
FormTester: Effective Integration of Model-
Based and Manually Specified Test Cases

Rahul Dixit, Christof Lutteroth and Gerald Weber
Department of Computer Science

University of Auckland, Auckland, New Zealand
Email: rahul.dixit.zero@gmail.com

Abstract—Whilst Model Based Testing (MBT) is an improvement
over manual test specification, the leap from it to MBT can be
hard. Only recently MBT tools for web applications have emerged
that can recover models from existing manually specified test
cases. However, there are further requirements for supporting
both MBT and manually specified tests. First, we need support
for the generation of test initialization procedures. Also, we want
to identify areas of the system that are not testable due to
defects. We present FormTester, a new MBT tool addressing these
limitations. An evaluation with real web applications shows that
FormTester helps to reduce the time spent on developing test
cases.

I. INTRODUCTION

In manual test specification, test cases and test initialization
procedures are scripted manually. The test cases execute the
initialization procedures and call an underlying adapter to drive
the SUT; this is still the prevailing approach in commercial
environments at present. In Model Based Testing (MBT),
one develops a model of the system under test (SUT) and
then generates test cases from it instead of scripting them
individually [1]. This saves time and reduces the technical skill
level required for manual test specification. It is also easier to
maintain an SUT model and generate test cases from it than
to maintain a repository of test cases themselves.

Only recently MBT tools have started to derive an SUT model
from manual test cases and eliminate the need for specification
of SUT models separately from test cases by testers [2].
However, there are scenarios where it is desirable to use MBT
alongside manually specified test cases, e.g. when adding a
test case for every defect in test-driven development. Current
MBT tools such as GUITAR [3], NModel [4], Tonella et. al’s
statistical tester [5] and Testilizer [2] do not specifically facil-
itate the partial automation of manually specified test cases,
e.g. the automation of only the test initialization procedures.
Test initialization procedures are a sequence of steps that bring
the web application to a required page from its start state, in
order to test a particular function. Manually specified test cases
are not executable on their own and require such initialization
before they can be run. Writing initialization procedures is
a time consuming activity. We present FormTester1, a tool
that can generate test initialization procedures for manually
specified test cases based on an SUT model.

1Tool demo video: http://www.youtube.com/watch?v=T6D5fhR ptk

Finally, existing MBT tools do not identify areas of the web
application that are not testable due to defects, which may in
turn conceal other defects. FormTester combines online testing
with a reachability analysis of the SUT model, resulting in
reachability marking. Pages and actions rendered unreachable
due to a defect are identified, as well as the problems that
need to be addressed in order to make the unreachable parts
accessible. Reachability marking also enables using online test
termination criteria based on coverage, i.e. online testing can
be stopped once all reachable parts of the web application have
been tested.

II. TOOL OVERVIEW

FormTester implements three phases of the MBT process:
Model Development, Test Case Generation and Test Case
Execution [6] as displayed in Figure 1.

During the Model Development phase, test cases are used to
reverse engineer an SUT model of the web application. The
visualizer produces a diagram of the model that can be verified
with developers to confirm model accuracy. Manual inspection
of models is the most common form of model verification [7].
Testers may then change the test cases and this process is
repeated to refine the model. Furthermore, the model can be
annotated with probabilistic information to guide test case
generation.

During the Test Case Generation phase, two kinds of outputs
are generated: Test initialisation procedures and test cases.
The online testing component traverses the SUT model to
execute online tests, and when it identifies transitions rendered
unreachable due to defects, these are marked. During the Test
Execution phase, an Adapter is implemented that is common
to both offline and online components, and is used to drive
the GUI using high level commands.

