<]
TUDelft

Delft University of Technology

A Guided Genetic Algorithm for Automated Crash Reproduction

Soltani, Mozhan; Panichella, Annibale; van Deursen, Arie

DOI
10.1109/ICSE.2017.27

Publication date
2017

Document Version
Accepted author manuscript

Published in
Proceedings of the 39th International Conference on Software Engineering (ICSE)

Citation (APA)

Soltani, M., Panichella, A., & van Deursen, A. (2017). A Guided Genetic Algorithm for Automated Crash
Reproduction. In Proceedings of the 39th International Conference on Software Engineering (ICSE) (pp.
209-220). IEEE. https://doi.org/10.1109/ICSE.2017.27

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICSE.2017.27
https://doi.org/10.1109/ICSE.2017.27

Delft University of Technology
Software Engineering Research Group
Technical Report Series

A Guided Genetic Algorithm for
Automated Crash Reproduction

Mozhan Soltani, Annibale Panichella, and Arie van Deursen

Report TUD-SERG-2017-006

%
TUDelft SE

TUD-SERG-2017-006

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication at the research track of the ACM/IEEE International Conference on Soft-
ware Engineering (ICSE), held in Buenos Aires, May 2017.

(© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

SE

A Guided Genetic Algorithm for Automated Crash Reproduction

A Guided Genetic Algorithm for
Automated Crash Reproduction

Mozhan Soltani
Delft University of Technology
The Netherlands
m.soltani @tudelft.nl

Abstract—To reduce the effort developers have to make for
crash debugging, researchers have proposed several solutions
for automatic failure reproduction. Recent advances proposed
the use of symbolic execution, mutation analysis, and directed
model checking as underling techniques for post-failure analysis
of crash stack traces. However, existing approaches still cannot
reproduce many real-world crashes due to such limitations as
environment dependencies, path explosion, and time complexity.
To address these challenges, we present EvoCrash, a post-failure
approach which uses a novel Guided Genetic Algorithm (GGA)
to cope with the large search space characterizing real-world
software programs. OQur empirical study on three open-source
systems shows that EvoCrash can replicate 41 (82%) of real-
world crashes, 34 (89%) of which are useful reproductions for
debugging purposes, outperforming the state-of-the-art in crash
replication.

Keywords-Search-Based Software Testing; Genetic Algorithms;
Automated Crash Reproduction;

1. INTRODUCTION

Manual crash replication is a labor-intensive task. Develop-
ers faced with this task need to reproduce failures reported in
issue tracking systems, which all too often contain insufficient
data to determine the root cause of a failure.

Hence, to reduce developer effort, many different automated
crash replication techniques have been proposed in the litera-
ture. Such techniques typically aim at generating tests trigger-
ing the target failure. For example, record-replay approaches
[1]-[5] monitor software behavior via software/hardware in-
strumentation to collect the observed objects and method calls
when failures occur. Unfortunately, such techniques suffer
from well-known practical limitations, such as performance
overhead [6], and privacy issues [7].

As opposed to these costly techniques, post-failure ap-
proaches [6]-[12] try to replicate crashes by exploiting data
that is available after the failure, typically stored in log files
or external bug tracking systems. Most of these techniques
require specific input data in addition to crash stack traces [6],
such as core dumps [8]-[10], [13] or models of the software
like input grammars [14], [15] or class invariants [16].

Since such additional information is usually not available
to developers, recent advances in the field have focused on
crash stack traces as the only source of information for de-
bugging [6], [7], [12]. For example, Chen and Kim developed

TUD-SERG-2017-006

Annibale Panichella
SnT Centre - University of Luxembourg
Luxembourg
annibale.panichella@uni.lu

Arie van Deursen
Delft University of Technology
The Netherlands
Arie.vanDeursen @tudelft.nl

STAR [6], an approach based on backward symbolic execu-
tion. STAR outperforms earlier crash replication techniques,
such as Randoop [17] and BugRedux [18]. Xuan et al. [12]
presented MuCrash, a tool that updates existing test cases
using specific mutation operators, thus creating a new pool of
tests to run against the software under test. Nayrolle et al. [7]
proposed JCHARMING, based on directed model checking
combined with program slicing [7], [19].

Unfortunately, the state-of-the-art tools suffer from several
limitations. For example, STAR cannot handle cases with
external environment dependencies [6] (e.g., file or network
inputs), non-trivial string constraints, or complex logic poten-
tially leading to a path explosion. MuCrash is limited by the
ability of existing tests in covering method call sequences of
interest, and it may lead to a large number of unnecessary
mutated test cases [12]. JCHARMING [7], [19] applies model
checking which can be computationally expensive. Moreover,
similar to STAR, JCHARMING does not handle crash cases
with environmental dependencies.

In our previous preliminary study [20], we have suggested
to re-use existing unit test generation tools, such as Evo-
Suite [21], for crash replication. To that end, we developed
a fitness function to assess the capability of candidate test
cases in replicating the target failure. Although this simple
solution could help to replicate one crash not handled by
STAR and MuCrash, our preliminary study showed that this
simple solution still leaves other crashes as non-reproducible.
These negative results are due to the large search space for
real world programs where the probability to generate test
data satisfying desired failure conditions is low. In fact, the
classic genetic operators from existing test frameworks are
aimed at maximizing specific coverage criteria [21] instead
of exploiting single execution paths and object states that
characterize software failures.

To address this challenge, this paper presents an evolu-
tionary search-based approach, named EvoCrash, for crash
reproduction. EvoCrash is built on top of EvoSuite [21], the
well-known automatic test suite generation tool for Java. For
EvoCrash we developed a novel guided genetic algorithm
(GGA). It lets the stack trace guide the search, thus reducing
the search space. In particular, GGA uses a novel generative
routine to build an initial population of tests exercising at
least one of the methods reported in the crash stack frames.

A Guided Genetic Algorithm for Automated Crash Reproduction

Furthermore, GGA uses new crossover and mutation operators
to avoid the generation of futile tests that lack calls to failing
methods. To further guide the search process, we developed
a novel fitness function that improves the calculation of stack
trace distance previously defined in [20], to assess candidate
test cases.

The contributions of our paper are:

o A novel guided genetic algorithm (GGA) for crash repro-
duction that generates and evolves only tests that exercise
at least one of the methods involved in the failure;

o EvoCrash, a Java tool implementing GGA that generates
JUnit tests that developers can directly use for debugging
purposes;

o An empirical study on 50 real-world software crashes
involving different versions of three open source projects
showing that EvoCrash can replicate 41 cases (82%), 34
(89%) of which are useful for debugging;

e A comparison of EvoCrash with three state-of-the-art
approaches based on crash stack traces (STAR [6], Mu-
Crash [12] and JCHARMING [7]).

Furthermore, we provide a publicly available replication pack-
age! that includes: (i) an executable jar of EvoCrash, (ii) all
bug reports used in our study, and (iii) the test cases generated
by our tool.

II. RELATED WORK

Since our approach aims at crash reproduction using test
generation, we start out by summarizing related work in the
areas of automated crash replication and coverage-based unit
test generation.

A. Automated Approaches to Crash Replication

Previous approaches in the field of crash replication can be
grouped into three main categories: (i) record-play approaches,
(ii) post-failure approaches using various data sources, and (iii)
stack-trace based post-failure techniques. The first category
includes the earliest works in this field, such as ReCrash [1],
ADDA [2], Bugnet [3], and jRapture [5]. The aforementioned
techniques rely on program run-time data for automated crash
replication. Thus, they record the program execution data in
order to use it for identifying the program states and execution
path that led to the program failure. However, monitoring
program execution may lead to (i) substantial performance
overhead due to software/hardware instrumentation [6]—[8],
and (ii) severe privacy issues since the collected execution
data may contain sensitive information [6].

