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Abstract—Current research in clone detection suffers from
poor ecosystems for evaluating precision of clone detection tools.
Corpora of labeled clones are scarce and incomplete, making
evaluation labor intensive and idiosyncratic, and limiting inter-
tool comparison. Precision-assessment tools are simply lacking.

We present a semi-automated approach to facilitate precision
studies of clone detection tools. The approach merges automatic
mechanisms of clone classification with manual validation of clone
pairs. We demonstrate that the proposed automatic approach has
a very high precision and it significantly reduces the number
of clone pairs that need human validation during precision
experiments. Moreover, we aggregate the individual effort of
multiple teams into a single evolving dataset of labeled clone
pairs, creating an important asset for software clone research.

Index Terms—Precision Evaluation, Clone Detection, Machine
learning, Open source labeled datasets

I. INTRODUCTION

Source code clone detection is the task of finding similar
software pieces, according to a certain concept of similarity.
These pieces can be statements, blocks of code, functions,
classes, or even complete source files, and their similarity can
be syntactic, semantic or both. Cloning in software source
code is as ubiquitous as software itself, which gives clone
detection tools many applications: plagiarism and copyrights
enforcement [1], [2], detection of errors/faults/bugs [2], code
optimization and refactoring [3], [4], analysis of programmers
behaviors [5] or program understanding [2] are some examples.

In a systematic literature review, Rattan et al. found at least
70 clone detection tools and techniques [6]. Clone detectors
differ substantially in the underlying techniques and scope
of application. In terms of technical approach used, one
can find techniques that are learning-based [7], [8], token-
based [9]–[11], tree-based [12], [13], graph-based [14], or
text-based [15]. With respect to the scope, one can find tools
that are language-specific and language-agnostic, with varying
degrees of specialization. While there are many tools and
techniques published to detect clones, not much effort is spent
on streamlining the evaluation of these tools and techniques.

The effectiveness of clone detection tools is usually evaluated
in terms of precision and recall. Precision is the percentage of
true positives (clone pairs) within a set of code pieces identified
by the tool as clones. Recall is the percentage of true positives

that are retrieved by the tool within the complete set of known
clones. The measurement of precision and recall, in general,
relies on the existence of labeled datasets. A good labeled
dataset provides realistic data and credible labels on all the
constituents that should be detected by the analysis tool – in
the case of clone detection, all clone pairs are labeled as such.
A labeled dataset for clones allows one to measure how many
of the clones identified by a certain tool are indeed clones
or not (precision), and how many of the true clone pairs are
detected by the tool (recall). Publicly available labeled datasets,
also known as benchmarks, allow direct inter-tool comparisons
without the uncertainty that exists when two tools are compared
with different datasets.

In the field of code clone detection, building labeled datasets
is particularly challenging and requires software expertise.
Methods can exist inside methods, or they can vary wildly
in size, scope, semantics and nature. In addition, to manually
validate all the possible clones would require quadratic com-
parisons, a combinatorial problem that becomes infeasible with
growing codebases.

For this reason, most datasets used in code clone studies are
either small or synthetically created or are labeled only for a
subset of pairs. The dataset by Bellon et al. [16], the dataset by
Murakami et al. [17], SOCO 2014 [18] or BigCloneBench [19]
have one of the above mentioned limitations.

There has been good progress in measuring recall system-
atically of clone detection tools. Based on BigCloneBench
dataset [19], BigCloneEval [20] estimates recall automatically
by measuring how many of the labeled clone pairs are included
in the output of a clone detector. However, BigCloneEval stops
short of estimating precision because BigCloneBench does
not contain labels for all possible clone pairs in it. If a clone
detector identifies a clone pair that is not marked as such,
only manual inspection can tell whether the pair is a false
positive or a true positive. Since manual inspection is a difficult,
labor intensive, and time consuming task, most clone detection
approaches estimate their precision by sampling a number of
their reported clone pairs, and then manually inspecting the
sampled set [8], [10], [21]. So, while clone detectors report
recall using BigCloneEval, the determination of their precision
is still a subjective and a manual process, leading to difficulties

ar
X

iv
:1

81
2.

05
19

5v
2 

 [
cs

.S
E

] 
 1

4 
D

ec
 2

01
8



in comparing with other tools. The lack of an established
labeled dataset for precision creates a number of problems [10]:
(i) precision estimation can suffer from sampling bias when
sample set is small and not representative of the population,
(ii) large manual effort is required to conduct precision studies.
As each pair in the sample needs to be evaluated, often by
multiple judges, the total manual effort required to complete
a precision study is substantial, and (iii) the efforts put into
the manual inspection of clone pairs are not reused. Each time
authors want to estimate their tool’s precision, they typically
start from scratch.

To address these problems we present InspectorClone, an
approach designed to facilitate precision studies for code clone
detectors. InspectorClone helps in evaluating precision of clone
detectors and, in the process, creates a dataset of well-known
source code clones. InspectorClone automatically resolves as
many clone pairs as possible, identifying a subset of pairs
where manual inspection is most needed. Our experiments
demonstrate that InspectorClone reduces the number of clone
pairs that need manual inspection by 40% on an average.

At the end, the results (automatic and manual) are aggregated
to report the precision of the clone detector. Moreover, the
human judgments are stored to create a manually labeled dataset
of clones. This dataset is beneficial in inter-tool comparison,
and also, for the exploration of machine learning and artificial
intelligence techniques in clone detection. InspectorClone can
be accessed at http://www.inspectorclone.org.

The main contributions of this work are the following: (i)
a semi-automated, high-precision, approach for classification
of clones that reduces the manual effort of precision studies
significantly, (ii) a publicly available web application that
enables clone detection researchers to conduct precision
experiments of clone detection tools and techniques, and (iii)
an evolving dataset of manually validated clone pairs that is
publicly available. With time, as InspectorClone is used, the
number of humanly validated clone pairs will increase in the
dataset.

