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Abstract—Machine translation software has seen rapid
progress in recent years due to the advancement of deep neural
networks. People routinely use machine translation software
in their daily lives for tasks such as ordering food in a
foreign restaurant, receiving medical diagnosis and treatment
from foreign doctors, and reading international political news
online. However, due to the complexity and intractability of
the underlying neural networks, modern machine translation
software is still far from robust and can produce poor or incorrect
translations; this can lead to misunderstanding, financial loss,
threats to personal safety and health, and political conflicts. To
address this problem, we introduce referentially transparent inputs
(RTIs), a simple, widely applicable methodology for validating
machine translation software. A referentially transparent input
is a piece of text that should have similar translations when
used in different contexts. Our practical implementation, Purity,
detects when this property is broken by a translation. To evaluate
RTI, we use Purity to test Google Translate and Bing Microsoft
Translator with 200 unlabeled sentences, which detected 123
and 142 erroneous translations with high precision (79.3% and
78.3%). The translation errors are diverse, including examples of
under-translation, over-translation, word/phrase mistranslation,
incorrect modification, and unclear logic.

Index Terms—Testing, Machine translation, Referential trans-
parency, Metamorphic testing.

I. INTRODUCTION

Machine translation software aims to fully automate trans-
lating text from a source language into a target language. In
recent years, the performance of machine translation software
has improved significantly largely due to the development of
neural machine translation (NMT) models [1]–[3]. In partic-
ular, machine translation software (e.g., Google Translate [4]
and Bing Microsoft Translator [5]) is approaching human-
level performance in terms of human evaluation. Consequently,
more and more people are employing machine translation in
their daily lives, for tasks such as reading news and textbooks
in foreign languages, communicating while traveling abroad,
and conducting international trade. This is reflected in the
increased use of machine translation software: in 2016, Google
Translate attracted more than 500 million users and translated
more than 100 billion words per day [6]; NMT models have
been embedded in various software applications, such as
Facebook [7] and Twitter [8].

Similar to traditional software (e.g., a Web server), ma-
chine translation software’s reliability is of great importance.

Yet, modern translation software has been shown to return
erroneous translations, leading to misunderstanding, finan-
cial loss, threats to personal safety and health, and polit-
ical conflicts [9]–[14]. This behavior can be attributed to
the brittleness of neural network-based systems, which is
exemplified in autonomous car software [15], [16], sentiment
analysis tools [17]–[19], and speech recognition services [20],
[21]. Likewise, NMT models can be fooled by adversarial
examples (e.g., perturbing characters in the source text [22]) or
natural noise (e.g., typos [23]). The inputs generated by these
approaches are mostly illegal, that is, they contain lexical (e.g.,
“bo0k”) or syntactic errors (e.g., “he home went”). However,
inputs to machine translation software are generally lexically
and syntactically correct. For example, Tencent, the company
developing WeChat, a messaging app with more than one
billion monthly active users, reported that its embedded NMT
model can return erroneous translations even when the input
is free of lexical and syntax errors [24].

There remains a dearth of automated testing solutions for
machine translation software—at least in part because the
problem is quite challenging. First, most of the existing par-
allel corpora that could be used for testing have already been
employed in the model training process. Thus, testing oracles
of high quality are lacking. Second, in contrast to traditional
software, the logic of neural machine translation software is
largely embedded in the structure and parameters of the under-
lying model. Thus, existing code-based testing techniques can-
not directly be applied to testing NMT. Third, existing testing
approaches for AI (artificial intelligence) software [15], [17]–
[19], [25] mainly target much simpler use cases (e.g., 10-class
classification) and/or with clear oracles [26], [27]. In contrast,
testing the correctness of translations is a more complex task:
source text could have multiple correct translations and the
output space is magnitudes larger. Last but not least, existing
machine translation testing techniques [28], [29] generate test
cases (i.e., synthesized sentences) by replacing one word in
a sentence via language models. Thus, their performance is
limited by the proficiency of existing language models.