On the other hand, post-failure approaches [8]-[11], [15]
analyze software data (e.g., core dumps) only after crashes
occur, thus not requiring any form of instrumentation. Rossler
et al. [8] developed an evolutionary search-based approach
named RECORE that leverages from core dumps (taken at the
time of a failure) to generate input data. RECORE combines
the search-based input generation with a coverage-based tech-
nique to generate method sequences. Weeratunge et al. [13]

Uhttp://www.evocrash.org/

SE

used core dumps and directed search for replicating crashes
related to concurrent programs in multi-core platforms. Leitner
et al. [9], [10] used a failure-state extraction technique to create
tests from core dumps (to derive input data) and stack traces
(to derive method calls). Kifetew et al. [14], [15] used genetic
programming requiring as input (i) a grammar describing the
program input, and (ii) a (partial) call sequence. Boyapati
et al. [16] developed another technique requiring manually
written specifications containing method preconditions, post-
conditions, and class invariants. However, all these post-failure
approaches need various types of information that are often not
available to developers, thus decreasing their feasibility.

To increase the practical usefulness of automated ap-
proaches, researchers have focused on crash stack traces as the
only source of information for debugging. For instance, ESD
[11] uses forward symbolic execution that leverages commonly
reported elements in bug reports. BugRedux [18] also uses
forward symbolic execution but it can analyze different types
of execution data, such as crash stack traces. As highlighted by
Chen and Kim [6], both ESD and BugRedux rely on forward
symbolic execution, thus inheriting its problems due to path
explosion and object creation [22]. To address these two
issues, Chen and Kim [6] introduced STAR, a tool that applies
backward symbolic execution to compute crash preconditions
and generates a test using a method sequence composition
approach.

Different from STAR, JCHARMING [7] uses a combi-
nation of crash traces and model checking to automatically
reproduce bugs that caused field failure. To address the state
explosion problem [23] in model checking, JCHARMING
applies program slicing to direct the model checking process
by reduction of the search space. Instead, MuCrash [12]
uses mutation analysis as the underlying technique for crash
replication. First, MuCrash selects the test cases that include
the classes in the crash stack trace. Next, it applies predefined
mutation operators on the tests to produce mutant tests that
can reproduce the target crash.

In our earlier study [20], we showed that even coverage-
based tools like EvoSuite can replicate some target crashes
if relying on a proper fitness function specialized for crash
replication. However, our preliminary results also indicated
that this simple solution could not replicate some cases for two
main reasons: (i) limitations of the developed fitness function,
and (ii) the large search space in complex real-world software.
The EvoCrash approach presented in this paper resumes this
line of research because it used evolutionary search to syn-
thesize a crash reproducible test case. However, it is novel
because it utilizes a smarter fitness function and it applies
an Guided Genetic Algorithm (GGA) instead of coverage-
oriented genetic algorithms. Section III presents full details
regarding the novel fitness function and GGA in EvoCrash.

B. Unit Test Generation Tools

A number of techniques and tools have been proposed
in the literature to automatically generate tests maximizing
specific code coverage criteria [17], [21], [24]-[27]. The main

TUD-SERG-2017-006

SE

difference among them is represented by the core search al-
gorithm used for generating tests. For example, EvoSuite [21]
and JTExpert [27] use genetic algorithms to create test suites
optimizing branch coverage; Randoop [17] and T3 [24] apply
random testing, while DART [25] and Pex [26] are based on
dynamic symbolic execution.

As reported in the related literature, such tools can be
used to discover bugs affecting software code. Indeed, they
can generate test triggering crashes when trying to generate
tests exercising the uncovered parts of the code. For example,
Fraser and Arcuri [28] successfully used EvoSuite to discover
undeclared exceptions and bugs in open-source projects. Re-
cently, Moran et al. [29] used coverage-based tools to discover
android application crashes. However, as also pointed out by
Chen and Kim [6] coverage-based tools are not specifically
defined for crash replication. In fact, these tools are aimed at
covering all methods (and their code elements) in the class
under test. Thus, already covered methods are not taken into
account for search even if none of the already generated
tests synthesizes the target crash. Therefore, the probability
of generating tests satisfying desired crash triggering object
states is particularly low for coverage-based tools [6].

On the other hand, for crash replication, not all methods
should be exploited for generating a crash: we are interested
in covering only the few lines in those methods involved in
failure, while other methods (or classes) might be useful only
for instantiating the necessary objects (e.g., input parameters).
Moreover, among all possible method sequences, we are
interested only on those that can potentially lead to the target
crash stack trace. Therefore, in this paper we developed a tool,
named EvoCrash, which is specialized for stack trace based
crash replication.

III. THE EVOCRASH APPROACH

According to Harman et al. [30], [31], there are two
key ingredients for a successful application of search-based
techniques. The first is the formulation of a proper fitness
function to guide the search toward reaching the target, which
in our case is a way to trigger a crash. The second ingredient
consists of applying a proper search algorithm to promote tests
closer to mimicking the crash, while penalizing tests with poor
fitness values. The next sub-sections detail the fitness function
as well as the genetic algorithms we designed in EvoCrash.

A. Crash Stack Trace Processing

An optimal test case for crash reproduction has to crash at
the same location as the original crash and produce a stack
trace as close to the original one as possible. Therefore, in
EvoCrash we first parse the log file given as input in order to
extract the crash stack frames of interest. A standard Java stack
trace contains (i) the type of the exception thrown, and (ii) the
list of stack frames generated at the time of the crash. Each
stack frame corresponds to one method involved in the failure,
hence, it contains all information required for its identification:
(1) the method name; (ii) the class name, and (iii) line numbers
where the exception was generated. The last frame is where

TUD-SERG-2017-006

A Guided Genetic Algorithm for Automated Crash Reproduction

the exception has been thrown, whereas the root cause could
be in any of the frames, or even outside the stack trace.
From a practical point of view, any class or method in the
stack trace can be selected as code unit to use as input for
existing test case generation tools, such as EvoSuite. However,
since our goal is to synthesize a test case generating a stack
trace as close to the original trace as possible, we always target
the class where the exception is thrown (last stack frame in
the crash stack trace) as the main class under test (CUT).

B. Fitness Function

As described in our previous study [20], our fitness function
is formulated to consider three main conditions that must hold
so that a test case would be evaluated as optimal and have zero
distance: (i) the line (statement) where the exception is thrown
has to be covered, (ii) the target exception has to be thrown,
and (iii) the generated stack trace must be as similar to the
original one as possible. More formally, we use the following
fitness formulation:

Definition 1. The fitness function value of a given test t is:
f(t) =3 X ds (t) +2x dexcept (t) + dtrace (t) (1)

where dg(t) denotes how far t is to executing the target
statement, i.e., the location of the crash; degcepi(t) € {0,1}
is a binary value indicating whether the target exception is
thrown or not; and diqc.(t) measures the distance between
the generated stack trace (if any) and the expected trace.

For the line distance d4(t), we use the two well-known
heuristics approach level and branch distance to guide the
search for branch and statement coverage [20]. The approach
level measures the distance (i.e., minimum number of control
dependencies) between the path of the code executed by ¢ and
the target statement. The branch distance uses a set of well-
established rules [32] to score how close ¢ is to satisfying the
branch condition for the branch on which the target statement
is directly control dependent.

