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Compositional Symbolic Execution with Memoized

Replay

Rui Qiu, M.S.E

The University of Texas at Austin, 2014

Supervisor: Sarfraz Khurshid
Co-Supervisor: Guowei Yang

Symbolic execution is a powerful, systematic analysis that has received

much visibility in the last decade. Scalability however remains a major chal-

lenge for symbolic execution. Compositional analysis is a well-known general

purpose methodology for increasing scalability. This thesis introduces a new

approach for compositional symbolic execution. Our key insight is that we

can summarize each analyzed method as a memoization tree that captures

the crucial elements of symbolic execution, and leverage these memoization

trees to efficiently replay the symbolic execution of the corresponding meth-

ods with respect to their calling contexts. Memoization trees offer a natural

way to compose in the presence of heap operations, which cannot be dealt

with by previous work that uses logical formulas as summaries for composi-

tional symbolic execution. Our approach also enables an efficient treatment of

error traces by short-circuiting the execution of paths that lead to them. Our

preliminary experimental evaluation based on a prototype implementation in

Symbolic PathFinder shows promising results.
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Chapter 1

Introduction

Symbolic execution is a powerful, systematic program analysis tech-

nique that has found many applications in recent years, ranging from au-

tomated test case generation and error detection, to regression or security

analysis, continuous testing and program repair [5, 17, 23]. The technique enu-

merates the program paths (up to a given bound) and records the conditions

on the inputs to follow the different paths, as dictated by the branches in the

code. Off-the-shelf constraint solvers [1] are used to check the satisfiability

of path conditions to discard those paths that are found to be infeasible. In

practice, scalability is a major challenge in symbolic execution due to high

computational demand.

Compositional analysis is a well-known general purpose methodology

that has been used with success in the past to scale up static analysis and

software verification techniques [6, 7, 9, 12], including symbolic execution [4,

10, 11]. The main idea is to analyze each elementary unit (i.e., a method

or a procedure) in the program separately, and to store the analysis results

in a summary (for that method or procedure), encoding the input-output

behaviour of the unit. Whole-program analysis results are then obtained by
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incrementally composing and utilizing the previously built summaries.

This thesis introduces a new approach for compositional symbolic exe-

cution. Our key insight is that we can summarize each analyzed method as

a memoization tree that captures the crucial elements of symbolic execution,

i.e. the choices made along each path and the input path conditions (includ-

ing constraints on the program’s heap) for complete paths. The memoization

trees succintly summarize the feasible paths through the method and it does

not explicitely encode the method’s outputs as is typically done in previous

approaches

Instead, we define a composition operation that uses the memoization

trees, in a bottom-up fashion, for efficient replay of symbolic execution of the

methods in different calling contexts. During composition, constraint solving

is only used at a method call site to determine which paths in the method

summary are still feasible; these paths are then explored without any further

constraint solver calls and the search is guided by the choices recorded in the

memoization tree. This results in significant savings in analysis time due to

reduced number of solver calls, as compared to non-compositional symbolic

execution.

A key advantage of using the memoization trees is that they offer a

natural way of handling the heap, which cannot be dealt with by previous

work that uses logical formulas as summaries for compositional symbolic exe-

cution [4, 10, 11]. When composing a method summary with the actual calling

context, we first perform a partial check of the heap constraints on the (pos-
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sibly symbolic) heap of the calling context and then re-execute the method

guided by the memoization tree, which naturally reconstructs the heap, and

re-computes the outputs of the method.

For error detection, our approach explicitly marks memoization tree

nodes that correspond to error states, e.g., due to an assertion violaion. As

a result, our approach enables an efficient treatment of error traces by short-

circuiting: if a path condition for a path that leads to an error state in a

summary is feasible in the current calling context, the whole memoized path

does not need to be re-executed, and the error can immediately be reported

and also recorded in the calling method’s summary.

Moreover, the error markings enable a directed search for errors where

the replay of a memoized tree is prioritized to paths that may lead to errors:

if a memoization tree checked from a top-level method has a path that ter-

minates in an error state, the corresponding path condition can be checked

for feasibility before the other path conditions; thus, if the feasibility check

succeeds, the search can report an error, thereby pruning the other memoized

paths.

Besides the obvious benefits of increased scalability, our work also en-

ables more efficient selective regression testing, where the memoization trees

are stored off-line and re-used, e.g., when the code in the caller method is mod-

ified but the callee is unmodified. Moreover, our approach lends itself naturally

to parallel analysis for both building and re-use of summaries. Method sum-

maries for different methods can be constructed bottom-up in parallel and
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memoized path conditions can be checked for the current calling context in

parallel.

We make the following contributions:

• Memoization trees. We introduce the idea of performing composi-

tional symbolic execution using memoization trees;

• Summarize and compose. We define the core algorithms that embody

compositional symbolic execution using memoization trees;

• Program heap. Our approach supports compositional symbolic execu-

tion in the presence of operations on the program heap;

• Experiments. We implemented our approach into a prototype tool

that builds on top of the Symbolic PathFinder tool [18]. We describe

initial experimental results, which show the promise our approach holds.

The remainder of this thesis is organized as follows: We introduce back-

ground of symbolic execution in Chapter 2. Chapter 3 illustrates examples for

both traditional symbolic execution and our proposed memoized tree based

approach. In Chapter 4 we present our proposed approach in detail and in

Chapter 5 we show evaluation results with our prototype implementation. Re-

lated work is discussed in Chapter 6. We conclude in Chapter 7.
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Chapter 2

Background

Symbolic execution [8, 16] is a technique that analyzes a program using

symbolic values for inputs rather than actual concrete inputs as normal exe-

cution of the program would. In symbolic execution, program variables and

outputs are computed as expressions in terms of those symbols from inputs.

To determine what inputs lead to which paths of the program to be executed,

symbolic execution introduces path constraints (PC ) that are boolean expres-

sions in terms of input symbols for possible choice of branch conditions in

program. A symbolic execution tree represents the paths taken in a program

during symbolic execution. Each node in the tree represents a state of the

symbolic execution, which reflects a set of states in actual concrete execution.

Edges between nodes stand for transitions among states.

We illustrate symbolic execution on program in Figure 2.1 that has

two methods p and q. Method p takes two integers x and y as input and

returns an integer according to the relationship between x and y. Method q

also takes two integers a and b as input and invokes method p to return an

integer. We treat method q as start point of symbolic execution. Figure 2.2

shows the complete symbolic execution tree of method q. Initially, PC is true
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1 int p( int x , int y ) {
2 i f ( x > y ) {
3 x−−;
4 } else {
5 y++;
6 }
7 i f ( x == y ) {
8 return x ;
9 } else {

10 return y ;
11 }
12 }
13
14 int q ( int a , int b) {
15 i f ( a > b) {
16 return p( a + 1 , b − 1 0 ) ;
17 } else {
18 return p(b + 1 , a − 1 0 ) ;
19 }
20 }