A. Model Development: Recovering Models from Manually
Specified Tests

Manual test cases are used to reverse engineer the SUT model.
They contain information that describe page to page move-
ments during a test, actions performed on pages and test data
used. One can use this information to reverse engineer a Finite
State Machine (FSM) model of the web application.

http://www.youtube.com/watch?v=T6D5fhR_ptk


Model Development

Developer

Tester
Offline Test 

Case 
Generator

Adapter

Online 
Tester

Model 
Formchart

Vizualizer

SUT

Test Case Generation
Test Case 
Execution

Test Cases

SUT Model

Test Cases

Test Initialization 
Procedures

Fig. 1. Toolchain Overview

The format of test cases is an adapted Gherkin input file.
Gherkin is a business readable, domain specific language that
describes test cases in structured English using ‘Given, When,
Then’ sentences. An example Gherkin feature file is shown
in Listing 1. A start page is given in the ‘Given’ sentence
of the scenario. An action to be taken is defined in the
‘When’ sentence, which may include field data. Following
this, the expected output page is defined in the ‘Then’ sen-
tence, including output field information. This describes a
set of transitions, which can be annotated with probabilities
to characterize real use. The transitions can be visualized in
a formchart model, where pages are represented by ellipses
and actions by boxes [8]. Figure 2 shows a probabilistic
formchart SUT model, recovered partially from the test case
in Listing 1.

B. Test Case Generation

The Offline Test Case Generator generates test initialization
procedures as a sequence of steps performed to bring the
web application into a desired state, using a shortest paths
algorithm. Test initialization procedures are generated for the
original manual test cases used to reverse engineer the model.
This allows the manual test cases to be used as automation
tests as well as SUT model specification.

Listing 1. Feature File
Scenario : Go to Login Page
Given the s t a r t page : Main Page
When I perform the f o l l o w i n g ac t i on : Go to Login Page
When s e l e c t i n g the ac t i on has a p r o b a b i l i t y o f : 0.6
When I enter the f o l l o w i n g i npu t data i n t o the inpu t

f i e l d s :
| F ie l d Name | l o g i n l i n k |
| F ie l d Type | Link |
|XPath | / / l i [ @id= ‘ pt−l og in ’ ] / / a |
|Data | c l i c k |
Then I am taken to the output page : Login Page
Then going to the page has a p r o b a b i l i t y o f : 1.0

NoPage

NavigatetoStartPage

1.0

MainPage

1.0

GotoLoginPage

0.6

LoginPage

1.0

Logintoshoutwiki

1.0 0.2

LoggedInPage

0.8

DisplayLoggedInEditPage

0.8

Logout

0.2

LoggedInEditPage

1.0

EntertextintoLoggedInEditPage

1.0

0.7

0.3

1.0

Fig. 2. Formchart with unreachable parts in gray

These procedures are called from the manual test cases using
the ‘Given the start page’ sentence. The model is traversed to
compute shortest paths from the start page to every page in
the model using the Dijkstra algorithm. The generated paths
are stored in a source file, which is referenced when executing
the tests. These paths are used when running the tests to bring
the test into a desired state.

Once done, the remainder of the test is executed directly from



the manual test case, which calls the adapter. This partial
automation of manual test cases removes the need to specify
separate SUT models other than manual test cases. This novel
feature optimizes the path a test case takes to perform a test,
increasing efficiency by removing redundant steps.

This partial automation of manual test cases allows specifi-
cation of SUT models using manual test cases, without fully
implementing them. This saves time in SUT model specifica-
tion, and subsequent test initialization automation removes the
need for complete test definition, saving further time.

Currently, FormTester automates initialization procedures for
offline testing using shortest paths only. However, this can be
extended in the future to include arbitrary paths to increase the
scope of testing – other paths can uncover additional defects
not identified by shortest paths alone. In online testing, all
paths are randomized, so there is no such limitation.

Besides test initialization procedures, test case generation can
be performed. Test cases are generated that are equivalent
to the original manual test cases that were used to reverse
engineer the SUT model. This is done by traversing th model
using a breadth first search to identify combinations of paths
through the model, and use these as tests. Additional tests
for scenarios not originally specified can also be derived
from the SUT model. Here, we specify the number of steps
the test should run for, and traverse the model those many
times (often in repeated sequences) to test new and original
sequences.