We introduce RTIs (referentially transparent inputs), a novel
and general concept, as a method for validating machine
translation software. The core idea of RTI is inspired by
referential transparency [30], [31], a concept in programming
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Fig. 1. Example of a referentially transparent input pair. The underlined phrase in the left column is an RTI extracted from the sentence. The differences in
the translations are highlighted in red and their meanings are given in the right column. This RTI pair and its translations were reported by our approach as
a suspicious issue. The first translation is erroneous.

languages (specifically functional programming): a method
should always return the same value for a given argument. In
this paper, we define a referentially transparent input (RTI) as
a piece of text that should have similar translations in different
contexts. For example, “a movie based on Bad Blood” in Fig. 1
is an RTI. The key insight is to generate a pair of texts that
contain the same RTI and check whether its translations in
the pair are similar. To realize this concept, we implement
Purity, a tool that extracts phrases from arbitrary text as RTIs.
Specifically, given unlabeled text in a source language, Purity
extracts phrases via a constituency parser [32] and constructs
RTI pairs by grouping an RTI with either its containing
sentence or a containing phrase. If a large difference exists
between the translations of the same RTI, we report this
pair of texts and their translations as a suspicious issue. The
key idea of this paper is conceptually different from existing
approaches [28], [29], which replace a word (i.e., the context is
fixed) and assume that the translation should have only small
changes. In contrast, this paper assumes that the translation
of an RTI should be similar across different sentences/phrases
(i.e., the context is varied).

We apply Purity to test Google Translate [33] and Bing
Microsoft Translator [34] with 200 sentences crawled from
CNN by He et al. [28]. Purity successfully reports 154
erroneous translation pairs in Google Translate and 177 er-
roneous translation pairs in Bing Microsoft Translator with
high precision (79.3% and 78.3%), revealing 123 and 142
erroneous translations respectively.1 The translation errors
found are diverse, including under-translation, over-translation,
word/phrase mistranslation, incorrect modification, and un-
clear logic. Compared with the state-of-the-art [28], [29],
Purity can report more erroneous translations with higher
precision. Due to its conceptual difference, Purity can reveal
many erroneous translations that have not been found by
existing approaches (illustrated in Fig. 6). Additionally, Purity
spent 12.74s and 73.14s on average for Google Translate and
Bing Microsoft Translator respectively, achieving comparable
efficiency to the state-of-the-art methods. RTI’s source code
and all the erroneous translations found are released [35] for
independent validation. The source code will also be released
for reuse. The main contributions of this paper are as follows:

1One erroneous translation could appear in multiple erroneous translation
pairs (i.e., erroneous issues).

• The introduction of a novel, widely-applicable concept,
referentially transparent input (RTI), for systematic ma-
chine translation validation,

• A realization of RTI, Purity, that adopts a constituency
parser to extract phrases and a bag-of-words (BoW)
model to represent translations, and

• Empirical results demonstrating the effectiveness of RTI:
based on 200 unlabeled sentences, Purity successfully
found 123 erroneous translations in Google Translate and
142 erroneous translations in Bing Microsoft Translator
with 79.3% and 78.3% precision, respectively.

II. PRELIMINARIES

A. Referential Transparency

In the programming language field, referential transparency
refers to the ability of an expression to be replaced by its cor-
responding value in a program without changing the result of
the program [30], [31]. For example, mathematical functions
(e.g., square root function) are referentially transparent, while
a function that prints a timestamp is not.

Referential transparency has been adopted as a key feature
by functional programming because it allows the compiler to
reason about program behavior easily, which further facilitates
higher-order functions (i.e., a series of functions can be glued
together) and lazy evaluation (i.e., delay the evaluation of an
expression until its value is needed) [36]. The terminology
“referential transparency” is used in a variety of fields with
different meanings, such as logic, linguistics, mathematics, and
philosophy. Inspired by the referential transparency concept
in functional programming, a metamorphic relation can be
defined within an RTI pair.

B. Metamorphic Relation

Metamorphic relations are necessary properties of function-
alities of the software under test. In metamorphic testing [37]–
[39], the violation of a metamorphic relation will be suspicious
and indicates a potential bug. We develop a metamorphic
relation for machine translation software as follows: RTIs (e.g.,
noun phrases) should have similar translations in different
contexts. Formally, for an RTI r, assume we have two different
contexts C1 and C2 (i.e., different pieces of surrounding
words). C1(r) and C2(r), which form an RTI pair, are the
pieces of text containing r and the two contexts respectively.
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To test the translation software T , we could obtain their trans-
lations T (C1(r)) and T (C2(r)). The metamorphic relation is
defined as:

distr(T (C1(r)), T (C1(r))) ≤ d, (1)

where distr denotes the distance between the translations of
r in T (C1(r)) and in T (C2(r)); d is a threshold controlled
by the developers. In the following section, we will introduce
our approach in detail with an example (Fig. 2).