Figure 2.1: Caller method q and callee method p

and a, b have symbolic values A and B, respectively. Program variables are

then set symbolic values in terms of A and B. For example, when method

p is invoked in line 16 in method q, the values for input of method p(x and

y) are A + 1 and B − 10 respectively. For each conditional statement in

the program, PC will be updated with all possible choices from the branch

condition so all possible paths are explored. Whenever PC is updated an

off-the-shelf constraint solving decision is called to check if the updated PC

is satisfiable. If it is not satisfiable, the execution backtracks to previous PC
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a: A, b: B
PC: true

a: A, b: B
PC: A > B

a: A, b: B
PC: A <= B

p(A+1, B-10) p(B+1, A-10)

x: A+1, y: B-10
PC: A+1>B-10

&& A>B

x: A+1, y: B-10
PC: A+1<=B-10

&& A>B

x: B+1, y: A-10
PC: B+1>A-10

&& A<=B

x: B+1, y: A-10
PC: B+1<=A-10

&& A<=B

x: A, y: B-10
PC: A == B-10
&& A+1>B-10

&& A>B

x: A, y: B-10
PC: A != B-10 
&& A+1>B-10

&& A>B  

x: B, y: A-10
PC: B==A-10
&& B+1>A-10

&& A<=B

x: B, y: A-10
PC: B!=A-10
&& B+1>A-10

&& A<=B

return B-10

PC: false
Infeasible path

return A-10

PC: false
Infeasible path

PC: false
Infeasible path

PC: false
Infeasible path

Figure 2.2: Symbolic execution tree for method q

and continues execution. For example, in method q there are four paths that

are infeasible due to the unsatisfiable path conditions. Programs with loops

may have infinite numbers of paths so symbolic execution needs to be bounded

for these programs. The exploration of paths can stop when a certain search

depth is reached or a coverage criteria has been achieved.

Symbolic PathFinder (SPF) is an open source tool that performs sym-

bolic execution for Java programs at the bytecode level. SPF uses lazy ini-

tialization [15] to handle dynamic input data structures (e.g., lists and trees).

The components of the programs inputs are initialized on an “as-needed” ba-

sis. The intuition is as follows. To symbolically execute method m of class

C, SPF creates a new object o of class C, leaving all its fields uninitialized.
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When a reference field f of type T is accessed in m for the first time, SPF

non-deterministically sets f to null, a new object of type T with uninitialized

fields, or an alias to a previously initialized object of type T. This enables

the systematic exploration of different heap configurations during symbolic

execution.
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Chapter 3

Example

This section uses two example programs to informally illustrate our

compositional symbolic execution approach.

When traditional symbolic execution is applied on the method q shown

in Figure 2.1, method p in the same Figure is symbolically executed twice,

since both branches of the conditional statement at line 15 are feasible. The

cost of method p’s “re-execution” can be reduced by compositional symbolic

exeuction, where we first build a memoization tree of method p, and then

efficiently perform symbolic exeuction of method q by replaying the symbolic

execution of p in the two calling contexts using p’s memoization tree.

Figure 3.1 shows the memoization tree for method p. Other than the

root node n0, each node is created whenever a conditional statement is ex-

ecuted, recording the branch that is taken during symbolic execution, e.g.,

node n1 indicates that the true (1) branch of the conditonal statement at

line 2 in program p is executed. Additionally, the tree leaves are annotated

with the path conditions for each complete path through the method. Out

of the four paths in the program, three paths are captured in this memoiza-

tion tree, because the missing path is infeasible with an unsatisfiable path

9



n0
p : Root

n5
p : 7 : 0

n3
p : 7 : 1

n4
p : 7 : 0

n1
p : 2 : 1

n2
p : 2 : 0

PC: x != y+1
&& x <= y

PC:  x - 1 == 
y && x > y

PC:  x - 1 != 
y && x > y

Figure 3.1: Tree built for method p

condition: x <= y && x == y + 1.

To replay the symbolic execution of the callee method that has a mem-

oization tree, the (feasible) paths in the memoization tree are checked against

the calling context to determine whether they are feasible or not. We map

the actual inputs of the callee method to the parameters stored in memoiza-

tion tree. For example, when invoked at line 16, method p’s actual inputs

are a + 1 and b − 10, and its formal arguments are x and y. So we map

a + 1 → x and b − 10 → y. Each annotated path condition in the mem-

oization tree is transformed by replacing the parameters with the actual in-

puts using the map, and then combined with the path condition from the

calling context. The combined constraints are then checked to decide if the

corresponding path in p is feasible or not. For the path in method p that

ends at node n5 in Figure 3.1, for instance, the transformed path condition

(a + 1)! = (b − 10) + 1&&(a + 1) <= (b − 10) after replacing the formal ar-

10



n1
q : Root

n2
q : 15 : 1

n3
q : 15 : 0

n4
p: n4

n5
p : n4

PC: a != b-10 
&& a+1 > b-10

&& a > b  

PC: b != a-10
&& b+1>a-10

&& a<=b

Figure 3.2: Tree built for method q

guments, combined with the calling context constraint a > b, is not satisfiable

and thus this path is not feasible in the calling context. In this case, the nodes

along this path, n2 and n5, are marked so that the path will not be explored

by symbolic execution in composition.

Figure 3.2 shows the memoization tree built for method q by reusing

method p’s memoization tree. For paths in p that are feasible in the calling

context, we do not put their corresponding nodes in q’s memoization tree.

Instead, we use summary nodes to point to those paths in method p’s mem-

oization tree to reduce the memory cost. For example, nodes n4 and n5 in

Figure 3.2 are summary nodes. In node n4, “[p : n4]” points to the path ended

at node n4 (n0→ n1→ n4) in method p’s memoization tree.

As shown in Figure 2.2, in traditional symbolic execution, whenever the

path condition is updated it is checked for satisfiability using the underlying

11



1 class Node {
2 int elem ;
3 Node next ;
4
5 Node swapNode ( ) {
6 i f ( next != null ) {
7 i f ( elem > next . elem ) {
8 Node t = next ;
9 next = t . next ;

10 t . next = this ;
11 return t ;
12 }
13 }
14 return null ;
15 }
16
17 stat ic Node callSwapNode (Node n) {
18 Node n1 = new Node ( ) ;
19 n1 . next = n ;
20 return n1 . swapNode ( ) ;
21 }
22 }

Figure 3.3: Swap Node example

constraint solver. So traditional symbolic execution makes 10 constraint solver

calls in total for symbolically executing method q. While our approach takes

8 constant solver calls, i.e., two calls for branch conditions in method q and 3

calls each in method p in its two calling contexts (line 16 and line 18).

Consider the Swap Node example [15] in Figure 3, where a class Node

is declared to implement a singly-linked list. The Node has two fields elem

and next, representing its integer element and a reference to its next node

respectively. Method swapNode destructively updates a node’s next field.

Method callSwapNode creates a new concrete node n1, sets n1’s next as the

input parameter, and invokes method swapNode on n1.

We use lazy initialization [15] to analyze method swapNode and gen-

12



n1
swapNode: 

Root

n2
swapNode: 6: 0

n3
swapNode: 6: 1

n5
swapNode: 7: 1

n4
swapNode: 7: 0

PC: True
HeapPC: this.next==null

PC: 
this.elem<=this.next.elem
HeapPC: this.next!=null

PC:True
HeapPC: this.next==this

PC:this.elem>this.next.elem
HeapPC:this.next.next

==this.next
&& this.next!=null 

PC:t
his.elem>this.next.elem
HeapPC:this.next.next==

this
&& this.next!=null

PC:this.elem>this.next.elem
HeapPC: 

this.next.next==null
&& this.next!=null

PC:this.elem>this.next.elem
HeapPC:this.next.next!=null

&& this.next!=null

Figure 3.4: Tree built for method swapNode

erate a memoization tree shown in Figure 3.4. Lazy initialization checks seven

method executions that represent an isomorphism partition of the input space.