This work is organized as follows. In Section II, we present
InspectorClone, the tool implementation of our approach. The
automatic mechanisms of clone pair resolution, and related
concepts are elaborated in Section III, and then it is evaluated
in Section IV. Section V presents related work, and threats to
validity are explained in Section VI. Finally, we present the
conclusions and future work in Section VII.

II. INSPECTORCLONE

Measuring the precision of a clone detector is not a trivial
process. To measure the precision, one can choose to manually
validate all the clone pairs reported by a clone detector. This
process, however, is extremely time consuming and impractical
as the number of clone pairs reported by a tool on a standard
dataset like BigCloneBench is in millions. A more practical
process is to estimate the precision by humanly validating
a random and statistically significant sample of clone pairs.
This is what researchers do to estimate the precision of clone
detectors [8], [10], [21], [22]. In this process, after running a

clone detector on a dataset and getting the clone pairs, a random
and statistically significant sample set of these clone pairs is
assigned to multiple judges for manual inspection. The judges
examine each pair to decide if it is a true clone and/or what type
of clone it is. When all sampled pairs have been validated by
all judges, researchers aggregate the judges’ decisions, usually
by taking the majority vote, and report precision.

The above process, though more practical than humanly
validating every clone pair, still takes a non trivial amount
of time and effort. Moreover, the effort put into one study
cannot be reused in future studies. To address these issues, we
present a web-based tool, named InspectorClone, that helps
clone researchers in expediting the precision estimation process.
InspectorClone helps by mimicking this whole process and
also by automatically validating a subset of sampled clone
pairs, thereby reducing the number of clone pairs shown to
human judges. Moreover, by storing human judgments in a
centralized database, this tool turns humans’ manual effort to
a long lasting resource that can be reused in future studies.

InspectorClone conducts precision studies on the dataset
curated by Svajlenko et al. for facilitating recall studies [20].
Svajlenko et al. curated this dataset using IJaDataset-2.0 to
conduct recall study using BigCloneEval. The dataset is avail-
able for download on InspectorClone’s website. InspectorClone
does not run the clone detection tool; instead, it expects users
to upload the clone pairs reported by their tool to the website.
The work flow is as follows.

A user, John, registers himself and his tool into Inspec-
torClone. After registration, John can download the dataset
of source code and run it on his clone detector. John, then
uploads the clone pairs to InspectorClone where InspectorClone
filters out the methods that are less than 50 tokens, a standard
filter used in precision studies [10], [22]. John now creates
an experiment to estimate the precision of his tool. He
then invites multiple judges to evaluate the pairs. Once the
judges are invited, InspectorClone selects a random and
statistically significant sample of clone pairs. From this sample
InspectorClone tries to automatically validate as many pairs
as it can. All of the remaining pairs of the sample, which
InspectorClone did not resolve, are then shown to the judges.

When a judge, Alice, starts an experiment assigned to her,
she is shown a web page as shown in Figure 1. All unresolved
pairs will be shown to her. This page is composed by a split
screen with two columns, showing both members of a pair. The
code is syntax highlighted to increase the readability. Alice
must then decide if this pair does indeed represent a clone or
not (if it is a true or a false positive). There are two optional
form elements: one to select the clone type, and another to
leave a comment.

When all of the unresolved pairs have been validated by all
judges, InspectorClone aggregates their decisions by taking the
majority vote, and creates a precision report. In case there are
even number of judges, InspectorClone treats a pair as a true
positive only when more than 50% of the judges vote for it to
be a clone pair. InspectorClone stores the human judgments
in a centralized database. With time, we expect the number

http://www.inspectorclone.org


Fig. 1: Validation of clone candidates on InspectorClone.

of humanly judged pairs to increase in this database, thereby
creating a valuable asset for the community.

III. AUTOMATIC CLASSIFICATION OF CLONES

As explained in the previous section, to estimate the precision
of a clone detection tool, InspectorClone needs to validate only
a random and statistically significant sample set of the clone
pairs reported by the tool. The number of these pairs in such
a sample set is small and therefore, InspectorClone can use
techniques which are very precise without caring much about
the scalability aspects of the techniques.

Also, an automatic approach must be able to resolve pairs
with very high precision; otherwise, researchers will fall back to
the completely manual process. With this in mind, we designed
a semi-automated approach to conduct precision studies using
InspectorClone. The automatic mechanism of InspectorClone
has a very high precision but it compromises on recall as it
only resolves those pairs on which it has high confidence. The
unresolved pairs are then shown to human judges for manual
inspection. We note that clone detection tools operate at various
granularities like statements, block of code, methods, files, et
cetera. Also, clone detection can be carried out for software
written in various languages like Java, C, C++, and Python
among others. In this work, we narrow down our focus to
facilitate precision studies for method level clone detectors
which find clones in software systems written in Java.

A. Definitions

In this section, we elaborate on the terms and definitions
that are pivotal to discussing InspectorClone’s mechanisms.

Clone Pair: A pair of code fragments that are similar,
specified by the triple (f1, f2, φ), including the similar code
fragments f1 and f2, and their clone type φ [22].

Clone Types: Based on the literature [2], our work uses
the following four types of source code clones, the first three
being similar on the textual and syntactic level, and the fourth
type defining similarity on the functional, semantic level:

Type I: Identical code fragments, except for differences in
white-space, layout and comments.

Type II: Identical code fragments, except for differences in
identifier names and literal values, as well as Type I differences.

Type III: Syntactically similar code fragments that differ
at the statement level. The fragments have statements added,
modified and/or removed with respect to each other, in addition
to Type I and Type II clone differences

Type IV: Syntactically dissimilar code fragments that
implement the same functionality.