III. RTI AND Purity’S IMPLEMENTATION

This section introduces referentially transparent inputs
(RTIs) and our implementation, Purity. An RTI is defined
as a piece of text that has similar translations across texts
(e.g., sentences and phrases). Given a sentence, our approach
intends to find its RTIs—phrases in the sentence that exhibit
referential transparency—and utilize them to construct test
inputs. To realize RTI’s concept, we implement a tool called
Purity. The input of Purity is a list of unlabeled, monolingual
sentences, while its output is a list of suspicious issues. Each
issue contains two pairs of text: a base phrase (i.e., an RTI)
and its container phrase/sentence, and their translations. Note
that Purity should detect errors in the translation of either the
base or container text. Fig. 2 illustrates the process used by
Purity, which has the following four steps:

1) Identifying referentially transparent inputs. For each
sentence, we extract a list of phrases as its RTIs by
analyzing the sentence constituents.

2) Generating pairs in source language. We pair each
phrase with either a containing phrase or the original
sentence to form RTI pairs.

3) Collecting pairs in target language. We feed the RTI
pairs to the machine translation software under test and
collect their corresponding translations.

4) Detecting translation errors. In each pair, the transla-
tions of the RTI pair are compared with each other. If
there is a large difference between the translations of
the RTI, Purity reports the pair as potentially containing
translation error(s).

Algorithm 1 shows the pseudo-code of our RTI implemen-
tation, which will be explained in detail in the following
sections.

A. Identifying RTIs

In order to collect a list of RTIs, we must find pieces of text
with unique meaning, i.e. their meaning should hold across
contexts. To guarantee the lexical and syntactic correctness of
RTIs, we extract them from published text (e.g., sentences in
Web articles).

Specifically, Purity extracts noun phrases from a set of
sentences in a source language as RTIs. For example, in Fig. 2,
the phrase “chummy bilateral talks” will be extracted; this
phrase should have similar translations when used in different
sentences (e.g., “I attended chummy bilateral talks.” and “She
held chummy bilateral talks.”) For the sake of simplicity and

Algorithm 1 RTI implemented as Purity.
Require: source sents: a list of sentences in source language

d: the distance threshold
Ensure: suspicious issues: a list of suspicious pairs

1: suspicious issues← List( ) . Initialize with empty list
2: for all source sent in source sents do
3: constituency tree← PARSE(source sent)
4: head← constituency tree.head( )
5: RTI source pairs← List( )
6: RECURSIVENPFINDER(head, List( ), RTI source pairs)
7: RTI target pairs← TRANSLATE(RTI source pairs)
8: for all target pair in RTI target pairs do
9: if DISTANCE(target pair) > d then

10: Add source pair, target pair to
suspicious issues

11: return suspicious issues

12: function RECURSIVENPFINDER(node, rtis, all pairs)
13: if node is leaf then
14: return
15: if node.constituent is NP then
16: phrase← node.string
17: for all container phrase in rtis do
18: Add container phrase, phrase to all pairs

19: Add phrase to rtis

20: for all child in node.children( ) do
21: RECURSIVENPFINDER(child, rtis.copy( ), all pairs)
22: return all pairs

23: function DISTANCE(target pair)
24: rti BOW ← BAGOFWORDS(target pair[0])
25: container BOW ← BAGOFWORDS(target pair[1])
26: return |rti BOW \ container BOW |

to avoid grammatically strange phrases, we only consider noun
phrases in this paper.

We identify noun phrases using a constituency parser,
a readily available natural language processing (NLP) tool.
A constituency parser identifies the syntactic structure of a
piece of text, outputting a tree where the non-terminal nodes
are constituency relations and the terminal nodes are words
(example shown in Fig. 3). To extract all noun phrases, we
traverse the constituency parse tree and pull out all the NP
(noun phrase) relations.

