
Measuring Discrimination to Boost Comparative
Testing for Multiple Deep Learning Models

Linghan Meng1,2, Yanhui Li1,2,∗, Lin Chen1,2, Zhi Wang1,2, Di Wu3, Yuming Zhou1,2, Baowen Xu1,2

1. State Key Laboratory for Novel Software Technology, Nanjing University, China
2. Department of Computer Science and Technology, Nanjing University, China

3. Momenta, Suzhou, China
{menglinghan,wangz}@smail.nju.edu.cn, {yanhuili, lchen, zhouyuming, bwxu}@nju.edu.cn, wudi@momenta.ai

Abstract—The boom of DL technology leads to massive DL
models built and shared, which facilitates the acquisition and
reuse of DL models. For a given task, we encounter multiple
DL models available with the same functionality, which are
considered as candidates to achieve this task. Testers are expected
to compare multiple DL models and select the more suitable ones
w.r.t. the whole testing context. Due to the limitation of labeling
effort, testers aim to select an efficient subset of samples to make
an as precise rank estimation as possible for these models.

To tackle this problem, we propose Sample Discrimination
based Selection (SDS) to select efficient samples that could
discriminate multiple models, i.e., the prediction behaviors
(right/wrong) of these samples would be helpful to indicate the
trend of model performance. To evaluate SDS, we conduct an
extensive empirical study with three widely-used image datasets
and 80 real world DL models. The experimental results show
that, compared with state-of-the-art baseline methods, SDS is an
effective and efficient sample selection method to rank multiple
DL models.

Index Terms—Testing, Deep Learning, Comparative Testing,
Discrimination

I. INTRODUCTION

Deep learning (DL) supports a general-purpose learning
procedure that discovers high-level representations of input
samples with multiple layers of abstraction based on artificial
neural networks (ANNs), which has shown significant advan-
tages in establishing intricate structures of high dimensional
data when tackling complex classification tasks [13]. Along
with increases in computation power [36] and data size [7],
DL technology achieves great success in constructing deeper
layers of more effective abstraction to enhance classification
performance, and has beaten human experts and traditional
machine-learning technology in many areas [24], including
image recognition [12], speech recognition [9], autonomous
driving [4], playing Go [29], and so on. Meanwhile, concern
about the reliability of DL models has been raised, which
calls for novel testing techniques to deal with new DL testing
scenarios and challenges.

Most current DL testing techniques try to validate the qual-
ity of DL models in two testing scenarios: debug testing and
operational testing [6], [16]. On the one hand, debug testing
considers DL testing as a technology to improve reliability by

* Yanhui Li is the corresponding and co-first author.

finding faults1 [37], where various testing criteria (e.g., Neuron
Activation Coverage [23] and Neuron Boundary Coverage
[19]) have been proposed to generate or select error-inducing
inputs which trigger faults. On the other hand, operational
testing aims to make reliability assessment for DL models in
the objective testing contexts. Li et al. proposed an effective
operational testing technique to estimate the accuracy of a
single DL model by constructing probabilistic models for the
distribution of testing contexts [16].

The boom of DL technology leads to DL models with ever-
increasing functionality scale and complexity, i.e., complex DL
models combine multi-function from multiple primitive DL
models. Exposing code and data to build models and sharing
model files (e.g., h5 files) boost the acquisition of DL models,
which drive developers to build complex models by reusing
available DL models achieving specific primitive functionality.
One statistic in the previous study [10] indicates that more
than 13.7% of complex DL models on Github reuse at least
one primitive DL model. On the positive side, this “plug-
and-play” pattern [27] has greatly facilitated the construction
and application of complex DL models. On the negative side,
for a given DL task, it is tough to select suitable models
because of the advent of numerous DL models constructed
by mass developers. These multiple models are produced by
third-part developers and are trained on samples with different
distributions. Therefore, their actual performance on the target
application domain is not guaranteed, and they are needed to
be tested.

These above points expedite the emergence of a new testing
scenario “comparative testing”, where testers may encounter
multiple DL models with the same functionality built by
different developers, all of which are considered as candidates
to accomplish a specific task, and testers are expected to
rank them to choose the more suitable models in the testing
contexts. Generally speaking, comparative testing is different
from current DL testing, i.e., debug and operational testing, in
the following two points:

• The testing object is multiple DL models instead of a
single DL model;

1The faults of DL models are usually considered as the mismatching
between the real labels and predicted labels of the input samples.

ar
X

iv
:2

10
3.

04
33

3v
2

 [
cs

.S
E

]
 9

 M
ar

 2
02

1

Developers

Model 1
github.com/utkumukan

/CNN-Model

Developers

Model 2
github.com/coreywho

/mnist-CNN

Developers

Model 3
github.com/kj7kunal

/MNIST-Keras

Developers

...
github.com/...

/...

Developers

Model n
github.com/kiranu1024

/Keras-API

Testing
Samples

Suitable
Models

Comparative Testing for Multiple DL Models

Rank
 Models

Select
samples

Testers
Testing
Context

Fig. 1. An example of comparative testing scenarios with multiple real world
DL models designed for written digit identification, all of which are trained
on MNIST [14] dataset and available on GitHub. The testers need to evaluate
and rank these DL models on the testing context.

• The testing aim is comparing performances among mul-
tiple DL models instead of improving/assessing perfor-
mances for a single DL model.

Figure 1 shows an example of comparative testing scenar-
ios considering multiple real world DL models available on
GitHub. Hypothetically, in this scenario, the target application
requires an implementation of written digit identification,
and multiple candidate DL models are found to achieve this
functionality. Testers are expected to compare the accuracy
of written digit identification among these models and choose
the more suitable ones to meet the requirements. As stated in
many previous studies [5], [16], [19], [28], sample labeling
is the bottle neck of testing resources for DL models, which
spends much manpower and is time-consuming. Due to the
limitation of labeling effort, testers can label only a very
small part from the whole testing contexts. Therefore, as
shown in Figure 1, testers are asked to execute comparative
testing by selecting and labeling a small but efficient subset of
testing samples extracted from the testing context, and ranking
multiple models based on their performance of the selected
samples.

As mentioned above, comparative testing brings out a new
problem of DL testing: given limited labeling effort, how to
select an efficient subset of samples (label and test them) to
rank multiple DL models as precise as possible? To tackle
this problem, we propose a novel algorithm named Sample
Discrimination based Selection (SDS) to measure the sample
discrimination and select samples with higher discrimination.
The main idea of our algorithm is to focus on efficient samples
that could discriminate multiple models, i.e., the prediction
behaviors (right/wrong) of these samples would be helpful to
indicate the trend of model performance. Specifically, SDS
combines two aspects of technical thoughts: majority voting
[26] in ensemble learning and item discrimination [3] in
test analysis, which are introduced to estimate the sample
discrimination with the lack of actual labels (details are in

Section III).
We evaluate our approach on three widely-used image

datasets MNIST [14], Fashion-MNIST [34], and CIFAR-
10 [22], each of which contains 10000 testing samples. To
simulate the comparative testing scenarios where multiple
DL modes are developed/submitted for the same task (e.g.,
digital identification with MNIST and clothing classification
with Fashion-MNIST), we introduce totally 80 models from
GitHub, including 28 models for MNIST, 25 for Fashion-
MNIST, and 27 for CIFAR-10. To assess the performance
of SDS, we introduce three sample selection methods as
the baselines: one state-of-the-art method from debug testing
(DeepGini at ISSTA’2020 [5]), one state-of-the-art method
from operational testing (CES at FSE’2019 [16]) and the sim-
ple random selection (SRS). The experimental results indicate
that our algorithm SDS is an effective and efficient sample
selection method for comparative testing to solve the problem
“ranking multiple DL models under limited labeling efforts”.