However, based on conditional statements in the code, the method contains

only three paths as shown in Figure 3.4, i.e., n1 → n2, n1 → n3 → n4,

and n1 → n3 → n5. Therefore we encode these seven different input data

structures as seven pairs of numerical path condition and heap path condi-

tion, which spread across the three paths. For example, node n2 has a nu-

meric path condition (NumPC) True and a heap path condition (HeapPC)

this.next == null. NumPC True indicates that no constraint on the input

data structure’s integer variables is associated with this path. HeapPC implies

that if input this’s field next points to null, this path will be executed.

When method swapNode’s memoization tree is reused during compo-

sitional symbolic execution, like what we did before, the paths in method

swapNode’s memoization tree are checked for feasibility in the particular call-

ing context. Figure 3.5 illustrates the process of checking consistentency of

path conditions. First, in statement 19, lazy initialization nondeterministi-

cally initializes n.next to null, or n1, or a new node with all its fields unini-

13



0 null
next

0 null
next

0 next 0 e
next

initialize n1.next in stmt 19

n1

n1 n1 n1
?

next

0 e
next

?
next

0 next 0 null
next

this this this

replace parameters before 
method invocation

PC: 
this.elem<=this.next.elem
HeapPC: this.next!=null

PC: True
HeapPC: this.next==null

.........

check PC and HeapPC
for each path

Not 
feasible Feasible

Figure 3.5: The process for checking path conditions when reusing summary
tree

tialized. Then the actual parameters from the calling site are mapped to the

formal parameters in the moization tree. In this example, concrete object n1

is mapped to this in summary. For each pair of PC and HeapPC in summary

tree, we check if it is satisfiable with its current input data structure from

the calling site. For example, in Figure 3.5 one of the calling context is that

this references a concrete Node object with its elem = 0 and its next field

pointing to another Node object with all uninitialized fields. We select two

pairs of PC and HeapPC from two paths in swapNode to show how to check

consitency in presence of heap operations. One is {PC : True,HeapPC :

this.next == null} and the other one is {PC : this.elem <= this.next.elem,

HeapPC : this.next! = this}. The first one is not consistent with the calling

14



context since this.next is not null; while the second one is consistent because

this.next! = this conforms to the input data structure and this.next.elem is

symbolic (uninitialized) so it can be greater than or equal to this.elem whose

concrete value is 0.

If all pairs of PC and HeapPC associated with a path in a memoization

tree are checked to be inconsistent with respect to its calling context, we

consider that path infeasible in the calling context. Again, the infeasible paths

are marked to be pruned in symbolic execution during composition. In this

example, all three paths of swapNode are feasible when invoked by method

callSwapNode, since every path has one or more pairs of PC and HeapPC

that are consistent with the calling context.
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Chapter 4

Compositional Symbolic Execution with

Memoized Replay

4.1 Overview

We propose a context-insensitive compositional approach where the

methods of a program are processed in an order corresponding to a bottom-

up traversal of the program’s call graph, starting with the ones that invoke

no other methods and incrementally processing methods whose sub-methods

have already been processed until the whole program is analyzed. For each

processed method, we use bounded symbolic execution to compute a method

summary, which consists of a tree that succinctly represents all the symbolic

paths through the method, together with the input path constraints for the

complete paths; the bound is specified by the user and it is stored in the tree.

The summary is stored (“memoized”) for future re-use, whenever that method

is invoked from another method – we say that the two methods are composed.

When deciding on the order to analyze the methods in a given system,

two main strategies can be followed. A context-sensitive or top-down approach

may be adequate if one wants to compute only the strictly necessary informa-

tion. However, this approach does not guarantee that reusability of summaries

16



is always possible, and summaries may need to be recomputed. On the other

hand, a context-insensitive or bottom-up approach ensures that the computed

summaries can always be reused, at the price of computing summaries larger

than necessary in some cases. We follow the latter strategy in our framework.

Let us assume that program P consists of an entry method M0 and a set

of methods M1,M2, ...,Mk that belong to M0’s method invocation hierarchy.

In the method invocation hierarchy, each leaf method, i.e., the method that

has no invocation of other methods, is analyzed first, and its feasible paths

and corresponding path constraints are summarized in a memoization tree.

Then each method that directly invokes these leaf methods is analyzed by

leveraging the already built memoization trees of the invoked methods (leaf

methods). Incrementally, we symbolically analyze methods from bottom up in

the method invocation hierarchy, and build their memoization trees leveraging

the existing memoization trees, until the entry method M0 is analyzed.

Our approach works on a method invocation hierarchy that has no

cycles in the coresponding call graph. If a method node in the call graph has

an edge to itself, i.e., the corresponding method is a recursive method, we

simply ignore this recursive method invocation edge during processing, and

we analyze the method up to the given bound. For other method invocation

chain that contains a loop, we break the loop by ignoring one random edge in

that loop to form an acyclic call graph. This simple approach is sufficient for

error detection or test case generation.

Algorithm 1 describes the pseudocode for our overall approach. Proce-

17



dure getStaticCallGraph(P,M0) (Line 2) creates a static call graph of pro-

gram P rooted from method M0, and procedure convertToAcyclic (Line 3)

removes cycles in the static call graph. Procedure getLeafNodes (Line 4)

identifies the methods corresponding to leaf nodes in the invocation hierarchy.

Furthermore, our approach checks whether the analyzed method has condi-

tional statements using the helper method containsConditionalStatement

(Line 7), and skips the analysis of the method that does not contain any

conditional statements, since the method without conditional statement con-

tains only one path and reusing the memoization tree of such method would

not gain much benefits during compositional symbolic execution. Procedure

analyzeMethod (Line 8) performs a bounded symbolic execution for a given

method and builds its memoization tree using existing memoization trees of its

callee methods. Procedure getNodesToProcess (Line 12) returns the nodes in

the call graph whose correponding methods have not been processed yet the

methods that they invoke have already been processed.

In this way, our approach symbolically executes and builds method

summary trees for each method in SM according to their orders in call graph.

And at last analyzes entry method M for program P . In contrast with tradi-

tional symbolic execution, our approach incrementally analyzes each methods

from leaf nodes of call graph up to the entry method of the program rather

than symbolically executing whole program from method M .

Algorithm 2 shows the pseudo-code for analyzeMethod for building

and composing method summary trees. We describe some of its key elements
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Input: Program P , Entry method M0

Output: A set of method summary trees ST for methods in P

1 ST ← ∅
2 CallGraph cg ← getStaticCallGraph(P,M0)
3 cg.convertToAcyclic()
4 Set<MethodNode> s← cg.getLeafNodes()
5 while s 6= ∅ do
6 foreach Method m ∈ s do
7 if m.containsConditionalStatement() then
8 SummaryTree t← analyzeMethod(m,ST )
9 ST .add(t)

10 end

11 end
12 s← s.getNodesToProcess()

13 end
14 return ST

Algorithm 1: Overview algorithm for compositional symbolic execution
with memoized replay

in more detail below.

In the following, we assume two methods Mcaller and Mcallee, the run-

ning example in this section, where method Mcaller invokes method Mcallee, and

the memoization tree Tcallee for method Mcallee is already built in a previous

run.

4.2 Memoization Tree Construction

A memoization tree is a recursive tree data structure that captures the

crucial elements of symbolic execution.

Each leaf node in the tree has an associated set of path conditions

characterizing the inputs that follow the path from s0 to the leaf.
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In the memoization tree, there are two types of nodes: normal nodes

and summary nodes. At a high level, for each method Mcaller invoking method

Mcallee, normal nodes encode the choices taken for each condition in the code,

while summary nodes encode pointers to the paths in Mcallee’s summary that

are found to be feasible at the invokation point from Mcaller.