The definition to classify clones as Type III does not specify
what should be the minimum syntactical similarity between the
methods of a clone pair to be classified as Type III. Also, the
lack of consensus in the community of clone researchers about
this similarity makes it difficult to separate Type IV and Type
III clones. To address this issue, the popular clone benchmark,
BigCloneBench [19], [22], has divided the zone between Type
III and Type IV into four subcategories based on syntactical
similarity values: Very Strongly Type III (VST3) with similarity
in range of [0.9, 1.0), Strongly Type III (ST3) with similarity
being in [0.7,0.9), Moderately Type III (MT3) with similarity
in range of [0.5, 0.7), and Weakly Type III (WT3/4) having
similarity in the range of [0.0,0.5). More details about these
subcategories can be found elsewhere [19].



Listing 1: Example: Action Tokens
1 public Enumeration children () {
2 Enumeration allChildren = super . children () ;
3 Vector filtered = new Vector() ;
4 DiligentNode node;
5 while ( allChildren .hasMoreElements()) {
6 node = (DiligentNode) allChildren .nextElement() ;
7 if (!node. isFiltered ( true ) ) filtered .addElement(node);
8 }
9 return filtered . elements () ;

10 }

Type I? Type II? Type III?

Method 1

Method 2

Resolved

Yes

No

Yes

No

Yes

No Show to
Judge

Automatic Resolution

Fig. 2: The pipeline for clone validation.

Action Token: Action tokens of a method are the tokens
corresponding to the methods called and class fields accessed
by that method [8]. Additionally, the array accesses made by a
method are also special Action tokens namely ArrayAccess and
ArrayAccessBinary, where array access of kind arr[i] is an Ar-
rayAccess Action token and arr[i+1] is an ArrayAccessBinary
Action token. In the code provided in Listing 1, Action tokens
are: children(), hasMoreElements(), nextElement(), isFiltered(),
addElement(), and elements().

Action Filter: A filter which ensures a minimum amount
of similarity between the Action tokens of two methods [8].

We use overlap-similarity, calculated as Sim(A1, A2) =
|A1∩A2|, to measure the similarity between the Action tokens
of two methods. Here, A1 and A2 are sets of Action Tokens in
methods M1 and M2, respectively. Each element in these sets
is defined as < t, freq >, where t is the Action Token and
freq is the number of appearances of this token in the method.
M1 and M2 satisfy the Action filter if Sim(A1,A2)

max(|A1|,|A2|)≥θ, where
θ is Action filter threshold such that 0 ≤ θ ≤ 1.

B. Overview of the Approach

The methodology for clone resolution follows the pipeline
presented in Figure 2. The two methods in a candidate pair1

go through a series of steps in which they are checked against
a certain clone type. If at any step a pair is evaluated as a
true clone pair, it is marked as a true positive and the system
proceeds to the next candidate pair. Otherwise, if all of the
steps are failed to evaluate a pair as a true positive, the pair
is presented to the human judge for manual inspection. These
steps are ordered by computational complexity for system
performance (and also by increasing clone type complexity),
and are individually described in the next sections.

1A candidate pair consists of two piece of code reported as clone pair by a
clone detection tool. Our approach validates these pairs, and only when they
are resolved as true positives they are called clone pairs.

C. Automatic Resolution of Type I Clones

As described in Section III-A, two pairs are Type I clones if
they are exact replicas when neglecting source code comments
and layout2. This makes the validation of Type I candidates
similar to a simple string comparison after removing certain
elements. We use Algorithm 1 to check if a candidate pair is a
Type I clone. Starting with a candidate pair, the algorithm, first,
removes all source code comments from both method bodies
(lines 2 and 3), then removes white spaces and newlines from
them (lines 4 and 5), and finally computes and compares the
Hash (SHA-256), of both method bodies (line 6).

Algorithm 1 Automatic Type I Resolution
INPUT: M1 and M2 are strings representing the method bodies (including method
signature) of two methods for which we want to know if they are Type I clones.
OUTPUT: Boolean

1: function ISTYPEONE(M1, M2)
2: M1 = REMOVECOMMENTS(M1)
3: M2 = REMOVECOMMENTS(M2)
4: M1 = REMOVEWHITESPACESANDNEWLINES(M1)
5: M2 = REMOVEWHITESPACESANDNEWLINES(M2)
6: return HASH(M1)==HASH(M2)
7: end function

D. Automatic Resolution of Type II Clones

To resolve Type II pairs automatically, we use two heuristics
as described below:

Action heuristic: Action tokens of a method form a more
stable semantic signature for the method than the identifiers or
types chosen by the developer. This is because identifiers and
types often change in duplicating methods, while Action tokens
tend to remain the same. The reason is that methods and class
attributes, represented by Action tokens, bring pre-implemented
functionalities, which reduce the burden of coding, and hence,
are not probable to be removed or modified after cloning.

Metric heuristic: Software metrics, measuring different char-
acteristics of source code, can capture structural information
of a method. These measurements are resilient to changes in
identifier names and literals – a useful property in the detection
of Type II clones. Hence, we use 24 method level software
metrics shown in Table I for Type II resolution. The details
of these metrics can be found elsewhere [8], [23]. A detailed
explanation about the application of Action tokens and software
metrics in clone detection can be found in [8].

We use Algorithm 2 to check if a candidate pair is a Type II
clone. First,we get a list of action tokens for both methods (line
2 and 3). Then, we compare if these lists are identical (line
4), that is, the contents along with their order of appearance
in these lists match. If the lists are identical, we get a list of
metrics for both methods (line 5 and 6) and then return true if
these lists are identical (line 7), else return false.

This algorithm ensures that a candidate pair is resolved as
Type II only when there is a 100% match in both the metrics
and the Action tokens. The rational is that Type II clones

2The syntax of Java is not dependent on layout, so we can ease the definition
of Type I clones. For layout-dependent syntaxes like the ones found in Python
or Haskell, this approach would require a more careful deliberation



TABLE I: Method-Level Software Metrics from [8]

Name Description Name Description

XMET # external methods called HEFF Halstead effort to implement
VREF # variables referenced HDIF Halstead difficulty to implement
VDEC # variables declared EXCT # exceptions thrown
NOS # statements EXCR # exceptions referenced
NOPR # operators CREF # classes referenced
NOA # arguments COMP McCabes cyclomatic complexity
NEXP # expressions CAST # class casts
NAND # operands NBLTRL∗ # Boolean literals
MDN maximum depth of nesting NCLTRL∗ # Character literals
LOOP # loops (for,while) NSLTRL∗ # String literals
LMET # local methods called NNLTRL∗ # Numerical literals
HVOC Halstead vocabulary NNULLTRL∗ # Null literals

differ in identifier names and literal values while their structure
(captured by metrics), and their method calls and accessed
class fields (captured using Action tokens) remain the same.