Our study makes the following contributions:
• Dimension. This study opens a new dimension of DL

testing “comparative testing” for DL models, which
focuses on comparing multiple DL models instead of
improving/assessing a single DL model.

• Strategy. This paper proposes a novel selection method
SDS to measure the discrimination of samples and select
samples with higher discrimination to rank multiple DL
models.

• Study. This paper contains an extensive empirical study
of 80 models with three datasets containing 10000 testing
inputs. The experimental results indicate that compared
with the baseline methods, SDS is an effective and
efficient sample selection method for comparative testing.

The rest of this paper is organized as follows. In Section II,
we introduce a motivation example to show the difference
between comparative testing and debug/operational testing. In
Section III, we present a detailed description of our algorithm
SDS. In Section IV, we present our experimental settings,
including studied datasets and models, baseline methods, re-
search questions, and so on. Section V explains experimental
results and discoveries. Section VI further discusses some
important experimental details. Sections VII and VIII are
threats to validity and related works, respectively. Section IX
presents the conclusion of our paper.

II. THE MOTIVATION EXAMPLE

As we mentioned in Section I, the aim of comparative
testing is comparing the performances of multiple models.
Here we introduce an example to show the differences between
comparative testing and debug/operational testing.

Figure 2 presents an example of comparative testing sce-
narios containing six testing samples s1, . . . , s6 and three
DL models M1,M2,M3, with the prediction results of
samples predicted by models. X/× indicates that the pre-
diction results of these models running against samples are
right/wrong (i.e., the predicted labels are identical/different
with the actual ones). By calculating the numbers of X/×,

No. Prediction results Acc
s1 s2 s3 s4 s5 s6

M1 X X X X × × 4/6
M2 X × × X × X 3/6
M3 × × X × × X 2/6

Fig. 2. An example of six testing samples with prediction results under three
DL models. Xand × show the prediction result: right and wrong.

we can obtain the accuracies of three models, i.e., 4
6 for

M1, 3
6 for M2, and 2

6 for M3, respectively. As a result,
the actual rank of accuracies (Acc()) for these models is
Acc(M1) > Acc(M2) > Acc(M3). As shown in Figure 2,
we have the following observations:

• As only six samples are considered, we can easily find
that the most efficient subset to indicate the actual rank
of these models is S∗ = {s1, s2}: M1 has two Xunder
S∗, M2 has one, and M3 has none. We can obtain the
same rank of models for the accuracies (Acc′()) w.r.t. S∗:
Acc′(M1) = 2

2 > Acc′(M2) = 1
2 > Acc′(M3) = 0

2 .
• S∗ is not the target sampling subset in operational testing,

as it assesses model performance imprecisely: the accu-
racy Acc′(M1)/Acc′M2)/Acc′(M3) under S∗ is 2

2 / 12 / 02 ,
which is much different from the actual 4

6 / 36 / 26 .
• S∗ is also not the target sampling subset in debug testing.

Debug testing would consider s5 with the highest priority,
since it triggers the mismatching behaviors of all models.

These observations indicate that the differences of aims
between comparative testing and debug/operational testing
lead to the different sampling priority. In comparative testing,
we focus on the samples that could discriminate multiple
models, e.g., s1 and s2 in Figure 2. In the next section, we will
introduce a novel algorithm to measure sample discrimination
and select samples with higher discrimination.

III. METHODOLOGY

In this section, we present the detailed description of
our approach. First, we present the studied problem. Next,
we show an algorithm named Sample Discrimination based
Selection (SDS) to measure the sample discrimination and
select samples with higher discrimination.

A. The Studied Problem

We first introduce some symbols and definitions, which are
helpful for readers to understand the rest of our paper.

Definition 1 (DL models). A DL model M is usually
regarded as an implementation of complex classification task
based on the layer structure of artificial neural networks, which
achieves a function mapping the high dimensional samples s
(e.g., a gray value matrix for figures) to labels L in a given
label set SL = {L1,L2, ...,Lc}: M(s) ∈ SL.

Definition 2 (Accuracy). A DL model M is tested under
the testing context Ct containing samples s. Let M(s) and
L(s) be the predicted label generated by M and the actual

label of s, respectively. The accuracy Acc(M, Ct) ofM w.r.t.
Ct is defined as follows:

Acc(M, Ct) =
|{s|s ∈ Ct,M(s) = L(s)}|

|Ct|
We introduce accuracy as the main indicator to measure the

performance for comparing multiple DL models, as it has been
widely used in evaluating the performance of DL models [16],
[20]. Based on above definitions and symbols, we present the
studied problem “given limited labeling effort, for multiple DL
models, tester aim to select an efficient subset of samples (label
and test them) to rank these models as precise as possible”
specifically:

Problem. M1,M2, · · · ,Mn are tested under the testing
context Ct. and all samples s in Ct are unlabeled. Given
limited labeling effort E (E � |Ct|), the task is to select
and label an efficient subset Cr (|Cr| = E) from Ct, and
employ the results (i.e., Acc(Mi, Cr)) on Cr to estimate
the rank of model performance (i.e., Acc(Mi, Ct)) on
the whole testing context Ct, with an as small rank error
as possible.

B. Sample Discrimination based Selection

As shown in the motivation example, comparative testing
need samples that could discriminate the multiple models. In
this subsection, we propose a novel algorithm named Sample
Discrimination based Selection (SDS) to measure the sample
discrimination and select samples with higher discrimination.
Generally, SDS combines two aspects of technical thoughts:
• Majority voting [26]. Majority voting is a simple weight-

ing method in ensemble learning, which selects the class
with the most votes as the final decision. As our algorithm
has the precondition that all samples are unlabeled, we
employ majority voting as a procedure to deal with the
lack of actual labels, i.e., for a given sample, we choose
the predicted label with the most models as the estimation
of the actual label.

• Item discrimination [3]. Item discrimination is an indica-
tor to describe to what extent test items can discriminate
between good and poor students, which is widely used
in test analysis2. We introduce the idea of item discrim-
ination to measure sample discrimination, i.e., estimate
discrimination by calculating the difference performance
between good and bad models under each sample.

Specifically, given multiple DL modelsM1,M2, · · · ,Mn,
the testing context Ct = {s1, s2, · · · , sm} with unlabeled
samples si, the label set SL = {L1,L2, ...,Lc}, and the
labeling effort E , SDS is composed of the following five steps,
as shown in Algorithm 1.

Step 1: Extract prediction results. We run multiple DL
models against the testing context (line 9). For model Mi

2https://www.medsci.ox.ac.uk/divisional-services/support-services-
1/learning-technologies/faqs/what-do-difficulty-correlation-discrimination-
etc-in-the-question-analysis-mean

Algorithm 1: Sample Discrimination based Selection
SDS(SM, Ct, SL)

Input: the set of DL models SM = {M1,M2, · · · ,Mn}, the
testing context Ct = {s1, s2, · · · , sm} with unlabeled
sample si, and the label set SL = {L1,L2, ...,Lc}.