A normal node, N[m : offset : choice], is a node that represents

a choice taken at a conditional statement and it encodes the following: m

is the name of the method that conditional statement belongs to, offset is

the instruction offset of the conditional statement, and choice is the choice

taken by the execution (we use integer “1” for true branch and integer “0” for

false branch). A normal node is created whenever a branch of a conditional

statement is executed. For example, in Figure 3.1, node n2 has a tuple [p : 2 :

0], indicating that in method p instruction with offset 2 (“if(x > y)”) takes

the choice of false branch.

A symbolic execution path can be succinctly represented by the se-

quence of choices taken during its execution, and can be recovered from the

memoized tree by traversing the tree from the root to a leaf. We thus can

use the leaf nodes to represent their correponding paths. For example, in

Figure 3.1, node n4 implies an execution path that takes the true branch at

the first conditional statement and the false branch in the second conditional

statement in method p.

We note that we need to keep track in the summary of all the conditions

in the method, not just the ones being executed symbolically. The reason is
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that during replay, some of the conditions that were symbolic during summary

generation may become concrete due to concrete inputs from the calling con-

text; we can not distinguish that from a condition that was concrete also in the

summary. We therefore chose to record all the conditions in the summary tree

and use the tree to guide the execution of all the conditions. This is described

in lines 8-10 in analyzeMethod.

When a method invokes another method only a subset of the paths in

the callee’s memoization tree, i.e., the feasible paths in the particular calling

context, can be executed and should be contained in the memoization tree

for the caller method. To compactly represent these paths in the caller’s

memoization tree, we introduce summary nodes, S[m, p], a node that points

to a path in method m (a callee method), where p represents a pointer to one

of the leaf nodes in m’s memoization tree. Summary nodes serve as pointers

to the paths in the callee method that are feasiblle in the caller’s context;

thus the caller method’s memoization tree does not need to duplicate the

paths of repeated normal nodes from existing trees. Procedure compressNode

(Line 37) compacts a sequence of normal nodes into a summary node, which can

be reverted to the original sequences of normal nodes when the memoization

tree is reused for analyzing other methods.

Thus a memoization tree for a leaf method in the call graph contains

only normal nodes, since such a method does no invoke other methods and

can not reuse other existing memoization trees; while a memoization tree for

a upper level method in the call graph can contain both summary nodes and
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normal nodes.

For instance, in Figure 3.2 nodes n4 to n9 are summary nodes, indicat-

ing p’s feasible paths in its calling context. Node n4 in Figure 3.2 points to

the path represented by node n3 in method p’s memoization tree.

4.3 Path Conditions

For each path in a memoization tree we associate the set of path con-

ditions characterizing the symbolic execution paths that follow the same path

in the tree. Note that we do not have a one-to-one correspondance between

paths in the memopized tree and the symbolic execution tree, the reasoning

being that the memoization tree is more compact and can represent multiple

symbolic executions.

This set of path conditions consists of one or more pairs of numeric

path condition (PC) and heap path condition (HPC). Numeric path conditions

depict the constraints over numeric inputs for choosing one path while heap

path conditions are introduced with heap allocated objects in the input data

structure. HPC is generated by lazy initialization [15] during the symbolic

execution of a heap manipulating method and it consists of a conjunction of

three forms of constraints:

• Ref = null. Object reference Ref points to null.

• Ref1 = Ref2. Object reference Ref1 points to the same object in heap

as object reference Ref2, i.e., Ref1 and Ref2 are aliased.
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• Ref 6= null. Object reference Ref points to a symbolic object that is

neither null nor any existing objects in heap, with all its fields initialized

as symbolic values.

Note that since our memoization tree only encodes the conditional

branches in a method, different heap constructs can drive the program to

follow one same path. Thus each path in a summary tree can have one or

more pairs of PC and HPC

For example, in Figure 3.4, four pairs of HeapPC and Numeric PC are

associated with node n5. These four pairs represent four symbolic execution

runs that all drive the method to follow the same path. The first HeapPC

associated with node n5 is this.next.next==this.next && this.next! = null.

This HeapPC implies that input this’s next field references a symbolic Node

object N whose next field references back to N itself. Similarly, the second

HeapPC this.next.next == this && this.next! = null represents that input

this references to a Node object that has its next field initialized as an object

N whose integer field elem is symbolic (not initialized) and field next references

back to input this.

4.4 Memoization Tree Composition

Our approach uses existing memoization trees to efficiently replay the

symbolic execution of the corresponding methods with respect to their calling

contexts. In particular, the memoization tree of the callee method is utilized
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to guide part of the symbolic exection of the caller method.

Our approach first performs regular symbolic execution of method Mcaller

and creates normal nodes for conditional instructions executed in method

Mcaller (lines 8-10). When the execution encounters invocation of method

Mcallee, we suspend regular symbolic execution (controlled by variable toCompose),

and check which paths of Mcallee are feasible in this calling context. If a path’s

PC-HPC pair is consistent with the current path conditions in the calling

site, this path is considered feasible; otherwise, the path is infeasible and it is

marked in the reused memoization tree as not to be executed due to its infea-

sibility. Only feasible paths are executed during symbolic execution. Further-

more, constraint solving is turned off during this guided execution of method

Mcallee, and is resumed when the execution returns from method Mcallee back

to method Mcaller.

While a method that has a summary tree is invoked in a caller method, a

subset of callee method’s paths in this particular calling context may be feasible

and the rest of the paths may be infeasible. To represent a feasible path in

the callee’s summary tree, we introduce summary node, Ns[Method, Pointer],

a node that points to a path in Method, where Pointer designates one of the

nodes in the end of a path in an existing summary tree. Summary node serves

as a pointer to a certain path in a callee method so caller method’s summary

tree does not have a path of normal nodes same from existing trees. Thus

the total number of nodes in a summary tree can be reduced. For example,

in Figure 3.2 nodes n4 to n9 are summary nodes, indicating feasible paths in

24



method p when it is invoked in method q. With the Pointer value in summary

node, we can convert summary node to a path of nodes as they are in callee

method’s summary tree.

We can traverse from the root node of a summary tree to a leaf node

to form a path that has been executed during symbolic execution. Every such

path in the tree associates a set of numeric path conditions (PC) and heap

path conditions (HPC) with it. PC is a set of boolean constraints in terms of

symbolic numeric inputs. HPC is a set of conjunctions of constraints over the

heap allocated objects in the input data structure. These constraints on heap

objects are generated by lazy initialization during symbolic execution when

there is heap operations.

A node in the summary tree can be marked according to different ap-

plications needs. A subset of leaf nodes in summary tree can be marked as

boundary nodes as they are the nodes where execution backtracks when search

depth limit is reached. These boundary nodes can be used when iterative deep-

ening is performed. A subset of nodes can also be marked as infeasible choices

when the method is invoked in a certain calling context. Or whenever an error

or an exception is thrown, the corresponding path end node can be marked

as an error node to indicate that an error occurs in this certain path. We can

short-circuit the paths with an error node to report quickly that an error will

occur under a calling context if that path is feasible in this context.
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4.5 Checking Path Condition Consistency

The compostion of method summaries involves checking the consitency

of path conditions, to determine whether paths in the memoization tree of a

called method are feasible in the current calling context. In particular, we

check the consistency of the path condition in the memoization tree with the

path condition at the calling site.

During the process of building the summary tree for method Tcallee, if

a method mk that already has a summary tree is invoked by method Tcallee,

we suspend traditional symbolic execution and retrieve the callee method mk’s

summary to guide execution. Normally a subset of paths are feasible in the

summary tree of method mk so we will first check which paths are feasible in

the calling context of method Tcallee. The infeasible paths will be marked in

the summary tree and we use this marked tree to guide symbolic execution,

i.e., if an infeasible node’s choice is chosen, execution will request backtrack.

