
Capsule-oriented Programming
Hridesh Rajan

Department of Computer Science
Iowa State University of Science and Technology

Ames, Iowa 50010
Email: hridesh@iastate.edu

Abstract—“Explicit concurrency should be abolished from

all higher-level programming languages (i.e. everything except -

perhaps- plain machine code.).” Dijkstra [1] (paraphrased). A

promising class of concurrency abstractions replaces explicit

concurrency mechanisms with a single linguistic mechanism that

combines state and control and uses asynchronous messages for

communications, e.g. active objects or actors, but that doesn’t

remove the hurdle of understanding non-local control transfer.

What if the programming model enabled programmers to simply

do what they do best, that is, to describe a system in terms of its

modular structure and write sequential code to implement the

operations of those modules and handles details of concurrency?

In a recently sponsored NSF project we are developing such

a model that we call capsule-oriented programming and its

realization in the Panini project. This model favors modularity

over explicit concurrency, encourages concurrency correctness

by construction, and exploits modular structure of programs to

expose implicit concurrency.

I. INTRODUCTION

Modern software systems tend to be distributed, event-
driven, and asynchronous, often requiring components to
maintain multiple threads for message and event handling, and
to take advantage of multicore and manycore processors to
improve performance. Yet concurrent programming stubbornly
remains difficult and error-prone. To address these issues, the
invention and refinement of better abstractions is needed: that
can hide the details of concurrency from the programmer and
allow them to focus on the program logic.

The significance of better abstractions for concurrency is
not lost on the research community. Some key ideas from the
last two decades include: guardians [2], active objects [3],
[4], and actors [5], all of which combine state and control
within a single linguistic mechanism and use asynchronous
messages for communications. These models enable implicit
concurrency at the abstraction boundaries.

While the use of these actor-like entities allows concurrent
execution, it does not, by default, provides data confinement
and eliminate data races, since mutable objects can still be
passed as messages. There have been attempts to address this
issue. For example, Erlang [6] eliminates the first problem
by enforcing that all data is immutable. For Scala actors,
Odersky and Haller use a type system to manage ownership
of objects and to ensure that references are unique [7] and
Clarke et al. give a notion of minimal ownership for active
objects [8]. We believe that two major gaps remain. First, there
is an impedance mismatch between sequential and implicitly
concurrent code written using actor-like entities that is hard

for a sequentially trained programmer to overcome. These
programmers typically rely upon the sequence of operations
to reason about their programs. Second, a sweet spot between
flexibility and safety has not yet been achieved, e.g. Erlang [6]
provides a model where actors are fully isolated, whereas
Scala provides a model with no data confinement [7]. The
former model exacerbates the impedance mismatch, whereas
the latter model requires additional programming mechanisms
for safety, e.g. type annotations, with corresponding costs.

As part of a recent NSF project, building on our prior work
on reconciling modularity and concurrency goals [9], [10],
[11], we are developing a comprehensive and multifaceted
approach to the challenges of concurrent programming that
we call capsule-oriented programming [12]. A central goal of
capsule-oriented programming is to provide tools to enable
programmers to simply do what they do best, that is, to
describe a system in terms of its modular structure and write
sequential code to implement the operations of those modules
using a new abstraction that we call capsule. A capsule is like
a process in CSP [13]; it defines a set of public operations, and
also serves as a memory region, or ownership domain [14],
[8], for some set of ordinary objects. To the programmer,
inter-capsule calls look like ordinary method calls. There are
no explicit threads or synchronization locks. Capsule-oriented
programs get implicit parallelism, where beneficial, due to
a compilation strategy that we call modularization-guided
parallelism. Capsule-oriented programming eliminates two
classes of concurrency errors: race conditions due to shared
data, and memory/cache consistency due to multiple cores.

In our preliminary work, we have realized basic ideas
behind capsule-oriented programming in an extension of Java
that we call Panini and have implemented a compiler for
Panini by extending the industry standard OpenJDK Java
compiler. It is available for download and is being actively
used worldwide (See Figure 1).

We have also gained some experience with this program-
ming model in the process of translating several already
vetted benchmark suites e.g. JavaGrande (JG) [15], NAS
Parallel Benchmarks [16], etc., to use capsules as the primary
mechanism for concurrency. This experiment has involved
several hundred thousands SLOC. It has also helped to test
the robustness of our compiler and provided some informal
insights into the effect of our design decisions on productivity
of student programmers producing this code.