Note that in general, an RTI can contain another shorter RTI.
For example, the second RTI pair in Fig. 1 contains two RTIs:
“Holmes in a movie based on Bad Blood” is the containing
RTI to “a movie based on Bad Blood” This holds true when
noun phrases are used as RTIs as well, since noun phrases can
contain other noun phrases.

Once we have obtained all the noun phrases from a sentence,
we filter out those containing more than 10 words and those
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chummy bilateral talks with Trump 
that illustrated what White House 
officials hope is a budding partnership 
between the Western hemisphere's 
two largest economies

Unlabeled text

(1) Construct RTIs

(2) Generate RTI pairs
in source language

(3) Collect pairs in target language
from machine translation software

Referentially transparent inputs
(in English)
1. chummy bilateral talks
2. White House officials
3. the Western hemisphere’s

two largest economies
…

Pairs in target language
(in Chinese)

(4) Detect translation
errors

Suspicious Issues
<1> chummy bilateral talks with Trump 

that illustrated White House officials 
hope a budding partnership between 
the Western hemisphere's two largest 
economies

与特朗普的双边会谈，说明了⽩宫
官员希望⻄半球两个最⼤经济体之
间正在萌芽的伙伴关系

chummy bilateral talks

亲切的双边会谈

Pairs in source language
(in English)
1 chummy bilateral talks … two 

largest economies 
chummy bilateral talks

2 chummy bilateral talks … two 
largest economies 
White House officials

chummy bilateral talks … two 
largest economies 
the Western hemisphere’s
two largest economies

3

1 与特朗普的双边会谈，说
明了…伙伴关系
亲切的双边会谈

2 与特朗普的 …说明了⽩宫
官员希望 …伙伴关系
⽩宫官员
与特朗普 …⻄半球两个最
⼤经济体之间 ...伙伴关系
⻄半球的两个最⼤的经济
体

3

<2>…

Target text meaning: bilateral talks with Trump illustrated that White House officials hope a budding partnership between the Western hemisphere's two largest economies

Fig. 2. Overview of our RTI implementation. We use one English phrase as input for clarity and simplicity. In the “Pairs in source language” column, the
phrases above the dashed lines are the original unlabeled text. The texts marked in blue and underlined are RTIs or the identical characters in the translations
of an RTI pair, while the texts marked in red are the characters in the translation of an RTI but not in that of its containing phrase/sentence.

RTI1: Holmes in a movie based on Bad Blood

Noun Phrase

Holmes in ona movie based

NNP

NP

NP

IN

PP

DT NN

NP

INVBN

Constituency Parse Tree

BloodBad

JJ NN

VP PP

NP

NP

non-terminal:
terminal:

constituency relations
words

RTI2: a movie based on Bad Blood

Fig. 3. A constituency parse tree example. The non-terminal nodes in bold
and red are the RTIs extracted by our approach.

containing less than 3 words2 that are not stop-words.3 This
filtering helps us concentrate on unique phrases that are more
likely to carry a single meaning and greatly reduces false
positives. The remaining noun phrases are regarded as RTIs
in Purity.

B. Generating Pairs in Source Language

Once a list of RTIs has been generated, each must be paired
with containing phrases, which will be used for referential
transparency validation (Section III-D). Specifically, each RTI

2These filter values were tuned empirically via grid search on one dataset.
In particular, we search the most suitable values in [1,20] and [2,10] with step
size one for the two filters respectively. By most suitable values, we mean the
filter values that achieve the highest ratio between the number of RTIs and
the number of noun phrases after filtering.

3A stop-word is a word that is mostly used for structure—rather than
meaning—in a sentence, such as “is”, “this”, “an.”

pair should have two different pieces of text that contain the
same phrase. To generate these pairs, we pair an RTI with the
full text in which it was found (as in Fig. 2) and with all the
containing RTIs (i.e., other containing noun phrases) from the
same sentence. For example, assume that RTI1 in Fig. 3 is an
RTI extracted from a sentence, RTI2 can be found based on
the constituency structure; note that “Holmes in a movie based
on Bad Blood” is the containing RTI to “a movie based on
Bad Blood”. Thus, 3 RTI pairs will be constructed: (1) RTI1
and the original sentence; (2) RTI2 and the original sentence;
and (3) RTI1 and RTI2.

