<key>,<file>), to show that the confidentiality

of the log file remains intact despite of the introduction of the malicious user attack.

Figure 7.20 shows Model III with the malicious user attack, in which the malicious user

does not have access to file.

In Figure 7.21, the malicious user is given direct access to the file. Recall that the

contents of the file have been encrypted and are incomprehensible without decryption,

138 Chapter 7

Functional

Secure

External

meter

secureLogger

encryptedStorage

malUser

loggerUnknown

encryptor_decryptor key

logManager

logFactory

logger

Invoked functions

Does not invoke
functions
Stored in Global
Variable
Stored in local
Variable

Trusted component
Untrusted component

Legend

Figure 7.20: Model III with Malicious User Attack. This figure shows the state of Model
III after all the possible accesses have been propagated in the presence of the malUser.
There is no component, except the encryptedStorage, that has an access to both the file
and key simultaneously.

which requires the encryption key. We have shown, by checking the Datalog query

!hasRef(<meter>,<file>), that the malicious user does not have any access to

the key. As a result, the confidentiality property of the model is still intact. This argument

is added to the assurance case with verification as supporting evidence.

Other sub claims have been identified as shown in Figure 7.13. These are that mod-

ification to the key does not compromise the file and that the encryption method used

is hard to break. For the former, we claim that the confidentiality of the log file will

remain intact in case the key is modified. We argue that the encrypted content of the

file is incomprehensible without decryption. As the encryption key has been changed,

there is no way to decrypt the file and the content of the file cannot be interpreted. Thus,

the content of the file remains confidential. As for the latter, NIST 800-53 recommends

using an existing algorithm rather than creating a new encryption algorithm. These are

included in our assurance case as it gives an indication of the impact of changes to the

system and its security properties.

Authentication and authorization are crucial components in a secure application.

Chapter 7 139

Functional

Secure

External

meter

secureLogger

encryptedStorage

malUser file

fileUnknown

loggerUnknown

encryptor_decryptor key

logManager

logFactory

logger

Invoked functions

Does not invoke

functions

Stored in Global

Variable

Stored in local

Variable

Trusted component

Untrusted component

Legend

Figure 7.21: Model III with External Access Attack. This figure shows the state of Model
III after all the possible accesses have been propagated in the presence of the malUser
and the external access attack. There is no component, except the encryptedStorage, that
has an access to both the file and key simultaneously. The box around the file component
depicts that it is made public, which means that all untrusted components are granted
access to it.

Table 7.3 shows the security requirements regarding authentication and authorization.

Based on these requirements, Model III is further enhanced with the authentication en-

forcer (Schumacher et al., 2006) and authorization enforcer (Schumacher et al., 2006)

patterns. These patterns help cancel out one of the assumptions of the secure logger pat-

tern, which is the authentication and authorization mechanisms are present in the system.

In the authentication enforcer design fragment, a user creates a requestContext and

sends it together with an authenticate command to the authenticationEnforcer. In this

design fragment, a requestContext is an object that contains the user credentials required

for authentication. Upon receipt, the authenticationEnforcer will retrieve the credentials

from the requestContext and will then verify the credentials with those stored in the

userStore. Upon successful verification, the authenticationEnforcer creates a subject for

that user. The design fragment is depicted in Figure 7.22.

We need to ensure that access to the userStore is limited to only the authenticationEn-

140 Chapter 7

Table 7.3: Authentication & Authorization Requirements

Requirement Requirement Detail

DHS-2.14.8,
DHS-2.14.9,
DHS-2.15.19

The need for Authentication and Authorization

DHS-2.15.7 Enforce authorizations for controlling access to the system

DHS-2.15.10,
DHS-2.15.12 Components shall identify and authenticate users/components

DHS-2.15.14 Employ authentication methods to a cryptographic module

client

authenticator

subject requestContextuserStore

Invoked functions

Does not invoke
functions
Stored in Global
Variable
Stored in local
Variable

Trusted component

Legend

Figure 7.22: Authentication Enforcer Design Fragment

forcer. This is captured using the security property template defined in Section 6.3: all

no access to userStore, except authenticationEnforcer. This is

then translated into a Datalog rule, authenticationBreached, as shown in List-

ing 7.9. This Datalog rule checks whether any components in the system, except the

authenticationEnforcer, has access to userStore. A security violation is detected if any

components, except the authenticationEnforcer, has access to userStore.

In the authorization enforcer design fragment, a user creates a requestContext and

sends it together with an authorize command to the secureBaseAction. requestContext

is an object that stores information, such as user credentials and authentication token,

required for authorization purposes. Upon receipt, secureBaseAction will retrieve the

information stored in requestContext and will trigger the authorize command of autho-

rizationEnforcer. authorizationEnforcer will call the authorize function of authoriza-

Chapter 7 141

Listing 7.9: Verification Procedure of Authentication Enforcer

1 declare authenticationBreached(Ref Source,Ref Target).

2 authenticationBreached(?Source,?Target):-

3 !MATCH(?Source,<authenticationEnforcer>),

4 !MATCH(?Source,?Target),

5 hasRef(?Source,?Target).

6 assert !authenticationBreached(?Source,<userStore>).

tionProvider, passing the information as parameters, to get the rights associated with

the user. authorizationProvider retrieves the rights associated with the user and creates

permissionCollection. permissionCollection, which contains access rights of the user, is

then returned to the user by secureBaseAction. The design fragment is shown in Figure

7.23.

accessStore

permissionCollection

authorizationProvider

authorizationEnforcer

secureBaseAction

authenticatedSubject

requestContext

client

Invoked functions

Does not invoke

functions

Stored in Global

Variable

Stored in local

Variable

Trusted component

Legend

Figure 7.23: Authorization Enforcer Design Fragment

Figure 7.24 shows the resulting design and Listing 7.11 shows the corresponding ver-

ification procedures. We concatenate the verification procedures of Listing 7.8 with those

of the authentication enforcer (lines 8-12) and authorization enforcer (lines 13-17) design

fragments. Lines 8-12 specify that authentication is breached if there is a component in

142 Chapter 7

Listing 7.10: Verification Procedure of Authorization Enforcer

1 declare authorizationBreached(Ref Source,Ref Target).

2 authorizationBreached(?Source,?Target):-

3 !MATCH(?Source,<authorizationProvider>),

4 !MATCH(?Source,?Target),

5 hasRef(?Source,?Target).

6 assert !authorizationBreached(?Source,<accessStore>).

the model, other than authenticationEnforcer, that has access to userStore. Lines 13-17

specify that the authorization is breached if there is a component in the model, other than

authorizationProvider, that has access to the accessStore, which contains the collection

of access rights for components. We need to ensure that access to the accessStore is

limited to authorizationProvider. Thus, this property is captured in the template as such:

all no access to accessStore, except authorizationProvider.

encryptor_decryptorlogManager

logFactory

logger

key

encryptedStorage

secureLogger

userStore

authenticationEnforcer

requestContext

accessStore

permission

Collection

authorizationProvider

authorizationEnforcer

secureBaseAction

authenticatedSubject

client

file

Invoked functions

Does not invoke

functions

Stored in Global

Variable
Stored in local

Variable

Trusted component

Untrusted component

Legend

Figure 7.24: Model IV

Chapter 7 143

Model IV with malicious user attack is shown in Figure 7.25 while Model IV with

external access attack is shown in Figure 7.26. We analyze this model with the malicious

user attack and external access attack. The confidentiality of the content of the log file

is still intact and, on top of that, there is no unauthorized access to accessStore and

userStore in the model during these attacks.

Listing 7.11: Model IV verification procedure

1 declare isSecBreached(Ref Source, Ref Target, Ref T2).

2 isSecBreached(?Source,?Target, ?T2) :-

3 !MATCH(?Source, <encryptedStorage>),

4 hasRef(?Source,?Target),

5 hasRef(?Source,?T2).

6 assert !isSecBreached(?Source,<file>,<key>).

7 assert !hasRef(<meter>,<file>).

8 declare authenticationBreached(Ref Source, Ref Target).

9 authenticationBreached(?Source,?Target) :-

10 !MATCH(?Source,<authenticationEnforcer>),

11 hasRef(?Source,?Target).

12 assert !authenticationBreached(?Source,<userStore>).

13 declare authorizationBreached(Ref Source, Ref T).

14 authorizationBreached(?Source,?T):-

15 !MATCH(?Source,<authorizationProvider>),

16 hasRef(?Source,?T).

17 assert !authorizationBreached(?Source,<accessStore>).

144
C

hapter
7

encryptor_decryptor

secureLogger

authenticationEnforcer

malUser

logManager

logFactory

logger loggerUnknown

key

encryptedStorage

userStore requestContext

accessStore

permCol

authorizationProvider

authorizationEnforcer

secureBaseAction

authenticatedSubject

client

file fileUnknown
Invoked functions

Does not invoke

functions

Security violation

Cause of violation

Stored in Global

Variable
Stored in local

Variable

Trusted component

Untrusted component

Legend

Figure 7.25: Model IV with Malicious User Attack. This figure shows the state of Model IV after all the possible accesses have
been propagated in the presence of the malUser. There is no component, except the encryptedStorage, that has an access to both
the file and key simultaneously. Furthermore, only the authorizationProvider that has an access to the accessStore component. In
addition, there is no component, except the authenticationEnforcer, has an access to userStore. The box around the file component
depicts that it is made public, which means that all untrusted components are granted access to it.

C
hapter

7
145

encryptor_decryptor

secureLogger

authenticationEnforcer

file

malUser

logManager

logFactory

loggerloggerUnknown

key

encryptedStorage

userStore

requestContext

accessStore

permCol

authorizationProvider

authorizationEnforcer

secureBaseAction

authenticatedSubject

client

fileUnknown

Invoked functions

Does not invoke

functions

Security violation

Cause of violation

Stored in Global

Variable

Stored in local

Variable

Trusted component

Untrusted component

Legend

Figure 7.26: Model IV with External Access Attack. This figure shows the state of Model IV after all the possible accesses have
been propagated in the presence of the malUser and the external access attack. There is no component, except the encryptedStorage,
that has an access to both the file and key simultaneously. Furthermore, only the authorizationProvider that has an access to the
accessStore component. In addition, there is no component, except the authenticationEnforcer, has an access to userStore. The box
around the file component depicts that it is made public, which means that all untrusted components are granted access to it.

146 Chapter 7

7.2.3 Discussion

The smart meter case study shows that the proposed approach can help to design a se-

cure smart meter and that the higher level tactics defined in Section 5.3 are feasible to be

applied. I compose an existing simple meter design with several design fragments, using

the composition tactics defined in Chapter 5, to mitigate threats and harden the smart

meter. Each design fragment has been verified individually before the composition to

identify and remove localized problems to an individual design fragment before those

problems propagate to the whole application design through composition. The verifica-

tion procedure of each the design fragments that is used during composition is reused

to verify the resulting application design. Reusing capability-based verified design frag-

ments reduce the efforts required to not only build a secure design but also verify the

resulting design.

The case study also indicates that the composition primitives are sufficient to express

different compositions that are required to create a secure smart meter design. The higher

level tactics have been exercised and utilised multiple times in the case study. Applying

these higher level tactics reduce the number of steps to achieve the desired design. The

restrictions of each primitives utilized in the higher level tactics are inherited and thus

needs to be satisfied before applying the tactic.

Chapter 8

Verified Design to Implementation

In this chapter, I discuss one possible way to turn a verified design in SAM into exe-

cutable code. I am not claiming that this is the only approach.

Figure 8.1 shows the overall approach. First, the design in SAM is transformed to

CapArch, which is an extension of xADL (Dashofy et al., 2005) and will be described in

Section 8.1. I also transform the verification procedure, written in Datalog, into a taint

analysis specification as described in Section 8.1.1. Taint analysis will be used to analyze

the CapArch model of the design. Finally, the model in CapArch will be translated into

CAmkES (Kuz et al., 2007), as outlined in Section 8.2. CAmkES is a component-based

framework that provides support for implementation of componentised systems on seL4

(Klein et al., 2009).

8.1 SAM to CapArch

CapArch is an Architecture Description Language (ADL) that extends xADL with the

concept of capabilities. An ADL is a vocabulary, graphical or textual, used to model a

system (Bass et al., 2012). The basic structural elements of an ADL are components and

connectors. Components represent the main elements in an architecture that perform

147

148 Chapter 8

28

Ve
rif
ic
at
io
n

M
od
el

encryptdecrypt logmanager

logFactory

logger

sessionkey

encryptedstorage

securelogger

userstore

authenticationenforcer

requestContext

subject

authorizationProvider

permissionCollection

authorizationEnforcer

secureBaseAction

client

file

Design in SAM in CAmkES

Isabelle/HOL
proof

Points-­To Analysis
using BDD

Design in CapArch

Graph Taint
Analysis

Trans-­
form

Trans-­
form

Trans-­
late

Figure 8.1: Verified design to executable code process. The design in SAM is trans-
formed to CapArch. This is then transformed to CAmkES, which provides a framework
to execute code on an underlying platform. The Datalog rule is translated to CapArch
taint analysis specification.

computation and stores data, while connectors represent interactions between compo-

nents. In a graphical representation of an architecture design, a component is represented

as a box and a connector as a line connecting components.

In CapArch, there are two basic elements, components and connectors. Each com-

ponent has a type and may have multiple instances of the component type. Same goes

for each connector. A component type has several attributes: name, list of interfaces

and description (optional). This is summarized in Table 8.1. Each interface has four

attributes: interfaceID, interfaceName, interfaceType and direction. interfaceID and in-

terfaceName are strings. interfaceType can either be function, message and data. The

function type is realised as Remote Procedure Call (RPC). The message type is realised

as asynchronous calls. The data type means that the interface can only transfer data.