ICSE'15: The 37th International Conference on Software Engineering: NIER Track, Florence, Italy, May 2015.

Fig. 1. The graphics above shows downloads of the Panini compiler August
2013 (public release) - Nov 2014. Panini is a capsule-oriented extension of
Java.

II. MOTIVATION

To illustrate the challenges of concurrent program design,
consider a simplified navigation system. The system consists
of four components: a route calculator, a maneuver generator,
an interface to a GPS unit, and a UI. The UI requests
a new route by invoking a calculate operation on the
route calculator, assumed to be computationally intensive.
When finished, the route is passed to the maneuver generator
via method setNewRoute. The GPS interface continually
parses the data stream from the hardware and updates the
maneuver generator with the current position via method
updatePosition. The maneuver generator checks the po-
sition against the current route and generates a new turn
instruction for the UI if needed (not compute intensive).

The modular structure of the system is clear from the
description above, and it is not difficult to define four Java
classes with appropriate methods corresponding to this design.
However, the system will not yet work. The programmer is
faced with a number of nontrivial decisions: Which of these
components needs to be associated with an execution thread of
its own? Which operations must be executed asynchronously?
Where is synchronization going to be needed? A human expert
might reach the following conclusions, shown in Figure 2.

• A thread is needed to read the GPS data (lines 57-60)
• The UI, as usual, has its own event-handling thread. The

calls on the UI need to pass their data to the event
handling thread via the UI event queue (lines 10–14 and
17–20)

• The route calculation needs to run in a separate thread;
otherwise, calls to calculateRoute will "steal" the UI event
thread and cause the UI to become unresponsive (lines
33–39)

• The ManeuverGen class does not need a dedicated
thread, however, its methods need to be synchronized,
since its data is accessed by both the GPS thread and the
thread doing route calculation (lines 5, 8, and 23)

None of the conclusions above, in itself, is difficult to
implement in Java. Rather, in practice it is the process of
visualizing the interactions between the components, in order
to reach those conclusions, that is extremely challenging for
programmers [17], [18].

III. APPROACH

The goal of capsule-oriented programming is to help se-
quentially trained programmers deal with the challenges of
concurrent program design. Here, we present the model using
the example in Figure 2.

The capsule-oriented programmer specifies a program as
a collection of capsules and ordinary object-oriented (OO)
classes. A capsule is an information-hiding module [19] for
decomposing a system into its parts that admits implicit
concurrency at its interface and a design is a mechanism for
composing capsules together. A capsule defines a set of public
operations, hides the implementation details, and could serve
as a work assignment for a developer or a team of developers.
Beyond these standard responsibilities, a capsule also serves
as a confined memory region [20], [21], [8] for some set
of standard object instances and behaves as an independent
logical process [13], [5]. Inter-capsule calls look like ordinary
method calls to the programmer. The OO features are standard,
but there are no explicit threads or synchronization locks in
capsule-oriented programming.

The example in Figure 2 contains four capsule declarations.
At first glance a capsule declaration may look similar

to a class declaration, thus naturally raising the question
as to why a new syntactic category is essential, and why
class declarations may not be enhanced with the additional
capabilities that capsules provide, namely, confinement (as in
Erlang [6]) and an activity thread (as in previous work on
concurrent OO languages [22], [23], [24]).

There are three main reasons for this design decision in
capsule-oriented programming. First, we believe based on pre-
vious experiences that objects may be too fine-grained to think
of each one as a potentially independent activity [25]. Second,
we wanted to specify a program as a set of related capsules
with a fixed topology, in order to make it feasible to perform
static analysis of the capsule graphs; this implies that capsules
should not be first-class values. Third, there is a large body
of OO code that is written without any regard to confinement.
Changing the semantics of classes would have made reusing
this vast set of libraries difficult, if not impossible. With
these design decisions, since syntactic categories are different,
sequential OO code can be reused within the boundary of a
capsule without needing any modification.