To check whether a path in a summary is feasible, we build a mapping be-

tween the actual parameters and the formal parameters in method summary.

For instance, in swapNode example, we map concrete object n1 to the param-

eter this in summary of method swapNode. In example of method q invokes

method p, a+ 1 and b− 10 are mapped to x and y respectively in the first call

site.

Algorithm 3 shows how we check path condition consistency. The input

Mapping records the mapping between parameters of the summarized caller

methods and actual inputs of the method in call site. With this mapping
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we can easily convert the path conditions in the memoization trees to path

conditions that refer to variables in the calling context by replacing the formal

arguments of Mcallee with the actual arguments from Mcaller.

Lines 20 − 29 check the consistency of numeric PCs. Each constraint

in a path condition in the memoization tree is checked against the context

path condition. If the negation of the constraint is included in the context

path condition, this path cannot be feasible in the calling context and thus

the procedure returns false; otherwise, we add the constraint to the context’s

path condition. When we have processed all the constraints in the summary

PC, the conjunction of the summary PC and the context PC is checked for

satisfiability using constraint solving.

Lines 5−19 check the consistency of heap path conditions (HPC). Note

that the heap in the calling context may be either concrete or symbolic. If it

is concrete then the HPCs can be checked easily. However, if the current heap

is symbolic, we can only perform an approximate consistency check for HPCs.

The objects in method Mcallee’s heap path conditions can be mapped to a con-

crete object in method Mcaller’s calling context, or null, or a symbolic object

whose fields are all symbolic values. For each constraint in the summary heap

path condition, both sides of the constraint map to lhc and rhc, respectively.

If both of them are null, this constraint conforms with the context heap path

condition; or if both of lhc and rhc are concrete objects and they reference the

same object in the calling context heap, the constraint apparently also con-

forms to the context heap path condition. If they are both symbolic objects,
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we consider it consistent as well since they are both uninitialized and would

be explored by lazy initialization. Thus, we take a conservative approach to

check heap consistency, meaning that for the constraints that we can not de-

cide in the current context we assume they are feasible, and we leave the lazy

initialization of Mcallee to resolve it during replay. If conservative approach

is needed we will turn on the constraint solver for checking the unsure path

constraints.

For example, in swapNode example in Figure 3.5, when the calling

context input of method swapNode is n1 and n1’s next field points to a sym-

bolic object, we consider the second Heap PC (this.next! = null) in the graph

consistent because it also indicates that the next field references a symbolic

object. Since one of the pairs of Heap PC and numeric PC that related to the

path of node n5 is satisfiable in the calling context, this path will be marked as

feasible. However, when this path is re-executed during method composition,

we still need to turn on the constraint solver to check the feasibility of this

path as a conservative approach is used.

4.6 Handling of Errors

Let us assume that we are checking method Mcaller for any unhandled

exceptions or assertion errors, and method Mcallee contains an error under

a particular path condition. Traditional symbolic execution starts executing

method Mcaller and continues to method Mcallee until the path that has an

error in Mcallee is explored. We propose to speed-up this checking by short-
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circuiting the paths in method Mcallee to report the error. In particular, we

introduce error nodes, which are the leaf nodes of paths in Tcallee that can

lead to errors. When method Mcallee is invoked, we check whether there is a

feasible path ending in an error node; if so, we immediately report the error

without replaying Mcallee for that path.

The correctness of our proposed approach is based on the following

observation: statement s is explored by full symbolic execution iff s is explored

by compositional symbolic execution.
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Input: Method Mcaller, Set¡Memoization Tree¿ ST

Output: Memoization tree Tcaller for method Mcallee

1 boolean toCompose← false
2 Memoization Tree Tcaller ← new empty Memoization Tree
3 Memoization Tree t← null
4 Instruction insnToExe ← getNextInstruction()
5 while insnToExe! = null do
6 if !toCompose then
7 turnOnConstraintSolver
8 if type(insn) == ConditionalInstruction then
9 Normal Node n← createNode(insn)

10 Tcaller.add(n)

11 end
12 if type(insnToExe) == InvokeInstruction then
13 if invokedMethod(insnToExe) ∈ ST then
14 toCompose← true
15 t← ST .getSummary(insnToExe)
16 Mapping mapping ← createMapping()
17 foreach Path path ∈ t.getPaths() do
18 SPC spc← path.getSummaryPC()
19 boolean isConsistent← false
20 foreach PCPair pcp ∈ spc do
21 if check(pcp, context,mapping) then
22 isConsistent← true
23 break

24 end

25 end
26 if isConsistent == false then
27 markNodes(path)
28 end

29 end

30 end

31 end

32 else
33 turnOffConstraintSolver
34 if type(insnToExe) == ReturnInstruction then
35 if backToCaller(insnToExe) then
36 toCompose← false
37 Tcaller.compressNode()
38 turnOnConstraintSolver

39 end

40 end
41 if type(insnToExe) == ConditionalInstruction then
42 Node n ← t.getNextNode()
43 if n ∈ summaryNodes then
44 t.decompressNodes(n)
45 end
46 n ← t.getNextNode()
47 if n ∈ markedNodes then
48 prunePath()
49 else
50 Tcaller.add(n)
51 end

52 end

53 end
54 insnToExe ← getNextInstruction()

55 end

Algorithm 2: Procedure analyzeMethod for building memoization trees
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Input: PCPair pcp, Context context, Mapping mapping
Output: true for satisfiable case, or false for unsatisfiable case

1 NPC npc← pcp.getNPC()
2 NPC contextnpc← context.getNPC()
3 HPC hpc← pcp.getHPC()
4 HPC contexthpc← context.getHPC()
5 foreach Constraint hc ∈ hpc do
6 Comparator comp← hpc.getComparator()
7 if comp == “! =′′ then
8 continue
9 end

10 Referecne lhc← hpc.getLeftSideRef()
11 Reference rhc← hpc.getRightSideRef()
12 if (lhc == nullRef ∧ rhc == nullRef)
13 ∨(lhc == object ∧ rhc == object)
14 ∨(lhc == null ∨ rhc == null) then
15 continue
16 else
17 return false
18 end

19 end
20 foreach Constraint c ∈ npc do
21 c←replaceVariables(c, mapping)
22 if c ∈ contextnpc ∨ !c.isConcretized() then
23 continue
24 end
25 if ¬c ∈ contextnpc then
26 return false
27 end
28 contextnpc← contextnpc.addConstraint(c)

29 end
30 boolean pcSatisfied← contextnpc.solve()
31 if pcSatisfied == false then
32 return false
33 end
34 return true

Algorithm 3: PC and HeapPC consistency checking
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Chapter 5

Implementation and Evaluation

In this section we describe our implementation and the experiments we

have conducted to show the effectiveness and benefits of our approach.

5.1 Implementation

We implement our compositional symbolic execution with memoized re-

play on top of Symbolic PathFinder (SPF), an open source tool that performs

symbolic execution for Java programs at the bytecode level. SPF extends the

analysis engine framework of Java PathFinder (JPF) tool-set. JPF imple-

ments an extensible and customizable Java Virtual Machine (JVM) that can

be used for model checking. By executing Java bytecode instructions, JPF

can generate, store, and search states. JPF implements a form of state space

reduction that lumps together sequential transitions which are broken only

if a non-deterministic choice is encountered. Listeners in JPF monitor and

interact with the execution of the analyzed Java program.