If the target exception is thrown, degeept(t) = 0, then we
proceed by calculating the trace distance, dy,qce(t), otherwise,
the trace distance remains equal to the maximum value it can
have, 1.0. To calculate the trace distance, dirqce(t), in our
preliminary study [20] we used the distance function defined
as follows. Let S* = {e}, ...,e}} be the target stack trace to
replicate, where ef = (Cf,m7,(7) is the i-the element in the
trace composed by class name C°, method name m;, and line
number [f. Let S = {ej,...,e;} be the stack trace (if any)
generated when executing the test ¢. The distance between the
expected trace S* and the actual trace S is defined as:

min{k,n}

D(S*,8) = Y o(diff(e],e:))+ | n—k|)

i=1
where diff(e}, e;) measures the distance between the two trace
elements e} and e; in the traces S* and S respectively;

finally, ¢(x) € [0,1] is the widely used normalizing function
o(x) = z/(xz + 1) [32]. However, such a distance definition

A Guided Genetic Algorithm for Automated Crash Reproduction

has one critical limitation: it strictly requires that the expected
trace S™ and the actual trace S share the same prefix, i.e., the
first min{k, n} trace elements. For example, assume that the
triggered stack trace .S and target trace S* have one stack trace
element egzpqreq in common (i.e., one element with the same
class name, method name, and source code line number) but
that is located at two different positions, e.g., e; is the second
element in S (espared = €2 in S) while it is the third one
in S* (esharea = €3 in S*). In this scenario, Equation 2 will
compare the element ej in S* with the element in S at the
same position ¢ (i.e., with e3) instead of considering the closest
element egp,4rcq = €2 for the comparison.

To overcome this critical limitation, in this paper we use
the following new definition of stack trace distance:

Definition 2. Let S* be the expected trace, and let S be the
actual stack trace triggered by a given test t. The stack trace
distance between S* and S is defined as:

n
D(5*,8) =Y min{diff(¢],e;) : ¢; € S} 3)
i=1
where diff (€}, ;) measures the distance between the two trace
elements e in S™ and its closest element e; in S.

We say that two trace elements are equal if and only if
they share the same trace components. Therefore, we define
diff(e}, e;) as follows:

3 C #Ci
diff(e, e;) = ¢ 2 C¥ = C; and m* # my
e (|1 =1;|) Otherwise

“)
The score diff(e}, e;) is equal to zero if and only if the two
trace elements e] and e; share the same class name, method
name and line number. Similarly, D(S*,S) in Equation 3 is
zero if and only if the two traces S* and S are equal, i.e.,
they share the same trace elements. Starting from the function
in Equation 3, we define the trace distance di qcc(t) as the
normalized D(S*,S) function:

dirace(t) = ¢ (D(S",5)) = D(5%,5)/(D(5%,5) +1) (5)

Consequently, D(S*,S) in Equation 3 is zero if and only
if S* shares the same trace elements with S. In addition,
our fitness function f(t) assumes values within the interval
[0, 6], reaching a zero value if and only if the evaluated test ¢
replicates the target crash.

C. Guided Genetic Algorithm

In EvoCrash, we use a novel genetic algorithm, named
GGA (Guided Genetic Algorithm), suitably defined for the
crash replication problem. While traditional search algorithms
in coverage-based unit test tools target all methods in the
CUT, GGA gives higher priority to those methods involved
in the target failure. To accomplish this, GGA uses three
novel genetic operators that create and evolve test cases that
always exercise at least one method contained in the crash
stack trace, increasing the overall probability of triggering the

SE

Algorithm 1: Guided Genetic Algorithm

Input: Class under test C'
Target call from the crash stack trace T'C'
Population size N
Search time-out max_time

Result: Test case t

1 begin

2 // initialization

3 Mpash <— identify public methods based on T'C'

4 k<+«—0

s Py, <— MAKE-INITIAL-POPULATION(C, M. N)
6 EVALUATE(Py)

7 /I main loop

8 while (best fitness value > 0) AND (time spent < max_time) do
9 k«—Ek+1

10 /I generate offsprings

1 O«+—10

12 while | O |< N do

13 p1,p2 <— select two parents for reproduction
14 if crossover probability then

15 L 01, 02 +— GUIDED-CROSSOVER(p1, p2)
16 else

17 o1 < pl

18 02 — p2

19 O +— O |J GUIDED-MUTATION(01)

20 O <— O |J GUIDED-MUTATION(02)

21 // fitness evaluation

» EVALUATE(O)

23 Py +— Pr,_1UO

24 Py <— select the N fittest individuals in Py

25 thest <— fittest individual in P

26 thest — POST-PROCESSING(tpest)

target crash. As shown in Algorithm 1, GGA contains all main
steps of a standard genetic algorithm: (i) it starts with creation
of an initial population of random tests (line 5); (ii) it evolves
such tests over subsequent generations using crossover and
mutation (lines 12-20); and (iii) at each generation it selects
the fittest tests according to the fitness function (lines 22-24).
The main difference is represented by the fact that it uses (i)
a novel routine for generating the initial population (line 5);
(ii) a new crossover operator (line 15); (iii) a new mutation
operator (lines 19-20). Finally, the fittest test obtained at the
end of the search is optimized by post-processing (in line 26).

Initial Population. The routine used to generate the initial
population plays a paramount role [33] since it performs
sampling of the search space. In traditional coverage-based
tools (e.g., EvoSuite [21] or JTExpert [27]) such a routine is
designed to generate a well-distributed population (set of tests)
calling as many methods in the target class as possible [21],
which is not the main goal for crash replication.

For this reason, in this paper we use the novel routine
highlghted in Algorithm 2 for generating the initial sample for
random tests. In particular, our routine gives higher importance
to methods contained in crash stack frames. Subsequently, if
a target call, selected by the developer, is public or protected,
Algorithm 2 guarantees that this call is inserted in each test
at least once. Otherwise, if the target call is private, the
algorithm guarantees that each test contains at least one call
to a public caller method which invokes the target private call.
Algorithm 2 generates random tests using the loop in lines 3-
18, and requires as input (i) the set of public target method(s)

TUD-SERG-2017-006

SE

A Guided Genetic Algorithm for Automated Crash Reproduction

Algorithm 2: MAKE-INITIAL-POPULATION

Algorithm 3: GUIDED-CROSSOVER

Input: Class under test C'
Set of failing methods M,¢h
Population size N

Result: An initial population Py

1 begin

2 Py <«— 0

3 while | Py |[< N do

4 t <— empty test case

5 size <— random integer € [1;MAX_SIZE]

6 // probability of inserting a method involved in the failure

7 insert_probability «— 1/size

8 while (number of statements in t) < size do

9 if random_number < insert_probability then

10 method_call +— ‘pi‘ck one elemenl frgm]\/[crash
11 /I reset the probability of inserting a failing method
12 insert_probability <— 1/size

13 else

14 method_call «— pick one public method in C'

15 length <— number of statements in ¢

16 /I increase the probability of inserting a failing method
17 insert_probability <— 1/(size — length + 1)
18 INSERT-METHOD-CALL(method_call, t)

19 Py «— PyUt

Mrash, (i) the population size N, and (iii) the class under
test C. In each iteration, we create an empty test ¢ (line 4) to
fill with a random number of statements (lines 5-18). Then,
statements are randomly inserted in ¢ using the iterative routine
in lines 8-18: at each iteration we insert a call to one public
method either taken from M,,.,sp, or member classes of C.
In the first iteration, crash methods in M., (methods of
interest) are inserted in ¢ with a low probability p = 1/size
(line 7), where size is the total number of statements to
add in ¢. In the subsequent iterations, such a probability is
automatically increased when no methods from M,,qsp is
inserted in ¢ (line 15-17). Therefore, Algorithm 2 ensures that
at least one method of the crash is inserted in each initial test?.