Direction can be in, out and inout. This is summarized in Table 8.2.

A connection consists of four parameters: source component, interfaceID of source

Chapter 8 149

Table 8.1: Attributes of a component
in CapArch

Attributes Description

Name
a unique identifier of
a component

Description
(optional) description

Interfaces points of entry/contact

Table 8.2: Attributes of an interface in
CapArch

Attributes Description

id
a unique identifier of an
interface

name a name

type different type of interface

direction message flow direction

component, target component, interfaceID of target component. CapArch requires that

the direction of the interfaces of the source component and target component match.

This is summarized in Table 8.3.

Table 8.3: Attributes of a connection in CapArch

Attributes Description

source component the name of the source component

interfaceID of source component a unique id of an interface of the source component

target component the name of the target component

interfaceID of target component a unique id of an interface of the target component

CapArch has existing tools to translate from CapArch to code that runs on CAmkES,

which will be discussed in Section 8.2.

In order to transform a SAM model into a CapArch model specification, several

pieces of information are needed. The transformation requires a list of components,

including a set of interfaces for each component, and a list of connections. This infor-

mation can be extracted from a SAM model. I have implemented a tool to automate such

extraction and translation of SAM to CapArch.

The component name can be easily extracted from a SAM model. However, ex-

tracting the interfaces of each component is more challenging as this information is not

directly available in a SAM model. The data in SAM’s hasRef relationship, which

150 Chapter 8

specifies other components that each component has access to, is used to provide the

relevant information. The hasRef relationship has two parameters: source and target

components. This relationship also implies a uni-directional relationship: from source to

target. A list of interfaces can be built with this information. One entry in the hasRef

relationship allows us to create two interfaces, one for the source component and another

for the target component. Figure 8.2 shows this mapping and identifies which pieces of

information are still missing.

Component
name

hasRef
source

hasRef
target

name

source

source-int

target

target-int

id

type

direction

Connections

Components

Interface
SAM

Figure 8.2: SAM to CapArch fields mapping

Since component, interface and connection are the three main elements in a CapArch

model, a class for each of these elements is created. The component class captures

the name — name of the component instance, type — name of the component type,

and a list of interfaces of a component. The interface class will capture interfaceID,

interfaceName, interfaceType and direction. By default, interfaceID is set with the same

value as the interfaceName and interfaceType is set as function. A connection class

captures the name of a source component, the interfaceID of a source component, the

name of a target component and the interfaceID of a target component.

For the interface of a source component, its attributes are set to:

Chapter 8 151

• interfaceID = "I" + sourceName + "out"

• interfaceName = "I" + sourceName + "out"

• interfaceType = function

• direction = out

For the interface of a target component, its attributes are set to:

• interfaceID = "I" + targetName + "in"

• interfaceName = "I" + targetName + "in"

• interfaceType = function

• direction = in

After each interface is created, a connection between these two components and in-

terfaces can be created. Recall that a connection has four parameters: source component,

id of source interface, target component and id of target interface. This connection is cre-

ated with these parameters:

• source componentName = sourceName

• source interfaceID = "I" + sourceName + "out"

• target componentName = targetName

• target interfaceID = "I" + targetName + "in"

In CapArch, a component is assumed to have a connection to itself. This simplifies an

architecture designed in CapArch as there is no connection to self required. A connection

in CapArch represents a capability in SAM. As there is no connection from a component

to itself, I filter out the capabilities from a component to itself when parsing the hasRef

relationship, i.e. ignore if source component is equal to target component.

As an example, I will transform the secure logger design fragment, which is pre-

sented in Section 4.5, into a CapArch model. Tables 8.4 and 8.5 show the isA and

hasRef relationship respectively. I will focus specifically on the logManager hasRef

to logManager relationship, as highlighted in Table 8.5. In this relationship, logMan-

152 Chapter 8

Table 8.4: SecureLogger—isA Rela-
tionship

Object
(component instance)

Class
(component type)

file File
logFactory LogFactory
logManager LogManager
logger Logger
secureLogger SecureLogger
client Client

Table 8.5: SecureLogger—hasRef Re-
lationship

Source Target

file file
logManager logManager
logManager logFactory
logManager logger
... ...
... ...
client secureLogger

ager is the source and logger is the target. First, these two components are created in

CapArch. Then, an interface for logManager is created and attached to logManager.

The attributes for this interface are set as follows:

• interfaceID = "IlogManagerout"

• interfaceName = "IlogManagerout"

• interfaceType = function

• direction = out

An interface for logger is created with its attributes set as follows:

• interfaceID = "Iloggerin"

• interfaceName = "Iloggerin"

• interfaceType = function

• direction = in

After both components and their respective interfaces are created, a connection be-

tween these two interfaces is created with the following the parameters:

• source componentName = logManager

• source interfaceID = "IlogManagerout"

• target componentName = logger

• target interfaceID = "Iloggerin"

Chapter 8 153

Figure 8.3 summarizes this, showing two components (logManager and logger) and

a connection between them. The top part of the figure shows the values for each of

the parameters of the components while the bottom part shows the connection from

logManager to logger.

logManager "IlogManagerout" logger "Iloggerin"

source source interface target target interface

C
on

ne
ct

io
n

logger

"Iloggerin" "Iloggerin" function in

interfaceID interfaceName type direction

Name Interfaces

In
t 1

log
Manager

"IlogManagerout" "IlogManagerout" function out

interfaceID interfaceName type direction

Name Interfaces

In
t 1

Figure 8.3: An overview of SAM to CapArch Translation

8.1.1 Verification Procedure to Taint Analysis

CapArch uses taint analysis to check whether an architecture has desired security prop-

erties. Taint analysis (Schwartz et al., 2010) is a static code analysis technique to detect

security vulnerabilities by checking whether information can flow from one node to a

target node. A taint is used to mark each node that it has traversed through. If the taint

reaches the target node, a security vulnerability is identified. The analysis allows nodes

to act as barriers and block taint. If a taint flows through a barrier, that taint is blocked.

In order to perform a taint analysis, the flow of information, barriers and the taints

needs to be specified and written into a specification. The taint analysis specification in

CapArch has three main elements: taint, query and barrier. Taint identifies the source

component of a particular flow, tracked with a taint. Query is used to check whether

a particular taint reaches a target component, usually a secret to be protected. Barrier

specifies the components that act as barriers and block taint. A barrier is usually a trusted

component. Each taint is specified with a name and a set of components as its sources.

154 Chapter 8

A query is specified as the name of a taint and the target component. A barrier specifies

the name of a component that acts as a barrier and the name of the taint(s) it blocks. This

is summarized in Table 8.6.

The verification procedure of a design is translated into a CapArch taint analysis

specification. This starts with translating the Datalog rules into taints before construct-

ing the query and barrier. Recall that the template requires source components, target

components and (optional) exclusions. Figure 8.4 shows the mappings of elements from

a verification procedure to CapArch taint analysis. The name and source of a verifica-

tion procedure are used as the name and source of a taint. For a query, the name and the

target component of a verification procedure are used as the name and target component

in a query respectively. Finally, the set of trusted components in a verification procedure

is used as the blocking component(s) of a barrier.

As an example, I take the verification procedure of the secure logger design fragment,

as shown in Listing 8.1, and translate that to CapArch taint analysis. Four different ele-

ments are extracted from Listing 8.1: name, source, target and trusted. The components

in the secure logger design fragment specified in Section 4.5 are client, secureLogger,

logManager, logFactory, logger and file. The secret to be protected (i.e. target) is file.

Both logManager and logger are trusted to have access to file. The remaining compo-

nents are part of source in the Verification Procedure. The following shows the value for

Table 8.6: The elements and attributes in a CapArch taint analysis specification

Elements Attributes Description

Taint
name a unique identifier of the taint
source component the source of the taint

Query
taint name the taint to be checked
target component the component to be checked whether the taint reached it

Barrier
name a unique identifier of the barrier
taint name the name of the taint to be blocked by the barrier

Chapter 8 155

Figure 8.4: Verification Procedure to CapArch Taint Analysis mapping

each elements of the verification procedure.

• Name: fileBreached

• Source: client, secureLogger, logFactory

• Target: file

• Trusted: logManager, logger

Listing 8.1: Secure Logger

1 fileBreached(?Src,?T) :-

2 !MATCH(?Src, ?T),

3 !MATCH(?Src,<logManager>),

4 !MATCH(?Src,<logger>),

5 hasRef(?Src,?T).

6 assert !fileBreached(?Src,<file>).

Using the mapping shown in Figure 8.4, Listing 8.1 is translated into a CapArch

taint analysis specification. The name of the verification procedure is used as the name

in taint, taint name in query and taint name in barrier. The source in the verification

156 Chapter 8

procedure is translated as the source components of the taint. The target component in

the verification procedure is translated as the target component in query. Finally, each of

the trusted components in the verification procedure is translated as a separate barrier in

barrier. The resulting CapArch taint analysis specification is shown below. Note that in

the taint analysis specification, the target component in query is written as instance:

targetComponent.

taints:

- name: fileBreached

links_to: [ClientInst,SecureLoggerInst,LogFactoryInst]

queries:

- taint: fileBreached

instance: FileInst

barriers:

- name: LogManagerInst

blocks: [fileBreached]

- name: LoggerInst

blocks: [fileBreached]

8.2 CapArch to CAmkES

In order to get to executable code, the CapArch model is translated to CAmkES.

CAmkES is a component-based platform that abstracts the low-level mechanisms of

a microkernel (more specifically seL4) and allows modelling systems as a collection of

interacting components, generating the code (also known as “glue” code) for communi-

cation between components. I use a pre-existing tool to perform the translation.

A CAmkES specification consists of 3 parts: component type specification, com-

Chapter 8 157

ponent instantiation and connection specification. The component type specification

defines the details of each component, including which interfaces it provides and uses.

The component instantiation part defines instances of the component types. The connec-

tion specification outlines the specifics of each connection between components in the

system. Note that a CAmkES specification sets up the structure for the system. System

initialisation and communication glue code is generated based on the specification but

the actual code for each component will then need to be programmed manually.

For each component in a CapArch model, a component type is created in CAmkES.

Each component type has a list of interfaces that it provides and uses. This informa-

tion can be extracted from the list of connections that exist in a CapArch model. Recall

that there are four parameters for a connection in a CapArch model: source component,

interfaceID of source component, target component, and interfaceID of target compo-

nent. Each connection provides two pieces of information: 1) the interface that target

component provides; and 2) the interface that source component expects that the tar-

get component provides. Extracting this information from each of the connections in

a CapArch model provides sufficient information for the component type specification.

One additional piece of information that is required is which component type initiates

the model. This is usually the client or the initiator in a design fragment as described in

Section 4.4.

After the component type specification is completed, an instance for each component

type is created. Then, the connection specification is built. A connection in CAmkES

has six parameters: name, type, source component, source interface, target component

and target interface. The name of a connection can be automatically generated (currently

it is the concatenation of the names of source component and target component). The

type of a connection can be extracted from the type of interfaces involved. If the type

158 Chapter 8

is function, then the seL4RPC1 is used as the connection type. If the type is message,

seL4Async2 is used as the connection type. The type in each end of a connection, i.e.

the type that is used by source interface and target interface, needs to match. Finally,

the last four parameters can be extracted directly from the connection list in a CapArch

model. This is summarized in Table 8.7.

As an example, I translate the secure logger model in CapArch to CAmkES, focusing

on the logManager and logger components. Figure 8.5 shows the mapping from the

model in CapArch to CAmkES. The left side of the figure shows the specification for

both components and the connection between them in CapArch.

The first step to translate CapArch to CAmkES is to create the component type spec-

ification. One component type is created for logManager and another for logger. Then,

two pieces of information are extracted using the specified connection in CapArch: 1)

logger provides an interface called “Iloggerin”; and 2) logManager uses “Iloggerin”.

This is shown in the top right part of Figure 8.5. The next step is to create component

instances of these types: logManager and logger. Finally, the connection specification

for CAmkES is built. A connection in CAmkES requires six parameters, which are set

as follows:

Table 8.7: Attributes of a connection in CAmkES

Attributes Description

name a unique identifier of a connection

type
the type of connection.
seL4RPC/seL4Async

source component the name of the source component
source interface the interface of the source component
target component the name of the target component
target interface the interface of the target component

1seL4RPC — a connection type specific to seL4 for function calls
2seL4Async — a connection type specific to seL4 for asynchronous communication. Please refer to

seL4 reference manual for more information, available at https://sel4.systems/Docs/seL4-manual.pdf

Chapter 8 159

• Name: logManager-logger

• Type: seL4RPC

• Source: logManager

• Source Interface: IlogManagerout

• Target: logger

• Target Interface: Iloggerin

The name is a concatenation of logManager (source component) and logger (target

component). The connection type is seL4RPC as both the interfaces have function as

their type in CapArch. The next four parameters are extracted directly from the CapArch

connection.

logManager

source

IlogManagerout

source interface

logger

target

Iloggerin

target interface

C
on

ne
ct

io
n

logManager

Interfaces:

IlogManagerout
interfaceID

IlogManagerout
interfaceName

function
type

out
direction

C
om

po
ne

nt
s

logger

Interfaces:

Iloggerin
interfaceID

Iloggerin
interfaceName

function
type

in
direction

CapArch CAmkES

logManager

Interfaces:

Iloggerin
....

Uses

....

...

Provides

logger

Interfaces:

...

...