SPF implements a non-standard interpretation of Java bytecode. Sym-

bolic values can be propagated through method input, variables, operands, and

etc. Whenever a conditional instruction is executed symbolically, SPF uses a
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path condition (PC) choice generator to encode a non-deterministic choice of

with branch to take. Each choice is associated with a path constraint that

can be checked for satisfiability using off-the-shelf decision procedures or con-

straint solvers. If the constraint is satisfiable, the search continues; otherwise,

the search backtracks.

We implement our proposed approach on top of (SPF), as two JPF

listeners. One builds the summary tree and the other one utilizes existing

summaries to guide symbolic execution. Whenever a conditional statement is

executed (whose condition is either concrete or symbolic) we introduce of a

new special type of choice called “ BranchChoice” (of size 1) in the SPF exe-

cution. This is a mechanism that allows us to precisely encode the conditional

instruction’s location and the choice it takes, and to ”break” the transitions

that JPF lumps together to introduce new points to which the tool can back-

track. When building the summary tree, the listener monitors whenever a new

BranchChoice is created, i.e. a conditional instruction is executed, and adds a

normal node to the tree as a child to the current node. When SPF backtracks

from current BranchChoice to the previous one in the search, the current node

backtracks to its parent node too to keep the states of the program and current

node of the tree in sync.

We use the Eclipse Java Development Tool (JDT) 1 to build a static

call graph for a given program. From that, we prune the call graph rooted

1http://www.eclipse.org/jdt/
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from a specified entry method. Any methods that are not reachable from this

entry method will not be analyzed since they are irrelevant to building the

summary tree for the target entry method.

5.2 Artifacts

We selected ten artifacts for our experiments: BankAccount, WBS, ASW,

TCAS, Apollo, Rational, Swap Node, Foo example, net data structures, and

Sorted Link List. All of these artifacts are small Java program used in

previous work on evaluating symbolic execution techniques [3, 13, 17, 19, 21,

24, 25]. The largest of these artifacts is Apollo with 2.6 KLOC in 54 classes.

5.2.1 BankAccout

The bank account example in Figure 5.1 has been used in previous

work [13] to illustrate method sequence generation using symbolic execution

and evolutionary testing. The example implements a bank account service,

and contains the deposit method and the withdraw method. are used to

deposit money in and withdraw money from the account, respectively. If the

amount to be withdrawn is greater than the account balance, or if the number

of withdrawals (numberOfWithdrawals) completed is greater than or equal to

a fixed quantity (5), an error message is again printed and the method exits.
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1 public class BankAccount {
2 private int balance ;
3 private int numberOfWithdrawals ;
4 public void depos i t ( int amount ) {
5 i f ( amount > 0)
6 balance = balance + amount ;
7 }
8 public void withdraw ( int amount ) {
9 i f ( amount > balance ) {

10 pr in tEr ro r ( ) ;
11 return ;
12 }
13 i f ( numberOfWithdrawals >= 5) {
14 a s s e r t fa l se ;
15 p r in tEr ro r ( ) ;
16 return ;
17 }
18 balance = balance − amount ;
19 numberOfWithdrawals++;
20 }

Figure 5.1: A bank account example

5.2.2 WBS

Wheel Brake System (WBS) is a synchronous reactive component from

the automotive domain. This method determines how much braking pressure

to apply based on the environment. The Java model is based on a Simulink

model derived from the WBS case example found in ARP 4761 [14, 20]. The

Simulink model was translated to C using tools developed at Rockwell Collins

and manually translated to Java. It consists of one class and 231 lines of code.

We have used this example before in the context of regression analysis using

symbolic execution [17].
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5.2.3 ASW

The Altitude Switch (ASW) program is a synchronous reactive com-

ponent from the avionics domain. It turns power on to a Device of Interest

(DOI) when the aircraft descends below a threshold altitude above ground

level (AGL). It was developed as a Simulink model, and was automatically

translated to Java using tools developed at Vanderbilt University [22].

5.2.4 TCAS

Traffic Anti-Collision Avoidance System (TCAS) is a system to avoid

air collisions. Its code in C together with 41 mutants are available at SIR

repository [2]. TCAS was converted to Java manually and has 143 line of

code.

5.2.5 Apollo

The Apollo Lunar Autopilot is a Simulink model that was automat-

ically translated to Java using Vanderbilt tools. The translated Java code

has 2.6 KLOC in 54 classes. The Simulink model was created by an engineer

working on the Apollo Lunar Module digital autopilot design team. The goal

was to study how the model could have been designed in Simulink, if it had

been available in 1961. The model is available from MathWorks6. It contains

both Simulink blocks and Stateflow diagrams and makes use of complex Math

functions (e.g. Math.sqrt). The code has been analyzed before using Sym-

bolic PathFinder with the Coral solver [21]. These five artifacts were used
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in previous work to analyze memoized symbolic execution [25]. We manually

converted the code to Java. The Java version has 143 lines of code.

5.2.6 Rational

Rational is a case study program that stresses the use of linear con-

stants and it was used in previous work on compositional symbolic execution

[3]. It contains 4 methods: abs, gcd, simplify and simp. Method abs com-

putes the absolute value of an integer and method gcd computes the greatest

common divisor of two integers using abs. Method simplify invokes method

gcd and method simp invokes method simplify multiple times.

5.2.7 Swap Node

We modified the example in Figure 3 to add a boolean variable as an in-

put to method swapNode to form a new method called swapNodeWithBoolean

(in Figure 5.2), which updates the input data structure according to the

boolean value and the elem field of the Node object. We also created another

two methods callTwice and call3Times that invoked method swapNodeWith

Boolean 2 and 3 times respectively.

5.2.8 Foo example

Program Foo is a small case study from [19]. It was created to illustrate

the the code slicing in the presence of heap operations. The program has a

class named Foo and it contains two methods q and m where m invokes q several
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1 public Node swapNodeWithBoolean (boolean b) {
2 i f ( next != null ) {
3 i f ( ( elem > next . elem && b) | | ( elem <= next . elem && ! b ) ) {
4 Node t = next ;
5 next = t . next ;
6 t . next = this ;
7 return t ;
8 }
9 }

10 return this ;
11 }

Figure 5.2: swapNodeWithBoolean example

times. Both methods involve operations of updating heap objects.

5.2.9 net data structures

The net data structures is a real-life example borrowed from the net.

datastructures2 Java package , which is an educational collection of Java

interfaces and classes that implement fundamental datastructures (e.g., search

trees and graphs) and algorithms (e.g. sorting and traversal). We selected

method swapElements from class NodePositionList as the entry method.

Method swapElements takes as input two DNode objects, checks that they are

valid positions in the list (method checkPosition) and swaps their elements.

Both methods checkPosition and element may raise runtime exceptions. In

total, six methods are analyzed in this example.

2http://net3.datastructures.net
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5.2.10 Sorted Linked List

Program Sorted Linked List is a Java implementation of a sorted

single-linked list data structure. It was used as a case study in previous

work [24]. It consists of a method add which adds a Node object to the

linked list in sorted order. We analyze two subject methods add3Times and

add5Times. These methods invoke method add using symbolic integer argu-

ments on an initially empty sorted linked list 3 times and 5 times respectively.

This program serves as an example that contains both heap and numeric oper-

ations. However, since each of the two methods performs a sequence of method

invocations starting from an empty list, the exploration does not build heap

path conditions.