Output: the subset Cr with Cr ⊂ Ct and |Cr| = E .
1 initialize Cr = ∅;
2 initialize an array Ad[1 . . .m]: Ad[i] = 0, 1 ≤ i ≤ m;
3 initialize a two dimensional (n×m) array Ap that stores the

prediction matrix of n models on m samples, i.e., Ap[i][j]
(1 ≤ i ≤ n, 1 ≤ j ≤ m) indictors that Mi predicts sj as the
label Ap[i][j], with Ap[i][j] = null;

4 initialize an array Af [1 . . . c] that stores the frequency of labels in
the prediction results with Af [k] = 0, 1 ≤ k ≤ c;

5 initialize an array Av [1 . . .m] that stores the voting labels of m
samples with Av [j] = null, 1 ≤ j ≤ m;

6 initialize an array As[1 . . . n] that stores the scores of n models
with As[m] = 0, 1 ≤ i ≤ n;

7 for i = 1 to n do // 1: Extract prediction results
8 for j = 1 to m do
9 run Mi on sj and get the prediction label Lp ∈ SL;

10 assign the prediction label to Ap[i][j]: Ap[i][j] = Lp;

11 for j = 1 to m do // 2: Vote for sample labels
12 for k = 1 to c do
13 Count the frequency of Lk in the n prediction results

Ap[:, j] of sample sj : Af [k] = freq(Lk,Ap[:, j]) ;

14 Use the majority voting results as the actual labels:
k∗ = argmax1≤k≤c{Af [k]}, Av [j] = Lk∗ ;

15 for i = 1 to n do // 3: Classify top/bottom models
16 initialize score = 0;
17 for j = 1 to m do
18 if Ap[i][j] = Av [j] then
19 score = score+ 1;

20 As[i] = score;

21 Sort n DL models in descending order by As[i];
22 Select the top and the bottom 27% models into St and Sb,

respectively;
23 for j = 1 to m do // 4: Compute sample

discrimination
24 initialize discrimination = 0;
25 for i = 1 to n do
26 if Mi ∈ St then
27 if Ap[i][j] = Av [j] then
28 discrimination = discrimination+ 1;

29 else if Mi ∈ Sb then
30 if Ap[i][j] = Av [j] then
31 discrimination = discrimination+ (−1);

32 Ad[j] = discrimination/|St|
33 Sort m samples by their discrimination Ad[j] in descending order;

// 5: select with higher discrimination
34 Select the top 25% samples into the candidate set Sc;
35 Randomly select E samples from Sc into Cr ;
36 return Cr ;

and sample sj , we record the predicted label Lp in the element
Ap[i][j] of the prediction matrix Ap (line 10).

Step 2: Vote for estimated labels. For any sample sj , we
compute the frequency of predicted labels created by multiple
models (line 13). We choose the predicted label with the max
frequency, i.e., majority voting, as the estimated label (line
14), which is the basic of the following steps.

Step 3: Classify top/bottom models. We employ the voted

labels to score the predicted results of DL models on samples
one by one, if the predicted label equals to the voted label,
we add one score for the current model (line 19). After we
go through all the samples, we obtain an estimated score for
this model. We sort n models in descending order by their
estimated score (line 21). According to the classification in
[3], we classify n models into three classes (line 22): top class
containing the top 27% models, bottom class containing the
bottom 27% models, and other class containing other models.

Step 4: Compute sample discrimination. We employ differ-
ence performance of models in top/bottom class to calculate
discrimination. Specifically, for each sample sj , the value of
discrimination is the number of models with right prediction
in top class minus the number in bottom class (line 23-31).
Intuitively, if the number in top class is much larger than the
number in bottom class, the result of this sample is more
identical with the rank, i.e., it would be helpful to estimate
the rank of model performance. Finally, we normalize and
store the sample discrimination (line 32).

Step 5: We consider the samples with higher discrimination
as the ones which are more helpful to rank multiple DL
models. To eliminate the effects of outlier samples with higher
discrimination, we introduce random selecting instead of direct
selecting from higher discrimination to lower discrimination.
Specifically, we choose 25% as the cutoff point to construct the
subset of samples with higher discrimination since quartering
is common for dataset partition in software engineering [11],
i.e., we consider the top 25% samples as the candidates (line
34) and randomly select samples from them according to the
given labeling effort (line 35).

Figure 3 shows an example of SDS running on four DL
models M1, . . . , M4 with the testing context containing four
samples s1, s2, · · · , s4, which are classified into three classes
F, N, and �. Four subfigures show the running results of the
first four steps3 of SDS, respectively, where the entries with a
gray background indicates the target information obtained in
each step. Next, we describe the subfigures one by one.

• Figure 3(a) shows that SDS constructs the 4×4 prediction
matrix, where F, N, and � are the predicted labels.

• Figure 3(b) presents that SDS employs majority voting to
obtain the estimation of actual labels. For example, for
s1, three models predict it asF, and one as �. Therefore,
SDS adds F as its estimated label.

• Figure 3(c) presents that SDS estimates the scores of
models based on estimated labels, e.g., since M3 have
three right and one wrong prediction, M3 is scored 3;
and SDS classify M1 into the top class and M2 into the
bottom class.

• Figure 3(d) shows SDS counts the number of models with
right prediction in top class minus the number in bottom
class, e.g., for s2, both M1 and M2 predict right, the
discrimination of s2 is 1 + (−1) = 0.

3As step 5 is easy to understand, we omit its running here.

Prediction SNo. s1 s2 s3 s4

M1 F N � F ?
M2 � N F F ?
M3 F N � N ?
M4 F F � F ?

L ? ? ? ?
D ? ? ? ?

(a) Extract prediction results

Prediction SNo. s1 s2 s3 s4

M1 F N � F ?
M2 � N F F ?
M3 F N � N ?
M4 F F � F ?

L F N � F
D ? ? ? ?

(b) Vote for sample labels

Prediction SNo. s1 s2 s3 s4

M1 X X X X 4:T
M2 × X × X 2:B
M3 X X X × 3
M4 X × X X 3

L F N � F
D ? ? ? ?

(c) Classify top/bottom models

Prediction SNo. s1 s2 s3 s4

M1 1 1 1 1 T
M2 - -1 - -1 B
M3 - - - - -
M4 - - - - -

L F N � F
D 1 0 1 0

(d) Compute sample discrimination

Fig. 3. An example of SDS running on four DL models M1, . . . , M4

with the testing context containing four samples (s1, s2, · · · , s4), which are
classified into three classes (F, N, and �). Due to the limited space, some
abbreviations are used in the subfigures (L: estimated label, S: score, D:
discrimination, T: top 27% class, B: bottom 27% class).

IV. EXPERIMENTAL SETUPS

In this section, we present the experimental setup to evaluate
the performance of SDS.

A. Studied Dataset and Models

We introduce three widely used datasets MNIST [14],
Fashion-MNIST [34], and CIFAR-10 [22] to conduct our
experiments. MNIST is a dataset of handwritten digit images
with 60000 training samples and 10000 testing samples. Sam-
ples in MNIST are 28× 28 pixel grayscale images to denote
handwritten digits from 0 to 9. Fashion-MNIST is similar with
MNIST, containing 60000 training samples and 10000 testing
samples which are 28× 28 pixel grayscale images to describe
ten types of clothing. CIFAR-10 contains 60000 32×32 pixel
color images (50000 for training and 10000 for testing), which
are equally distributed into 10 classes, e.g., cat, dog, ship,
and truck. In summary, each dataset supports 10000 testing
samples, which are considered as the testing context in the
following experiment.

For these three datasets, we extract a large amount of (80)
models on Github, 28 models for MNIST, 25 for Fashion-
MNIST, and 27 for CIFAR-10, respectively. To simulate the
different implements of the same tasks, we choose these DL
models with different stars (from a few to tens of thousands)
on Github, different model structures, and different accuracies.
For each model, if the model files (e.g., saved as h5 file) are
provided in the repository on GitHub, we reuse them directly;
otherwise, we employ the code and data provided to train the
studied models. Table I presents the detailed description of
these studied models with their GitHub repositories, param-
eters of model structure, and actual accuracies in the testing
context. As shown in Table I, some of studied models come

from the same repository, we put them together and provide
the minimum and maximum values of layers, parameters, and
accuracies among them.