Uses

Iloggerin
...

Provides

logManager-logger

logManager

source

IlogManagerout

source interface

logger

target

Iloggerin

target interface

seL4RPC

type

Figure 8.5: CapArch to CAmkES Translation

The result of this translation is a CAmkES specification, which provides the structure

of the application. In order to produce executable code, the implementation code that is

written in C is required for each of the components. In addition to the implementation

code, the required CAmkES libraries and seL4 are needed before being able to build the

160 Chapter 8

application and run it on top of the microkernel.

8.3 Discussion

This chapter provides evidence that it is feasible to implement our designs constructed

using the approach proposed in this thesis. I transform the SAM model of the secure

logger design fragment, which is presented in Section 4.5, to a CapArch model. The

verification procedure of the secure logger design fragment is then translated into a Ca-

pArch Taint Analysis specification. Furthermore, the CapArch model is transformed into

a CAmkES specification, which provides the structure of the system. Finally, I write the

implementation code for each of the components and execute secure logger on top of

seL4.

The model transformation from SAM to CapArch has not been formally verified

for correctness. I rely on the taint analysis performed on the CapArch specification

to provide assurance that the transformation is as intended. Note, however, that the

translation from verification procedure to CapArch taint analysis specification has also

not been formally verified for correctness. At this stage, I manually inspect the translated

taint analysis specification to determine whether it reflects the property that is intended.

Formally verifying both the model transformation and verification procedure translation

remains as future work.

The model transformation from CapArch to CAmkES has not been formally verified

for correctness. I manually inspect the CAmkES specification to ensure that the structure

of the system reflects that of the CapArch specification. Formally verifying this trans-

formation remains as future work. Furthermore, there is currently no process to translate

a CapArch taint analysis specification into Isabelle/Higher Order Logic (HOL). Isabelle

(Nipkow et al., 2002) is an interactive Higher-Order Logic theorem prover. Generating

Chapter 8 161

a proof for correctness of a CAmkES specification and the generated “glue” code is still

work in progress (Fernandez et al., 2015, 2013). This proof can then be used together

with the proof of the underlying platform (Klein et al., 2014; Murray et al., 2013) to

provide a whole system proof. Furthermore, a formal correspondence between the se-

mantics of the verified design and the underlying platform needs to be established in

order to formally prove the soundness of the transformations. This remains as future

work.

Chapter 9

Conclusion and future work

In this thesis, I have presented a pattern-based composition approach to build high assur-

ance secure application design using capability-based design fragments which specialise

patterns for a specific platform.

I defined the following research questions in this thesis:

RQ-1: How can I specialize security patterns as reusable design fragments targeting

particular platforms?

RQ-2: How can I verify that security properties hold of these design fragments?

RQ-3: How can many design fragments be applied to the design and verification of

secure software systems?

This thesis has addressed all the research questions defined above and has made the

following contributions, each of which addressed one of the research questions:

A New Security Patterns Catalog

In Chapter 3, I collected 279 security patterns from the existing literature into a security

pattern catalog. This provides a library of solutions to recurring security problems. I

162

Chapter 9 163

have proposed a new security template that unifies five existing commonly used pattern

templates. With this new template, I am able to collect relevant information for security

patterns.

Capability-specific Design Fragments

Chapter 4 proposes the concept of design fragments, which realize design patterns for

a particular platform. I have provided a guideline on deriving design fragments from

design patterns. This was illustrated by examples of capability-specific design fragments

derived from security patterns. This contribution addresses my first research question

(RQ-1).

Composition of Design Fragments

A pattern-based composition approach to incrementally build and verify application de-

signs was presented in Chapter 5. This approach uses verified design fragments and the

proposed composition tactics to reuse the design fragments to build an application de-

sign and reuse the verification procedures to verify the resulting application design. This

approach has been shown to be applicable in two case studies from different domains,

Chapter ?? and ??. The composition tactics have also been proven to be property pre-

serving. This contribution answers our third research question (RQ-3). Finally, a general

security property, the Protected By property, is defined in this chapter.

Verification Procedure

In Chapter 6, the concept of verification procedure is introduced. This captures infor-

mation about a system which allows analysis to check security properties. I defined a

template to capture security properties and showed that this template is applicable in two

different case studies. This contribution answers my second research question (RQ-2)

and partially RQ-3.

164 Chapter 9

9.1 Discussion

The case studies have shown that our approach is applicable in different domains. De-

vOps Continuous Deployment pipelines and embedded systems (i.e. Smart Meter) are

substantially different technology domains and application domains. The capability-

based design fragments and their verification procedure are reused during several com-

positions in the case studies. This is intended to not only reduce the design effort but also

the verification effort. Furthermore, the case studies have also indicated that our com-

position tactics, which are defined in Chapter 5, are sufficient to express the intended

compositions. I have not, however, formally proven the completeness of these tactics.

One of the common pitfalls for model-checking verification is lack of scalability,

due to state explosion. However, I perform design-level verification, which is on smaller

models compared to code-level verification. Berndl et al. (2003) have demonstrated that

Points-To analysis using BDD can scale to verify code of large systems. Furthermore, I

perform incremental checking of properties which reduces the state search space.

A potential weakness of design-level verification is that the security property might

break at the code level or physical level. This can be due to misunderstanding the design,

coding errors, or to implementations exposing information that had been abstracted in the

design. In a componentized system, such as the one developed in the smart meter case

study, a lot of ‘glue code’ is used to implement communication between components.

Writing such code manually can introduce many errors. One way of mitigating this

is to utilize a component-based development framework to generate the ‘glue code’.

Besides avoiding typical coding mistakes, using such a framework can provide high-level

assurance, assuming that the generated code comes with assurance that the refinement to

code does not break the design-level security property. The component code must also

be correct and appropriate assurance of its correctness is required.

Attacks at the physical level can also violate assumptions made by design abstrac-

Chapter 9 165

tions. For example, covert channel attacks can break confidentiality properties. Alterna-

tive mitigations and arguments are required to provide assurance that a system can resist

such attacks, but I have not directly addressed this issue in this dissertation.

Currently, all of our design fragments are verified using the same verification ap-

proach. I have not experimented with composing design fragments that are verified

using different techniques.

A design fragment is defined as a partial realization of a design pattern in the context

of a particular platform. I have shown realizations of security patterns for one particular

platform, i.e. capability-based platform. I believe that this concept can be used to realize

patterns for other platforms as well but have not yet experimented with that.

Security patterns are the source for the definition of capability-specific design frag-

ments. However, as patterns are informal and ambiguous, it can be difficult to know

exactly what properties are being claimed and what should be verified. Moreover, it is

difficult to compare a formal representation of the pattern as a design fragment, to an in-

formal textual one. A design fragment for a security pattern is one version of the pattern

specialized for a specific platform. I do not claim that a design fragment of a pattern for

a platform is the only possible representation of the pattern for that platform.

The transformation approach to take verified design to runnable code, described in

Chapter 8, is one possible way to produce runnable code from a verified design. At

this stage, I rely on expert opinion that the model transformation is correct, and perform

a taint analysis to prove the security properties of the transformed model. I have not

formally verified the model transformations for correctness.

166 Chapter 9

9.2 Future work

Composition Tactic Completeness

The current collection of composition primitives, presented in Chapter 5, has been shown

to be sufficient to express different kinds of composition that are required in both case

studies. Since these case studies are from different domains, they indicate that the tactics

are complete enough. An interesting piece of future work will be to further explore this

issue. One way to widen the coverage of the tactics is to relax their restrictions such that

the tactics can express more design steps and still preserve the Protected By property.

Model Transformation Correctness Proof

The transformation approach can turn verified design into executable code. At this stage,

it relies on expert opinion that the model transformation is correct, and a taint analysis to

prove the security properties of the transformed model. Interesting future work will be to

formally prove that the model transformation is correct. One possible start is to provide a

mapping between two models and proof that the mapping is correct. Then, verify that the

code that implements the transformation is correct. This requires code-level verification

and significant effort.

Formal correspondence of semantics

In order to formally prove the soundness of the model transformations presented in Chap-

ter 8, a formal correspondence between the semantics of the verified design and the un-

derlying platform is required. The aim is to preserve the verified properties of the design

during the transformation to executable code. This is an interesting piece of future work

to be explored.

Specialize Design Fragment for other Platforms

The collection of design fragments presented in this thesis currently targets platforms

Chapter 9 167

that adhere to the capability-based security model (Dennis and Van Horn, 1966). Spe-

cializing design fragments for other platforms can be an interesting direction to pursue.

Bibliography

Alexander, C., Ishikawa, S. and Silverstein, M. (1977), A pattern language: towns, build-

ings, construction, Vol. 2, Oxford University Press.

Alvi, A. K. and Zulkernine, M. (2011), A natural classification scheme for software

security patterns, in Proceedings of the 2011 IEEE 9th International Conference on

Dependable, Autonomic and Secure Computing, IEEE Computer Society, Washing-

ton, DC, USA, pp. 113–120.

Andersen, L. O. (1994), Program analysis and specialization for the C programming

language, PhD thesis, University of Cophenhagen.

Anderson, M., Pose, R. D. and Wallace, C. S. (1986), ‘A password-capability system’,

Computer 29, 1–8.

Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. (2004), ‘Basic concepts

and taxonomy of dependable and secure computing’, IEEE Trans. Dependable Secur.

Comput. 1(1), 11–33.

Barker, E. B., Barker, W. C., Burr, W. E., Polk, W. T. and Smid, M. E. (2007), Recom-

mendation for Key Management, Technical Report SP 800-57, National Institute of

Standards and Technology, Gaithersburg, MD, United States.

168

BIBLIOGRAPHY 169

Bass, L., Clements, P. and Kazman, R. (2012), Software Architecture in Practice, 3rd

edn, Addison-Wesley Professional, Boston, MA, USA.

Bass, L., Holz, R., Rimba, P., Tran, A. B. and Zhu, L. (2015), Securing a deployment

pipeline, in Proceedings of the 3rd International Workshop on Release Engineering,

IEEE Computer Society, Washington, DC, USA, pp. 4–7.

Bass, L., Weber, I. and Zhu, L. (2014), DevOps: A Software Architect’s Perspective,

Addison-Wesley Professional, Boston, MA, USA.

Bayley, I. and Zhu, H. (2008), On the composition of design patterns, in Proceedings

of the 8th International Conference on Quality Software, IEEE Computer Society,

Washington, DC, USA, pp. 27–36.

Berndl, M., Lhoták, O., Qian, F., Hendren, L. and Umanee, N. (2003), Points-to analysis

using BDDs, in Proceedings of the 24th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), ACM, New York, NY, USA, pp. 103–

114.

Bishop, P. and Bloomfield, R. (1998), A methodology for safety case development, in

F. Redmill and T. Anderson, eds, Industrial Perspectives of Safety-critical Systems,

Springer London, pp. 194–203.

Blakley, B. and Heath, C. (2004), Security Design Patterns, Technical report, The Oopen

Group Security Forum.

Bloomfield, R. and Bishop, P. (2010), Safety and assurance cases: Past, present and

possible future — an Adelard perspective, in C. Dale and T. Anderson, eds, Making

Systems Safer, Springer London, pp. 51–67.

Bogdanov, A., Khovratovich, D. and Rechberger, C. (2011), Biclique cryptanalysis of

the full AES, in Proceedings of the 17th international conference on The Theory and

170 BIBLIOGRAPHY

Application of Cryptology and Information Security, Springer-Verlag, Berlin, Heidel-

berg, pp. 344–371.

Braga, A. M., Rubira, C. M. F. and Dahab, R. (1998), Tropyc: A pattern language for

cryptographic software, in Proceedings of the 5th Conference on Pattern Languages

of Programs, pp. 25:1–25:27.

Cai, L., Machiraju, S. and Chen, H. (2010), CapAuth: A Capability-based Handover

Scheme, in Proceedings of the IEEE INFOCOM 2010, IEEE Press, pp. 1 –5.

Castro, M. D., Pose, R. D. and Kopp, C. (2008), ‘Password-capabilities and the walnut

kernel’, Computer 51(5), 595–607.

Ceri, S., Gottlob, G. and Tanca, L. (1989), ‘What you always wanted to know about

datalog (and never dared to ask)’, IEEE Trans. on Knowl. and Data Eng. 1(1), 146–

166.

Dashofy, E. M., Hoek, A. v. d. and Taylor, R. N. (2005), ‘A comprehensive approach

for the development of modular software architecture description languages’, ACM

Trans. Softw. Eng. Methodol. 14(2), 199–245.

Delessy-Gassant, N., Fernandez, E. B., Rajput, S. and Larrondo-Petrie, M. M. (2004),

Patterns for application firewalls, in Proceedings of the 11th Conference on Pattern

Languages of Programs, pp. 23:1–23:19.

Delessy, N. and Fernandez, E. B. (2005), Patterns for the eXtensible Access Control

Markup Language, in Proceedings of the 12th Conference on Pattern Languages of

Programs, pp. 7–10.

Delessy, N., Fernandez, E. B., Larrondo-Petrie, M. M. and Wu, J. (2007), Patterns for

access control in distributed systems, in Proceedings of the 14th Conference on Pattern

Languages of Programs, ACM, New York, NY, USA, pp. 3:1–3:11.

BIBLIOGRAPHY 171

Dennis, J. B. and Van Horn, E. C. (1966), ‘Programming semantics for multiprogrammed

computations’, Commun. ACM 9(3), 143–155.

Dong, J., Peng, T. and Zhao, Y. (2010), ‘Automated verification of security pattern com-

positions’, Inf. Softw. Technol. 52(3), 274–295.