C. Collecting Pairs in Target Language

The next step is to input RTI pairs (in the given source
language) to the machine translation software under test and
collect their translations (in any chosen target language). We
use the APIs provided by Google and Bing in our implemen-
tation, which return results identical to Google Translate and
Bing Microsoft Translator’s Web interfaces [33], [34].

D. Detecting Translation Errors

Finally, in order to detect translation errors, translated
pairs from the previous step are checked for RTI similarity.
Detecting the absensce of an RTI in a translation while
avoiding false positives is non-trivial. For example, in Fig. 2,
the RTI in the first pair is “chummy bilateral talks.” Given
the Chinese translation of the whole original sentence, it is
difficult to identify which characters refer to the RTI. Words
may be reordered while preserving the inherent meaning, so
exact matches between RTI and container translations are not
guaranteed.

NLP techniques such as word alignment [40], [41], which
maps a word/phrase in source text to a word/phrase in its
target target, could be employed for this component of the
implementation. However, performance of existing tools is
poor and runtime can be quite slow. Instead, we adopt a bag-
of-words (BoW) model, a representation that only considers
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the appearance(s) of each word in a piece of text (see Fig. 4
for example). Note that this representation is a multiset. While
the BoW model is simple, it has proven quite effective for
modeling text in many NLP tasks. For Purity, using an n-gram
representation of the target text provides similar performance.

BoW = {“we”: 1, “watched”: 1, “two”: 2, “movies”: 1,
“and”: 1, “basketball”: 1, “games”: 1}

Fig. 4. Bag-of-words representation of “we watched two movies and two
basketball games.”

Each translated pair consists of a translation of an RTI,
T (r),4 and of its container T (Ccon(r)). After obtaining
the BoWs representation of both translations (BoWr and
BoWcon), the distance distr(T (r), T (Ccon(r))) is calculated
by dist(BoWr, BoWcon) as follows:

dist(BoWr, BoWcon) = |BoWr \BoWcon| (2)

In words, this metric measures how many word occurrences
are in T (r) but not in T (Ccon(r)). For example, the distance
between “we watch two movies and two basketball games”
(T (Ccon(r))) and “two interesting books” (T (r)) is 2. If
the distance is larger than a threshold d, which is a chosen
hyperparameter, the translation pair and their source texts will
be reported by our approach as a suspicious issue, indicating
that at least one of the translations may contain errors. For
example, in the suspicious issue in Fig. 2, the distance is
2 because Chinese characters 亲切 do not appear in the
translation of the container T (Ccon(r)).5

We note that theoretically, this implementation cannot detect
over-translation errors in T (Ccon(r)) because additional word
occurrence in T (Ccon(r)) will not change the distance as
calculated in Equ. 2. However, this problem does not often
occur since the source text Ccon(r) is frequently the RTI in
another RTI pair, in which case over-translation errors can be
detected in the latter RTI pair.

IV. EVALUATION

In this section, we evaluate the performance of Purity by
applying it to Google Translate and Bing Microsoft Translator.
Specifically, this section aims at answering the following
research questions:

• RQ1: How precise is the approach at finding erroneous
issues?

• RQ2: How many erroneous translations can our approach
report?

• RQ3: What kinds of translation errors can our approach
find?

• RQ4: How efficient is the approach?

4In our implementation, the context could be an empty string. Thus,
Cempty(r) = r.

5For Chinese text, Purity regards each character as a word.

TABLE I
STATISTICS OF INPUT SENTENCES FOR EVALUATION. EACH CORPUS

CONTAINS 100 SENTENCES.

#Words/ Average

Corpus Sentence #Words/Sentence Total Distinct

Politics 4~32 19.2 1,918 933

Business 4~33 19.5 1,949 944

Words

A. Experimental Setup and Dataset

a) Experimental environments: All experiments are run
on a Linux workstation with 6 Core Intel Core i7-8700 3.2GHz
Processor, 16GB DDR4 2666MHz Memory, and GeForce
GTX 1070 GPU. The Linux workstation is running 64-
bit Ubuntu 18.04.02 with Linux kernel 4.25.0. For sentence
parsing, we use the shift-reduce parser by Zhu et al. [32],
which is implemented in Stanford’s CoreNLP library [42]. Our
experiments consider the English→Chinese language setting
because of the knowledge background of the authors.