The process of inserting a specific method call in a test ¢ re-
quires several additional operations [21]. For example, before
inserting a method call m in ¢ it is necessary to instantiate
an object of the class containing m (e.g., calling one of
the public constructors). Creating a proper method call also
requires the generation of proper input parameters, such as
other objects or primitive variables. For all these additional
operations, Algorithm 2 uses the routine INSERT-METHOD-
CALL (line 18). For each method call in ¢, it sets the input
parameters values by re-using objects and variables already
defined in ¢, setting some input values to null (only for
objects used as input parameters), or randomly generating new
objects and primitive values.

Guided Crossover. Even if all tests in the initial popu-
lation exercise one or more methods contained in the crash
stack trace, during the evolution process—i.e., across different
generations— tests can lose the inserted target calls. One
possible cause for this scenario is represented by the traditional
single-point crossover, which generates two offsprings by

2In the worst case, a failing method will be inserted at position size in ¢
since the probability insert_probability will be 1/(size — size +1) =1

TUD-SERG-2017-006

Input: Parent tests p; and p2
Set of failing methods M e

Result: Two offsprings 01, o2

1 begin

2 sizer <—| p1 |

3 sizeg <—| p2 |

4 // select a cut point

5 puk +— random number € [0; 1]

6 // first offspring

7 01 <— first i X size; statements from p;

8 01 «— append (1 — p) X sizeso statements from po
9 CORRECT(01)

10 if 01 does not contain methods from Mcrash then

1 L 01 +— clone of py

12 // second offspring

13 0o «— first i X sizes statements from po

14 02 <— append (1 — p) X sizep statements from pq
15 CORRECT(02)

16 if 02 does not contain methods from M, ,s, then

17 L 09 +— clone of po

randomly exchanging statements between two parent tests p;
and py. Given a random cut-point pu, the first offspring o;
inherits the first p statements from parent p;, followed by
| p2 | —p statements from parent po. Vice versa, the second
offspring o, will contain p statements from parent p, and
| p1 | —p statements from the parent p;. Even if both parents
exercise one or more failing methods from the crash stack
trace, after crossover is performed, the calls may be moved
into one offspring only. Therefore, the traditional single-point
crossover can hamper the overall algorithm.

To avoid this scenario, GGA leverages a novel guided
single-point crossover operator, whose main steps are high-
lighted in Algorithm 3. The first steps in this crossover are
identical to the standard single-point crossover: (i) it selects a
random cut point x (line 5), (ii) it recombines statements from
the two parents around the cut-point (lines 7-8 and 12-13 of
Algorithm 3). After this recombination, if o1 (or 02) loses the
target method calls (a call to one of the methods reported in
the crash stack trace), we reverse the changes and re-define o
(or 02) as pure copy of its parent p; (py for offspring 0s) (i f
conditions in lines 10-11 and 16-17). In this case, the mutation
operator will be in charge of applying changes to 0; (or 02).

Moving method calls from one test to another may result
in non well-formed tests. For example, an offspring may not
contain proper class constructors before calling some methods;
or some input parameters (either primitive variables or objects)
are not inherited from the original parent. For this reason,
Algorithm 3 applies a correction procedure (lines 9 and 15)
that inserts all required objects and primitive variables into
non well-formed offspring.

Guided Mutation. After crossover, new tests are usually
mutated (with a low probability) by adding, changing and
removing some statements. While adding statements will not
affect the type of method calls contained in a test, the state-
ment deletion/change procedures may remove relevant calls to
methods in the crash stack frame. Therefore, GGA also uses
a new guided-mutation operator, described in Algorithm 4.

A Guided Genetic Algorithm for Automated Crash Reproduction

Algorithm 4: GUIDED-MUTATION

Input: Test t = (s1,...,Sy) to mutate
Set of failing methods M,

crash
Result: Mutated test ¢

1 begin
2 n<+—|t]|
3 apply_mutation <— true
4 while apply_mutation == true do
5 for i =1 to n do
6 ¢ +— random number € [0; 1]
7 if < 1/n then
8 if delete probability then
9 t delete statement s;
10 if change probability then
11 | change statement s;
12 if insert probability then
13 L insert a new method call at line %
14 if t contains method from M .o spn then
15 L apply_mutation «— false
Let t = (s1,...,5n) be a test case to mutate, the guided-

mutation iterates over the test ¢ and mutates each statement
with probability 1/n (main loop in lines 4-15). Inserting
statements consists of adding a new method call at a random
point ¢ € [1;n] in the current test ¢ (lines 12-13 in Algo-
rithm 4). This procedure also requires to instantiate objects or
declare/initialize primitive variables (e.g., integers) that will
be used as input parameters.

When changing a statement at position ¢ (in lines 10-11),
the mutation operator has to handle two different cases: (i) if
the statement s; is the declaration of a primitive variable (e.g.,
an integer), then its primitive value is changed with another
random value (e.g., another random integer); (ii) if s; contains
a method or a constructor call m, then the mutation is applied
by replacing m with another public method/constructor having
the same return type while its input parameters (objects or
primitive values) are taken from the previous ¢ — 1 statements
in t, set to null (for objects only), or randomly generated.

Finally, removing a method call (lines 8-9 in Algorithm 4)
requires to delete the corresponding variables and objects used
as input parameters (if such variables and objects are not
used by any other method call in t). If the test ¢ loses the
target method calls (i.e., methods in M,,qp,) because of the
mutation, then the loop in lines 4-15 is repeated until one or
more target method calls are re-inserted in ¢; otherwise the
mutation process terminates.

Post processing. At the end of the search process, GGA
returns the fittest test case according to our fitness function.
The resulting test tp.s¢ can be directly used by developer as
starting point for crash replication and debugging.

Since method calls are randomly inserted/changed during
the search process, the final test ¢;.5; can contain statements
not useful to replicate the crash. For this reason, GGA post-
processes tpes: to make it more concise and understandable.
For this post-processing, we reused the test optimization rou-
tines available in EvoSuite [21], namely: fest minimization, and

SE

TABLE I
REAL-WORLD BUGS USED IN OUR STUDY.
Project Bug IDs Versions Exception Priority Ref.
4,28, 35, 20-40 NullPointer (5), Major (10) [6]
48, 53, 68, UnsupportedOperation (1), Minor (2) [12]
70,77, 104, IndexOutOfBounds, (1)
ACC 331, 277, 411 Illegal Argument(1),
ArrayIndexOutOfBounds, (2)
ConcurrentModification, (1)
IllegalState (1),
28820, 33446, 34722, 1.6.1 - 1.82 ArrayIndexOutOfBounds (2), Critical (2) [6]
34734, 36733, 38458, NullPointer (17), Medium (14) [71
38622, 42179, 43292, ArrayIndexOutOfBounds (1) Medium (14),
ANT 44689, 44790, 46747, StringIndexOutOfBounds (1)
47306, 48715, 49137,
49755, 49803, 50894
51035, 53626
29, 43,509, 10528, 1.02-12 NullPointer (17), Critical (I) [6]
10706, 11570, 31003, InlnitializerError (1) Major (4) [7]
LOG 40212, 41186, 44032, Medium (11)

44899, 45335, 46144, Enhanc. (1)

46271, 46404, 47547, Blocker (1)

47912, 47957

values minimization. Test minimization applies a simple greedy
algorithm: it iteratively removes all statements that do not
affect the final fitness value. Finally, randomly generated input
values can be hard to interpret for developers [34]. Therefore,
the values minimization from EvoSuite shortens the identified
numbers and simplifies the randomly generated strings [35].