Dougherty, C. R., Sayre, K., Seacord, R., Svoboda, D. and Togashi, K. (2009), Secure

design patterns, Technical Report CMU/SEI-2009-TR-010, Software Engineering In-

stitute, Carnegie Mellon University, Pittsburgh, PA.

Dumitraş, T. and Narasimhan, P. (2009), Why do upgrades fail and what can we do about

it?: Toward dependable, online upgrades in enterprise system, in Proceedings of the

10th ACM/IFIP/USENIX International Conference on Middleware, Springer-Verlag

New York, Inc., New York, NY, USA, pp. 18:1–18:20.

Dyson, P. and Longshaw, A. (2003), Patterns for Managing Internet-Technology Sys-

tems, in Proceedings of the 8th European Conference on Pattern Languages of Pro-

grams, pp. 459–492.

Elsinga, B. and Hofman, A. (2002), Control the actor-based access rights, in Proceedings

of the 7th European Conference on Pattern Languages of Programs, pp. 233–244.

Elsinga, B. and Hofman, A. (2003), Security taxonomy pattern language, in Proceedings

of the 8th European Conference on Pattern Languages of Programs, pp. 18:1–18:12.

F. Lee Brown, J., DiVietri, J., Villegas, G. D. d. and Fernandez, E. B. (1999), The au-

thenticator pattern, in Proceedings of the 6th Conference on Pattern Language of Pro-

grams, pp. 15–18.

Fernandez-Buglioni, E. (2013), Security Patterns in Practice: Designing Secure Archi-

tectures Using Software Patterns, 1st edn, Wiley Publishing, Hoboken, NJ, USA.

172 BIBLIOGRAPHY

Fernandez, E. B. (2002), Patterns for operating system access control, in Proceedings of

the 9th Conference on Pattern Languages of Programs, pp. 12:1–12:13.

Fernandez, E. B. (2004), Two patterns for web services security, in Proceedings of the

2nd International Symposium on Web Services and Applications, pp. 801–807.

Fernandez, E. B., Larrondo-Petrie, M. M., Seliya, N., Delessy, N. and Herzberg, a. A.

(2003), A pattern language for firewalls, in Proceedings of the 10th Conference on

Pattern Languages of Programs, pp. 6:1–6:13.

Fernandez, E. B. and Pan, R. (2001), A pattern language for security models, in Pro-

ceedings of the 8th Conference on Pattern Languages of Programs, pp. 14:1–14:13.

Fernandez, E. B. and Sinibaldi, J. C. (2003), More patterns for operating system ac-

cess control, in Proceedings of the 8th European Conference on Pattern Languages of

Programs, pp. 381–398.

Fernandez, E. B., Sorgente, T. and Larrondo-Petrie, M. M. (2006), Even more patterns

for secure operating systems, in Proceedings of the 13th Conference on Pattern Lan-

guages of Programs, ACM, New York, NY, USA, pp. 10:1–10:9.

Fernandez, E. B. and Warrier, R. (2003), Remote authenticator/authorizer, in Proceed-

ings of the 10th Conference on Pattern Languages of Programs, pp. 8:1–8:8.

Fernandez, M., Andronick, J., Klein, G. and Kuz, I. (2015), Automated verification

of RPC stub code, in N. Bjørner and F. de Boer, eds, FM 2015: Formal Methods,

Vol. 9109 of Lecture Notes in Computer Science, Springer International Publishing,

pp. 273–290.

Fernandez, M., Kuz, I., Klein, G. and Andronick, J. (2013), Towards a verified compo-

nent platform, in Proceedings of the 7th Workshop on Programming Languages and

Operating Systems, ACM, New York, NY, USA, pp. 2:1–2:7.

BIBLIOGRAPHY 173

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns: Elements of

Reusable Object-oriented Software, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

Graydon, P. J., Knight, J. C. and Strunk, E. A. (2007), Assurance based development

of critical systems, in Proceedings of the 37th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks, IEEE Computer Society, Washington,

DC, USA, pp. 347–357.

Grove, D., Murray, T., Owen, C., North, C., Jones, J., Beaumont, M. and Hopkins, B.

(2007), An overview of the Annex system, in Proceedings of the Annual Computer

Security Applications Conference, Miami Beach, Florida, pp. 341–352.

Hafiz, M. (2006), A collection of privacy design patterns, in Proceedings of the 13th

Conference on Pattern Languages of Programs, ACM, New York, NY, USA, pp. 7:1–

7:13.

Hafiz, M., Adamczyk, P. and Johnson, R. E. (2007), ‘Organizing security patterns’, IEEE

Softw. 24(4), 52–60.

Hafiz, M., Adamczyk, P. and Johnson, R. E. (2012), Growing a pattern language (for

security), in Proceedings of the ACM International Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software, ACM, New York, NY,

USA, pp. 139–158.

Hardy, N. (1985), ‘KeyKOS architecture’, SIGOPS Oper. Syst. Rev. 19(4), 8–25.

Hardy, N. (1988), ‘The confused deputy: (or why capabilities might have been in-

vented)’, SIGOPS Oper. Syst. Rev. 22(4), 36–38.

174 BIBLIOGRAPHY

Hasheminejad, S. M. and Jalili, S. (2009), Selecting Proper Security Patterns Using Text

Classification, in Proceedings of the International Conference on Computational In-

telligence and Software Engineering, IEEE, pp. 1–5.

Hays, V., Loutrel, M. and Fernandez, E. B. (2000), The Object Filter and Access Control

Framework, in Proceedings of the 7th Conference on Pattern Languages of Programs,

pp. 12–17.

Heyman, T., Scandariato, R. and Joosen, W. (2012), Reusable formal models for secure

software architectures, in Proceedings of the 2012 Joint Working IEEE/IFIP Confer-

ence on Software Architecture (WICSA) and European Conference on Software Archi-

tecture (ECSA), IEEE Computer Society, Helsinki, Finland, pp. 41–50.

Heyman, T., Yskout, K., Scandariato, R. and Joosen, W. (2007), An analysis of the secu-

rity patterns landscape, in Proceedings of the 3rd International Workshop on Software

Engineering for Secure Systems, IEEE Computer Society, Washington, DC, USA,

pp. 3–9.

Holzmann, G. (1997), ‘The model checker SPIN’, IEEE Trans. Softw. Eng. 23(5), 279–

295.

Jackson, D. (2012), Software Abstractions: Logic, Language, and Analysis, The MIT

Press.

Joint Task Force Transformation Initiative (2010), Recommended Security Controls for

Federal Information Systems and Organizations, Technical Report SP 800-53, Na-

tional Institue of Standards and Technology, Gaithersburg, MD, United States.

Kelly, T. P. (1999), Arguing Safety — A Systematic Approach to Safety Case Manage-

ment, PhD thesis, University of York.

BIBLIOGRAPHY 175

Kelly, T. and Weaver, R. (2004), The goal structuring notation–a safety argument no-

tation, in Proceedings of the Dependable Systems and Networks 2004 workshop on

assurance cases.

Kienzle, D. M. and Elder, M. C. (2002), Final technical report: Security patterns for web

application development, Technical report, DARPA.

Kitchenham, B. (2004), Procedures for performing systematic reviews, Technical Report

2004, Keele, UK, Keele University.

Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R. and

Heiser, G. (2014), ‘Comprehensive formal verification of an os microkernel’, ACM

Trans. Comput. Syst. 32(1), 2:1–2:70.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,

D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H. and Winwood, S.

(2009), sel4: Formal verification of an os kernel, in Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles (SOSP), ACM, New York, NY,

USA, pp. 207–220.

Kodituwakku, S. R., Bertok, P. and Zhao, L. (2001), APLRAC: A pattern language for

designing and implementing role-based access control, in Proceedings of the 6th Eu-

ropean Conference on Pattern Languages of Programs, pp. 331–346.

Konrad, S., Cheng, B. H. C., Campbell, L. A. and Wassermann, R. (2003), Using security

patterns to model and analyze security requirements, in Proceedings of the Require-

ments Engineering for High Assurance Systems (RHAS), IEEE.

Kubo, A., Washizaki, H. and Fukazawa, Y. (2007), Extracting relations among security

patterns, in Proceedings of the 1st International Workshop on Software Patterns and

Quality.

176 BIBLIOGRAPHY

Kuz, I., Liu, Y., Gorton, I. and Heiser, G. (2007), ‘Camkes: A component model for

secure microkernel-based embedded systems’, J. Syst. Softw. 80(5), 687–699.

Kuz, I., Zhu, L., Bass, L., Staples, M. and Xu, X. (2012), An architectural approach for

cost effective trustworthy systems, in Proceedings of the 2012 Joint Working IEEE/I-

FIP Conference on Software Architecture (WICSA) and European Conference on Soft-

ware Architecture (ECSA), IEEE Computer Society, Helsinki, Finland, pp. 325–328.

Lampson, B. W. (1973), ‘A note on the confinement problem’, Commun. ACM

16(10), 613–615.

Laverdiere, M.-A., Mourad, A., Hanna, A. and Debbabi, M. (2006), Security design

patterns: Survey and evaluation, in Proceedings of the Canadian Conference on Elec-

trical and Computer Engineering, pp. 1605–1608.

Lehtonen, S. and Pärssinen, J. (2001), A Pattern Language for Cryptographic Key Man-

agement, in Proceedings of the 9th Conference on Pattern Languages of Programs,

pp. 35:1–35:13.

Leonard, T., Hall-May, M. and Surridge, M. (2013), ‘Modelling access propagation in

dynamic systems’, ACM Trans. Inf. Syst. Secur. 16(2), 5:1–5:31.

Levy, H. M. (1984), Capability-Based Computer Systems, Butterworth-Heinemann,

Newton, MA, USA.

McUmber, W. E. and Cheng, B. H. C. (2001), A general framework for formalizing

UML with formal languages, in Proceedings of the 23rd International Conference on

Software Engineering, IEEE Computer Society, Washington, DC, USA, pp. 433–442.

Miller, M. S. (2006), Robust Composition: Towards a Unified Approach to Access Con-

trol and Concurrency Control, PhD thesis, Johns Hopkins University.

BIBLIOGRAPHY 177

Miller, M. S., Yee, K.-P. and Shapiro, J. (2003), Capability myths demolished, Technical

Report SRL2003-02, Johns Hopkins University Systems Research Laboratory.

Morrison, P. and Fernandez, E. B. (2006a), The credentials pattern, in Proceedings of

the 2006 Conference on Pattern Languages of Programs, ACM, New York, NY, USA,

pp. 9:1–9:4.

Morrison, P. and Fernandez, E. B. (2006b), Securing the broker pattern, in Proceedings

of the 11th European Conference on Pattern Languages of Programs, pp. 513–530.

Mourad, A., Otrok, H. and Baajour, L. (2010), A novel approach for the development

and deployment of security patterns, in Proceedings of the IEEE Second International

Conference on Social Computing, IEEE Computer Society, Washington, DC, USA,

pp. 914–919.

Mouratidis, H., Giorgini, P. and Schumacher, M. (2003), Security patterns for agent

systems, in Proceedings of the 8th European Conference on Pattern Languages of

Programs, pp. 399–416.

Mullender, S. J., Rossum, G. v., Tanenbaum, A. S., Renesse, R. v. and Staveren, H. v.

(1990), ‘Amoeba: a distributed operating system for the 1990s’, Computer 23, 44–53.

Mullender, S. J. and Tanenbaum, A. S. (1986), ‘The Design of a Capability-Based Dis-

tributed Operating System’, Computer 29(4), 289–299.

Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis, C.,

Gao, X. and Klein, G. (2013), sel4: From general purpose to a proof of informa-

tion flow enforcement, in Proceedings of the 2013 IEEE Symposium on Security and

Privacy, IEEE Computer Society, Washington, DC, USA, pp. 415–429.

178 BIBLIOGRAPHY

Neumann, P. G. and Watson, R. N. M. (2010), Capability revisited: A holistic approach

to bottom-to-top assurance of trustworthy systems, in Proceedings of the Fourth An-

nual Layered Assurance Workshop, Texas, USA, pp. 1–10.

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M. and Deardeuff, M.

(2015), ‘How Amazon Web Services uses formal methods’, Commun. ACM 58(4), 66–

73.

Nipkow, T., Wenzel, M. and Paulson, L. C. (2002), Isabelle/HOL: A Proof Assistant for

Higher-order Logic, Springer-Verlag, Berlin, Heidelberg.

Ortiz, R., Moral-Garcı́a, S., Moral-Rubio, S., Vela, B., Garzás, J. and Fernández-Medina,

E. (2010), Applicability of security patterns, in On the Move to Meaningful Internet

Systems (OTM), Vol. 6426 of Lecture Notes in Computer Science, Springer Berlin

Heidelberg, pp. 672–684.

Pärssinen, J. and Turunen, M. (2002), Pattern language for specification of communica-

tion protocols, in Proceedings of the 7th European Conference on Pattern Languages

of Programs, pp. 259–278.

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M. (2008), Systematic mapping stud-

ies in software engineering, in Proceedings of the 12th International Conference on

Evaluation and Assessment in Software Engineering, British Computer Society, Swin-

ton, UK, pp. 68–77.

Porter, M. F. (1997), Readings in information retrieval, in K. Sparck Jones and P. Wil-

lett, eds, Readings in information retrieval, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, chapter An Algorithm for Suffix Stripping, pp. 313–316.

Riehle, D., Cunningham, W., Bergin, J., Kerth, N. and Metsker, S. (2002), Password

BIBLIOGRAPHY 179

patterns, in Proceedings of the 7th European Conference on Pattern Languages of

Programs, pp. 279–288.