Compared to the explicitly concurrent system in Figure 2
(left), the capsule-oriented program in Figure 2 (right) is an
implicitly concurrent program. The execution of this program
begins by allocating memory for all capsule instances, and
connecting them together as specified in the design declaration
on lines 94-99. Recall that capsule parameters define the other
capsule instances required for a capsule to function. A capsule
listed in another capsule’s parameter list can be sent messages
from that capsule. Design declarations allow a programmer to
define the connections between individual capsule instances.
These connections are established before execution of any
capsule instance begins.

Owing to the declarative nature of capsule-oriented features,
this program is somewhat shorter compared to the program in

Java program with threads and synchronization

1 class ManeuverGen {

2 private Route currentRoute;

3 private Position currentPosition ;

4 private UI ui ;

5 public synchronized void setNewRoute(Route r) {

6 currentRoute = r;

7 }

8 public synchronized void updatePosition(Position p) {

9 currentPosition = p;

10 final Position temp = p;

11 Runnable r = new Runnable() {

12 public void run() {ui .updatePosition(temp);}

13 };

14 SwingUtilities .invokeLater(r) ;

15 final Instruction inst = nextManeuver();

16 if (inst != null) {

17 r = new Runnable() {

18 public void run() { ui .announceNextTurn(inst); }

19 };

20 SwingUtilities .invokeLater(r) ;

21 }

22 }

23 public synchronized Position getCurrentPosition() {

24 return currentPosition ;

25 }

26 private Instruction nextManeuver() {/⇤ ... ⇤/}

27 }

28 interface Calculator {void calculate(Position dst) ;}

29 class Shortest implements Calculator {

30 private ManeuverGen mg;

31 public Shortest(ManeuverGen mg) {this.mg = mg;}

32 public void calculate(final Position dst) {

33 Thread t = new Thread(new Runnable() {

34 public void run() {

35 Route r = helper(mg.getCurrentPosition(), dst) ;

36 mg.setNewRoute(r);

37 }

38 }) ;

39 t . start () ;

40 }

41 private Route helper(Position src, Position dst) {/⇤ ⇤/}

42 }

43 class GPS {

44 private ManeuverGen mg;

45 public GPS(ManeuverGen mg) {this.mg = mg;}

46 public void runLoop() {

47 while (true) mg.updatePosition(readData());

48 }

49 private native Position readData();

50 }

Java program, con’t

51 class UI { /⇤ provides updatePosition, announceNextTurn ⇤/ }

52 class Navigation {

53 public static void main(String[] args) {

54 ManeuverGen mg = new ManeuverGen();

55 Calculator rc = new Shortest(mg);

56 final GPS gps = new GPS(mg);

57 Thread t = new Thread(new Runnable() {

58 public void run() { gps.runLoop(); }

59 }) ;

60 t . start () ;

61 //

62 // Also create and start UI, details not shown

63 //

64 }

65 }

A capsule-oriented program

66 capsule ManeuverGen (UI ui) { // Requires an instance of capsule UI

67 Route currentRoute = null; // A capsule state � confined to this

capsule

68 Position position = null ;

69 void setNewRoute(Route r) { currentRoute = r; } // A capsule procedure

70 void updatePosition(Position p) {

71 position = p;

72 ui .updatePosition(p); // Inter�capsule procedure call

73 Instruction inst = nextManeuver();

74 if (inst != null) ui .announceNextTurn(inst);

75 }

76 Position getCurrentPosition() { return position ; }

77 private Instruction nextManeuver() {/⇤ ... ⇤/} // A helper procedure

78 }

79 signature Calculator { void calculate(Position dst) ; }

80 capsule Shortest (ManeuverGen m) implements Calculator {

81 void calculate(Position dst) {

82 Route r = helper(m.getCurrentPosition(), dst) ;

83 m.setNewRoute(r);

84 }

85 private Route helper(Position src, Position dst) {/⇤ ... ⇤/}

86 }

87 capsule GPS (ManeuverGen mg) {

88 void run() {

89 while (true) mg.updatePosition(readData());

90 }

91 private native Position readData();

92 }

93 capsule UI { /⇤ provides updatePosition, announceNextTurn ⇤/ }

94 capsule Navigation {

95 design { // Specifies internal capsule instances and their interconnections

96 UI ui ; ManeuverGen m ; Shortest r ; GPS g ; // Capsule instances

97 m (ui) ; r (m) ; g (m) ; // Interconnections of capsule instances

98 }

99 }

Fig. 2. Programs for a simplified navigation system. Classes Position, Route, and Instruction are elided.