5.3 Experimental Results

We have conducted experiments on the subject programs described

above using traditional symbolic execution with SPF and our compositional

approach. We run symbolic execution several times, once for each method

for which we want to build the summary, in a bottom-up fashion. To enable

compositional analysis, we added a mechanism for executing each method

separately using reflection. The order of methods executed is determined by

program’s static call graph. We ignore the methods that do not contain any

conditional instructions as described in Algorithm 1. For all methods except

MainSymbolic no search depth was needed since there is no loops or recursions

that drive symbolic execution infinite. For method MainSymbolic in Apollo
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to finish in a reasonable amount of time for SPF, we set its search depth as

12, similar to the depth set in [25].

In implementation of our proposed approach we introduced extra choices

BranchChoice, the search depth in the run of Comp was different when the ex-

ploration had same program nondeterminism state coverage. To compute the

corresponding search depth that has same effects as depth 12 in SPF for Apollo,

we counted execution depth when the number of the non-BranchChoice along

one path accumulated to 12. This computed depth 136 is used in our experi-

ment when executing method MainSymbolic in Apollo subject.

Table 5.1 shows the results of our experiments using both traditional

SPF (Reg) and our proposed compositional tree-based approach (Comp) for

methods in the subjects. We report the number of constraint-solver calls,

execution time, number of choices (including BranchChoice) explored with

SPF, and maximum memory (Mem). We also show the number of paths

through the method.

Table 5.1 also shows the tree sizes as the number of nodes in it. “#CTree

Node” stands for the number of nodes in a tree that has been compressed, i.e.,

a path in a caller method is replaced with one summary node. “#Tree Node”

indicates the number of nodes in the tree before compressing.

The following methods are on leaf nodes in our customized static call

graph, i.e., they do not invoke any other methods that contain conditional

instructions declared in the subject program so they are analyzed first:
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• deposit and withdraw in BankAccount

• abs in Rational

• update in WBS

• main1 and main2 in ASW

• Non Crossing Biased Descend

and Non Crossing Biased Climb in TCAS

• swapNodeWithBoolean in Swap Node

• q in Foo example

• checkPosition and element in net.datastructures

From Table 5.1 we can observe that for these methods the number of

constraint solving calls is the same for regular SPF and the compositional

approach. This is because building a tree without any existing summary tree

cannot reuse any information so the two techniques are basically the same,

besides the cost for building and maintaining the extra tree data structure.

We can see that for methods update in WBS and method Main4 in Apollo,

building the summary took slightly longer than traditional SPF due to this

extra work.

Other methods in Table 5.1 are methods that invoke the leaf methods

directly or indirectly. We build summary trees for these methods by reusing
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existing summary trees. We can see that Comp incurs fewer number of con-

straint solver calls and significantly less time than traditional SPF on all these

methods. Comp is better for all cases in Table 5.1. In some cases the saving

can even be in orders of magnitude. Note that the time listed for these non-leaf

methods is the time without building leaf methods summaries. For example,

to build summary tree for method main in BankAccount, our approach builds

summary tree for method deposit and withdraw first, which took less than

2 seconds in total. Then method summary for main is built and it took 6

seconds. So to build a summary tree for method main from beginning our

approach took 8 seconds, still a better performance compared to traditional

SPF’s 12 seconds.

Since our implementation introduces the extra BranchChoice in SPF,

the number of choices reported is much larger than traditional SPF. How-

ever, the BranchChoice does not introduce any nondeterminism in the state

space and thus it does not impose any significant extra work for the analy-

sis. It merely serves as a “dummy” state that records the position and choice

of a conditional instruction and introduces extra points for backtracking the

search, and so it does not significantly affect the time spent for symbolic ex-

ecution. The number of these extra choices depend on how many conditional

instructions are in the method.

Furthermore, Table 5.1 shows that for every method’s execution, our

proposed approach uses either the same or less maximum memory than tradi-

tional SPF. We note however that the maximum memory reported by SPF may
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vary a lot due to the underlying garbage collection, and thus this comparison

is not very meaningful.

Evaluation for error detection. We use five subjects in Table 5.2 to

evaluate the effectiveness of our proposed approach with respect to the error

treatment. In subject net.datastructures, methods checkPosition may

raise unhandled runtime exceptions in its first branch. For other four subject

programs, we inserted an error assertion statement to the methods marked

as build tree in Table 5.2. For WBS and TCAS we used invalid assertions

generated with Daikon from a previous study [24], while for ASW and Apollo

we manually inserted errors (assert violations). These assertions are either

inserted just before the return instruction or to the last branch of the method.

We used our compositional approach and traditional SPF to symboli-

cally execute these error programs respectively. Table 5.2 shows experimental

results for these subjects. For four subjects besides net.datastructures,

we first built memoization tree for the method that is inserted with error as-

sertions (marked as build tree), by reusing the existing method summaries

from Table 5.1 as needed. Then we used this updated memoization tree for the

modified method to compositionally built the entry method of each subject.

During this run, we stopped symbolic execution as soon as we found a path

that could lead to an error. The results are shown in lines marked as comp in

Table 5.2. In comparison, we also ran SPF to symbolically execute the same

target entry methods (shown as SPF).

From Table 5.2 we can see that our approach speeds up the error de-
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tection for both TCAS and WBS. To find the potential exception in method

alt sep test that invoked by method startTcas, SPF used 17 seconds while our

approach took less than 1 seconds after using 11 seconds to build the summary

for alt sep test. Similarly, in WBS, our approach took 6 seconds to report the

first potential error while SPF took 8 seconds. However, for the other three

subjects, our approach took longer to build a memoization tree but found the

error almost instantly after a summary is acquired.

We conjecture the reason that SPF could find the first error in the

program faster than our approach building a tree is that the first error is not

“deep” in the program. If the first potential runtime error was in the first

few program paths explored by SPF, the execution stops and the rest of paths

will not be explored. Unlike SPF, our approach explores all the possible paths

in the method during summary construction even if a path can lead to error.

Therefore if the first encountered error is in the latter part of the paths that

being explored, SPF would take longer to find.

5.4 Threats to Validity

The primary threats to external validity in our study involves the use of

SPF for our prototype implementation and the selection of artifacts. However,

we attempted to mitigate these threats by analyzing multiple artifacts, most

of which have been used in previous studies of symbolic execution based tech-

niques. These threats can be addressed by further evaluation of our technique

using a broader range of program types and errors.
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The primary threats to internal validity are the potential faults in the

implementation of our algorithms and in SPF. We controlled for this threat

by testing the tools and implementations of the algorithms on examples that

could be manually verified.

With regard to threats to construct validity, the metrics we selected to

evaluate the cost of our technique are commonly used to measure the cost of

symbolic execution based techniques, but other metrics are possible.
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Table 5.1: Experimental Results

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

deposit 2 2 <00:01 <00:01 3 5 17 17 2 3/3
withdraw 4 4 <00:01 <00:01 5 10 17 17 3 6/6

main 210 166 0:12 0:06 211 463 17 17 106 169/253
(a) BankAccount

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

abs 2 2 <00:01 <00:01 3 5 17 17 2 3/3
gcd 40 40 <00:01 <00:01 25 80 17 17 13 46/46

simplify 92 52 <00:01 <00:01 79 154 17 17 14 28/60
simp 19412 2940 7:13 1:40 16459 37348 48 48 2744 2955/12450

(b) Rational

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

update 478 478 0:13 0:22 287 2895 17 17 144 2609/2609
main0 2206 144 0:27 0:03 287 8597 22 20 144 1553/6391
main1 3742 864 0:39 0:09 287 13627 38 28 144 1905/10461
launch 27646 14400 14:00 5:16 27647 305309 200 148 13824 14426/277663