Rimba, P. (2013), Building high assurance secure applications using security patterns

for capability-based platforms, in Proceedings of the 35th International Conference

on Software Engineering, IEEE Press, Piscataway, NJ, USA, pp. 1401–1404.

Rimba, P. (2015), ‘A summary on the 37th international conference on software engi-

neering (icse 2015)’, SIGSOFT Softw. Eng. Notes 40(4), 35–35.

Rimba, P., Zhu, L., Bass, L., Kuz, I. and Reeves, S. (2015), Composing patterns to con-

struct secure systems, in Proceedings of the 11th European Dependable Computing

Conference, IEEE Computer Society, Washington, DC, USA, pp. 213–224.

Rimba, P., Zhu, L., Xu, X. and Sun, D. (2015), Building secure applications using

pattern-based design fragments, in Proceedings of the 34th International Symposium

on Reliable Distributed Systems, IEEE Computer Society, Washington, DC, USA.

Romanosky, S. (2001), Security design patterns, in Proceedings of the Conference on

Pattern Languages of Programs, pp. 1–19.

Romanosky, S., Acquisti, A., Hong, J., Cranor, L. F. and Friedman, B. (2006), Privacy

patterns for online interactions, in Proceedings of the 13th Conference on Pattern

Languages of Programs, ACM, New York, NY, USA, pp. 12:1–12:9.

Rosado, D. G., Fernandez-Medina, E., Piattini, M. and Gutierrez, C. (2006), A study of

security architectural patterns, in Proceedings of the 1st International Conference on

Availability, Reliability and Security, IEEE Computer Society, Washington, DC, USA,

pp. 358–365.

180 BIBLIOGRAPHY

Sadicoff, M., Larrondo-Petrie, M. M. and Fernandez, E. B. (2005), Privacy-aware net-

work client pattern, in Proceedings of the 12th Conference on Pattern Languages of

Programs, pp. 10:1–10:6.

Saltzer, J. and Schroeder, M. (1975), ‘The protection of information in computer sys-

tems’, Proceedings of the IEEE 63(9), 1278–1308.

Saridakis, T. (2003), Design patterns for fault containment, in Proceedings of the 8th

European Conference on Pattern Languages of Programs, pp. 493–520.

Schumacher, M. (2002), Security patterns and security standards, in Proceedings of the

7th European Conference on Pattern Languages of Programs, pp. 289–300.

Schumacher, M. (2003), Firewall patterns, in Proceedings of the 8th European Confer-

ence on Pattern Languages of Programs, pp. 417–430.

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F. and Sommer-

lad, P. (2006), Security Patterns: Integrating Security and Systems Engineering, Wiley

Publishing, Hoboken, NJ, USA.

Schwartz, E. J., Avgerinos, T. and Brumley, D. (2010), All you ever wanted to know

about dynamic taint analysis and forward symbolic execution (but might have been

afraid to ask), in Proceedings of the 31st IEEE Symposium on Security and Privacy,

IEEE Computer Society, Washington, DC, USA, pp. 317–331.

Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J. and Klein, G. (2011),

seL4 enforces integrity, in Proceedings of the 2nd International Conference on Inter-

active Theorem Proving, Springer, pp. 325–340.

Shapiro, J. S. and Hardy, N. (2002), ‘EROS: A principle-driven operating system from

the ground up’, IEEE Softw. 19(1), 26–33.

BIBLIOGRAPHY 181

Shapiro, J. S., Smith, J. M. and Farber, D. J. (1999), EROS: A fast capability system,

in Proceedings of the 17th ACM Symposium on Operating Systems Principles, ACM,

New York, NY, USA, pp. 170–185.

Shiroma, Y., Washizaki, H., Fukazawa, Y., Kubo, A. and Yoshioka, N. (2010), Model-

driven security patterns application based on dependences among patterns, in Pro-

ceedings of the 5th International Conference on Availability, Reliability and Security,

IEEE, pp. 555–559.

Sommerlad, P. (2003), Reverse proxy patterns, in Proceedings of the 8th European Con-

ference on Pattern Languages of Programs, pp. 431–458.

Sørensen, K. E. (2002), Session patterns, in Proceedings of the 7th European Conference

on Pattern Languages of Programs, pp. 301–322.

Steel, C., Nagappan, R. and Lai, R. (2005), Core security patterns: best practices and

strategies for J2EE, Web services, and identity management, Prentice Hall PTR, Upper

Saddle River, NJ, USA.

Swiderski, F. and Snyder, W. (2004), Threat Modeling, Microsoft Press, Redmond, WA,

USA.

The Advanced Security Acceleration Project (2010), Security profile for Advanced Me-

tering Infrastructure, Technical report, The NIST Cyber Security Coordination Task

Group.

VanHilst, M., Fernandez, E. B. and Braz, F. (2009), ‘A multi-dimensional classifica-

tion for users of security patterns’, Journal of Research and Practice in Information

Technology 41(2), 87–98.

Viega, J. and McGraw, G. (2011), Building Secure Software: How to Avoid Security

Problems the Right Way, 1st edn, Addison-Wesley Professional, Boston, MA, USA.

182 BIBLIOGRAPHY

Washizaki, H., Fernandez, E. B., Maruyama, K., Kubo, A. and Yoshioka, N. (2009),

Improving the classification of security patterns, in Proceedings of the 20th Interna-

tional Workshop on Database and Expert Systems Application, IEEE Computer Soci-

ety, Washington, DC, USA, pp. 165–170.

Weinstock, C., Lipson, H. F. and Goodenough, J. (2013), ‘Arguing se-

curity - creating security assurance cases’, https://buildsecurityin.us-

cert.gov/articles/knowledge/assurance-cases/arguing-security-creating-security-

assurance-cases. accessed 15 August 2015.

Weiss, M. (2006), Credential delegation: Towards grid security patterns, in Proceedings

of the 5th Nordic Conference on Pattern Languages of Programs, pp. 65–70.

Weiss, M. and Mouratidis, H. (2008), Selecting security patterns that fulfill security re-

quirements, in Proceedings of the 16th IEEE International Requirements Engineering

Conference, IEEE Computer Society, Washington, DC, USA, pp. 169–172.

Whaley, J. (2007), Context-sensitive pointer analysis using binary decision diagrams,

PhD thesis, Stanford University.

Woodruff, J., Watson, R. N. M., Chisnall, D., Moore, S. W., Anderson, J., Davis, B.,

Laurie, B., Neumann, P. G., Norton, R. and Roe, M. (2014), The cheri capability

model: Revisiting risc in an age of risk, in Proceeding of the 41st Annual International

Symposium on Computer Architecuture, IEEE Press, Piscataway, NJ, USA, pp. 457–

468.

Yoder, J. and Barcalow, J. (1997), Architectural patterns for enabling application se-

curity, in Proceedings of the 4th Conference on Patterns Language of Programming

(PLoP), Washington, DC, USA.

BIBLIOGRAPHY 183

Yskout, K., Scandariato, R. and Joosen, W. (2012), Does organizing security patterns

focus architectural choices?, in Proceedings of the 34th International Conference on

Software Engineering, IEEE Press, Piscataway, NJ, USA, pp. 617–627.

Zachman, J. et al. (1987), ‘A framework for information systems architecture’, IBM Syst.

J. 26(3), 276–292.

Appendix A

Smart Meter Requirements

Table A.1 lists 53 security requirements that are relevant to the Smart Meter case study,

which are described in Chapter ??. These requirements are obtained from The Advanced

Security Acceleration Project (2010).

Table A.1: Requirements that are relevant for the Smart Meter case study

Requirement Name Description

DHS-

2.8.2

Management Port Parti-

tioning

AMI components isolate data acquisition from

management services

DHS-

2.8.3

Security Function Isola-

tion
Separate security from non-security functions.

DHS-

2.8.4
Information Remnants

Prevent unauthorized or unintended informa-

tion transfer via shared system resources.

Continued on next page

184

Appendix A 185

Table A.1 – continued from previous page

Requirement Name Description

DHS-

2.8.5

NIST SP 800-53 SC-5

Denial-of-Service Protec-

tion

Protect against or limit effects of DoS attacks

DHS-

2.8.6
Resource Priority Limit the use of resources by priority

DHS-

2.8.7
Boundary Protection

Define physical and electronic security bound-

aries for AMI system along with other appli-

cations sharing the same environment.

DHS-

2.8.8
Communication Integrity

AMI design shall protect the integrity of elec-

tronically communicated info

DHS-

2.8.9

Communication Confiden-

tiality

AMI shall protect the confidentiality of elec-

tronically communicated info

DHS-

2.8.10
Trusted Path

Develop a policy governing the use of crypto

for protection of AMI sys info.

DHS-

2.8.12

Use of Validated Cryptog-

raphy

Explicit indication of collaborative computing

mechanism must be provided to local users

DHS-

2.8.13
Collaborative Computing

Reliably associate security parameters with

info exchanged between enterprise Infosys

and AMI.

Continued on next page

186 Appendix A

Table A.1 – continued from previous page

Requirement Name Description

DHS-

2.8.14

Transmission of Security

Parameters

Restrict usage of mobile code techs. Docu-

ment and monitor them.

DHS-

2.8.16
Mobile Code

restrict and monitor usage of VoIP within AMI

system.

DHS-

2.8.17

Voice-Over Internet Proto-

col

All external AMI components and communi-

cation connections shall be adequately pro-

tected from tampering or damage.

DHS-

2.8.18
System Connections

Security Roles and Responsibilities must be

specified and defined.

DHS-

2.8.19
Security Roles

Protect authenticity of device-to-device com-

munication

DHS-

2.8.20
Message Authenticity

Automatically mark external data output w/

standard naming conventions to identify spe-

cial handling.

DHS-

2.9.1

Information and Docu-

ment Management Policy

and Procedures

Organization shall develop procedures to fa-

cilitate the implementation of the AMI

DHS-

2.9.10
Automated Marking

The components of AMI shall automatically

mark any external data output using standard

name convention

Continued on next page

Appendix A 187

Table A.1 – continued from previous page

Requirement Name Description

DHS-

2.14.3
Malicious Code Protection Employ malicious code protection.

DHS-

2.14.4

System Monitoring Tools

and Techniques

Components shall detect log and report all

security events and system activities to AMI

management system.

DHS-

2.14.6

Security Functionality

Verification

All components shall employ controls which

independently and in concert with the AMI

management system verify that all security

functions within the component are in an on-

line/active state.

DHS-

2.14.7

Software and Information

Integrity

AMI shall monitor and detect unauthorized

changes to software firmware data

DHS-

2.14.8

Unauthorized Communi-

cations Protection

AMI shall implement unauthorized communi-

cations protection.

DHS-

2.14.9

Information Input Restric-

tions

Organization should implement security mea-

sures to restrict info input to AMI only to au-

thorized user.

DHS-

2.14.10

Information Input Accu-

racy, Completeness, Valid-

ity, and Authenticity

Components shall check information for va-

lidity and authenticity

Continued on next page

188 Appendix A

Table A.1 – continued from previous page

Requirement Name Description

DHS-

2.14.11
Error Handling

Components shall employ controls to identify

and handle error conditions w/o providing info

that can be exploited by adversaries

DHS-

2.15.1

Access Control Policy and

Procedures

Organization shall develop access control pol-

icy

DHS-

2.15.2

Identification and Authen-

tication Policy and Proce-

dures

Organization shall develop identification and

authentication policy

DHS-

2.15.7
Access Enforcement

Components shall enforce assigned authoriza-

tions for controlling access to system.

DHS-

2.15.8
Separation of Duties

Components enforce separation of duties thru

assigned access authorizations.

DHS-

2.15.9
Least Privilege

Principle of Least Privilege should be en-

forced

DHS-

2.15.10

User Identification and

Authentication

Components shall uniquely identify and au-

thenticate users

DHS-

2.15.11

Permitted Actions without

Identification or Authenti-

cation

Permitted Actions without identification or

authentication

Continued on next page

Appendix A 189

Table A.1 – continued from previous page

Requirement Name Description

DHS-

2.15.12

Device Identification and

Authentication

AMI shall identify and authenticate specific

components before establishing a connection

DHS-

2.15.13
Authenticator Feedback

Components shall obfuscate feedback of au-

thentication information to protect informa-

tion from potential exploits

DHS-

2.15.14

Cryptographic Module

Authentication

Components shall employ authentication

methods for cryptography

DHS-

2.15.15

Information Flow En-

forcement

AMI shall enforce assigned authorizations for

controlling info flow

DHS-

2.15.16
Passwords

Components shall support passwords with a

level of complexity based on the criticality

level of the system

DHS-

2.15.17
System Use Notification

Components shall support displaying ap-

proved system use notification msg.

DHS-

2.15.18

Concurrent Session Con-

trol

Components shall limit the number of concur-

rent sessions for any users.

DHS-

2.15.19

Previous Logon Notifica-

tion

Components shall notify user of last logon

timestamp&unsuccessful attempts

DHS-

2.15.20

Unsuccessful Login At-

tempts

Components shall limit number of consecutive

invalid access attempts.

Continued on next page

190 Appendix A

Table A.1 – continued from previous page

Requirement Name Description

DHS-

2.15.21
Session Lock

Components shall preven further access to the

system by initiating session lock after a prede-

termined period of inactivity

DHS-

2.15.22

Remote Session Termina-

tion

AMI shall auto terminate remote session after

a defined period of inactivity

DHS-

2.15.24
Remote Access

Components with remote access shall allow

access to be enabled only in accordance with

the appropriate policy

DHS-

2.15.29

Use of External Informa-

tion Control Systems

Terms and conditions to access AMI and

store/process information should be estab-

lished

DHS-

2.16.2
Auditable Events Components shall generate audit records

DHS-

2.16.3
Content of Audit Records

Components shall generate sufficient and de-

tailed information in audit records

DHS-

2.16.4
Audit Storage Capacity

Components shall provide enough storage to

store audit records.