b) Comparison: We compare Purity with two state-of-
the-art approaches: SIT [28] and TransRepair (ED) [29]. We
obtained the source code of SIT from the authors. The authors
of TransRepair could not release their source code due to
industrial confidentiality. Thus, we carefully implement their
approach following descriptions in the paper and consulting
the work’s main author for crucial implementation details.
TransRepair uses a threshold of 0.9 for the cosine distance of
word embeddings to generate word pairs. In our experiment,
we use 0.8 as the threshold because we were unable to
reproduce the quantity of word pairs that the paper reported
using 0.9. In this paper, we evaluate TransRepair-ED because
it achieves the highest precision among the four metrics
on Google Translate and better overall performance than
TransRepair-LCS for Transformers (Table 2 of [29]). In addi-
tion, we re-tune the parameters of SIT and TransRepair using
the strategies introduced in their papers. All the approaches in
this evaluation are implemented in Python and released [35].

c) Dataset: Purity tests machine translation software
with lexically- and syntactically-correct real-world sentences.
We use the dataset collected from CNN articles released
by He et al. [28]. The details of this dataset are illustrated
in Table I. This dataset contains two corpora: Politics and
Business. Sentences in the “Politics” dataset contains 4∼32
words ( the average is 19.2) and they contain 1,918 words and
933 non-repetitive words in total. We use corpora from both
categories to evaluate the performance of Purity on sentences
with different terminology.

B. Precision on Finding Erroneous Issues

Our approach automatically reports suspicious issues that
contain inconsistent translations on the same RTI. Thus, the
effectiveness of the approach lies in two aspects: (1) how
precise are the reported issues; and (2) how many erroneous
translations can Purity find? In this section, we evaluate the
precision of the reported pairs, i.e., how many of the reported
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issues contain real translation errors. Specifically, we apply
Purity to test Google Translate and Bing Microsoft Translator
using the datasets characterized by Table I. To verify the
results, two authors manually inspect all the suspicious issues
separately and then collectively decide (1) whether an issue
contains translation error(s); and (2) if yes, what kind of
translation error it contains.

1) Evaluation Metric: The output of Purity is a list of
suspicious issues, each containing (1) an RTI, r, in source
language and its translation, T (r); and (2) a piece of text
in a source language, which contains the RTI, Ccon(r), and
its translation, T (Ccon(r)). We define the precision as the
percentage of pairs that have translation error(s) in T (r)
or T (Ccon(r)). Explicitly, for a suspicious issue p, we set
error(p) to true if Tp(r) or Tp(Ccon(r)) has translation
error(s) (i.e., when the suspicious issue is an erroneous issue).
Otherwise, we set error(p) to false. Given a list of suspicious
issues, the precision is calculated by:

Precision =

∑
p∈P 1{error(p)}

|P |
, (3)

where P is the suspicious issues returned by Purity and |P |
is the number of the suspicious issues.

2) Results: The results are presented in Table II. We
observe that if the goal is to find as many issues as possible
(i.e., d = 0), Purity achieves 78%∼79.8% precision while
reporting 67∼99 erroneous issues. For example, when testing
Bing Microsoft Translator with the “Business” dataset, Purity
reports 100 suspicious issues, while 78 of them contain
translation error(s), leading to 78% precision. If we want
Purity to be more accurate, we can use a larger distance
threshold. For example, when we set the distance threshold to
5, Purity achieves 100% precision on all experimental settings.
Note the precision does not increase monotonically with the
threshold value. For “Bing-Politics,” the precision drops 1.9%
when changing the threshold value from 2 to 3. So although
the number of false positives decreases, the number of true
positives may decrease as well.

In our comparisons, we find Purity detects more erroneous
issues with higher precision compared with all the existing
approaches. To compare with SIT, we focus on the top-1
results (i.e. the translation that is most likely to contain errors)
reported by their system. In particular, the top-1 output of
SIT contains (1) the original sentence and its translation and
(2) the top-1 generated sentence and its translation. For direct
comparison, we regard the top-1 output of SIT as a suspicious
issue. TransRepair reports a list of suspicious sentence pairs
and we regard each reported pair as a suspicious issue. Equ. 3
is used to compute the precision of the compared approaches.
The results are presented in the right-most columns of Table II.