(c) WBS

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

main1 42 42 <00:01 <00:01 15 95 17 17 8 81/81
main2 402 402 0:05 0:04 158 1221 17 17 80 640/640
main0 858 576 0:11 0:07 375 5707 17 17 128 457/1809
main 5850 1472 0:52 0:18 375 32907 35 24 128 3104/7313

(d) ASW

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

Non Crossing
30 26 <00:01 <00:01 27 73 23 23 14 43/43

Biased Descend
Non Crossing

30 26 <00:01 <00:01 27 73 23 23 14 43/43
Biased Climb
alt sep test 678 230 0:20 0:07 135 1579 25 23 68 264/901
startTcas 2348 100 0:59 0:04 135 5238 39 29 84 361/2682

(e) TCAS

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

Main4 12 12 0:01 0:02 8 75 17 17 4 55/55
Main5 12 12 0:01 0:01 4 47 17 17 3 43/43
Main6 12 12 0:01 0:01 9 94 17 17 4 59/59
Main1 348 279 2:43 2:08 153 4788 18 17 31 179/1106

MainSymbolic 2256 1089 35:00 16:12 423 29236 18 18 175 688/2270
(f) Apollo

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

swapNode
16 16 <00:01 <00:01 20 39 16 17 6 13/13

WithBoolean
callTwice 742 100 0:06 0:01 1556 2174 17 17 36 43/85
call3Times 48056 4268 12:29 1:10 96963 133461 58 24 216 259/517

(g) SwapNodeWithBoolean

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

q 236 236 0:01 0:01 346 698 15 15 11 21/21
m 255976 21903 22:09 10:37 256886 711261 15 15 125 158/338

(h) Foo

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

checkPostion 0 0 <00:01 <00:01 13 27 16 16 4 9/9
element 0 0 <00:01 <00:01 23 31 16 16 4 7/7

swapElements 0 0 00:01 00:01 5875 7341 17 27 7 13/20
(i) Net Data Structure

Method
# Solver calls Time(min) Choices Mem (MB) # #C/Tree
Reg Comp Reg Comp Reg Comp Reg Comp Paths Nodes

add 4 4 <00:01 <00:01 5 14 17 17 3 10/10
add3Times 10 8 <00:01 <00:01 11 31 17 17 6 10/25
add5Times 238 86 00:06 00:03 239 749 16 16 120 308/511

(j) Sorted Link List
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Table 5.2: Experimental results for error treatment
Method # Solver calls Time(min) States Mem (MB)

TCAS.alt sep test(build tree) 312 0:11 3032 20
TCAS.startTcas(comp) 0 <00:01 1 20
TCAS.startTcas(SPF) 652 0:17 39 27

WBS.update(build tree) 526 0:05 2979 16
WBS.Main1(comp) 0 <00:01 1 16
WBS.Main1(SPF) 1142 0:08 175 16

ASW.main0(build tree) 576 0:07 8331 17
ASW.main(comp) 0 <00:01 1 39
ASW.main(SPF) 26 <00:01 8 17

Apollo.Main1(build tree) 391 2:36 2331 23
Apollo.Main1(comp) 0 <00:01 1 20

Apollo.MainSymbolic(SPF) 39 0:27 5 18
Net.datastructures.swapElements(comp) 0 <00:01 1 16
Net.datastructures.swapElements(SPF) 0 <00:01 2 16
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Chapter 6

Related Work

A number of papers have addressed compositional symbolic execution

[3, 4, 10, 11]. Also compositional techniques with inter-procedure analysis have

been studied extensively in [6, 9, 12].

Godefroid [10] is the first one to propose compositional techniques to

improve automated test input generation using “dynamic” symbolic execution,

i.e., symbolic execution performed along a particular concrete path. Based

on it, Anand et al. [4] present a (demand-driver) top-down compositional

symbolic execution in the context of dynamic test generation. Their approach

utilizes execution trees similar to ours however they are not used for replay.

Instead, their method summary is a first-order logic formula with uninterpreted

functions and the compositional symbolic execution is performed entirely using

SMT solving. These works do not address composition in the presence of heap

operations for object-oriented programming.

Albert et al. [3] address the construction of method summaries in the

presence of heap operations. Their method summaries include both logical

formulae and an explicit representation of the input and output heaps. Thus

the summary encodes all the effects of the computation so once a summary
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is acquired no “replay” is needed. However, such advantage comes at a high

price—method summaries are large and the composition operation is compli-

cated. This is because it not only checks compatibility at the invocation site,

but also synthesizes new state and new heap to continue with after method

composition. The composition operation is performed in the context of con-

straint logic programming (CLP), which can not be employed efficiently in a

general purpose tool such as SPF.

Rojas et al. [19] have described a preliminary investigation of composi-

tional symbolic execution for Java bytecode analysis. Their approach builds a

method summary that contains a set of summary cases, each case consisting of

a “path-specialized” version of the method code. Summary case is generated

by using partial evaluation, a well-established technique that aims at automat-

ically specializing a program with respect to some of its input. The benefits

obtained with that approach are not very impressive since storing multiple ver-

sions of the code is expensive. In contrast, our proposed approach uses much

lighter weight method summaries that only encode the choices taken along

each path. This representation is sufficient for method replay. Nevertheless,

the ideas from [19] served as inspiration for this thesis.

Another recent related technique to ours is presented by Cho et al. [7],

although that work is done in the context of bounded model checking not

symbolic execution, and it performs weakest preconditions calculations and

not forward computations. Furthermore it does not handle heap operations

but it is tailored towards the properties it aims to check.
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Yang et al. [25] propose “memoized” symbolic execution for efficient re-

application of symbolic execution in different scenarios: with iterative deepen-

ing of exploration depth, to perform regression analysis, or to enhance coverage

using heuristics. Memoized symbolic execution uses similar tree data structure

to encode key elements of symbolic execution and stores it (on disk) for reuse.

However, their tree data structure is not compositional and the symbolic exe-

cution of the whole program is stored in a single tree. The proposed approach

in this thesis naturally extends their tree data representation to a finer gran-

ularity, i.e., at the level of procedures, resulting in increased efficiency.
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Chapter 7

Conclusion

This thesis introduced a new approach for compositional symbolic exe-

cution. Our key insight is that we can summarize each analyzed method as a

memoization tree that captures the crucial elements of symbolic execution, and

leverage these memoization trees to efficiently replay the symbolic execution

of the corresponding methods with respect to their calling contexts. Memoiza-

tion trees offer a natural way to compose in the presence of heap operations,

which cannot be dealt with by previous work that uses logical formulas as

summaries for compositional symbolic execution. Our approach also enables

an efficient treatment of error traces by short-circuiting the execution of paths

that lead to them. Our preliminary experimental evaluation based on a pro-

totype implementation in Symbolic PathFinder showed promising results. We

believe compositional analysis holds a key to scalable symbolic execution. In

future work, we plan to evaluate our approach on larger programs as well as

to further optimize our algorithms.
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[18] Corina S. Păsăreanu and Neha Rungta. Symbolic PathFinder: symbolic

execution of Java bytecode. In ASE, pages 179–180, 2010.

[19] Jos Miguel Rojas and Corina S. Pasareanu. Compositional symbolic

execution through program specialization. In BYTECODE’13 (ETAPS),

2013.

[20] SAE-ARP4761. Guidelines and Methods for Conducting the Safety As-

sessment Process on Civil Airborne Systems and Equipment. SAE Inter-

national, December 1996.

[21] Matheus Souza, Mateus Borges, Marcelo d’Amorim, and Corina S. Păsăreanu.
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