B. Experimental Settings

This section will describe some details in the experimental
settings in the following aspects.

Sampling Size. As mentioned above, the labeling effort is
the bottle neck, i.e., tester are limited to label only the very
small percent of testing samples. Following the experiment
design in [16], we focus on results on each sample size from
35 to 180 with intervals of 5 (i.e., 35, 40, . . . , 180), which are
0.35%-1.8% samples selected from the whole testing context.

Baseline Method. Given multiple DL models, our goal is
to rank the performance of these models by selecting and
labeling a discriminative subset. It’s worth pointing out that,
as comparative testing is a new testing scenario proposed in
this paper, there are not existing baseline methods. To clarify
the performance of our method, we conduct comparative
experiments with three baselines: two state-of-the-art sample
selection methods (CES at FSE’2019 [16] and DeepGini at
ISSTA’2020 [5]) in current DL testing and random selection.
• CES: Li et al. proposed an effective method named CES

to select samples for DL testing to assess the accuracy of
the single DL model. We choose CES as a baseline as it
also aims to select representative subsets of sample and
reduce the labeling costs. Since CES runs based on the
single model, given n DL models, CES may construct n
selections of samples for n models, respectively. Here,
we introduce the best of n selections (i.e., choose the
subset that gets the highest performance of ranking) as
the result generated by CES, which is a stronger baseline
to show the advance of our method.

• DeepGini: Feng et al. proposed a technique called Deep-
Gini to help prioritize testing DL models, which mea-
sures the likelihood ξ of misclassification by calculating
the set impurity of prediction probabilities for multiple
classification. DeepGini supports a deterministic baseline
method, i.e., it sorts the test samples according to the
calculated likelihood ξ and selects the samples according
to sampling size. As SDS and CES are with randomness,
we combine random selection and DeepGini to construct
a new baseline, in which we perform random sampling in
the first 25% (the same cutoffs in SDS) samples according
to the rank of ξ. To differentiate these two baseline
methods, we call the the former deterministic DeepGini
(DDG), and the latter random DeepGini (RDG).

• SRS: Simple Random Sampling (SRS) is a basic method
for subset selection, which is used as baseline for many
studies [16]. We randomly select a subset from the testing
set and test the ranking performance of this subset.

We implement SDS and baseline methods in python 3.6.3
with the frameworks including Tensorflow 2.3.0 and Keras
2.4.3. Our experiments are performed on a Ubuntu 18.04
server with 8 GPU cores “Tesla V100 SXM2 32GB”. We pro-
vide the replication package including the detailed description

TABLE I
THE DETAILED DESCRIPTION OF THE STUDIED 80 DL MODELS, INCLUDING 28 FOR MNIST, 25 FOR FASHION-MNIST, AND 27 FOR CIFAR-10.

Dataset Model GitHub Website Model Structure Actual AccuracyNo. Layers Params

MNIST

1,2 https://github.com/Rowing0914/simple CNN mnist 8 1199882 0.9889-0.9905
3-9 https://github.com/utkumukan/CNN-Model 14 206826 0.9858-0.9916
10 https://github.com/11510880/Keras model MNIST 99.66- 31 696402 0.9912
11 https://github.com/nanguoyu/MNIST Keras CNN 12 600810 0.992
12 https://github.com/coreywho/mnist-CNN 9 79280 0.9919
13 https://github.com/kj7kunal/MNIST-Keras 20 330730 0.9925
14 https://github.com/gee842/MNIST-Models 19 327242 0.9959
15 https://github.com/Aishuvenkat09/Predictions-using-Mnist-Model 8 1199882 0.9915
16-22 https://github.com/keras-team/keras 8 151306-1199882 0.9883-0.9922
23-28 https://github.com/avicorp/AmountRecognition/ 8-9 7218-444986 0.8818-0.9853

Fashion-MNIST

1,2 https://github.com/avicorp/AmountRecognition/ 31 258826 0.9096-0.9254
3 https://github.com/fwsdonald/classification-of-Fashion-Mnist 12 329962 0.9315
4,5 https://github.com/Sukhman75/Tensorflow Keras fashion mnist 11-13 356234-1199882 0.9195-0.9335
6-20 https://github.com/zsoltzombori/keras fashion mnist tutorial 7-31 693962-258826 0.9046-0.9338
21-25 https://github.com/zk31601102/FGSM-fashion-mnist 7 931080-1256080 0.9009-0.9273

CIFAR-10

1-3 https://github.com/kiranu1024/Keras-API 18-72 274442-1250858 0.7238-0.8000
4,5 https://github.com/uchidama/CIFAR10-Prediction-In-Keras 18-72 274442-1250858 0.7747-0.8527
6-9 https://github.com/Ken-Leo/BIGBALLONcifar-10-cnn 8-65 62006-39002738 0.7149-0.7529
10,11 https://github.com/hemrajchauhan/CIFAR10 Keras 12 1250858 0.7701-0.7926
12-15 https://github.com/night18/cifar-10-AlexNet 11-13 1248554-2883178 0.7009-0.7336
16 https://github.com/sahilunagar/CIFAR-10-image-classification-using-

CNN-model-in-keras
15 2122186 0.7362

17 https://github.com/saranshmanu/CIFAR-Image-Classification 19 781992 0.7536
18,19 https://github.com/GodfatherPacino/CNN CIFAR 8-19 2915114-4210090 0.7091-0.7944
20 https://github.com/sonamtripathi/simple cnn model keras cifar10 dataset 12 1250858 0.7859
21 https://github.com/percent4/resnet 4 cifar10 72 274442 0.7622
22-27 https://github.com/BIGBALLON/cifar-10-cnn 113 470218 0.7748-0.8081

of our proposed methods SDS and source code online (see
Section X).

Repetition. As SDS and several baseline methods are with
randomness, we conduct the experiment 50 times and report
the average of calculated results.

C. Evaluation Indicators

To evaluate to what extend the estimated rank w.r.t. selected
samples are identical with the actual rank w.r.t. the whole
testing context, we introduce two indicators Spearman’s rank
correlation coefficient and Jaccard similarity coefficient.

Spearman’s rank correlation coefficient ρ is a measure of
the correlation between two variables X and Y [1], [31]. It
can be calculated by the following formula:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2

The value of ρ ranges from -1 to 1: the closer it is to 1 (-1),
the two sets of variables are positively (negatively) correlated.

Besides, we introduce Jaccard similarity coefficient [32],
[39] (denoted as Jk) to evaluate the similarity between the top-
k model sets generated by the estimated rank and actual rank.
For example, the estimated rank is M1,M3,M5, · · · , and
the actual rank is M1,M3,M2, · · · . The Jaccard similarity
coefficient between two top-3 model sets {M1,M3,M5} and
{M1,M2,M3} is calculated as:

J3 =
|{M1,M3,M5} ∩ {M1,M2,M3}|
|{M1,M3,M5} ∪ {M1,M2,M3}|

=
2

4
= 0.5

As we encounter dozens of models in the testing context (e.g.,
28 models for MNIST), we focus on k = 1, 3, 5, 10 to evaluate

the performance of our method on different cutoff points. We
take k = 10 as the representative to report the evaluation under
Jaccard similarity coefficient in the experimental results. The
other Jaccard coefficient (when k = 1, 3, 5) will be discussed
in the discussion part.

D. Analysis Method
First, we employ Wilcoxon rank sum test [2] to verify the

difference of the rank performance between our method and
the baselines. If the p-value are less than 0.05, the two sets of
data are considered significantly different.

Next, we introduce Cliff’s delta δ [25], which measures the
effect size for comparing two ordinal data lists. We judge the
difference between the two sets of data based on the range of
δ: negligible, if |δ| < 0.147; small, if 0.147 ≤ |δ| < 0.330;
medium, if 0.330 ≤ |δ| < 0.474, and large, if |δ| ≥ 0.474.