Algorithm 2 Automatic Type II Resolution
INPUT: M1 and M2 are strings representing the method bodies (including method
signature) of two methods for which we want to know if they are Type II clones.
OUTPUT: Boolean

1: function ISTYPETWO(M1, M2)
2: ListATofM1 = GETACTIONTOKENS(M1)
3: ListATofM2 = GETACTIONTOKENS(M2)
4: if ISIDENTICAL(ListATofM1,ListATofM2) then
5: ListMetM1 = GETMETRICS(M1)
6: ListMetM2 = GETMETRICS(M2)
7: return ISIDENTICAL(ListMetM1,ListMetM2)
8: end if
9: return False

10: end function

E. Automatic Resolution of Type III Clones

Typically, syntactic clone detectors detect clones in ST3 and
VST3 categories. This is because there is a high probability
that code snippets with less than 70% syntactical similarity
are coincidentally similar. Moreover, to detect clones between
0-70% similarity range, detectors may need to capture the
semantic similarity, a harder problem in clone detection.
Therefore, achieving very high precision in the automatic
resolution of all of these subcategories is considered hard. As
we want to make sure whatever candidate pair our approach
resolves as a clone pair, is indeed a true clone pair, we focus
on the first two subcategories, namely VST3 and ST3.

To resolve Type III candidates automatically, we first make
the candidate pairs go through an Action Filter, and the ones
that survive this filter are fed to a deep learning classifier
that predicts whether they are true clone pairs. Placing Action
Filter before the classifier ensures that candidate pairs, whose
methods do not share a specific amount of functionalities, are
filtered out early, and shown to judges instead of being resolved
automatically; hence, increasing precision.

In the following subsections we first explain the training set
used in training the deep learning model, and next, we describe
the details of the trained model. Finally, we provide the results
of a sensitivity analysis we did for selecting the proper Action
Filter threshold to resolve Type III clones with high precision.

1) Dataset Curation: Since the machine learning classifier
is supposed to resolve Type III candidates, we need a training

TABLE II: Dataset Creation Process Statistics

RowId Dataset Number of Pairs

1 SourcererCC Pairs 909,409
2 CloneWorks Pairs 8,053,303
3 SourcererCC & CloneWorks Intersection 699,389
4 Intersection after Removal (Clone Pairs) 53,058

5 Non-clone pairs at 90% Action Filter 18,195,489
6 Union of Pairs by SourcererCC, CloneWorks, Nicad 8,408,734
7 Non-clones after Removing Union Pairs 18,135,188
8 Non-clones after Random Sampling 53,058

9 Total Rows in Final Dataset 106,116

set with clone pairs from this category. Also, to resolve
clone pairs with very high precision, we want our dataset
to contain true clone pairs which are very similar in terms of
both their semantics and structure. To generate such dataset,
we use two token based state of the art clone detectors,
CloneWorks (Aggressive mode) [11] and SourcererCC [10].
The configurations of these tools are shown in Table VI.
These clone detectors detect Type III clone pairs up to ST3
category, where the methods in each clone pair have high
structural similarity. On the other hand, we ensure high semantic
similarity in the methods of each clone pair in our dataset by
using Action Filter with threshold set to 90%. The starting
dataset used to generate our training dataset is BigCloneBench.

The numbers related to dataset creation process are reported
in Table II. The training set includes equal number of both
assumed positives (clones) and assumed negatives (non-clones).
To get the set of assumed positives, we took an intersection
of the clone pairs detected by the two tools (RowId 3 in
Table II). We then removed all Type I and Type II pairs from
this intersection and selected the pairs which satisfy our Action
filter (RowId 4). To ensure that these pairs are true clone pairs,
we randomly sampled 1,851 pairs (a statistically significant
sample with 99% confidence level and 3% confidence interval),
and validated them manually. Two judges, who are also the
authors of this paper, independently went through these clone
pairs and unanimously found all pairs to be true clone pairs.

Listing 2 shows an example of true clone pair (VST3) found
by the judges. Both methods in this example seem to have a
very similar aim: first, they fill a LinkedList (line 6 and 26)
and then they iterate over the LinkedList to remove its contents
(lines 14 to 16 and lines 34 to 36). The methods not only share
many Action tokens, their structures also look very similar.
Moreover, the line and token similarity between the methods
are high, making this pair a good example of a true positive.

The training set needs not only positive samples of clones,
but also negative ones. Getting these pairs is considerably more
difficult: while there is an enormous amount of code pairs that
are not clones of each other, for machine learning purposes, it is
not useful to include pairs that have no similarities whatsoever.
Ideally, we would like to include pairs that we know with high
certainty are not clones, but that are sufficiently similar that
they could be confused as clones.