Figure 2 (left). Most importantly, this example illustrates some
of the key advantages of capsule-orientation. These are:

• The programmer does not need to specify whether a given
component in a system needs, or could benefit from, its
own thread of execution.

• The programmer works within a familiar method-call
style interface with a reasonable expectation of sequential
consistency.

• All concurrency-related details are abstracted away and
are fully transparent to the programmer.

IV. ONGOING EXPLORATIONS

Several propeties of capsules are being investigated as part
of the Panini project. We describe some of these below.

• Modular reasoning about concurrent programs. This
is one of the most important research direction. Extant
approaches do not permit modular reasoning, and we have

some evidence that capsules permit modular reasoning
about capsule-oriented programs [26]. This has the poten-
tial to enable compile-time verification of concurrency-

related properties for the very first time.
• Performant abstraction. Performance optimization is

one of the leading reasons for breaking abstraction bound-
aries (at least for actors). We have evidence to suggest
that properties of capsules enables modular analysis to
determine mapping from capsules to threads [27].

• Capsule-oriented specification and design. Capsule
model is already more declarative compared to previous
approaches. We are investigating whether further abstrac-
tions and verification at the design-level is possible.

• Resource collection. As a consequence of modular
reasoning, capsules naturally support a simple and in-
tuitive method of resource collection that has been a
challenge [28].

• Static analysis and unboundedness. Capsules are care-
fully designed to facilitate static analysis of capsules and
their interaction, e.g. for sequential inconsistency [29].
We are investigating whether certain bounds in capsule-
oriented designs can be relaxed without compromising
this property [30], [31].

V. RELATED WORK

From this project’s vantage point, broadly speaking, there
are three kinds of approaches for concurrency: explicit, where
programmers manually create concurrent tasks using mech-
anisms such as threads or fork-join pools and manage syn-
chronization between these tasks, implicit, where programmers
provide some hints and guidance to the compiler, often in
the form of annotations or language features, and automatic,
where the compiler is on its own to expose concurrency in a
program. The capsules approach is an implicit one.

Among implicit approaches, the design of capsules was
influenced by, and closely related to, the actor model [5],
process calculi like CSP [13], and actor-like language features,
e.g. active objects [2], [3], [4] or ambients [32]. Like abstrac-
tions in these models, capsules are also an independent ctivity.
However, capsules extend these models in several ways. For
example, capsules have confined semantics and thus avoid
the need for integrating a separate type system with anno-
tations [7], [8] or to make all data immutable [6]. Capsules
provide in-order and transitive in-order delivery and processing
semantics. Capsules provide modular reasoning [26]. None of
the existing work provides all of these properties.

VI. CONCLUSION

A serious problem facing the current software development
workforce is that software engineers have not received ade-
quate formal training in concurrency for the last 4 decades
(1970-2010). There was no apparent need to provide in-depth
training in concurrency-related topics while the CPU fre-
quency growth provided adequate scalability. A 2008 survey of
50 representative universities across the world found that only
about 146 lectures (⇠2-3 lectures/university) were delivered
on concurrency related topics [17]. Out of those, 70% were in
graduate courses and the remaining were mostly in operating
systems, which covered classical synchronization problems.
Professional societies have noticed this gap, as is evident by a
2012 report by ACM/IEEE taskforce on computing curricula
that has recently emphasized concurrency and parallelism [18].
As a result of this insufficient emphasis in curricula, we now
have a workforce of which a majority is insufficiently trained
in concurrent software design. While it makes great sense to
develop explicit concurrency mechanisms, sequential program-
mers continue to find it hard to understand task interleav-
ings and non-deterministic semantics. Thus, this research on
capsule-oriented programming, if successful, will have a large
positive impact on the productivity of these programmers, on
the understandability and maintainability of source code that
they write, and on the scalability and correctness of software
systems that they produce.

REFERENCES

[1] E. W. Dijkstra, “Letters to the editor: Go to statement considered
harmful,” Commun. ACM, vol. 11, no. 3, pp. 147–148, Mar. 1968.

[2] B. Liskov and R. Scheifler, “Guardians and Actions: Linguistic support
for robust, distributed programs,” TOPLAS ’83, vol. 5.