IV. EMPIRICAL STUDY

This section describes the empirical study we conducted to
benchmark the effectiveness of the EvoCrash approach.

A. Definition and Context

The context of this study consists of 50 bugs from
three real-world open source projects: Apache Commons
Collections?® (ACC), Apache Ant* (ANT), Apache
Log473® (LOG). ACC is a popular Java library with 25,000
lines of code (LOC), which provides utilities to extend the
Java Collection Framework. For this library we selected 12
bug reports publicly available on Jira® submitted between
October 2003 and June 2012, thus involving five different
ACC versions. ANT is a large Java build tool with more
than 100,000 LOC, which supports different built-in tasks,
including compiling, running and executing tests for Java
applications. For ANT we selected 20 bug reports submitted
on Bugzilla’ between April 2004 and August 2012 and
that concern 10 different versions and sub-modules. Finally,
LOG is a widely used Java library with 20,000 LOC that
implements logging utilities for Java applications. For this
library we selected 18 bug reports reported within the time
windows between June 2001 and October 2009 and that are
related to three different LOG versions. The characteristics of
the selected bugs, including type of exception and priority, are
summarized in Table I.

We selected these bugs as they have been used in
the previous study on automatic crash reproduction when
evaluating symbolic execution [6], mutation analysis [12], and
directed model checking [7] and other tools [36], [37]. This

3https://commons.apache.org/proper/commons-collections/
“http://ant.apache.org

Shttp://logging.apache.org/log4j/2.x/
Shttps://issues.apache.org/jira/secure/Dashboard.jspa
7https://bz.apache.org/bugzilla/

TUD-SERG-2017-006

SE

selection covers crashes that involve the most common Java
Exceptions [38], such as NullPointerException
(77%), ArrayIndexOutOfBoundsException (8%),
IllegalStateException and IllegalArgument-—
Exception (4%). Furthermore, the severity of these real-
world bugs varies between medium (50%), major (36%) and
critical (6%) as judged by the original developers.

B. Research Questions

To evaluate the effectiveness of EvoCrash we formulate the
following research questions:

e RQ: In which cases can EvoCrash successfully repro-
duce the targeted crashes, and under what circumstances
does it fail to do so? With this preliminary research
question we aim at evaluating the capability of our tool to
generate test cases (i) that can replicate the target crashes,
and (ii) that are useful for debugging.

e RQy: How does EvoCrash perform compared to state-of-
the-art reproduction approaches based on stack traces?
In this second research question we investigate the advan-
tages of EvoCrash as compared to the best known stack
trace approaches previously proposed in the literature.

C. Experimental Procedure

We run EvoCrash on each target crash to try to generate
a test case able to reproduce the corresponding stack trace.
Given the randomized nature of genetic algorithms, the search
for each target bug/crash was repeated 50 times in order to
verify that the target crashes are replicated the majority of the
time. In our experiment, we configured GGA by using standard
parameter values widely used in evolutionary testing [21],
[39], [40]:

« Population size: for GGA, we initially use a population
size of 50 test cases. If the search reaches the timeout
(30 minutes), we increment the population size by 25
and run EvoCrash once again until the population size
reaches 300. If with population size of 300 EvoCrash
cannot create a test case with fitness = 0.0 in 30 minutes,
we specify the crash case as non-reproducible.

e Crossover: we use the novel guided single-point
crossover with crossover probability set to 0.75 [21].

o Mutation: as mutation operator we use our guided uni-
form mutation, which mutates test cases by randomly
adding, deleting, or changing statements. We set the
mutation probability equal to 1/n, where n is the length
of the test case taken as input [21].

e Search Timeout: the search stops when a zero fitness
function value is detected or when the timeout of 30
minutes is reached [40].

To address RQ;, we apply the two criteria proposed by
Chen and Kim [6] for evaluating the effectiveness of crash
replication tools: Crash Coverage and Test Case Usefulness.
According to the Crash Coverage criterion, a crash is covered
when the test generated by EvoCrash results in the generation
of the same type of exception at the same crash line as

TUD-SERG-2017-006

A Guided Genetic Algorithm for Automated Crash Reproduction

reported in the crash stack trace. Therefore, for this criterion
we classified as covered only those crashes for which EvoSuite
reached a fitness value equal to 0.0, i.e., when the generated
crash stack trace is identical to the target one. In these cases,
we also re-executed the generated tests against the CUT to
ensure that the crash stack frame was correctly replicated.

For the Test Case Usefulness criterion, a generated test case
by EvoCrash is considered useful if it can reveal the actual
bug that causes the original crash. Therefore, we manually
examined each crash classified as covered (using the coverage
criterion) to investigate if it can reveal the actual bug following
the guidelines in [6]. A test case reveals a bug if the generated
crash trace includes the buggy frame (i.e., the stack element
which the buggy method lies in [6]) or the frame the execution
of which covers the buggy component. To assess usefulness of
the tests, we carefully inspected the original developers’ fixes
to identify the bug fixing locations. Finally, useful tests have
to reveal the origin of the corrupted input values (e.g., null
values) passed to the buggy methods that trigger the crash [6].
This manual validation has been performed by two authors
independently, and cases of disagreement were discussed.

To address RQ», we selected three state-of-the-art tech-
niques, namely: STAR [6], MuCrash [12], and JCHARM-
ING [7], [19]. These three techniques are modern approaches
to crash replication for Java programs, and they are based
on three different categories of algorithms: symbolic execu-
tion [6], mutation analysis [12], and model checking [7].

At the time of this submission, these three tools (either as
executable jars or source code) were not available. Therefore,
to compare our approach, we rely on their published data.
Since the studies use different data sets, we cannot report data
points for all subject systems. Thus, we compared EvoCrash
with MuCrash for the 12 bugs selected from ACC that have
also been used by Xuan et al. [12] to evaluate their tool. We
compared EvoCrash with JCHARMING for the § bug reports
that have been also used by Nayrolles et al. [7]. Finally, we
compare EvoCrash with STAR for the 50 bugs in our sample
that are in common with the study by Chen and Kim [6].

V. EXPERIMENTAL RESULTS

This section presents the results of the empirical study we
conducted to evaluate the effectiveness of EvoCrash in terms
of crash coverage and test case usefulness. Moreover, we
provide the first comparison results between the effectiveness
of EvoCrash, STAR [6], MuCrash [12], and JCLHARMING [7],
as the state-of-the-art approaches based on crash stack traces.

EvoCrash Results (RQ1) As Table II illustrates, EvoCrash
can successfully replicate the majority of the crashes in our
dataset. Of the replicated cases, LOG-509 had the lowest rate
of replications - 39 out of 50 - and 39 cases could be replicated
50 times out of 50. EvoCrash reproduces 10 crashes out of 12
(83%) for ACC, 14 out of 20 (70%) for ANT, and 17 out of
18 (94%) for LOG. Overall, it can replicate 41 (82%) out of
the 50 crashes.

To assess the usefulness of the generated test cases, we
used the same criterion that was used for STAR [6]. Based on

A Guided Genetic Algorithm for Automated Crash Reproduction

TABLE II
DETAILED CRASH REPRODUCTION RESULTS, WHERE Y(YES), INDICATES
THE CAPABILITY TO GENERATE A USEFUL TEST CASE, N(NO) INDICATES
LACK OF ABILITY TO REPRODUCE A CRASH, NU(NOT USEFUL) SHOWS
THAT A TEST CASE COULD BE GENERATED, BUT IT WAS NOT USEFUL, AND
’-” INDICATES THAT DATA REGARDING THE CAPABILITY OF THE
APPROACH IN REPRODUCING THE IDENTIFIED CRASH IS MISSING.