To get such assumed negative pairs, we modified Oreo [8],
a clone detector designed to detect Type III clones even in



Listing 2: Example VST3 Clone Pair
1 private boolean doPurgeStudy(DirWriter w, DirRecord parent , int []

counter ) throws IOException {
2 boolean matchAll = true ;
3 LinkedList toRemove = new LinkedList();
4 for (DirRecord rec = parent . getFirstChild ( true ) ; rec != null ; rec

= rec . getNextSibling ( true ) ) {
5 if (doPurgeSeries(w, rec , counter ) ) {
6 toRemove.add(rec);
7 } else {
8 matchAll = false ;
9 }

10 }
11 if (matchAll) {
12 return true ;
13 }
14 for ( Iterator it = toRemove. iterator () ; it .hasNext() ; ) {
15 counter [0] += w.remove((DirRecord) it . next () ) ;
16 }
17 return false ;
18 }
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 private boolean doPurgeInstances (DirWriter w, DirRecord parent , int []

counter ) throws IOException {
21 boolean matchAll = true ;
22 LinkedList toRemove = new LinkedList();
23 for (DirRecord rec = parent . getFirstChild ( true ) ; rec != null ; rec

= rec . getNextSibling ( true ) ) {
24 File file = w.getRefFile ( rec . getRefFileIDs () ) ;
25 if (! file . exists () ) {
26 toRemove.add(rec);
27 } else {
28 matchAll = false ;
29 }
30 }
31 if (matchAll) {
32 return true ;
33 }
34 for ( Iterator it = toRemove. iterator () ; it .hasNext() ; ) {
35 counter [0] += w.remove((DirRecord) it . next () ) ;
36 }
37 return false ;
38 }

harder clone categories, to predict non-clones such that they
have at least 90% similarity in their Action tokens (RowId 5).
The original source code of Oreo is available at [24]. Then, we
took a union of the clone pairs reported by three state of the
art clone detectors: CloneWorks, SourcererCC, and NiCad [15]
(RowId 6). NiCad’s configurations are shown in Table VI. To
ensure high confidence in the non-clone pairs, we removed any
non-clone pair which is present in the union set (RowId 7).
Finally, we did a manual analysis similar to what we did for
true positives to gain more assurance about the non-clone pairs.
The same two judges, independently as before, went through a
random sample of 400 pairs. They found many examples which
were definitely non-clones, and also found some examples of
MT3 and WT3/4 clones, where the pairs shared high semantic
similarity but the structural similarity was weak. This is useful
in increasing the precision of the machine learning model since
it learns to classify these harder pairs, which are closer to the
threshold boundary, as non clones. This is a desirable behavior
as these harder cases are then left for human judgment.

Listing 3 shows an example of an MT3 pair found by the
judges. Both methods in this pair are semantically similar as
they both intend to copy the contents from an InputStream to
an OutputStream. The structural and token similarity between
the two methods, however, is low, making it harder to detect

Listing 3: Example MT3 Clone Pair
1 public static void copy(InputStream i , int buf , OutputStream o)

throws IOException {
2 byte b[] = new byte[buf ];
3 for (; ; ) {
4 int g = i . read(b) ;
5 if (g == −1) break;
6 o. write (b, 0, g) ;
7 }
8 }
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 public static void copyTo(InputStream in , OutputStream out) throws
IOException {

11 byte buffer [] = new byte[2048];
12 int n = 0;
13 while ((n = in . read( buffer ) ) != −1) {
14 out . write ( buffer , 0, n) ;
15 }
16 out . flush () ;
17 }

Listing 4: Example WT3/4 Clone Pair
1 protected void copy(InputStream _in , OutputStream _out) throws

IOException {
2 byte [] buf = new byte[1024];
3 int len = 0;
4 while (( len = _in . read(buf) ) > 0) _out . write (buf , 0, len ) ;
5 }
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 public static long copy(InputStream is , OutputStream os) throws

IOException {
8 byte buffer [] = new byte[1024];
9 int readed;

10 long length = 0;
11 while (( readed = is . read( buffer ) ) != −1) {
12 if (readed > 0) {
13 length += readed;
14 os . write ( buffer , 0, readed) ;
15 } else {
16 TimerHelper.notSafeSleep(100) ;
17 }
18 }
19 return length ;
20 }

as a clone pair by many token based clone detectors. Similarly,
Listing 4 shows another pair that semantically, are performing
the same task, but the structural similarity between the two
methods is very low. Such methods are good candidates that
should be left for human judgment.

We then took a random sample of 53,058 pairs (RowId 8)
from the above obtained pairs (RowId 7) to have the number
of non-clone pairs matched with the number of true clone pairs
(RowId 4). Finally, we aggregated the pairs from RowId 4
and RowId 8 to create a dataset (RowId 9) which we used for
training and validating the machine learning model. Each row
of this finalized dataset contains a method pair represented as
a vector of 48 metrics (24 metrics of Table I for each method),
and a label denoting whether this pair is clone or not.

2) Deep Learning Model: To classify Type III clones we are
using Siamese architecture to train a Deep Neural Networks
(DNN) model. Siamese models are well suited for problems
where two things need to be compared against each other, for
example comparing fingerprints [25]. Also, in a recent work
on clone detection, Saini et al. compared different architectures
of Deep Neural Networks (DNN) and found Siamese DNN to
outperform the other DNN architectures [8]. We also carried
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TABLE III: Precision and Recall on the test set for the Siamese
Neural Network model using different thresholds.

Threshold Precision Recall

0.6 0.970 0.920
0.7 0.981 0.882
0.8 0.989 0.844
0.9 0.996 0.700

out model comparison analyses on the train dataset at hand
and found Siamese model to outperform other models. Model
comparison results are explained later in this section.

Figure 3 shows the architecture of the Siamese model we
trained for our approach. It consists of three components: i)
two identical subnetworks, ii) a comparator unit, and iii) a
classification unit. The input to the model are the feature
vectors of each method (24 metrics) in the candidate pair. These
feature vectors are then transformed and processed by the two
subnetworks and the comparator. Finally, the classification unit
outputs a number between 0 and 1, representing the probability
of a pair being a clone. A more detailed explanation of this
architecture and its components can be found elsewhere [8].