When the distance threshold is at its lowest (i.e., d = 0),
Purity finds more erroneous issues with higher precision com-
pared with SIT and TransRepair. For example, when testing
Google Translate on the “Politics” dataset, Purity finds 87
erroneous issues with 79.8% precision, while SIT only finds

34 erroneous issues with 65.3% precision. When d = 2,
Purity detects a similar number of erroneous issues to SIT
but with significantly higher precision. For example, when
testing Bing Microsoft Translator on the “Politics” dataset,
Purity finds 39 erroneous issues with 92.8% precision, while
SIT finds 36 erroneous issues with 70.5% precision.6 Although
the precision comparison is not apples-to-apples, we believe
the results have shown the superiority of Purity. As real-world
source sentences are almost unlimited, in practice, we could
set d = 2 for this language setting to obtain a decent amount
of erroneous issues with high precision.

We believe Purity achieves a much higher precision because
of the following reasons. First, existing approaches rely on
pre-trained models (i.e., BERT [43] for SIT and GloVe [44]
and spaCy [45] for TransRepair) to generate sentences pairs.
Although BERT should do well on this task, it could generate
sentences of strange semantics, leading to false positives.
Differently, Purity directly extract phrases from real-world
sentences to construct RTI pairs and thus does not have such
kind of false positives. In addition, SIT relies on dependency
parsers [46] in target sentence representation and comparison.
The dependency parser could return incorrect dependency
parse trees, leading to false positives.

Source text Target text

a lot of innovation coming from other parts 
of the world 很多来自世界其他地方的创新 (by Bing)

innovation coming from other parts of the 
world 来自世界其他地区的创新 (by Bing)

The South has emerged as a hub of new auto 
manufacturing by foreign makers thanks  to 
lower manufacturing costs and less powerful 
unions.

由于较低的制造成本和较弱的工会，南方已

成为外国制造商新汽车制造的枢纽。(by 
Google)

foreign makers thanks 外国厂商谢谢 (by Google)

He was joined by Justices Ruth Bader 
Ginsburg , Elena Kagan and Sonia 
Sotomayor.

鲁思·巴德尔·金斯堡法官、埃琳娜·卡根法官
和索尼娅·索托马约尔法官也加入了他的行
列。(by Bing)

Justices Ruth Bader Ginsburg 法官露丝·巴德尔·金斯堡 (by Bing)

Fig. 5. False positive examples.

3) False Positives: False positives of Purity come from
three sources. In Fig. 5, we present false positive examples
when d = 0. First, a phrase could have multiple correct
translations. As shown in the first example, “parts” have two
correct translations (i.e., 地方 and 地区) in the context “other
parts of the word”. However, when d = 0, it will be reported.
This category accounts for most of Purity’s false positives.
To alleviate this kind of false positive, we could tune the
distance threshold d or maintain an alternative translation
dictionary. Second, the constituency parser that we use to
identify noun phrases could return a non-noun phrase. In the
second example, “foreign makers thanks” is identified as a
noun phrase, which leads to the change of phrase meaning.
In our experiments, 6 false positives are caused by incorrect

6Note the precision results are different from those reported by He et al. [28]
because Google Translate and Bing Microsoft Translator continuously update
their model.
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TABLE II
Purity’S PRECISION (# OF ERRONEOUS ISSUES/# OF SUSPICIOUS ISSUES) USING DIFFERENT THRESHOLD VALUES.

0 1 2 3 4 5

Google-Politics 79.8% (87/109) 81.9% (59/72) 94.5% (35/37) 100% (18/18) 100% (11/11) 100% (7/7) 65.3% (34/52) 64.2% (45/70)

Google-Business 78.8% (67/85) 79.3% (46/58) 100% (21/21) 100% (5/5) N.A. N.A. 64.7% (33/51) 61.1% (22/36)

Bing-Politics 78.5% (99/126) 82.9% (68/82) 92.8% (39/42) 90.9% (20/22) 100% (7/7) 100% (3/3) 70.5% (36/51) 70.5% (24/34)

Bing-Business 78.0% (78/100) 80.0% (48/60) 90.9% (20/22) 90.0% (9/10) 83.3% (5/6) 100% (3/3) 62.7% (32/51) 55.0% (22/40)

SIT TransRepair
Purity

output from the constituency parser. Third, proper names
are often transliterated and thus could have different correct
results. In the third example, the name “Ruth” has two correct
transliterations, leading to a false positive. In our experiments
1 false positive is caused by the transliteration of proper
names.