C. Test Execution: Identifying Untestable Parts of a Web
Application

In contrast to offline testing, the online testing component
walks through the system based on the given transition proba-
bilities between pages and actions. If possible, this walker con-
tinues to traverse the model, instead of restarting testing [9].
The logic to determine the next action or page to visit is then
based on both probabilistic profiles of the model and how
many times a node has been previously visited. This makes
route selection more realistic.

The online testing component also handles defects along the
way, identifying unreachable parts of the web application due
to defects. For example, Figure 2 shows reachable parts of the
web application in white and unreachable parts in gray, due to
a defect in the only transition leading to the ‘Logged in Edit
Page’.

If a test fails on an action with a genuine defect, all incoming
transitions of that action are checked to see if they cause a
failure on that action, too. If all incoming transitions cause
a failure, the action is marked as unreachable. This in turn
may cause the page following the action to be marked as
unreachable, and so on. As parts of the model are marked
as unreachable, other parts are marked as well if there is no

working transition to them left. A depth-first search is used
for this reachability analysis.

III. EVALUATION

A. Methodology

Ideally, the evaluation would be performed as a between-
group experiment: one group of developers uses manual test
specification to create a test suite for a representative set
of web applications, while a second group with comparable
skills and experience uses the FormTester tool to achieve the
same for the same applications. The measurements for the
two groups (manual vs. FormTester) are compared overall and
for each of the applications. At this point, we present only a
self-experiment, which serves as a pilot study to such a full
evaluation in the future.

FormTester’s developer implemented manual test specifica-
tions for two web applications, and used FormTester for one
other web application, thus being the sole automator on all
evaluated applications. We then compared the two conditions
using four key metrics. The efficiency of test automation
was measured using the metric ‘Minutes per Test Case’. We
measured this by tracking the total time spent automating a
test suite and then dividing it by the total number of test cases
developed. We also measured the ‘Lines of Code’ written to
give a second indicator of effort required to automate. We
measured the ‘Number of Defects’ found on all systems to
give a comparison of defect detection rates.

We measured these metrics including and excluding project
setup. Project setup refers to activities of setting up the code
and test data infrastructure, and developing initial smoke tests.
Although project setup effort can be high in MBT, this is
amortized over the number of tests developed, so the overall
effort can be lower than with manual methods.

B. Tested Applications

Manual test specification was performed on one small-sized
project called ‘Administration Console’ and one mid-sized
project called ‘Self Service’. Self Service is a website where
gym owners can log in and manage customer accounts. They
can create customer accounts, update their payment details,
update their billing schedules, and generate reports. Three de-
velopers developed this application over 2 years, writing 5990
lines of code. Administration Console is an administration
tool for Self Service users, supporting the creation of Self
Service user accounts and setting permissions specifying what
Self Service users can do. Three developers developed this
application over one year, writing 1461 lines of code.

FormTester was applied on ‘Autobill Corrections’. As part of
customer account management, invalid operations or transac-
tions occur sometimes that can wrongly bill or debit a cus-
tomer. Autobill Corrections corrects these invalid transactions
by passing requests across a four user sequential workflow



system involving: i) Customer Service Representatives (CSRs
who attend customer issues); ii) Team Leads (who direct
CSRs); iii) Finance (who administer the change requests); and
iv) Operations Manager (responsible for the overall team). This
is a large-scale application developed by three developers over
1.5 years with 18022 lines of code. There are several special
edge cases where error handling is required, which makes the
application complex to test.

C. Results

There was an overall improvement in Minutes/Test (includ-
ing project setup) of 30.86% over the average of the two
manual projects. Even more notable was the improvement
in Minutes/Test excluding project setup which was 58.06%.
The higher time savings excluding project setup indicate that
savings will be even more significant as the size of the
application being tested increases.

The total number of functional defects found over the course of
automation were similar in MBT and non-MBT web applica-
tions. In addition, the types of defects were also similar. These
defects were both identified by offline and online testing.
These results are detailed in Table I.