DHS-

2.16.8
Time Stamps Provide timestamps for use in audit

Continued on next page

Appendix A 191

Table A.1 – continued from previous page

Requirement Name Description

DHS-

2.16.9

Protection of Audit Infor-

mation

Protect audit info from unauthorized access

modification or deletion

DHS-

2.16.12
Auditor Qualification Auditor qualifications should be specified

Appendix B

Sample Security Patterns Catalog

Authorization Enforcer

• Intent Defines the access policy for resources

• Alias Authorization (Schumacher et al., 2006), Remote Authorizer (Fernandez

and Warrier, 2003)

• Problem Components need to verify that each request is properly authorized. A

way to control access to resources is needed.

• Solution For each active entity, indicate which resources it can access and how.

• Participants Client, SecureBaseAction, Subject, PermissionCollection, Au-

thorizationProvider, AuthorizationEnforcer, AccessStore. Each of these can be

viewed as a component

• Interactions The Client requests authorization from SecureBaseAction and

sends Subject. SecureBaseAction uses the credential information in Subject and

invokes AuthorizationEnforcer’s authorize method. AuthorizationEnforcer then

requests the permissions of the client from AuthorizationProvider. Authoriza-

tionProvider retrives permission from AccessStore, creates PermissionCollection,

stores it into Subject and returns Subject to AuthorizationEnforcer. Authorizatio-

192

Appendix B 193

nEnforcer then sends Subject back to Client.

• Security Properties Authorization, if done properly, promotes separation of

responsibility through access rights. It defines which resources an entity can access

and with what access rights. That positively affects confidentiality, integrity and

availability.

• Known Uses It is used as the basis for access control in many products, such as

Windows, UNIX, MySQL (Schumacher et al., 2006).

• Related Pattern Authentication Enforcer (Steel et al., 2005) is required to au-

thenticate users.

• Source Steel et al. (2005)

Authentication Enforcer

• Intent Verify the subject’s identity

• Alias Authenticator (Fernandez and Sinibaldi, 2003), Authenticator (Blakley

and Heath, 2004), Authenticator (F. Lee Brown et al., 1999), Authenticator (Schu-

macher et al., 2006), Agent Authenticator (Mouratidis et al., 2003), Message Au-

thentication (Braga et al., 1998), Password Authentication (Kienzle and Elder,

2002), Remote Autehnticator/Authorizer (Fernandez and Warrier, 2003)

• Problem An attacker could try to impersonate a legitimate user to gain access to

his resources. A way to prevent impostors is needed.

• Solution Have one component to receive interactions of a subject and verify the

identity of the subject.

• Participants Client, AuthenticationEnforcer, RequestContext, Subject, User-

Store

• Interactions The Client creates RequestContext containing user’s credentials

and invokes AuthenicationEnforcer’s authenticate, passing the RequestContext.

194 Appendix B

AuthenticationEnforcer retrieves the credentials and matches that to entries in

UserStore. Upon a match, AuthenticationEnforcer then create a Subject for that

user.

• Security Properties Authentication promotes confidentiality, integrity, and

availability properties.

• Known Uses Most commercial operating system use passwords to authenticate

their users. (Schumacher et al., 2006)

• Related Pattern Secure Pipe (Steel et al., 2005), Single Access Point (Yoder

and Barcalow, 1997)

• Source Steel et al. (2005)

Secure Logger

• Intent Prevent an attacker from gathering potentially useful information about

the system from system logs and to prevent an attacker from hiding their actions

by editing system logs.

• Alias Secure Logger (Dougherty et al., 2009).

• Problem all application events must be securely logged for debugging and audit

purposes.

• Solution use a secure logger to log messages in a secure manner.

• Participants Client, SecureLogger, LogManager, LogFactory, Logger and File.

• Interactions Client sends a log command to SecureLogger, together with the

data to be logged. Upon receipt, the secureLogger, whose main responsibility is

to collect the data, sends the data with a log command to the LogManager. The

LogManager will request a new instance of Logger from LogFactory. The Logger

is the component that logs data. It creates a new File and writes data into that file.

• Security Properties Confidentiality and integrity as only authorized user can

Appendix B 195

read from and write to the log files.

• Known Uses syslog-ng, SmartInspect, Windows XP Encrypting File System,

TrueCrypt. (Dougherty et al., 2009)

• Related Pattern Secure Pipe (Steel et al., 2005), Encrypted Storage (Kienzle

and Elder, 2002)

• Source Steel et al. (2005)

Encrypted Storage

• Intent Provides a second line of defense against the theft of data on system

servers

• Alias Cryptographic Storage

• Problem Need an approach to protect sensitive data

• Solution The Encrypted Storage pattern encrypts the most critical user data be-

fore it is ever committed to disk.

• Participants Client, EncryptedStorage, Storage, EncryptDecrypt and Key

• Interactions Client sends a store command to encryptedStorage, together with

the data to be stored. Upon receipt, the encryptedStorage, whose main responsi-

bilities are to collect the data and to orchestrate the appropriate process, sends the

data to encryptDecrypt with an encrypt command. encryptDecrypt then encrypts

the data and return the encrypted data to encryptedStorage. encryptedStorage then

sends the encrypted data to storage with a store command. storage then store

the data. During the initial setup, encryptedStorage loads the value of the key to

encryptDecrypt and keeps to itself the capability to the key.

• Security Properties Encrypted Storage increases confidentiality by ensuring

that the data cannot be decrypted, even if it has been captured. Availability can be

negatively affected if the encryption keys are lost.

196 Appendix B

• Known Uses The UNIX password file hashes each user’s password and stores

only the hashed form (Kienzle and Elder, 2002).

• Related Pattern Client Input Filters (Kienzle and Elder, 2002)

• Source Kienzle and Elder (2002)

Execution Domain

• Intent Define an execution environment, indicating explicitly all the resources

in the domain.

• Alias Execution Domain (Fernandez, 2002)

• Problem Unauthorized components can destroy or modify information in files

or databases which they are not supposed to.

• Solution Collect components into an execution domain.

• Participants multiple Domains, components in the system.

• Interactions define Domains and assign components to their respective Domain.

• Security Properties Confidentiality, integrity and availability are improved if

the domains are set up correctly.

• Known Uses JVM defines restricted execution environments (Schumacher et al.,

2006).

• Related Pattern Controlled process creator (Schumacher et al., 2006).

• Source Schumacher et al. (2006)

Appendix C

Security Patterns Catalog

C.1 Security Patterns

Table C.1: Security Pattern Catalog — Summary

Pattern Name Intent Source

3-Point Lgging
Log system events and system execution infor-

mation

Dyson and Long-

shaw (2003)

3rd Party Com-

munication

Understanding the risks of third party relation-

ships

Romanosky

(2001)

Access Control

List

The access control list allows control access to

objects by indicating which subjects can access

an object and in what way. there is usually an

acl associated with each object

Delessy et al.

(2007)

Continued on next page

197

198 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Access Con-

troller

Allow the agency to provide access to its re-

sources according to its security policy

Mouratidis et al.

(2003)

Account Lockout Protects from password guessing attacks
Kienzle and Elder

(2002)

Address Filter

Firewall

To filter incoming and outgoing network traf-

fic in a computer system based on network ad-

dresses

Fernandez et al.

(2003)

Administrator

Hierarchy

Define a hierarchy of system administrators

with rights controlled using a role-based access

control (rbac) model and assign rights accord-

ing to their functions

Fernandez et al.

(2006)

Administrator

Object

Handles user-role assignment and delegates the

administrative responsibilities

Kodituwakku

et al. (2001)

Agency Guard

Provide a single, non-bypassable, point of ac-

cess to the agency. the agency guard defines a

structure that makes unauthorized access to the

agency difficult

Mouratidis et al.

(2003)

Agent Authenti-

cator
Provide authentication services to the agency

Mouratidis et al.

(2003)

Anonymity Set
Hide the data by mixing it with data from other

sources
Hafiz (2006)

Continued on next page

Appendix C 199

Table C.1 – continued from previous page

Pattern Name Intent Source

Application

Proxy Firewall

Inspect (and filter) incoming and outgoing net-

work traffic based on the type of application

they are accessing

Fernandez et al.

(2003)

Assertion Builder

Structured and consistent approach to gathering

security information (for example, saml asser-

tions) about the authentication action performed

on a subject

Steel et al. (2005)

Audit Interceptor
Intercept and audit service requests and re-

sponses for forensic purpose
Steel et al. (2005)

Authentication

Enforcer

Verify that each request is from an authenticated

entity
Steel et al. (2005)

Authenticator
Performs authentication of a requesting process

before deciding access to distributed objects

Blakley and

Heath (2004)

Authenticator
Performs authentication of a requesting process

before deciding access to distributed objects

F. Lee Brown

et al. (1999)

Authenticator Verify that a user is who it says it is
Fernandez and

Sinibaldi (2003)

Authenticator
This pattern addresses the problem of how to

verify that a subject is who it says it is

Schumacher et al.

(2006)

Continued on next page

200 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Authoritative

Source Of Data
Recognizing the correct source of data

Romanosky

(2001)

Authorization

This pattern describes who is authorized to ac-

cess specific resources in a system, in an en-

vironment in which we have resources whose

access needs to be controlled

Schumacher et al.

(2006)

Authorization

Enforcer

Provides a centralized point for authorizing re-

sources
Steel et al. (2005)

Authorization

Pattern
Descibe who is authorized to access resources

Fernandez and

Pan (2001)

Batched Routing

In a mix based system, collect the input data

packets and when the collection reaches a

threshold output all the data packets together

Hafiz (2006)

Capability

The capability pattern allows control access to

objects by providing a credential or ticket to be

given to a subject for accessing an object in a

specific way. capabilities are given to the prin-

cipal

Delessy et al.

(2007)

Check Point
makes such an effective i&a and access control

mechanism easy to deploy and evolve

Schumacher et al.

(2006)

Continued on next page

Appendix C 201

Table C.1 – continued from previous page

Pattern Name Intent Source

Check Point

Propose a structure that checks incoming re-

quest. responsible for taking appropriate coun-

termeasures in case of violations

Yoder and

Barcalow (1997)

Checkpointed

System

Structure a system so that its state can be recov-

ered and restored to a known valid state in case

a component fails

Blakley and

Heath (2004)

Clear Sensitive

Information

Ensures that sensitive information is cleared

from reusable resources before the resource

may be reused

Dougherty et al.

(2009)

Client Data Stor-

age
Encrypt data to allow secure storage on client

Kienzle and Elder

(2002)

Client Input Fil-

ters

Protect application from data tampering on un-

trusted clients

Kienzle and Elder

(2002)

Comparator-

Checked Fault-

Tolerant System

Structure a system so that an independent fail-

ure of one component will be detected quickly

and will not cause a system failure

Blakley and

Heath (2004)

Constant Length

Padding

Add padding to data packets to make them of

same length
Hafiz (2006)

Continued on next page

202 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Constant Link

Padding

Distribute data traffic equally among all the

outgoing nodes from an anonymity preserving

node

Hafiz (2006)

Container Man-

ager Security

Provide a standard way to enforce authentica-

tion and authorization
Steel et al. (2005)

Continual Status

Reporting

Report individual system element continuously,

log some or all data for offline analysis

Dyson and Long-

shaw (2003)

Controlled

Execution Envi-

ronment

To control access to all operating system re-

sources by processes, based on user, group, or

role authorizations

Fernandez (2002)

Controlled

Execution Envi-

ronment

This pattern addresses how to control the exe-

cution environment

Schumacher et al.

(2006)

Controlled Ob-

ject Factory

This pattern addresses how to specify the rights

of processes with respect to a new object

Schumacher et al.

(2006)

Controlled Ob-

ject Monitor

This pattern addresses how to control access by

a process to an object. use a reference monitor

to intercept access requests from processes

Schumacher et al.

(2006)

Controlled Pro-

cess Creator

This pattern addresses how to define and grant

appropriate access rights for a new process

Schumacher et al.

(2006)

Continued on next page

Appendix C 203

Table C.1 – continued from previous page

Pattern Name Intent Source

Controlled Vir-

tual Address

Space

This pattern addresses how to control access by

processes to specific areas of their virtual ad-

dress space (vas) according to a set of prede-

fined access types

Schumacher et al.

(2006)

Controlled-

Object Creator

Create object for specific purposes and the

rights to access other process

Fernandez and

Sinibaldi (2003)

Controlled-

Object Monitor

Define how to control access by subjects to ob-

jects

Fernandez and

Sinibaldi (2003)

Controlled-

Process Creator

Define and grant appropriate access rights for a

new process

Fernandez and

Sinibaldi (2003)

Cover Traffic

Keep a dummy traffic flow between anonymity

preserving nodes to create a decoy for actual

data traffic

Hafiz (2006)

Credential Dele-

gation

Issue a special type of certificate (proxy cer-

tificate) signed by the original party (grantor)

that con- firms that the holder of this certificate

(grantee) is allowed to act on its behalf

Weiss (2006)

Credential Pat-

tern

Provides secure portable means of recording au-

thentication and authorization information for

use in distributed system

Morrison and

Fernandez

(2006a)

Continued on next page

204 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Credential Tok-

enizer

Encapsulate a security token that can be used by

different security infrastructure providers
Steel et al. (2005)

Cryptographic

Metapattern

Define a generic software architecture to cryp-

tography

Braga et al.