To perform the model selection experiments, the train dataset
of 116,000 code pairs is randomly divided into 80% for training
and 20% for testing. Furthermore, 5,000 pairs from the training
set are set aside for validation purposes, i.e. for hyperparameter
tuning. First, we explored the hyper-parameter tuning for the
Siamese model. The best performing model is the one shown
in Figure 3. Each of the two subnetwork layers in this model
has 4 layers, each with 128 neurons and the comparator has
four fully connected layers of sizes 128-64-32-16. The output
of the comparator is then fed into a single classification neuron
with sigmoidal (logistic) activation function. The output of this
neuron is a value between 0 and 1. Normally, the values more
than 0.5 are assigned label 1, and values less than 0.5, are
assigned label 0. However, since our goal in this problem is to
achieve almost perfect precision (so that the number of false
positives tends to zero), during production (testing), we set the
threshold to announce a pair a true clone pair to be 0.9. The
code pairs which have prediction values between 0 to 0.9 are
sent to human judges for further inspection. Table III shows
the Precision and Recall values on the test set at different
thresholds. As it is observed, using this deep learning approach

TABLE IV: Precision and Recall values on test set

Threshold=0.9 Precision Recall

Logistic Regression 0.984 0.828
Shallow NN 0.991 0.734
Plain DNN 0.983 0.841
Siamese DNN 0.996 0.700

with a threshold of 0.9 yields almost perfect precision (0.996).
We also compared the Siamese DNN to other models with

different architectures, including: (1) a plain fully connected
neural network (Plain DNN) with similar number and sizes of
hidden layers as the Siamese one; (2) a shallow neural network
(Shallow NN) with one hidden layer and similar number of
parameters; and (3) a logistic regression model. Since our final
goal is to achieve a high Precision, all the comparisons are done
when the thresholds for all models are set to be 0.9. We first
compared their performance during the training stage. Figure
4 shows that the Siamese DNN outperforms the other models
in terms of accuracy on the validation set. The accuracy of
the Siamese DNN converges to 96.0%, while the accuracy for
plain DNN and Shallow NN converges only to 94.0%. Figure
5 shows that for the validation loss also, the Siamese structure
is superior to the other models. The average loss value for the
Siamese DNN converges to 0.103 (as apposed to Plain DNN:
0.139; Shallow NN: 0.162; Logistic regression model: 0.222).
Thus in short, the Siamese DNN better fits the training data.

Next, the model performance is compared at the testing
stage. Table IV shows that the Siamese network has the highest
Precision, equal to 0.996. In short, this shows that the Siamese
network has better generalization performance than the other
models used in the comparison.

3) Sensitivity Analysis: We did a sensitivity analysis to find
the optimum threshold of Action Filter with the goal of not
having any false positives, and maximizing the number of pairs
resolved automatically.

Methodology. We used the clone pairs reported by Sourcer-
erCC on the BigCloneBench Dataset. We ran InspectorClone
with four different threshold values of Action Filter: 60%, 65%,
70%, and 75%. One author manually inspected the clone pairs
that are automatically resolved by InspectorClone to figure out
the number of false positives in them. Results of this analysis
are denoted in Table V. The first column of this table shows the
examined thresholds, and the next three columns, respectively,
denote the number of automatically resolved Type I, Type II,
and Type III clone pairs. The next three columns show the
number of false positives observed at each clone category, and
the last column depicts the number of clone pairs that need
the manual validation by humans. At 60% and 65% thresholds,
we observed some false positives, whereas at 70% and 75%
thresholds, no false positives were observed. The number of
automatically resolved clone pairs at 70% threshold (49) is
greater than this number at 75% threshold (18). Consequently,
70% threshold was selected to be used in Action Filter.

IV. EVALUATION

As discussed earlier, the main goal of our approach is to
automatically resolve as much as clone pairs as possible with
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TABLE V: Sensitivity Analysis Statistics

Threshold Auto Auto Manual
Type III Type III FP

60% 124 16 68
65% 78 17 121
70% 49 0 149
75% 18 0 174

high precision. Hence, to evaluate it, we designed an experiment
using InspectorClone, and seven clone detectors. The goal of
this experiment is twofold: i) to understand the impact of our
approach on the reduction of manual effort, and ii) to measure
the precision of the automatic clone resolution approach.

We include SourcererCC, iClones [26], NiCad, CloneWorks,
SimCad [27] as popular examples of modern clone detectors
that support Type III clone detection. CloneWorks comes in
two different modes, Aggressive and Conservative; we tested
InspectorClone on both of these modes. We also include two
recent tools, Oreo and CCAligner [21]. While all these tools
detect clones in Type I, Type II, and early categories of Type III
(VST3 and ST3), Oreo and CCAligner are capable of detecting
clones beyond ST3 categories such as MT3. We also wanted
to include Deckard [12] and CPD [28]; however, they both
detect clones beyond method boundaries. At this time, we
cannot reliably conduct a meaningful experiment with them
on InspectorClone, which only supports method level clone
detectors as of now. Also, both of these tools report their results
as clone classes and not as clone pairs. When we ran processes
to generate clone pairs from these clone classes, they both
produced large amount of clone pairs. We killed the processes
after generating more than 175G of clone pairs for each of
them as these are very big files for InspectorClone to process.

We ran all tools on the recall dataset of BigCloneBench
and obtained the clone pairs reported by each tool. We then
uploaded the clones reported by each tool to InspectorClone,
and calculated the number of clone pairs automatically resolved
in each category, and the number of pairs left for manual
validation. We configured InspectorClone to consider only
those pairs that have methods with at least 50 language tokens,
a standard size filter used in precision studies [8], [10].