Finally, we use “W/T/L” [17], [21] to compare the results
of our approach and the baseline, where “W” means our
approach wins, “T” means the results are tie, and “L” means
our approach loses. Reaching the two standards shows that our
approach wins: (a) the p-value of Wilcoxon rank sum test is
less than 0.05 (p < 0.05), which means the results between
our approach and baseline are significantly different; (b) the
Cliff’s delta δ is larger than 0.147 (δ > 0.147), which means
the difference between the two results are positive and not
negligible. If p < 0.05 and δ < −0.147, we consider our
approach loses. Otherwise, the result of comparision is tie.

E. Research Questions
We are committed to promoting the ranking performance

of the multiple models under limited labeling effort in the

40 60 80 100 120 140 160 180

Sample Size
0.3

0.4

0.5

0.6

0.7

0.8
Sp

ea
rm

an
SRS
CES
SDS
RDG
DDG

(a) Spearman coefficient of MNIST

40 60 80 100 120 140 160 180

Sample Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ea

rm
an

SRS
CES
SDS
RDG
DDG

(b) Spearman coefficient of FASHION-MNIST

40 60 80 100 120 140 160 180

Sample Size

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an

SRS
CES
SDS
RDG
DDG

(c) Spearman coefficient of CIFAR-10

40 60 80 100 120 140 160 180

Sample Size
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ja
cc

ar
d

SRS
CES
SDS
RDG
DDG

(d) Jaccard coefficient of MNIST

40 60 80 100 120 140 160 180

Sample Size

0.2

0.3

0.4

0.5

0.6

Ja
cc

ar
d

SRS
CES
SDS
RDG
DDG

(e) Jaccard coefficient of FASHION-MNIST

40 60 80 100 120 140 160 180

Sample Size

0.2

0.3

0.4

0.5

0.6

Ja
cc

ar
d SRS

CES
SDS
RDG
DDG

(f) Jaccard coefficient of CIFAR-10

Fig. 4. The results of our approach and the four baselines for ranking model performance under Spearman coefficient and Jaccard coefficient (k = 10). In
each subfigure, the x-axis indicates the number of samples, from 35 to 180, and the y-axis represents the values of Spearman/Jaccard coefficient. These five
studied methods are denoted by lines with different colors, i.e., � for SDS, � for CES, � for DDG, � for RDG, and � for SRS.

comparative testing scenario. We propose the following two
research questions (RQs) to organize our experiments:
• RQ1 (Effectiveness): Whether our method SDS can sur-

pass the state-of-the-art methods in ranking multiple
models?

• RQ2 (Efficiency): Compared with the state-of-the-art
methods, is our method SDS efficient?

V. EXPERIMENT RESULTS
In this section, we present the results of the experiments

and answer the above two RQs.

A. RQ1: Effectiveness

Motivation and Approach. Our problem is to obtain
effective ranking results of model performance with a very
low labeling percent of testing samples for multiple models in
the testing scenario. We hope to verify whether our proposed
approach SDS is more effective than the baseline methods
with limited labelling effort. To achieve this aim, we compare
the ranking performance of SDS with the baseline methods in
three testing contexts (containing the 10000 testing samples
from MNIST, Fashion-MNIST, and CIFAR-10, respectively)
under the sampling sizes from 35 to 180 with intervals of
5 (i.e., 35, 40, . . . , 180). Specifically, we employ these five
studied methods to sample the subset under different sampling
sizes, and use the ranking result on the subset to estimate the
rank on the whole testing context. We repeat running these
methods 50 times, and report the average of calculated results.

Results. Figure 4 shows the comparison results of our ap-
proach and the four baselines for ranking model performance.
The three subgraphs in the first row show the comparison
results of Spearman coefficient ρ, and the subgraphs in the
second row present the results of Jaccard coefficient4 (J10).
In each subfigure, the x-axis indicates the number of samples,
from 35 to 180, and the y-axis represents the values of
Spearman/Jaccard coefficient. These five studied methods are
denoted by lines with different colors, i.e., � for SDS, � for
CES, � for DDG, � for RDG, and � for SRS. It can be
seen in Figure 4 that in all sub-graphs, our method SDS is
obviously better than the other baselines under all sampling
sizes from 35 to 180. Besides, our approach is very stable;
on the contrary, some baselines have a strong volatility, e.g.,
DDG has wild gyrations when measuring Jaccard coefficient
for MINIST, Fashion-MINIST, and CIFAR-10.

In order to show more details of the experiment results, we
choose six sampling points (35, 60, 90, 120, 150, and 180) as
the representatives. Table II presents the detailed results under
these six points, with the mean values of Spearman coefficient
and Jaccard coefficient of ranking multiple models obtained by
50 repetitions of running the five studied methods. The best
numbers are highlighted in bold. In Table II, if our approach
wins the baseline method (that is to say, the p value is less

4We take k = 10 as the representative to report the evaluation under Jaccard
similarity coefficient in the experimental results. The other Jaccard coefficient
(when k = 1, 3, 5) will be discussed in the discussion part.

TABLE II
THE RESULTS OF SPEARMAN CORRELATION AND JACCARD CORRELATION (J10) WITH OUR METHOD AND FOUR BASELINE METHODS.

Indicator Cutoff MNIST FASHION-MNIST CIFAR-10
SRS CES RDG DDG SDS SRS CES RDG DDG SDS SRS CES RDG DDG SDS

Spearman

35 0.563 0.593 0.541 0.603 0.635 0.298 0.336 0.233 0.051 0.578 0.533 0.562 0.179 0.393 0.790
60 0.587 0.636 0.595 0.447 0.673 0.359 0.367 0.315 0.382 0.670 0.657 0.685 0.211 0.192 0.845
90 0.628 0.671 0.630 0.405 0.708 0.386 0.452 0.368 0.335 0.743 0.711 0.738 0.226 0.061 0.872
120 0.645 0.684 0.634 0.405 0.747 0.461 0.552 0.407 0.249 0.777 0.753 0.785 0.235 -0.029 0.892
150 0.650 0.699 0.637 0.328 0.771 0.492 0.589 0.460 0.436 0.798 0.801 0.820 0.243 0.141 0.898
180 0.659 0.682 0.635 0.308 0.788 0.532 0.629 0.503 0.618 0.821 0.819 0.842 0.230 0.306 0.904
Average 0.622 0.661 0.612 0.416 0.720 0.421 0.487 0.381 0.345 0.731 0.713 0.739 0.221 0.177 0.867
W/T/L 6/0/0 3/3/0 6/0/0 6/0/0 / 6/0/0 6/0/0 6/0/0 6/0/0 / 6/0/0 6/0/0 6/0/0 6/0/0 /

Jaccard

35 0.254 0.288 0.207 0.177 0.353 0.354 0.362 0.338 0.333 0.493 0.392 0.430 0.210 0.177 0.536
60 0.317 0.347 0.221 0.177 0.413 0.401 0.420 0.346 0.333 0.536 0.467 0.490 0.264 0.333 0.568
90 0.342 0.375 0.232 0.333 0.422 0.394 0.434 0.354 0.333 0.592 0.548 0.568 0.289 0.250 0.619
120 0.372 0.406 0.248 0.333 0.462 0.435 0.468 0.397 0.177 0.617 0.554 0.608 0.328 0.177 0.631
150 0.381 0.437 0.264 0.111 0.488 0.451 0.502 0.401 0.250 0.621 0.603 0.627 0.330 0.177 0.635
180 0.394 0.459 0.262 0.111 0.481 0.473 0.534 0.424 0.429 0.631 0.628 0.654 0.324 0.333 0.656
Average 0.344 0.385 0.239 0.207 0.436 0.418 0.453 0.377 0.309 0.582 0.532 0.563 0.291 0.241 0.607
W/T/L 6/0/0 4/2/0 6/0/0 6/0/0 / 6/0/0 6/0/0 6/0/0 6/0/0 / 4/2/0 2/4/0 6/0/0 6/0/0 /

than 0.05 and the δ is greater than 0.147), then we add the
gray background to the value of the baseline method. Based
on the values of Spearman and Jaccard coefficients, we have
added two rows: “Average” to calculate the average value of
each column and “W/T/L” to record the number of times our
approach win/tie/lose other baselines.