TABLE I
TRIAL RESULTS

Admin
Console
(Manual)

Self
Service
(Manual)

Autobill
Correc-
tions
(MBT)

Project setup (hours) 20 40 40
No. of tests 576 996 828
Total hours 120 217 122
Mins/Test (incl. proj. Setup) 12.5 13.07 8.84
Mins/Test (excl. proj. Setup) 10.42 10.66 4.42
Total lines of automation code 3160 4554 6442
Natural language specification
code (SpecFlow)

357 399 2424

Implementation code (C#) 3160 4554 0
Generated code (C#) 0 0 2206
Adapter code 0 0 1812
Total no. of functional defects 5 5 4

D. Discussion

Due to the small scale of the evaluation, the observed benefits
of FormTester were primarily an improved performance. We
expect that other benefits can be measured in larger, future
evaluations. The reductions in development time are mainly
due to automated code generation: instead of writing binding
methods for Gherkin steps and debugging them, the code is
generated through MBT. The gains become greater as project
size increases, as there is less effort in specifying additional
model features compared to specifying a basic model from
scratch.

However, the MBT automation was performed by the devel-
oper of FormTester, who knew it intricately and was able to

debug errors easily when they occurred. Had a more novice
tester performed the MBT, the results could have been differ-
ent, with a lesser efficiency in tool usage observed. However,
the way the tool is used is standard and similar to how non-
MBT projects are automated, i.e. standard Gherkin constructs
are used. This standardization mitigates this issue.

A threat to validity during the study was caused by limitations
in our Gherkin parser implementation. Whilst, its ability to
parse the Gherkin language constructs was adequate, it broke
every time data was entered in an incorrect format, without
supplying useful error messages to debug the problem. This
made data entry into the SUT model much more time consum-
ing than necessary. With better error handling and reporting
capabilities, the time savings achieved by using FormTester
would increase significantly. The fact that significant time
savings were observed in spite of an effective parser, reinforces
FormTesters effectiveness.

The amount and types of defects identified by MBT are
similar to manual methods. This indicates that the MBT tool
is similarly effective in detecting defects. It must be noted that
defect counts are usually lower in MBT since static modeling
of the system is likely to reveal defects before test execution
begins. This may explain the slightly lower count of defects
identified in MBT.

REFERENCES

[1] A. Hartman, M. Katara, and A. Paradkar, “Domain specific approaches
to software test automation,” in The 6th Joint Meeting on European
software engineering conference and the ACM SIGSOFT symposium on
the foundations of software engineering: companion papers. ACM, 2007,
pp. 621–622.

[2] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging existing
tests in automated test generation for web applications,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering. ACM, 2014, pp. 67–78.

[3] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,” Automated
Software Engineering, pp. 1–41, 2013.

[4] J. Ernits, R. Roo, J. Jacky, and M. Veanes, “Model-based testing of web
applications using nmodel,” in Testing of Software and Communication
Systems. Springer, 2009, pp. 211–216.

[5] P. Tonella and F. Ricca, “Statistical testing of web applications,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 16,
no. 1-2, pp. 103–127, 2004.

[6] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. Morgan-Kaufmann, 2007, ch. 2.2, p. 27.

[7] B. Polgár, I. Ráth, Z. Szatmári, Á. Horváth, and I. Majzik, “Model-
based integration, execution and certification of development tool-chains,”
Model Driven Tool and Process Integration, vol. 35, 2009.

[8] D. Draheim and G. Weber, Form-Oriented Analysis. Springer, 2005, ch.
2.1, p. 10.

[9] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online testing
with model programs,” in ACM SIGSOFT Software Engineering Notes,
vol. 30. ACM, 2005, pp. 273–282.


	Introduction
	Tool Overview
	Model Development: Recovering Models from Manually Specified Tests
	Test Case Generation
	Test Execution: Identifying Untestable Parts of a Web Application

	Evaluation
	Methodology
	Tested Applications
	Results
	Discussion

	References