Project Bug ID EvoCrash STAR [6] MuCrash [12] JCHARMING [7]
4 Y Y Y -
28 Y Y Y -
35 Y Y Y -
48 Y Y Y -
53 Y Y N -
68 N N N -

ACC 70 Y N N -
71 NU NU N -
104 N Y Y -
331 Y N Y -
377 Y N Y -
411 Y Y Y -
28820 N N - -
33446 NU NU -
34722 Y N -
34734 NU N -
36733 NU NU -
38458 Y Y -
38622 NU Y Y
42179 Y N -
43292 N Y -
44689 Y NU -

ANT 44790 Y Y -
46747 N N -
47306 N N -
48715 N N -
49137 Y NU -
49755 Y Y -
49803 Y Y -
50894 Y NU -
51035 N N -
53626 Y N -
29 Y Y -
43 N N -
509 Y N -
10528 Y N -
10706 Y N -
11570 Y Y Y
31003 Y Y -
40212 Y NU Y
41186 Y Y Y

LOG 44032 Y N -
44899 Y N -
45335 Y NU N
46144 Y N -
46271 NU Y Y
46404 Y N -
47547 Y Y -
47912 Y NU Y
47957 NU Y N

this, 34 (89%) of the replications were useful, as they included
buggy frame. The remaining 13% non useful replications were
mainly due to having dependency on data from external files
which were not available during replication.

For ACC, there were two cases (ACC-68, and ACC-104)
which were not reproducible by EvoCrash. For ACC-68, the
class under test includes three nested classes, and the inner-
most one was where the crash occurs. Currently, EvoSuite
does not support instrumentation of multiple inner classes. For
ACC-104, EvoCrash could replicate the case 4 times out of
50. This low ratio was due to the fact that calls to the input
object and target method had to be made in a certain order to
trigger the crash.

For ANT, 6 of the 20 cases (30%) are currently not
supported by EvoCrash. For these cases, the major hindering
factor was the dependency on a missing external build.xml
file, which is used by ANT for setting up the project configu-

SE

java.lang.NullPointerException:

at org.apache.tools.ant.util.SymbolicLinkUtils.
isSymbolicLink (SymbolicLinkUtils. java:107)

at org.apache.tools.ant.util.SymbolicLinkUtils.
isSymbolicLink (SymbolicLinkUtils. java:73)

at org.apache.tools.ant.util.SymbolicLinkUtils.
deleteSymbolicLink (SymbolicLinkUtils. java:223)

at org.apache.tools.ant.taskdefs.optional.unix.
Symlink.delete (Symlink.java:187)

Listing 1. Crash Stack Trace for ANT-49137.

public void test0() throws Throwable ({
Symlink symlink0 = new Symlink();
symlinkO.setLink ("");
symlinkO.delete () ;

}

Listing 2. Generated test by EvoCrash for ANT-49137.

rations. However, build.xml was not supplied for many of
the crash reports. In addition, the use of Java reflection made
it more challenging to reproduce these ANT cases, since the
specific values for class and method names are not known
from the crash stack trace.

For LOG, 1 of the 18 cases (5%) is not supported by
EvoCrash. In this case, the target call is made to a static class
initializer, which is not supported by EvoCrash yet.

Comparison to the State of the Art (RQ2) Table II
shows the comparisons of EvoCrash to STAR, MuCRASH,
and JCHARMING. Bold entries represent bugs which can
be triggered by EvoCrash, yet one of the other techniques is
not; Underlined entries represent bugs that EvoCrash cannot
reproduce, while there is another technique that can. As can be
seen, there are 22 (bold) cases in which EvoCrash outperforms
the state of the art, and there are 2 (underlined) cases that
EvoCrash cannot handle. Below we discuss these cases in
more detail.

EvoCrash vs. STAR. As Table II presents, for ACC,
EvoCrash covers all the cases that STAR covers except for
ACC-104 (that was reflected on previously). In addition,
EvoCrash covers 3 cases (25%) which were not covered by
STAR due to the path explosion problem. For instance, in
ACC-331, the defect exists in a private method, 1east, inside
a for loop, inside the third if condition, which was too
complicated for STAR. The case was complex to EvoCrash
too, since this was one of the cases where we had to increase
the population size (from 50 to 175).

For ANT, EvoCrash supports 7 cases (35%) which are
not covered by STAR. Out of the 7, there are 3 cases, for
which only EvoCrash can generate a useful test case. Listing
1 shows the crash stack trace for of these cases (ANT-49137).
As reported in the issue tracking system of the project®, in
this case, the defect exists in the 4th stack frame. Thus, a
useful test case should (i) make a call to the method delete,
(ii) trigger a java.lang.NullPointerException, and
(iii) yield a crash trace which includes the first stack frame,
which is where the exception was thrown. As Listing 2 depicts,

8https://bz.apache.org/bugzilla/show_bug.cgi?id=49137

TUD-SERG-2017-006

SE

A Guided Genetic Algorithm for Automated Crash Reproduction

public void testO() throws Throwable {
java.io.File vl = (java.io.File) null;
org.apache.tools.ant.util.SymbolicLinkUtils v2 =
org.apache.tools.ant.util.SymbolicLinkUtils

.getSymbolicLinkUtils () ;
v2.isSymbolicLink ((java.io.File) v1, (java.lang.
String) null);
}
Listing 3. Generated test by STAR for ANT-49137.

java.lang.NullPointerException
at org.apache.tools.ant.util.SymbolicLinkUtils.
isSymbolicLink (SymbolicLinkUtils. java:107)

Listing 4. Generated Crash Stack Trace by STAR for ANT-49137.

the test case by EvoCrash creates an instance of Symlink,
symlinkO, adapts the state in symlink0, and ultimately
makes a call to delete, which will result in generating the
target crash stack trace with fitness equal to 0.0. On the other
hand, as Listing 3 shows, the test case by STAR, makes an
instance of SymbolicLinkUtils, which comes before the
defective frame in the crash stack, and makes a call to the
root method, 1 sSymbolicLink. Consequently, only part of
the target crash stack is generated by this test, which is shown
in Listing 4. Since the defective frame is not revealed in the
resulting crash trace, even though the root frame is covered,
the test by STAR does not evaluate to useful according to the
criteria set by STAR [6].

Other than ACC-104, ANT-43292 is the other case that is
only reproducible by STAR. The main reason for this lies in an
inheritance-related problem and how the current fitness func-
tion compares stack frames. In this case, the target method,
mapFileName, is defined in FilterMapper, which ex-
tends Fi leNameMapper. However, the search can find better
fitness values, using other subclasses of FileNameMapper,
such as FlatFileNameMapper, because the implementa-
tion of mapFileName in these subclasses has lower complex-
ity. To improve this case in the future, we plan to increase the
strictness of the fitness function when it comes to distinguish-
ing among subclasses and their inherited methods.

For LOG, EvoCrash covers all the cases that were covered
by STAR. 6 of the LOG cases (33%) are only covered by
EvoCrash. As an example, LOG-509 is among the cases which
are only covered by EvoCrash. In this case, there is a need
to interact with the file system, and in order to handle the
interaction with the environment, EvoCrash benefits from the
mocking mechanisms implemented in EvoSuite.

EvoCrash vs. MuCrash. As Table II shows, evaluation data
for MuCrash is only available for ACC.°> Except for ACC-
104, EvoCrash covers all the ACC-cases that are covered by
MuCrash. In addition, 3 cases (25%) are only covered by
EvoCrash, though one of them is not marked as useful.