From Table II, we have the following observations. (a) From
the average value of each point, our approach is higher than
all baselines, under both Spearman coefficient and Jaccard co-
efficient. (b) The gray background indicates that our approach
wins other baselines at the most of points. (c) The results of
W/T/L shows that our approach is not only higher than other
baselines in mean, but also significantly better.

Answer to RQ1: In ranking multiple DL models, our
approach is significantly better than all other baselines
in effectiveness.

B. RQ2: Efficiency

Motivation and Approach. In RQ1, we have observed that
our approach SDS is significantly better than other baselines
under both Spearman coefficient and Jaccard coefficient in
raking multiple DL models. The process of sample selection
may be time consuming. In this RQ, we want to check the
efficiency of our approach compared with other baselines.

Results. Table III shows the total time consumed when
running studied methods with sampling from 35 to 180. From
Table 3, we find that our approach SDS takes longer than
SRS because it contains sample sorting and operations on the
prediction matrix. The time SDS consumes is similar to the
other three baselines CES, RDG, and DDG, which is around
10,000 seconds.

Answer to RQ2: Except for SRS, our approach is similar
to other baselines in time consumption.

TABLE III
THE TIME (SECOND) CONSUMED WHEN SAMPLES ARE SELECTED BY

DIFFERENT APPROACHES.

dataset SRS CES RDG DDG SDS
MNIST 1,117 3,513 11,334 9,493 10,256

Fashion-MNIST 1,403 31,703 10,082 8,538 9,179
CIFAR-10 4,799 15,347 11,679 9,669 10,642

VI. DISCUSSION

In this section, we further discuss some parameter settings
and results in the experiments. First, we analyze the parameter
and indicator involved in the experiments. After that, we
discuss why our algorithm can effectively help multi-model
performance ranking and whether our method is effective
when the number of models is reduced.

A. The performance under other selection rates

In our experiment, the random sampling interval is set to
the top 25% as shown in Step 5 of Algorithm 1. We want
to further discuss the performance under other selection rates
by conducting experiments on five different selection rates
(i.e., random sampling of the top 15%, 20%, 25%, 30%, and
35% intervals). The results are shown in Figure 5, where
the performances of different rates are denoted by line with
different colors, i.e., � for 15%, � for 20%, � for 25%, �
for 30%, and � for 35%, respectively.

It can be seen that the performances of different selection
rates on different datasets vary a lot. Generally speaking, there
is no obvious trend in all subfigures. In addition, the 25% sam-
pling interval (the green line) we set in the experiment obtains
the best ranking performance under the most of sampling sizes
in the CIFAR-10 dataset. As quartering is common for dataset
partition in software engineering and easy to implement [11],
we still suggest applying the 25% interval in our algorithm.

B. The performance of Jaccard coefficient with k = 1, 3, 5

We employ Jaccard coefficient to measure the similarity
between the two top-k model sets generated by the selected

40 60 80 100 120 140 160 180
Sample Size

0.65

0.70

0.75

0.80

0.85

Sp
ea

rm
an

0.15
0.2
0.25
0.3
0.35

(a) Spearman of MNIST

40 60 80 100 120 140 160 180
Sample Size

0.35

0.40

0.45

0.50

0.55

Ja
cc

ar
d

0.15
0.2
0.25
0.3
0.35

(b) Jaccard of MNIST

40 60 80 100 120 140 160 180
Sample Size

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Sp
ea

rm
an

0.15
0.2
0.25
0.3
0.35

(c) Spearman of FASHION-MNIST

40 60 80 100 120 140 160 180
Sample Size

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675
Ja

cc
ar

d

0.15
0.2
0.25
0.3
0.35

(d) Jaccard of FASHION-MNIST

40 60 80 100 120 140 160 180
Sample Size

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Sp
ea

rm
an

0.15
0.2
0.25
0.3
0.35

(e) Spearman of CIFAR-10

40 60 80 100 120 140 160 180
Sample Size

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

Ja
cc

ar
d

0.15
0.2
0.25
0.3
0.35

(f) Jaccard of CIFAR-10

Fig. 5. The graph of ranking performance when the random selection rates
changes from top 15% - top 35%. The performances of different rates are
denoted by line with different colors, i.e., � for 15%, � for 20%, � for 25%,
� for 30%, and � for 35%.

subset and the whole testing context, respectively. In the
previous experiments, when we use the Jaccard coefficient,
we calculate it with k = 10. In this section, we will discuss
whether our method has advantages when the values of k are
different, i.e., k = 1, 3, 5. Due to space limitation, we cannot
display all the 3×3 (the former 3 for the three datasets and the
latter 3 for k = 1, 3, 5) subgraphs, we calculate the average of
the three datasets in three subgraphs for k = 1, 3, 5 in Figure 6.

As shown in Figure 6, we compare our approach SDS (the
green line) with other baselines when k = 1, 3, 5. Figure 6
shows the average values of the Jaccard coefficient of the three
datasets when the sampling changes. It can be seen that our
approach still has advantages under the most of points, which
shows that our approach is still superior in ranking models
when considering k = 1, 3, 5.

C. Analysis and Insight of our algorithm

In this section we will discuss why our algorithm works. In
order to illustrate this point, we conduct a two-step analysis.
The first is to measure the precision of the majority voting.
We compare estimated labels obtained by the majority voting
with true labels. Figure 7 shows the matched rate of estimated
labels with true labels when the majority voting gets different

40 60 80 100 120 140 160 180
Sample Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ja
cc

ar
d

SRS
CES
SDS
RDG
DDG

(a) Jaccard coefficient J1 (k = 1)

40 60 80 100 120 140 160 180
Sample Size

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ja
cc

ar
d

SRS
CES
SDS
RDG
DDG

(b) Jaccard coefficient J3 (k = 3)

40 60 80 100 120 140 160 180
Sample Size

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ja
cc

ar
d

SRS
CES
SDS
RDG
DDG

(c) Jaccard coefficient J5 (k = 5)

Fig. 6. The graphs for k = 1, 3, 5 in measuring Jaccard coefficient with
the top-k model sets generated by the selected subset and the whole testing
context.

10 15 20 25
Votes

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
ed

 R
at

e

(a) MNIST

10 15 20 25
Votes

0.0

0.2

0.4

0.6

0.8

1.0

(b) Fashion-MNIST

5 10 15 20 25
Votes

0.0

0.2

0.4

0.6

0.8

1.0

(c) CIFAR-10

Fig. 7. The histogram of matched rate when the votes changes. The red line
represents the matched rate on the entire data set.

numbers of votes. It can be seen that as the number of votes
obtained increases, the matched rate also rises. In general,
the average matched rate of majority voting results with the
true labels reaches 0.9924 for MNIST, 0.9433 for Fahion-
MNIST, and 0.8613 for CIFAR10, respectively, as shown by
the red line in each subfigure. In other words, majority voting
is close to the true label, which is the key to explain why
our method is effective. This finding leads to an insight for
following studies in comparative testing: the distribution of
predicted labels would be helpful to deal with the lack of actual
labels, which is a main difficulty in actual testing scenarios due
to the limitation of labelling effort. We encourage following
researchers to employ more effective methods to measure the
distribution in comparative testing.