[3] R. Lavender and D. Schmidt, “Active object – an object behavioral
pattern for concurrent programming,” in Pattern languages of program
design 2, 1996.

[4] O. M. Nierstrasz, “Active objects in Hybrid,” in OOPSLA 1987.
[5] G. Agha and C. Hewitt, “Concurrent programming using actors: Ex-

ploiting large-scale parallelism,” in Foundations of Software Technology
and Theoretical Computer Science. Springer, 1985, pp. 19–41.

[6] J. Armstrong, R. Williams, M. Virding, and C. Wikstroem, Concurrent
Programming in ERLANG. Prentice-Hal, 1996.

[7] P. Haller and M. Odersky, “Capabilities for uniqueness and borrowing,”
in ECOOP 2010.

[8] D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen, “Minimal
ownership for Active Objects,” in APLAS, 2008.

[9] Y. Long, S. L. Mooney, T. Sondag, and H. Rajan, “Implicit invocation
meets safe, implicit concurrency,” in GPCE. ACM, 2010, pp. 63–72.

[10] H. Rajan, S. M. Kautz, and W. Rowcliffe, “Concurrency by modularity:
Design patterns, a case in point,” in Onward! 2010.

[11] H. Rajan, “Building scalable software systems in the multicore era,” in
2010 FSE/SDP Workshop on the Future of Software Engineering.

[12] H. Rajan, S. M. Kautz, E. Lin, S. L. Mooney, Y. Long, and G. Upad-
hyaya, “Capsule-oriented programming in the Panini language,” Iowa
State University, Tech. Rep. 14-08, 2014.

[13] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, Aug. 1978.

[14] J. Noble, J. Vitek, and J. Potter, “Flexible alias protection,” in ECOOP
1998.

[15] L. Smith, J. Bull, and J. Obdrizalek, “A parallel Java Grande benchmark
suite,” in ACM/IEEE Conf. on Supercomputing, 2001, pp. 6–6.

[16] M. Frumkin, M. Schultz, H. Jin, and J. Yan, “Implementation of the
NAS Parallel Benchmarks in Java,” 2002.

[17] D. Meder, V. Pankratius, and W. F. Tichy, “Parallelism in curricula an
international survey,” University of Karlsruhe, Tech. Rep., 2008.

[18] ACM/IEEE-CS Joint Task Force, “Computer science curricula 2013
(CS2013),” ACM/IEEE, Tech. Rep., 2012.

[19] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[20] C. Grothoff, J. Palsberg, and J. Vitek, “Encapsulating objects with
confined types,” ACM TOPLAS, vol. 29, no. 6, Oct. 2007.

[21] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership types for flexible
alias protection,” in OOPSLA 1998, pp. 48–64.

[22] R. Chandra, A. Gupta, and J. L. Hennessy, “COOL: An object-based
language for parallel programming,” Computer ’94, vol. 27.

[23] A. Yonezawa and M. Tokoro, “Object-oriented concurrent program-
ming,” Cambridge, Mass, 1990.

[24] B. Shriver and P. Wegner, “Research directions in object-oriented
programming,” Cambridge, Mass, 1987.

[25] M. Papathomas, “Concurrency in object-oriented programming lan-
guages,” in Object-oriented software composition. Prentice Hall, 1995.

[26] M. Bagherzadeh and H. Rajan, “Panini: A concurrent programming
model for solving pervasive & oblivious interference,” in Modularity’15.

[27] G. Upadhyaya and H. Rajan, “An automatic actors to threads mapping
technique for jvm-based actor frameworks,” in AGERE 2014.

[28] D. Kafura, D. Washabaugh, and J. Nelson, “Garbage collection of
actors,” in ECOOP/OOPSLA, 1990, pp. 126–134.

[29] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” Computers, IEEE Transactions on,
vol. 100, no. 9, pp. 690–691, 1979.

[30] Y. Hanna, S. Basu, and H. Rajan, “Behavioral automata composition for
automatic topology independent verification of parameterized systems,”
in ESEC/FSE 2009.

[31] Y. Hanna, D. Samuelson, S. Basu, and H. Rajan, “Automating cut-off
for multi-parameterized systems,” in ICFEM 2010.

[32] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and
W. De Meuter, “Ambient-oriented programming in AmbientTalk,” in
ECOOP’06.