An example of a covered case is ACC-53, depicted in
Listing 5. It requires that an object is added to an instance

9Since MuCrash is not publicly available we could not reproduce the data
or add additional cases by ourselves.

TUD-SERG-2017-006

java.lang.ArrayIndexOutOfBoundsException:
at org.apache.commons.collections.buffer.
UnboundedFifoBuffer$l.remove (
UnboundedFifoBuffer. java:312)

Listing 5. Crash Stack Trace for ACC-53

Object object0 = new Object();

UnboundedFifoBuffer unboundedFifoBuffer(0 = new
UnboundedFifoBuffer();
unboundedFifoBuffer0.add (objectO);
unboundedFifoBuffer0.tail = 82;
unboundedFifoBuffer0.remove ((Object) null);

Listing 6. EvoCrash test for ACC-53

of UnboundedFifoBuffer, the tail index is set to a
number larger than the buffer size, and then that the method
remove 1is invoked. In addition, the order in which the
methods are invoked matters. So, if the tail index would
be set after remove is called, the target crash would not be
replicated. As shown in Listing 6, EvoCrash synthetized the
right method sequence and reproduced ACC-53.

EvoCrash vs. JCHARMING. As Table II shows, only few
cases from ANT and LOG were shared with the cases used
to evaluate JCHARMING. While 75% of the shared cases
are covered both by EvoCrash and JCHARMING, there is
substantial difference in the efficiency of the two approaches.
On average, EvoCrash takes less than 2 minutes to cover the
target crashes, whereas JCHARMING may take from 10 to 38
minutes to generate tests for the same cases.

For LOG-41186, 2 LOG cases out of 7 (29%) are only
supported by EvoCrash. As an example, Listing 7 shows the
crash stack trace for LOG-45335, which is one of the two
cases covered only by EvoCrash. To generate a useful test for
LOG-45335, as depicted in Listing 8, EvoCrash sets the ht
state in NDC to null, and then makes a call to the static
method remove, which is the buggy frame method.

VI. DISCUSSION

We identify two possible directions for future work.

Interactive Search. It should be noted that since GGA strives
for finding the fittest test case, thus discarding the ones with
fitness # 0.0, the crash coverage and usefulness evaluation was
performed on a set of EvoCrash tests with fitness equal to 0.0.
However, considering the crash exploitability and usefulness
criteria adopted from STAR [6], it could be possible that
EvoCrash discarded tests with fitness between 0.0 and 1.0,

java.lang.NullPointerException:
at org.apache.log4jb.NDC.remove (NDC. java:377)

Listing 7. Crash Stack Trace for LOG-45335.

public void testO()
NDC.ht = null;
NDC.remove () ;

throws Throwable {

Listing 8. The EvoCrash Test for LOG-45335.

A Guided Genetic Algorithm for Automated Crash Reproduction

which would actually conform to the aforementioned criteria.
Considering the fitness function range, fitness values could be
from 0.0 to 6.0, where 6.0 means a test case that does not reach
the target line, therefore does not invoke the target method, and
in turn, does not trigger the target exception. In contrast, fitness
0.0 means that the test covers the target line and method, and

triggers the target exception. According to the definition of

the fitness function (presented in Section III), when the fitness
value is between 0.0 and 1.0, the target line and exception
are covered, however, the stack trace similarity is not ideal
yet. In this case, even though the target stack similarity is
not achieved, crash coverage and test usefulness criteria could
be covered. As the result, future work can provide interactive
mechanisms through which the precision of the fitness function
could be adjusted, so tests with fitness between 0.0 and 1.0
could also be accepted.

In addition, dependency on external files was a major
factor that prevented EvoCrash from covering more cases. As
described earlier, for some of the cases with environmental
dependency, we increased the population size, which in turn
led to successful generation of tests for some of the cases.
Thus, if external files were to be provided by the bug reporters,
then enabling developers to specify the external files, or adjust
the population size through interactive mechanisms could be
another possible direction for the future work.

Extending Comparisons. While to make the comparison
among EvoCrash, STAR, MuCrash, and JCHARMING, we
had to identify a subset of cases shared in the empirical
evaluations of the techniques, we realize the need to extend
the comparison between (i) EvoCrash and JCHARMING, and
(ii) EvoCrash and MuCrash. To improve the comparison with
JCHARMING, we would adopt the other projects that were
targeted by JCHARMING, and evaluate EvoCrash against
the identified cases for them. Considering the substantial
performance difference between EvoCrash and JCHARMING,
we also wish to statistically compare the efficiency of the tools.
To do so, we would rely on availability of JCHARMING for

experimentation. To improve the comparison with MuCrash, if

additional evaluation data is published for the tool, or MuCrash
becomes publicly available, we would extend the empirical
study to increase the validity of the comparison results.

VII. THREATS TO VALIDITY

With respect to external validity, the main threats arise from
the focus on Java and open source. The use of Java is needed
for our experiments due to the dependency on EvoSuite, yet
we expect our approach to behave similarly on other languages
such as Ruby or C#.

To maximize reproducibility and to enable comparison with
the state of the art we rely on open source Java systems.
We see no reason why closed source stack traces would be
substantially different. As part of our future work we will
engage with one of our industrial partners, mining their log
files for frequent stack traces. This will help them create test
cases that they can add to their test suite to reproduce and fix
errors their software suffers from.

10

SE

In order to facilitate comparison with earlier approaches
we selected bugs and system versions that have been used in
earlier studies, and hence are several years old. We anticipate
that our approach works equally well on more recent bugs or
versions as well, but have not conducted such experiments yet.

A finding of our experiments is that a key limiting factor for
any stack-trace based approach is the unavailability of external
data that may be needed for the reproduction. Further research
is needed to (1) mitigate this limitation; and (2) identify a
different data set of crashes focusing on such missing data, in
order to further narrow down this problem.

With respect to internal validity, a key threat is in the eval-
uation of the crash coverage and usefulness of the generated
test cases. In case EvoCrash generated a test with fitness =
0.0, we double checked the generated crash stack trace to
ensure that the corresponding test correctly replicated the crash
stack frame. Despite having taken the above procedures, it
is still possible that we made errors in the inspections and
evaluations. To mitigate the chances of introducing errors, we
peer reviewed the tests and crashes. In addition, we make the
EvoCrash tool, and the generated test cases publicly available
! for further evaluations.

VIII. CONCLUSION

To increase developers’ productivity while debugging, sev-
eral approaches to automated crash replication have been pro-
posed. However, the existing solutions have certain limitations
that adversely affect their capability in covering more crash
cases for real-world software projects. This paper presents
EvoCrash, which is a search-based approach to crash repli-
cation based on using data from crash stack traces. EvoCrash
applies a novel Guided Genetic Algorithm (GGA) as well as a
smart fitness function, to search for a test case that can trigger
the target crash and reveal the buggy frame in the crash stack
trace. Our empirical evaluation shows that EvoCrash addresses
the major challenges that were faced by three cutting-edge
approaches, and thereby, outperforms them in automated crash
reproduction.

The future work may take several directions, including:
(i) enhancing the fitness function implemented in EvoCrash,
(i) extending the comparison between EvoCrash and the
other techniques, which considerably would depend on the
availability of the tools, and (iii), evaluating EvoCrash for
industrial projects.

The implementation of EvoCrash, as well as the experimen-
tal data are publicly available'.

ACKNOWLEDGMENT

This research was partially funded by the EU Project
STAMP ICT-16-10 No.731529, the Dutch 4TU project “Big
Software on the Run” and National Research Fund, Luxem-
bourg FNR/P10/03.

REFERENCES

[11 S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making software failures
reproducible by preserving object states,” in ECOOP 2008-Object-
Oriented Programming. Springer, 2008, pp. 542-565.