(1998)

Defer To Kernel

Clearly separate functionality that requires ele-

vated privileges from functionality that does not

require elevated privileges and to take advan-

tage of existing user verification functionality

available at the kernel level

Dougherty et al.

(2009)

Delayed Routing

Add random delays to the incoming data traffic

of an anonymity preserving node to thwart the

timing attacks

Hafiz (2006)

Demilitarized

Zone

Separates the business functionality and infor-

mation from the web servers that deliver it, and

places the web servers in a secure area

Schumacher et al.

(2006)

Directed Session
Ensure user cannot skip around within a series

of activities

Kienzle and Elder

(2002)

Continued on next page

Appendix C 205

Table C.1 – continued from previous page

Pattern Name Intent Source

Distrustful De-

composition

Move separate functions into mutually untrust-

ing programs, thereby reducing the attack sur-

face of the individual programs that make up

the system and functionality and data exposed

to an attacker if one of the mutually untrusting

programs is compromised

Dougherty et al.

(2009)

Dynamic Service

Management

Dynamically instrument fine-grained compo-

nents to manager and monitor application
Steel et al. (2005)

Dynamically

Adjustable

Non-Functional

Configuration

Adjusting the non-functional characteristics key

parameters value without affecting system to

run

Dyson and Long-

shaw (2003)

Encrypted Stor-

age

Provide second line of defense against stealing

of data by means of encryption

Kienzle and Elder

(2002)

Error Detection/

Correction

Add redundancy to data to facilitate later detec-

tion of and recovery from errors

Blakley and

Heath (2004)

Execution Do-

main

Define an execution environment for processes,

indicating explicitly all the resources a process

can use during its execution, as well as the type

of access for the resources

Fernandez (2002)

Continued on next page

206 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Execution Do-

main

Define an execution environment for processes,

indicating all the resources a process can use

during its execution as well as the types of ac-

cess for the resources

Schumacher et al.

(2006)

Fail Securely Designing systems to fail in a secure manner
Romanosky

(2001)

Fault Container

Proposes the use of a wrapper that transforms

a software component into its fault containing

counterpart

Saridakis (2003)

File Authoriza-

tion

Control access to files in an operating system.

authorized users are the only ones that can use

a file in specific ways

Fernandez (2002)

File Authoriza-

tion

This pattern describes how to control access to

files in an operating system

Schumacher et al.

(2006)

File Authoriza-

tion Pattern
Describe who is authorized to access to files

Fernandez and

Pan (2001)

Firewall Pattern
Describe how access to internal networks can

be restricted in general

Schumacher

(2003)

Front Door Provide entry point to system
Schumacher et al.

(2006)

Continued on next page

Appendix C 207

Table C.1 – continued from previous page

Pattern Name Intent Source

Front Door Provide a single log-in and session context
Sommerlad

(2003)

Full Access With

Error

Prevent users from performing illegal opera-

tions by failing them securely

Schumacher et al.

(2006)

Full View W/ Er-

rors

Prevent users from performing illegal opera-

tions by failing them securely

Yoder and

Barcalow (1997)

Gooca
Generic software architecture for cryptographic

applications

Braga et al.

(1998)

Hidden Imple-

mentation

Limits attacker’s ability to discern internal

workings of system

Kienzle and Elder

(2002)

Hidden Metadata

Hide the meta information associated with data

content that reveal information about sensitive

data content

Hafiz (2006)

Information Ob-

scurity
Obscure data

Schumacher et al.

(2006)

Information

Secrecy
Keep the secrecy of information

Braga et al.

(1998)

Continued on next page

208 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Informed Con-

sent For Web-

Based Transac-

tions

Describes how websites can inform users when-

ever they intend to collect and use an individu-

als personal information

Romanosky et al.

(2006)

Input Guard

Verify that every input fed to his component by

the system conforms to the input for his compo-

nent as described in the system specification

Saridakis (2003)

Input Validation
Correctly identify and validate all external in-

puts from untrusted data sources

Dougherty et al.

(2009)

Integration

Reverse Proxy

provides a homogenous view of a collection of

servers, without leaking the physical distribu-

tion of the individual machines to end users

Schumacher et al.

(2006)

Integration

Reverse Proxy

Provides a homogenous view to a bunch of

servers, without leaking the physical distribu-

tion to several machines to end users

Sommerlad

(2003)

Intercepting Val-

idator

Cleanse and validate data prior to its use within

an application
Steel et al. (2005)

Interception Web

Agent

Provide authentication and authorization exter-

nal to the application by intercepting requests

prior to the application

Steel et al. (2005)

Continued on next page

Appendix C 209

Table C.1 – continued from previous page

Pattern Name Intent Source

Keep Session

Data In The

Client

Describes mechanisms to store session data on

client side
Sørensen (2002)

Keep Session

Data In The

Server

Describes mechanisms to store session data on

server side
Sørensen (2002)

Known Partners Know who is interacting with the system
Schumacher et al.

(2006)

Layered Encryp-

tion

Use a sender-initiated packet routing scheme

and encrypt the data packets in multiple lay-

ers so that the in- termediaries only have access

to a particular layer and use that information to

route the packet to the next hop

Hafiz (2006)

Layered Security Configuring multiple security checkpoints
Romanosky

(2001)

Limited Access

This pattern guides a developer in presenting

only the currently-available functions to a user,

while hiding everything for which they lack per-

mission

Schumacher et al.

(2006)

Limited View
Prevent users from performing illegal opera-

tions by offering only valid operations

Yoder and

Barcalow (1997)

Continued on next page

210 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Load Balancer

Spread a server application over several com-

puters to handle more load than a single com-

puter is capable of and to provide uninterrupted

service to system users in the case of system

break downs and scheduled system shutdowns

Sørensen (2002)

Low Hanging

Fruit
Taking care of the quick wins

Romanosky

(2001)

Masked Online

Traffic

Provides solutions to help users protect their

privacy by reducing the amount of information

that they disclose while interacting online

Romanosky et al.

(2006)

Message Inspec-

tor

Verify and validate the quality of message-level

security mechanisms applied to XML web ser-

vices

Steel et al. (2005)

Message Inspec-

tor Gateway

Provides a centralized entry point that encapsu-

lates access to all target service endpoints of a

web services provider and secures the incoming

and outgoing XML traffic by securing the com-

munication channels between the service end-

points

Steel et al. (2005)

Message In-

tegrity
Avoid corruption of a message

Braga et al.

(1998)

Continued on next page

Appendix C 211

Table C.1 – continued from previous page

Pattern Name Intent Source

Minefield
Trick, block and detect attackers during break-

in attempt

Kienzle and Elder

(2002)

Minimal Infor-

mation Asymme-

try

Describes how you can protect your privacy by

gathering more information about the parties

whom you would like to transact online

Romanosky et al.

(2006)

Morphed Repre-

sentation

Change the representation of the data when it is

passing through an anonymity providing node

so that outgoing data cannot be linked with in-

coming data

Hafiz (2006)

Multilevel Secu-

rity

this pattern describes how to categorize sensi-

tive information and prevent its disclosure

Schumacher et al.

(2006)

Multilevel Secu-

rity Pattern

this pattern describes how to categorize sensi-

tive information and prevent its disclosure

Fernandez and

Pan (2001)

Network Address

Blacklist

Keep track of network addresses that are

sources of hacking attempts

Kienzle and Elder

(2002)

Obfuscated

Transfer Object

Protect critical data when passed within appli-

cation and between tiers
Steel et al. (2005)

Operational

Monitoring And

Alerting

Report status of all system elements at an ap-

propriate frequency

Dyson and Long-

shaw (2003)

Continued on next page

212 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Output Guard
Confines an error inside the component where

that error occurred
Saridakis (2003)

Packet Filter

Restrict the ingoing and outgoing traffic at the

border between the internal and the external

network

Schumacher

(2003)

Packet Filter

Firewall

filters incoming and outgoing network traffic in

a computer system based on packet inspection

at the ip level

Schumacher et al.

(2006)

Partitioned

Application

Restrict dangerous privilege to a single compo-

nent by means of isolation

Kienzle and Elder

(2002)

Password Au-

thentication

Protect against weak passwords and automated

password-guessing attacks

Kienzle and Elder

(2002)

Password Propa-

gation

Provide alternative authentication that require

authentication credentials be verified by system

before access provided

Kienzle and Elder

(2002)

Password Syn-

chronizer

Synchronize the user passwords (or user cre-

dentials used for authentication and authoriza-

tion) across different application systems using

a programmatic interface

Steel et al. (2005)

Continued on next page

Appendix C 213

Table C.1 – continued from previous page

Pattern Name Intent Source

Pathname Canon-

icalization

Ensure that all files read or written by a program

are referred to by a valid path that does not con-

tain any symbolic links or shortcuts, that is, a

canonical path

Dougherty et al.

(2009)

Policy

Isolate policy enforcement to a discrete compo-

nent of an information system; ensure that pol-

icy enforcement activities are performed in the

proper sequence

Blakley and

Heath (2004)

Policy Delegate
Shield client from details of security services

and control ther interactions
Steel et al. (2005)

Policy-Based Ac-

cess Control

The policy-based access control pattern decides

if a subject is authorized to access an object ac-

cording to policies defined in a central policy

repository

Delessy et al.

(2007)

Privacy-Aware

Network Client

Provides a way to make a user of a network site

aware of the privacy policies followed by that

site

Sadicoff et al.

(2005)

Privilege Separa-

tion

Reduce the amount of code that runs with spe-

cial privilege without affecting or limiting the

functionality of the program

Dougherty et al.

(2009)

Continued on next page

214 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Privillege-

Limited Role

Implement role classes based on privileges of

the corresponding role

Kodituwakku

et al. (2001)

Protected System

Structure a system so that all access by clients

to resources is mediated by a guard which en-

forces a security policy

Blakley and

Heath (2004)

Protection

Against Cookies

Provides countermeasures against the misuse of

cookies in the WWW

Schumacher

(2002)

Protection Re-

verse Proxy

Protects the server software at the level of the

application protocol

Schumacher et al.

(2006)

Proxy-Based

Firewall

Restrict the ingoing and outgoing traffic at the

border between the internal and the external

network with a firewall

Schumacher

(2003)

Proxy-Based

Firewall

this pattern interposes a proxy between the

request and the access, and applies controls

through this proxy

Schumacher et al.

(2006)

Pseudonymous

Email

Protect against unforeseen ramifications of e-

mail messages

Schumacher

(2002)

RBAC Pattern

Introduces roles to access protected information

objects on behalf of users and introduces dis-

tinct roles to administer users and roles

Fernandez and

Pan (2001)

Continued on next page

Appendix C 215

Table C.1 – continued from previous page

Pattern Name Intent Source

Reference Moni-

tor

Enforce authorizations when a process requests

resources
Fernandez (2002)

Reference Moni-

tor

Make it possible that all authorizations are ful-

filled when a process requires resources

Schumacher et al.

(2006)

Remote Authen-

ticator/Autho-

rizer

Provide authentication and authorization for ac-

cessing shared resources

Fernandez and

Warrier (2003)

Replicated Sys-

tem

Structure a system which allows provision of

service from multiple points of presence, and

recovery in case of failure of one or more com-

ponents or links

Blakley and

Heath (2004)

Resource Acqui-

sition Is Initial-

ization (RAII)

Ensure that system resources are properly al-

located and deallocated under all possible pro-

gram execution paths

Dougherty et al.

(2009)

Risk Assessment

And Manage-

ment

Understanding the relative value of information

and protecting it accordingly

Romanosky

(2001)

Risk Determina-

tion
Evaluate and prioritize the risks to its assets

Schumacher et al.

(2006)

Continued on next page

216 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Role Rights Defi-

nition

This pattern provides a precise way, based on

use cases, of assigning rights to roles to imple-

ment a least-privilege policy

Schumacher et al.

(2006)

Role Validator Validates user-specified roles
Kodituwakku

et al. (2001)

Role-Based

Access Control

This pattern describes how to assign rights

based on the functions or tasks of people in an

environment in which control of access to com-

puting resources is required and where there is

a large number of users, information types, or a

large variety of resources

Schumacher et al.

(2006)

Role-Based-

Access

Introduces roles to access protected information

objects on behalf of users and introduces dis-

tinct roles to administer users and roles

Kodituwakku

et al. (2001)

Role-Hierarchies
Forms role hierarchies and implements the dif-

ferent access privileges of different role

Kodituwakku

et al. (2001)

Roles Improve maintainability of privileges
Yoder and

Barcalow (1997)

Sandbox
Allow the agency to execute non-authorised

agents in a secure manner

Mouratidis et al.

(2003)

Continued on next page

Appendix C 217

Table C.1 – continued from previous page

Pattern Name Intent Source

Secrecy With Au-

thentication
Prove the authenticity of a secret

Braga et al.

(1998)

Secrecy With In-

tegrity
Keep the integrity of a secret

Braga et al.

(1998)

Secrecy With

Signature
Prove the authorship of a secret

Braga et al.

(1998)

Secrecy With

Signature With

Appendix

Separate secret from signature
Braga et al.

(1998)

Secure Access

Layer

Provide a secure gateway for communicating in

and out of a program

Yoder and

Barcalow (1997)

Secure Assertion
Spread application-specific checks throughout

the system

Kienzle and Elder

(2002)

Secure Base Ac-

tion

Coordinate security components and provide

web tier components with a central access point

for administering security related functionality

Steel et al. (2005)

Secure Broker
Amends broker to provide secure interactions

between distributed components

Morrison and

Fernandez

(2006b)

Continued on next page

218 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Secure Builder

Factory

Separate the security dependent rules involved

in creating a complex object from the basic

steps involved in actually creating the object

Dougherty et al.