In the second step, we analyze whether the sample discrim-
ination is positively correlated to the ranking performance,
i.e., whether higher discrimination is more helpful for ranking
multiple DL models. We conduct an additional experiment.
After sorting the samples according to the discrimination, we
randomly select samples in the top 25%, the 25%-50%, the
50%-75%, and the 75%-100% intervals to observe the results

40 60 80 100 120 140 160 180
Sample Size

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an 0-25%

25-50%
50-75%
75-100%

(a) Spearman

40 60 80 100 120 140 160 180
Sample Size

0.2

0.3

0.4

0.5

0.6

Ja
cc

ar
d

0-25%
25-50%
50-75%
75-100%

(b) Jaccard

Fig. 8. The graph of four intervals for random sampling (the first 25%, 25%-
50%, 50%-75%, and 75%-100%) to show that the sample discrimination is
positively correlated to the ranking performance.

40 60 80 100 120 140 160 180

Sample Size
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Sp
ea

rm
an

SRS
CES
SDS

Fig. 9. Comparison result of ranking performance of SDS, SRS, and CES
when the number of models is 4.

of ranking performance. We take the averages of the three
datasets and show them in the Figure 8, the blue line represents
the random sampling in the first 25% interval, which is the
interval used in our experiment. It can be seen that the model
ranking effectiveness of random sampling in the first 25% is
significantly better than other intervals. That indicates higher
discrimination is more helpful for ranking multiple DL models.

D. The performance when there are fewer models

The previous experiment content is to calculate the ranking
performance of the SDS method when the number of models
is large (i.e., more than 20 models for a given task). In this
section, we report the performance of SDS on the model
ranking when there are few models. We have selected four
models in each data set to compare the ranking effect of SDS
and other baselines. We measure the Spearman coefficient5

value when the sample size is from 35 to 180, the experiment
was repeated 50 times, and the average results were reported.
Figure 9 shows the comparison results of SDS, SRS, and CES,
which are the best three methods when the number of models
is large. Figure 9 presents the average ranking performance
on the three data sets, where the green curve denotes the
Spearman coefficient of SDS.

We observe that SDS can still show superior performance
when there are fewer models, which obviously exceeds SRS
and CES. To some extent, the above result shows the gener-
alization of the SDS method.

5As there are only four models, Jaccard coefficient (k = 10) is not
applicable here. We focus on Spearman coefficient.

40 60 80 100 120 140 160 180

Sample Size

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Sp
ea

rm
an

SDS

Fig. 10. Comparison result of ranking performance of SDS with ranking
performance when majority voting is used as the real label.

E. The ranking performance when choosing majority voting
as true labels

An intuitive idea is to use the labels obtained by the majority
voting as the true labels to measure the accuracy of the models,
and then get the ranking performance of the models (see
line 21 of Algorithm 1). In this section, we compare this
intuitive method with the results of SDS to verify whether
the calculation after line 21 in Algorithm 1 really plays a role
in model ranking.

We show the results of the comparison in Figure 10. The
blue curve in the figure is the average result of the spearman
coefficient on the three data sets that vary with the sample
size, and the red line is the ranking result obtained by using
the majority voting results as the true labels, which is also the
average result of the three data sets.

It can be seen from Figure 10 that SDS overcomes majority
voting when the sample size is larger than 105, which is
roughly about one percent (i.e., 10000*1%=100) of the total
test set. Besides, the curve after this point still shows an
upward trend along with the increasing of sampling size. That
is to say, the calculation content after line 21 in Algorithm 1
is useful for the model ranking.

VII. THREAD TO VALIDITY

The threat to validity is discussed in the following three
aspects for our study.

First, the datasets we select may be a threat. We use three
well-known graph classification datasets, which are widely
used in many studies, but their complexity is not high. In the
future, we will explore on larger and more diverse datasets to
validate the effectiveness of our algorithm.

Second, the selection of models in the experiments could
become a threat. We try to choose a wide range of models on
GitHub, i.e., 28 models for MNIST, 25 for Fashion-MNIST,
and 27 for CIFAR-10, respectively, which include multiple DL
models with different stars (from a few to tens of thousands)
on Github, different model structures, and different accuracies.
However, these studied 80 models may not fully cover the real
situation. More models are expected in the following studies
to validate our results.

Finally, it may also be a threat to the implementation of
the models. As discussed earlier, if the trained model file is

provided in the GitHub repository, we will use it directly,
otherwise we will use the provided python code and datasets
for training. Due to the difference in the training environment,
it may cause the reproduced model to be different from
the original one. For new trained models, we compare the
accuracies announced in the GitHub repository and actual
accuracies, and find that the difference between them is slight.

VIII. RELATEDWORK

In this section, we introduce the related work. In the angel
of traditional software testing [6], on the one side, testing aims
to find more bugs, which is called debug testing; on the other
side, testing aims to make reliability assessment of software
through conditioning, which is called operational testing.

The main body of current DL testing is to focus on debug
testing, i.e., the main aim is to find bugs. Pei et al. proposed a
whitebox framework named DeepXplore, which uses neuron
coverage as the standard for DL model testing [23]. Tian et
al. implemented a tool named DeepTest to simulate the real
world to help find behaviors that may cause accidents for
DNN-driven vehicles [32]. Zhang et al. proposed unsupervised
framework for DNN named DeepRoad, and utilized GANs
and metamorphic testing to test the inconsistent behaviors
in self-driving car [37]. Xie et al. proposed a coverage-
based framework named DeepHunter which used metamorphic
mutation to help find defects for DNNs [35]. Sun et al.
presented an approach named TransRepair to help machine
translation systems test and repair inconsistency bugs [30].
Ma et al. proposed a set of testing criteria named DeepGauge
for measuring the testing adequacy of DNNs [19]. Ma et al.
proposed DeepCT, which applied the idea of combinatorial
testing to DL testing, and produced a series of combinatorial
testing criteria for DL systems [18]. Tian et al. developed a
technique called DeepInspect, which can detect the confusion
and bias errors based class for image classification [33]. Lee
et al. presented a white-box testing approach named ADAPT,
which used an adaptive neuron selection strategy to find
adversarial inputs [15].

Meanwhile, researchers have focused on the other aspects
of DL testing. Li et al. proposed an effective operational
testing technique to estimate the accuracy of the DL model by
constructing probabilistic models for the distribution of testing
contexts [16]. To evaluate the quality of test data, Ma et al.
applied the mutation framework to DL systems, and proposed
a technique named DeepMutation [20]. Zhou et al. proposed
a testing approach faced the systematic physical world called
DeepBillboard, which is aimed to generate adversarial test
more robust [38]. Gerasimou et al. proposed a systematic
testing approach named DeepImportance, which is mixed with
an Importance-Driven (IDC) test adequacy criterion to support
more robust DL systems [8].

IX. CONCLUSION

The boom of DL technology leads to the reuse of DL
models, which expedites the emergence of a new testing
scenario comparative testing, where testers may encounter

multiple DL models with the same functionality as candidates
to accomplish a specific task, and testers are expected to
rank them to choose the more suitable models in the testing
contexts. Due to the limitation of labeling effort, this testing
scenario brings out a new problem of DL testing: ranking
multiple DL models under limited labeling efforts.

To tackle this problem, we propose a novel algorithm named
Sample Discrimination based Selection (SDS) to measure
the sample discrimination and select samples with higher
discrimination. We evaluate our approach on three widely-
used image datasets and 80 DL models. Our results lead us to
conclude that SDS is an effective and efficient sample selection
method for comparative testing to rank multiple DL models.