TUD-SERG-2017-006

SE

(2]

(3

[t

[7

—

[8

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

J. Clause and A. Orso, “A technique for enabling and supporting
debugging of field failures,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007,
pp. 261-270.

S. Narayanasamy, G. Pokam, and B. Calder, “Bugnet: Continuously
recording program execution for deterministic replay debugging,” in
ACM SIGARCH Computer Architecture News, vol. 33, no. 2. IEEE
Computer Society, 2005, pp. 284-295.

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test
factoring for java,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering. ACM, 2005, pp. 114—
123.

J. Steven, P. Chandra, B. Fleck, and A. Podgurski, jRapture: A cap-
ture/replay tool for observation-based testing. ACM, 2000, vol. 25,
no. 5.

N. Chen and S. Kim, “Star: Stack trace based automatic crash repro-
duction via symbolic execution,” IEEE Tr. on Sw. Eng., vol. 41, no. 2,
pp. 198-220, 2015.

M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson, “Jcharming:
A bug reproduction approach using crash traces and directed model
checking,” in 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 2015, pp.
101-110.

J. RoBler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea, “Reconstruct-
ing core dumps,” in 2013 IEEE Sixth Int. Conf. on Software Testing,
Verification and Validation. 1EEE, 2013, pp. 114-123.

A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva, “Contract
driven development= test driven development-writing test cases,” in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2007, pp. 425-434.

A. Leitner, A. Pretschner, S. Mori, B. Meyer, and M. Oriol, “On
the effectiveness of test extraction without overhead,” in International
Conference on Software Testing Verification and Validation (ICST).
1EEE, 2009, pp. 416-425.

C. Zamfir and G. Candea, “Execution synthesis: a technique for au-
tomated software debugging,” in Proceedings of the 5th European
conference on Computer systems. ACM, 2010, pp. 321-334.

J. Xuan, X. Xie, and M. Monperrus, “Crash reproduction via test case
mutation: Let existing test cases help,” in ESEC/FSE. ACM, 2015,
pp. 910-913. [Online]. Available: http://doi.acm.org/10.1145/2786805.
2803206

D. Weeratunge, X. Zhang, and S. Jagannathan, “Analyzing multicore
dumps to facilitate concurrency bug reproduction,” SIGARCH Comput.
Archit. News, vol. 38, no. 1, pp. 155-166, Mar. 2010. [Online].
Available: http://doi.acm.org/10.1145/1735970.1736039

F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella, “Sbfr:
A search based approach for reproducing failures of programs with
grammar based input,” in Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, Nov 2013, pp. 604-609.
F. Kifetew, W. Jin, R. Tiellam, A. Orso, and P. Tonella, “Reproducing
field failures for programs with complex grammar-based input,” in 20714
IEEE Seventh International Conference on Software Testing, Verification
and Validation, March 2014, pp. 163-172.

C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing
based on java predicates,” in Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
’02. New York, NY, USA: ACM, 2002, pp. 123-133. [Online].
Available: http://doi.acm.org/10.1145/566172.566191

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE *07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 75-84. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.37

W. Jin and A. Orso, “Bugredux: reproducing field failures for in-house
debugging,” in Proceedings of the 34th International Conference on
Software Engineering. 1EEE Press, 2012, pp. 474-484.

M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson, “A
bug reproduction approach based on directed model checking
and crash traces,” Journal of Software: Evolution and Process,
pp. n/a—n/a, 2016, jSME-15-0137.R1. [Online]. Available: http:
//dx.doi.org/10.1002/smr.1789

M. Soltani, A. Panichella, and A. van Deursen, “Evolutionary testing for

TUD-SERG-2017-006

A Guided Genetic Algorithm for Automated Crash Reproduction

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

crash reproduction,” in Proceedings of the 9th International Workshop
on Search-Based Software Testing. ACM, 2016, pp. 1-4.

G. Fraser and A. Arcuri, “Whole test suite generation,” [EEE
Transactions on Software Engineering, vol. 39, no. 2, pp. 276-291,
Feb. 2013. [Online]. Available: http://dx.doi.org/10.1109/TSE.2012.14
X. Xiao, T. Xie, N. Tillmann, and J. De Halleux, “Precise identification
of problems for structural test generation,” in Proceedings of the 33rd
International Conference on Software Engineering. ACM, 2011, pp.
611-620.

C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking.
MIT press, 2008.

I. S. W. B. Prasetya, 73, a Combinator-Based Random Testing Tool
for Java: Benchmarking. Cham: Springer International Publishing,
2014, pp. 101-110. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-07785-7_7"

P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI *05.
New York, NY, USA: ACM, 2005, pp. 213-223. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

N. Tillmann and J. De Halleux, “Pex: White box test generation for .net,”
in Proceedings of the 2Nd International Conference on Tests and Proofs,
ser. TAP’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 134-153.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1792786.1792798
A. Sakti, G. Pesant, and Y. G. Guhneuc, “Instance generator and
problem representation to improve object oriented code coverage,” IEEE
Transactions on Software Engineering, vol. 41, no. 3, pp. 294-313,
March 2015.

G. Fraser and A. Arcuri, “1600 faults in 100 projects: Automatically
finding faults while achieving high coverage with evosuite,” Empirical
Software Engineering, vol. 20, no. 3, pp. 611-639, 2013.

K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
android application crashes,” in 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST), April 2016, pp.
33-44.

M. Harman, P. McMinn, J. De Souza, and S. Yoo, “Search based
software engineering: Techniques, taxonomy, tutorial,” in Empirical
software engineering and verification. ~Springer, 2012, pp. 1-59.

M. Harman, S. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput.
Surv., vol. 45, no. 1, p. 11, 2012. [Online]. Available: http:
//doi.acm.org/10.1145/2379776.2379787

P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and Reliability, vol. 14, no. 2, pp. 105-156,
2004.

A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia, “Improving
multi-objective test case selection by injecting diversity in genetic
algorithms,” IEEE Trans. Software Eng., vol. 41, no. 4, pp. 358-383,
2015. [Online]. Available: http://dx.doi.org/10.1109/TSE.2014.2364175
S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string
test inputs using a natural language model to reduce human oracle
cost,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, March 2013, pp. 352-361.

G. Fraser and A. Arcuri, “Evosuite: On the challenges of test case gener-
ation in the real world,” in 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. 1EEE, 2013, pp. 362-369.
H. Cibulski and A. Yehudai, “Regression test selection techniques for
test-driven development,” in Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2011 IEEE Fourth International Conference
on, March 2011, pp. 115-124.

H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, “OCAT: Object Capture-
based Automated Testing,” in Proceedings of the 19th International
Symposium on Software Testing and Analysis, ser. ISSTA *10. New
York, NY, USA: ACM, 2010, pp. 159-170. [Online]. Available:
http://doi.acm.org/10.1145/1831708.1831729

R. Coelho, L. Almeida, G. Gousios, A. v. Deursen, and C. Treude,
“Exception handling bug hazards in android,” Empirical Software
Engineering, pp. 1-41, 2016. [Online]. Available: http://dx.doi.org/10.
1007/s10664-016-9443-7

A. Arcuri and G. Fraser, “Parameter tuning or default values? an
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594-623, 2013.

11

A Guided Genetic Algorithm for Automated Crash Reproduction SE[flE

[40] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch 8th International Conference on Software Testing, Verification and
coverage as a many-objective optimization problem,” in 2015 IEEE Validation (ICST), April 2015, pp. 1-10.

12 TUD-SERG-2017-006

TUD-SERG-2017-006 S E(I
ISSN 1872-5392