(2009)

Secure Chain Of

Responsibility

Decouple the logic that determines

user/environment-trust dependent functionality

from the portion of the application request-

ing the functionality, simplify the logic that

determines user/environment-trust dependent

functionality, and make it relatively easy to

dynamically change the user/environment-trust

dependent functionality.

Dougherty et al.

(2009)

Secure Channels

for sensitive communication across a public

network, create encrypted secure channels to

ensure that data remains confidential in transit

Schumacher et al.

(2006)

Secure Com-

muncation

Ensure that mutual security policy objectives

are met when there is a need for two parties to

communicate in the presence of threats

Blakley and

Heath (2004)

Secure Directory

Ensure that an attacker cannot manipulate the

files used by a program during the execution of

the program

Dougherty et al.

(2009)

Continued on next page

Appendix C 219

Table C.1 – continued from previous page

Pattern Name Intent Source

Secure Factory

Separate the security dependent logic involved

in creating or selecting an object from the basic

functionality of the created or selected object

Dougherty et al.

(2009)

Secure Logger

Prevent an attacker from gathering potentially

useful information about the system from sys-

tem logs and to prevent an attacker from hiding

their actions by editing system logs

Dougherty et al.

(2009)

Secure Logger

Log messages in a secure manner so that they

cannot be easily altered or deleted and so that

events cannot be lost

Steel et al. (2005)

Secure Message

Router

Securely communicate with multiple partner

endpoints using message-level security and

identity-federation mechanisms

Steel et al. (2005)

Secure Pipe
Guarantee the integrity and privacy of data sent

over the wire
Steel et al. (2005)

Secure Pro-

cess/Thread

Make sure a process does not interfere with

other processes

Fernandez et al.

(2006)

Secure Proxy

Define the relationship between the guards of

two instances of protected system in the case

when one instance is entirely contained within

the other

Blakley and

Heath (2004)

Continued on next page

220 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Secure Service

Facade

Provide a gateway governing security on client

requests
Steel et al. (2005)

Secure Service

Proxy

Provide authentication and authorization ex-

ternally by intercepting requests for security

checks

Steel et al. (2005)

Secure Session

Manager

defines how to create a secure session by cap-

turing session information
Steel et al. (2005)

Secure Session

Object

Facilitate distributed access of security context

and sessions
Steel et al. (2005)

Secure State Ma-

chine

Allow a clear separation between security

mechanisms and user-level functionality by im-

plementing the security and user-level function-

ality as two separate state machines

Dougherty et al.

(2009)

Secure Strategy

Factory

Provide an easy to use and modify method for

selecting the appropriate strategy object (an ob-

ject implementing the strategy pattern) for per-

forming a task based on the security credentials

of a user or environment

Dougherty et al.

(2009)

Secure Visitor
Prevent unauthorized access to nodes in the data

structure

Dougherty et al.

(2009)

Continued on next page

Appendix C 221

Table C.1 – continued from previous page

Pattern Name Intent Source

Security Associa-

tion

Define a structure which provides each partic-

ipant in a secure communication with the in-

formation it will use to protect messages to be

transmitted to the other party, and with the in-

formation which it will use to understand and

verify the protection applied to messagesre-

ceived from the other party

Blakley and

Heath (2004)

Security Context

Provide a container for security attributes and

data relating to a particular execution context,

process, operation or action

Blakley and

Heath (2004)

Security Reverse

Proxy

Protects your server from attacks on network

and application protocol levels

Sommerlad

(2003)

Security Session

a unique reference to the session object is made

available, instead of passing all access rights or

re-authenticating a user repeatedly

Schumacher et al.

(2006)

Sender Authenti-

cation
Avoid refusal of a message

Braga et al.

(1998)

Server Sandbox
Contain damage resulting from undiscovered

bug in server

Kienzle and Elder

(2002)

Session
Describes a wide spread way of implementing

state-fullness in a multi-user system
Sørensen (2002)

Continued on next page

222 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

Session
Provide different parts of a system with global

information about a user

Yoder and

Barcalow (1997)

Session Failover

Describes a way to keep session related data

available to the users of the system, even in the

case of system shutdown or breakdowns

Sørensen (2002)

Session Scope

Storing session specific data on the server and

accessing it from code in a way that minimizes

the risk of mixing up data from several sessions

Sørensen (2002)

Session Timeout

Guard against session spefic data stored in a

server growing to fill up all available memory

and disk

Sørensen (2002)

Signature Proivde the authorship of a message
Braga et al.

(1998)

Signature With

Appendix
Separate message from signature

Braga et al.

(1998)

Single Access

Point

grants or denies entry to the system after check-

ing the client requiring access

Schumacher et al.

(2006)

Single Access

Point
Define a single entry point for the system

Yoder and

Barcalow (1997)

Continued on next page

Appendix C 223

Table C.1 – continued from previous page

Pattern Name Intent Source

Single Session Creates a session with a validated role
Kodituwakku

et al. (2001)

Single Sign On
Provide mechanism to avoid re-authentication

of user after successful authentication

Kienzle and Elder

(2002)

Single Sign-On

Delegator

Encapsulate access to identity management and

single sign-on functionalities, allowing inde-

pendent evolution of loosely coupled identity

management services while providing system

availability

Steel et al. (2005)

Standby

Structure a system so that the service provided

by one component can be resumed from a dif-

ferent component

Blakley and

Heath (2004)

Stateful Firewall

filters incoming and outgoing network traffic in

a computer system based on state information

derived from past communications

Schumacher et al.

(2006)

Subject Descrip-

tor

Provide access to security-relevant attributes of

an entity on whose behalf operations are to be

performed

Blakley and

Heath (2004)

System Overview
Monitor all the interfaces to each of the system

elements individually

Dyson and Long-

shaw (2003)

Continued on next page

224 Appendix C

Table C.1 – continued from previous page

Pattern Name Intent Source

The Object Filter

And Access Con-

trol Framework

This framework combines the functions of au-

thentication, access control, and data filtering in

a distributed environment

Hays et al. (2000)

The Role -Based

Security Asser-

tion Coordinator

The role -based security assertion coordinator

pattern allows seamless exchange of security

data among organizations in a distributed envi-

ronment in order to coordinate role-based ac-

cess control to protected resources

Fernandez (2004)

The Security

Provider

Leveraging the power of a common security ser-

vice across multiple applications

Romanosky

(2001)

The XML Fire-

wall Pattern

To filter XML messages to/from user-defined

applications, based on the business access con-

trol policies and the content of the message

Fernandez (2004)

Trusted Proxy
Provide safe interface by constraining access to

protected resources

Kienzle and Elder

(2002)

Validated Trans-

action

Puts all security relevant validation into one

transaction

Kienzle and Elder

(2002)

Virtual Address

Space Access

Control

To control access by processes to specific areas

of their virtual address space (vas) according to

a set of predefined access types

Fernandez (2002)

Continued on next page

Appendix C 225

Table C.1 – continued from previous page

Pattern Name Intent Source

Virtual Address

Space Structure

Selection

Emphasize isolation for virtual address space
Fernandez et al.

(2006)

White Hats, Hack

Thyself
Testing your own security by trying to defeat it

Romanosky

(2001)

WSPL

WSPL enables an organization to represent ac-

cess control policies for its web services in a

standard manner. it also enables a web services

consumer to express its requirements in a stan-

dard manner

Delessy and Fer-

nandez (2005)

XACML Ac-

cess Control

Evaluation

This pattern decides if a request is authorized to

access a resource according to policies defined

by the XACML authorization pattern

Delessy and Fer-

nandez (2005)

XACML Autho-

rization

Enables an organization to represent authoriza-

tion rules in a standard manner

Delessy and Fer-

nandez (2005)

Total number of patterns 200

226 Appendix C

C.2 Non-Design Security Patterns

Table C.2: Security Pattern Catalog — Non Design Patterns

Pattern Name Source

Access Control Requirements Schumacher et al. (2006)

Account Category Riehle et al. (2002)

Actor and Role Lifecycle Pattern Elsinga and Hofman (2002)

Actor-Based Access Rights Elsinga and Hofman (2002)

Address Book Lehtonen and Pärssinen (2001)

Alice and Friends Lehtonen and Pärssinen (2001)

Asset Valuation Schumacher et al. (2006)

Audit Requirements Schumacher et al. (2006)

Audit Trails and Logging Requirements Schumacher et al. (2006)

Automated I&A Design Alternatives Schumacher et al. (2006)

Biometrics Design Alternatives Schumacher et al. (2006)

Build The Server From Ground Up Kienzle and Elder (2002)

Choose The Right Stuff Kienzle and Elder (2002)

Codebook Riehle et al. (2002)

Community of Nodes Pärssinen and Turunen (2002)

Continued on next page

Appendix C 227

Table C.2 – continued from previous page

Pattern Name Source

Content of a Message for Humans Pärssinen and Turunen (2002)

Content of a Message for Machines Pärssinen and Turunen (2002)

Conversation Between Nodes Pärssinen and Turunen (2002)

Dictionary Word Riehle et al. (2002)

Document The Security Goals Kienzle and Elder (2002)

Document The Server Configuration Kienzle and Elder (2002)

Elements of a Node Pärssinen and Turunen (2002)

Enroll by Validating Out of Band Kienzle and Elder (2002)

Enroll Using Third-Party Validation Kienzle and Elder (2002)

Enroll with a Pre-Existing Shared Secret Kienzle and Elder (2002)

Enroll without Validating Kienzle and Elder (2002)

Enterprise Partner Communication Schumacher et al. (2006)

Enterprise Security Approaches Schumacher et al. (2006)

Enterprise Security Services Schumacher et al. (2006)

Face-to-Face Lehtonen and Pärssinen (2001)

From Service to Protocol Pärssinen and Turunen (2002)

I&A Requirements Schumacher et al. (2006)

Continued on next page

228 Appendix C

Table C.2 – continued from previous page

Pattern Name Source

Interfaces of an Entity Pärssinen and Turunen (2002)

Intrusion Detection Requirements Schumacher et al. (2006)

Keep It Secret Riehle et al. (2002)

Key in The Pocket Lehtonen and Pärssinen (2001)

Lay It Open Riehle et al. (2002)

Log for Audit Kienzle and Elder (2002)

Master Account File Riehle et al. (2002)

Means to Communicate Pärssinen and Turunen (2002)

Message Exchange Pärssinen and Turunen (2002)

Message Identification Pärssinen and Turunen (2002)

Message Transfer Syntax Pärssinen and Turunen (2002)

Message Versioning Pärssinen and Turunen (2002)

Needs to Communicate Pärssinen and Turunen (2002)

Non-Repudiation Requirements Schumacher et al. (2006)

Parameter Container Pärssinen and Turunen (2002)

Password Algorithm Riehle et al. (2002)

Password Design and Use Schumacher et al. (2006)

Continued on next page

Appendix C 229

Table C.2 – continued from previous page

Pattern Name Source

Password Externalization Riehle et al. (2002)

Password Hint Riehle et al. (2002)

Password Lock Box Riehle et al. (2002)

Password Salt Riehle et al. (2002)

Patch Proactively Kienzle and Elder (2002)

Piggy Packing Pärssinen and Turunen (2002)

Read Team The Design Kienzle and Elder (2002)

Seal Ring Engraver Lehtonen and Pärssinen (2001)

Sealed and Signed Envelope Lehtonen and Pärssinen (2001)

Sealed Envelope Lehtonen and Pärssinen (2001)

Security Accounting Requirements Schumacher et al. (2006)

Security Context Riehle et al. (2002)

Security Needs Identifcation for Enterprise Assets Schumacher et al. (2006)

Share Responsibility for Security Kienzle and Elder (2002)

Signed Envelope Lehtonen and Pärssinen (2001)

Singleton Password Riehle et al. (2002)

Stay Current and Ahead Riehle et al. (2002)

Continued on next page

230 Appendix C

Table C.2 – continued from previous page

Pattern Name Source

Tail Extension Pärssinen and Turunen (2002)

Test on a Staging Server Kienzle and Elder (2002)

The Forged Seal Ring Lehtonen and Pärssinen (2001)

The Goal of Security Elsinga and Hofman (2003)

The Nature of Safeguards Elsinga and Hofman (2003)

The Real Thing Lehtonen and Pärssinen (2001)

There is Somebody Eavesdropping Lehtonen and Pärssinen (2001)

Threat Assessment Schumacher et al. (2006)

Transmission Media Pärssinen and Turunen (2002)

Two Roles of Nodes Pärssinen and Turunen (2002)

Typing Rhythm Riehle et al. (2002)

Unusual Variation Riehle et al. (2002)

Vulnerability Assessment Schumacher et al. (2006)

Total number of patterns 79

	Title Page - Building High Assurance Secure Applicationsusing Security Patterns for Capability-based Platforms
	List of Publications by Thesis Author
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Background and related work
	Chapter 3 - A New Security Pattern Catalog
	Chapter 4 - Capability-specific Design Fragments
	Chapter 5 - Composition of Design Fragments
	Chapter 6 - Verification Procedures
	Chapter 7 - Evaluation
	Chapter 8 - Verified Design to Implementation
	Chapter 9 - Conclusion and future work
	Bibliography
	Appendix A - Smart Meter Requirements
	Appendix B - Sample Security Patterns Catalog
	Appendix CSecurity Patterns Catalog