To gain high confidence in our experiment results, we
conducted 2 rounds of experiments for each tool (a total

TABLE VI: Reduction of Manual Effort

Tool Automatically Manual FP Tool Configuration
Resolved Inspection

T1 T2 T3 (out of 400)

CCAligner 18 38 60 284 0 MIL=6, Θ = 60%
18 31 64 287 0 e=1, q=6

CloneWorks(A) 118 27 34 221 0 MIT=1, Θ = 70%,
118 35 37 210 0 Mode=Aggressive

CloneWorks(C) 53 43 36 268 0 MIT=1, Θ = 70%,
54 58 26 262 0 Mode=Conservative

iClones 254 59 26 61 0 MIT=50,
256 63 15 66 0 min block=20

NiCad 99 35 159 107 1 MIL=6, BIN=True,
115 26 165 94 0 IA=True, Θ = 30%

Oreo 0 0 0 400 0 MIT=15,Θ = 55%,
0 0 0 400 0 Γ = 60%

SourcererCC 155 25 8 212 0 MIT=1,
149 24 12 215 0 Θ = 70%

SimCad 15 0 2 383 0 GT=True,
10 2 3 385 0 US=True,MIL=6

of 16 experiments, with 7 tools and CloneWorks being
executed in two modes). In each round, InspectorClone sampled
400 random candidate pairs from the output of each tool.
InspectorClone then automatically resolved some clone pairs
as assumed positives, leaving the rest for manual validation.
To measure the precision of the automatic resolution part, five
judges, who are also authors of this paper, independently went
through the whole set of 2,545 automatically resolved clone
pairs to look for possible false positives. The judges were also
asked to report the time they took to complete each round of
experiment. In total, it took around 58 person hours to complete
all 80 experiments (16 rounds per each judge).

The results of this experiment are shown in Table VI. The
first column shows the name of the tool. The next three
columns denote, respectively, the number of Type I, Type II,
and Type III candidate pairs that were automatically resolved
by InspectorClone. The fifth column shows the number of
candidate pairs that could not be automatically classified, and
needed manual validation by humans (out of the sample of
400). The sixth column (FP) contains the number of false
positives (after considering majority vote) observed by human
judges in the automatically resolved pairs. And finally, the



Listing 5: Example Candidate Pair from Oreo
1 public static <T> T readStreamAsObject(InputStream inputStream,

Class<T> type) throws ClassNotFoundException, IOException {
2 ObjectInputStream objectInputStream = null ;
3 try {
4 objectInputStream = new ObjectInputStream(inputStream) ;
5 return type . cast ( objectInputStream . readObject () ) ;
6 } finally {
7 Utility . close ( objectInputStream ) ;
8 }
9 }

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 public static <T extends Serializable > T deserialise (Class<T> class1,

File out) throws ClassNotFoundException {
12 try {
13 FileInputStream fis = new FileInputStream(out) ;
14 ObjectInputStream in = new ObjectInputStream( fis ) ;
15 Object output = in . readObject () ;
16 in . close () ;
17 return class1 . cast ( output ) ;
18 } catch (IOException ex) {
19 ex. printStackTrace () ;
20 return null ;
21 }
22 }

seventh column shows the configurations which were used to
run the tools. These configurations are based on our discussions
with their developers, and also the configurations suggested
in [22]. In the table, MIT stands for minimum tokens, MIL
stands for minimum number of lines, BIN and IA, respectively
stand for blind identifier normalization and literal abstraction
used in NiCad. Θ stands for similarity threshold (for NiCad,
it is difference threshold, and for Oreo it is Action Filter
threshold), Γ is the threshold for input partition used in Oreo.
In CCAligner’s configurations, e stands for edit distance,
and q is the window size. GT and and US stand for greedy
transformation and unicode support used in SimCad.

As the table shows, InspectorClone reduced the number of
pairs that need manual analysis for all tools except for Oreo.
On an average, there is a 39% reduction in the number of clone
pairs that are left for human judges. Most reduction is observed
for iClones (84%) and NiCad (74%), while for SimCad (4%)
and Oreo (0%), we observed little to no reductions. The
reduction for rest of the tools ranges from 28% to 47%.

To understand why InspectorClone did not help in reducing
the number of pairs for Oreo and SimCad, two judges went
through the samples of one of the two experiments conducted
for both tools. For SimCad, the judges reported 358 out of
400 pairs as false positives of the SimCad tool itself (10.5%
precision). The presence of large number of false positives in
the pairs of SimCad explains why InspectorClone did not help
much in resolving its pairs. For Oreo, the judges reported a
much higher precision of 80%, where they reported 80 out of
400 pairs as false positives of the tool. Almost all of the clone
pairs in the sample of Oreo were found to be in harder to
detect Type III categories (MT3 and WT3). An example of such
a pair is shown in Listing 5. Both methods in this example are
reading an object from an input stream, and then, they cast this
object into the type they received in their arguments. Though
they are performing similar tasks and hence, are semantically
similar, they differ significantly in their structural properties.

This qualifies such pairs to fall in harder to detect MT3/WT3
categories, making them good candidates for human inspection.

If we remove Oreo and SimCad, which are two special cases,
from the analysis, on an average, InspectorClone resolves 52%
of the clone pairs. The results demonstrate that InspectorClone
can have a key role in reducing the burden of manual effort
needed by users in precision studies.

Apart from the reduction in manual effort, the precision of the
automatic classification is of a great importance. Out of 1,432
Type I, and 466 Type II clone pairs resolved by InspectorClone,
judges found no false positives, giving InspectorClone perfect
precision scores in these categories. The judges reported some
false positives in the Type III pairs. We report the precision
for InspectorClone with following two strategies: i) Strategy-A,
when majority vote is considered (numbers in column 6 of
Table VI are based on this strategy), and ii) Strategy-B, when a
pair is considered false positive if any of the judges report it as
a false positive. In Strategy-A, one false positive was found out
of 647 Type III pairs, giving InspectorClone a precision score
of 99.8%. With this strategy, the precision of InspectorClone
for all types of pairs combined (2,545 pairs) is 99.96%. The
methods in this false positive pair are big in size ( ≈140 NOS).
Both of these methods make around 100 calls to add() method
of a list object, which results into a high match in their Action
tokens. Also, the arguments to these add() method calls in both
of these methods are String Literals, thereby increasing the
match count in the NSLTRL metric, which in turn contributes
to a high structural match, making InspectorClone resolve the
pair as a Type III clone. However, the String Literals are very
different and there exists a loop in one of the methods, which
led the judges to mark this pair as a false positive.