Finally, we would like to emphasize that we do not seek to
claim the advantage of our method SDS. Instead, the key mes-
sages are that (a) a new testing scenario comparative testing
is introduced by our paper, where the testing aims are much
different with the current DL testing, i.e., debug/operational
testing; (b) the new testing scenario brings out the new testing
challenge ranking multiple DL models under limited labeling
efforts; (c) our proposed method SDS leads to the insight
which would be helpful for the following researchers.

X. REPEATABILITY

We provide all datasets and code used to conduct this study
at https://github.com/Testing-Multiple-DL-Models/SDS.

ACKNOWLEDGEMENTS

The work is supported by National Key R&D Program
of China (Grant No. 2018YFB1003901) and the National
Natural Science Foundation of China (Grant No. 61872177,
61832009, 61772259, 61772263, and 61932012). We thank
the anonymous referees for their helpful comments on this
paper.

REFERENCES

[1] M. Beller, G. Gousios, A. Panichella, and A. Zaidman. When, how,
and why developers (do not) test in their ides. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, pages
179–190, 2015.

[2] L. D. Capitani and D. D. Martini. On stochastic orderings of the
wilcoxon rank sum test statistic with applications to reproducibility prob-
ability estimation testing. Statistics and Probability Letters, 81(8):937–
946, 2011.

[3] R. L. Ebel. Procedures for the analysis of classroom tests. Educational
and Psychological Measurement, 14(2):352–364, 1954.

[4] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing with
multiscale feature learning, purity trees, and optimal covers. arXiv
preprint arXiv:1202.2160, 2012.

[5] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen. Deepgini: Prior-
itizing massive tests to enhance the robustness of deep neural networks.
In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2020, page 177–188, New York,
NY, USA, 2020. Association for Computing Machinery.

[6] Frankl, Phyllis, G., Hamlet, Richard, G., Littlewood, Bev, Strigini, and
Lorenzo. Evaluating testing methods by delivered reliability. IEEE
Transactions on Software Engineering, 1998.

[7] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 3354–3361. IEEE,
2012.

[8] S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan. Importance-driven
deep learning system testing. CoRR, abs/2002.03433, 2020.

https://github.com/Testing-Multiple-DL-Models/SDS

[9] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal processing magazine, 29(6):82–97,
2012.

[10] Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang. Model-reuse attacks on deep
learning systems. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, page 349–363,
New York, NY, USA, 2018. Association for Computing Machinery.

[11] J. Kim, R. Feldt, and S. Yoo. Guiding deep learning system testing using
surprise adequacy. In Proceedings of the 41st International Conference
on Software Engineering, ICSE ’19, pages 1039–1049, Piscataway, NJ,
USA, 2019. IEEE Press.

[12] Krizhevsky, Alex, Sutskever, Ilya, Hinton, and E. Geoffrey. Imagenet
classification with deep convolutional neural networks. Communications
of the ACM, 2017.

[13] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015.

[14] Y. LeCun and C. Cortes. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 2019. Accessed May 4, 2019.

[15] S. Lee, S. Cha, D. Lee, and H. Oh. Effective white-box testing of deep
neural networks with adaptive neuron-selection strategy. In S. Khurshid
and C. S. Pasareanu, editors, ISSTA ’20: 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Virtual Event, USA,
July 18-22, 2020, pages 165–176. ACM, 2020.

[16] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü. Boosting operational
dnn testing efficiency through conditioning. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, page 499–509, New York, NY, USA, 2019. Association for
Computing Machinery.

[17] Y. Liu, Y. Li, J. Guo, Y. Zhou, and B. Xu. Connecting software metrics
across versions to predict defects. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pages 232–243. IEEE, 2018.

[18] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao.
Deepct: Tomographic combinatorial testing for deep learning systems.
In X. Wang, D. Lo, and E. Shihab, editors, 26th IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER
2019, Hangzhou, China, February 24-27, 2019, pages 614–618. IEEE,
2019.

[19] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, J. Zhao, and Y. Wang. Deepgauge: multi-granularity testing
criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, pages 120–131, 2018.

[20] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang. Deepmutation: Mutation testing of
deep learning systems. In 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE), pages 100–111, Oct 2018.

[21] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. Heterogeneous defect
prediction. IEEE Transactions on Software Engineering, 44(9):874–896,
Sep. 2018.

[22] N.Krizhevsky, H.Vinod, C.Geoffrey, M.Papadakis, and A.Ventresque.
The cifar-10 dataset. http://www.cs.toronto.edu/∼kriz/cifar.html. Ac-
cessed May 4, 2019.

[23] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October 28-31,
2017, pages 1–18, 2017.

[24] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. Iyengar. A survey on deep learning: Algorithms,
techniques, and applications. ACM Computing Surveys (CSUR), 51(5):1–
36, 2018.

[25] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine.
Exploring methods for evaluating group differences on the nsse and
other surveys: Are the t-test and cohen’s d indices the most appropriate
choices. In In annual meeting of the Southern Association for Institu-
tional Research, 2006.

[26] O. Sagi and L. Rokach. Ensemble learning: A survey. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1249,
2018.

[27] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison. Hidden
technical debt in machine learning systems. In Advances in neural
information processing systems, pages 2503–2511, 2015.

[28] W. Shen, Y. Li, L. Chen, Y. Han, Y. Zhou, and B. Xu. Multiple-boundary
clustering and prioritization to promote neural network retraining. In
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 410–422, 2020.

[29] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[30] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang.
Automatic testing and improvement of machine translation. CoRR,
abs/1910.02688, 2019.

[31] P. Thongtanunam and A. E. Hassan. Review dynamics and their impact
on software quality. IEEE Transactions on Software Engineering, 2020.

[32] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. In Proceedings of the 40th
international conference on software engineering, pages 303–314, 2018.

[33] Y. Tian, Z. Zhong, V. Ordonez, and B. Ray. Testing deep neural network
based image classifiers. CoRR, abs/1905.07831, 2019.

[34] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[35] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See. Deephunter: a coverage-guided fuzz testing
framework for deep neural networks. In D. Zhang and A. Møller, editors,
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19,
2019, pages 146–157. ACM, 2019.

[36] Y. You, A. Buluç, and J. Demmel. Scaling deep learning on gpu and
knights landing clusters. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC
’17, pages 9:1–9:12, New York, NY, USA, 2017. ACM.

[37] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, pages 132–142, 2018.

[38] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu.
Deepbillboard: Systematic physical-world testing of autonomous driving
systems. CoRR, abs/1812.10812, 2018.

[39] Z. Q. Zhou, S. Xiang, and T. Y. Chen. Metamorphic testing for software
quality assessment: A study of search engines. IEEE Transactions on
Software Engineering, 42(3):264–284, 2015.

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html

	I Introduction
	II The Motivation Example
	III Methodology
	III-A The Studied Problem
	III-B Sample Discrimination based Selection

	IV EXPERIMENTAL SETUPS
	IV-A Studied Dataset and Models
	IV-B Experimental Settings
	IV-C Evaluation Indicators
	IV-D Analysis Method
	IV-E Research Questions

	V EXPERIMENT RESULTS
	V-A RQ1: Effectiveness
	V-B RQ2: Efficiency

	VI Discussion
	VI-A The performance under other selection rates
	VI-B The performance of Jaccard coefficient with k=1,3,5
	VI-C Analysis and Insight of our algorithm
	VI-D The performance when there are fewer models
	VI-E The ranking performance when choosing majority voting as true labels

	VII THREAD TO VALIDITY
	VIII RELATEDWORK
	IX CONCLUSION
	X REPEATABILITY
	References