In Strategy-B, 11 false positives were found, giving Inspec-
torClone a precision score of 98.3% in Type III pairs. If pairs
of all types are combined, this strategy gives a precision score
of 99.57%. In their judgments of 2,545 pairs, the judges were
unanimously in agreement on 2,534 pairs, giving a conservative
estimate of inter-rater-reliability as 99.57%.

When asked about these false positives, all judges mentioned
that except for two or three pairs, all of these pairs are
borderline cases. For instance, one judge noted: "I am on
the fence about this pair". And for a different pair another
judge noted: "I hesitate if it is a clone or not". This shows
that identification of clones is a subjective task which involves
cases that are hard to judge even by humans. We note, that the
judges are well aware of the clone definition and clone types
and all of them have previously contributed to the research
involving software clones or clone detectors.

The results show that the strict thresholds used for automatic
clone validation are appropriate, if not prefect, and that we can
rely on the automatically resolved pairs with high confidence.

V. RELATED WORK

Measuring the detection capabilities of clone detection tools
is an important part of source code cloning research. This
demands the existence of labeled and standardized datasets
that can assist with this measurement. Therefore, development



of such datasets have been the focus of research throughout
the years. Unlike the vast majority of areas for which the
tasks for producing labeled datasets are accessible to a large
number of people (without any special expertise being required),
developing labeled datasets related to source code cloning
requires significant expertise in a narrow topic: programming.
For example, image or speech recognition can be done by
everyone; some examples of platforms that assist people with
these tasks are Amazon Mechanical Turk, or the population of
College students. However, such platforms cannot be used in
preparation of source code cloning datasets due to the need for
the related knowledge. For this reason, researchers have tried
to build such labeled datasets in other ways. Most of these
works have been successful in estimating the recall since recall
estimation does not require the comprehensive labeling of all
pairs, which is needed in measuring the precision. Here, we
briefly discuss a set of these efforts.

BigCloneBench (BCB) dataset [19], [22] is probably the
most related work to ours. We have also used it in the
evaluation of our approach with InspectorClone. The underlying
corpus of Java source code used by BCB is IJaDataset-2.03.
This dataset represents a large inter-project Java repository
containing 25,000 open source projects, with 2.3 million source
files and 365M lines of code [22]. BCB contains a subset of
IJaDataset curated by human judgment, and it contains over
8 million known clone pairs within IJaDataset. It is the result
of using IJaDataset, selecting a series of known algorithms
(sorting algorithms is one example), and tracking possible
implementations of these across the dataset. Hence, not all
possible clone pairs are tagged in this dataset, and there exists
many pairs that are not tagged. As a result, this dataset cannot
be used to measure the precision of clone detectors, but it has
been used by BigCloneEval (BCE) [20] to estimate the recall
of clone detector tools automatically.

Another dataset is created by Bellon et al. [16]. To prepare
this dataset, Bellon manually validated 2% of the clones
reported by then (year 2002) contemporary clone detectors
for eight software systems. Svajlenko et al. [22] found that this
benchmark is not suitable for accurate evaluation of modern
clone detection tools. They attributed many of the problems in
the dataset to it being built using tools that are now outdated.
It has also been found to have other problems as we see next.

Murakami et al.’s dataset [17] is an improvement on the
Bellon et al.’s dataset. Murakami et al. found out that since
Bellon dataset does not contain locational information of gaped
lines (i.e. lines that are present in a pair but missing in the
other), it has not evaluated some Type III clones correctly.
Hence, they added this information and improved the dataset
with this respect.

Another effort has been made in SOCO 2014 [18]. SOCO
was a challenge defined for detection of source code pairs that
are reused. The task was carried out at document level, and
in C/C++ and Java. Two datasets were provided: train and

3Available at https://sites.google.com/site/asegsecold//projects/seclone
(March 2018).

test. Train dataset was labeled and used to train an algorithm
that can find source code pairs in which one pair is developed
reusing the other one. The test dataset was used to evaluate
the accuracy of the developed algorithm with respect to recall,
precision, and F14. SOCO contains only 259 Java files and 79
C files, and these examples do not represent realistic software
projects (the origin of the source code is unclear).

VI. THREATS TO VALIDITY AND LIMITATIONS

The measurement accuracy of our approach, and its reduction
in manual effort was performed manually and independently by
five expert judges over a large sample of clone pairs detected
by seven different clone detection tools. However, these five
judges were also authors of this work and more importantly,
like any work that relies on human action, practical limitations
related to bias and cognition could have affected our analysis.
We mitigated this issue by strictly adhering to the definition
of the clone types during manual classification and also by
sharing the data for researchers to verify.

The tools used to generate clone pairs and validate our
approach can have an impact on the validation of our approach.
For example, if a tool has a tendency to detect large clones,
then the validation will be performed on the large clones too.
To compensate for this bias and to gain more confident in our
approach we evaluated it with seven different clone detectors.

Another important consideration is that our approach focuses
on Java methods and is evaluated for methods with 50 tokens
on more. It is possible to apply this methodology to other
granularities of source code and to methods smaller than 50
tokens, but doing so would require modifying the existing
components of our approach, specifically the software metrics.

We measure manual effort involved in precision studies as
the number of clone pairs that need manual inspection. The
effort, however, to inspect clone pairs of different types and
sizes varies significantly and therefore may not be linear to
the number of pairs.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a semiautomated approach and a tool,
InspectorClone, that facilitate precision studies. We evaluated
the precision of the automatic clone resolution part of this
approach on seven different clone detectors. Our experiments
show that the precision of InspectorClone is very high (>99.5%)
making it suitable for conducting precision studies. Further,
we demonstrated that the number of clone pairs resolved by
InspectorClone is significant.

InspectorClone is available to the community and it provides
a beneficial framework to access community efforts and to
contribute back to them.

As future work, we are looking at the implementation of
this approach in different programming languages, different
granularities (classes or files instead of methods for example)
and different scales (clone with less than 50 tokens).

4The F1 score is a measurement provided by the harmonic mean between
precision and recall.

https://sites.google.com/site/asegsecold//projects/seclone
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