4) RTIs Extracted by Purity: We manually inspected all
the 335 RTIs found by Purity. 173 RTIs were found in the
“Politics” dataset and 162 RTIs were found in the “Business”
dataset. Among these RTIs, 319 RTIs (95.2%) should have
similar translations when they are used in different contexts.
The remaining 16 RTIs are caused by the errors from the
constituency parser. 139 out of the 200 original sentences
contain RTI(s). All the RTIs formed 620 RTI pairs.

When the distance threshold was 2, which means the
translations of the RTI could have at most two different
Chinese characters, 122 RTI pairs were reported as suspicious
issues, and the remaining 498 RTI pairs did not violate our
assumption. As indicated in Table II, 115 suspicious issues
are true positives, while 7 are false positives. The number
of reported RTI pairs under other distance thresholds can be
calculated based on the results in Table II.

C. Erroneous Translation

We have shown that Purity can report erroneous issues
with high precision, where each erroneous issue contains
at least one erroneous translation. Thus, to further evaluate
the effectiveness of Purity, in this section, we study how
may erroneous translations Purity can find. Specifically, if
an erroneous translation appears in multiple erroneous issues,
it will be counted once. Table III presents the number of
erroneous translations under the same experimental settings
as in Table II. We can observe that when d = 0, Purity
found 54∼74 erroneous translations. If we intend to have a
higher precision by setting a larger distance threshold, we will
reasonably obtain fewer erroneous translations. For example,
if we want to achieve 100% precision, we can obtain 32
erroneous translations in Google Translate (d = 3).

We further study the erroneous translations found by Purity,
SIT and TransRepair. Fig. 6 demonstrates the results via
Venn diagrams. We can observe that, 7 erroneous translations
from Google Translate and 7 erroneous translations from
Bing Microsoft Translator can be detected by all the three
approaches. These are the translations for some of the original

TABLE III
THE NUMBER OF TRANSLATIONS THAT CONTAIN ERRORS USING

DIFFERENT THRESHOLD VALUES.

0 1 2 3 4 5

Google-Politics 69 53 38 24 15 9 50 44

Google-Business 54 39 20 8 0 0 52 30

Bing-Politics 74 56 42 22 8 4 55 33

Bing-Business 68 46 20 9 6 5 48 25

Purity
SIT Trans

Repair

Google Translate

Purity

Bing Microsoft Translator

7

TransRepair

SIT

6

11

13

50

76

92

Purity

7

TransRepair

SIT

5

8

12

38

79

115

Fig. 6. Erroneous translations reported by Purity, SIT, and TransRepair.

source sentences. 207 erroneous translations are unique to
Purity while 155 erroneous translations are unique to SIT
and 88 erroneous translations are unique to TransRepair.
After inspecting all the erroneous translations, we find that
Purity is effective at reporting translation errors for phrases.
Meanwhile, the unique errors to SIT are mainly from similar
sentence of one noun or adjective difference. The unique
errors to TransRepair mainly come from similar sentences of
one number difference (e.g., “five” → “six”). Based on these
results, we believe our approach complements the state-of-the-
art approaches.

D. Types of Reported Translation Errors

Purity is capable of detecting translation errors of diverse
kinds. Specifically, in our evaluation, Purity has successfully
detected 5 kinds of translation errors: under-translation, over-
translation, word/phrase mistranslation, incorrect modification,
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TABLE IV
NUMBER OF TRANSLATIONS THAT HAVE SPECIFIC ERRORS IN EACH

CATEGORY.

Google-Politics 17 9 43 5 12

Google-Business 12 6 29 8 11

Bing-Politics 8 2 51 4 23

Bing-Business 11 5 38 6 32

Unclear
logic

Incorrect 
modification

Under 
translation

Over 
translation

Word/phrase 
mistranslation

and unclear logic. Table IV presents the number of translations
that have a specific kind of error. We can observe that
word/phrase mistranslation and unclear logic are the most
common translation errors.

To provide a glimpse of the diversity of the uncovered
errors, this section highlights examples of all the 5 kinds of er-
rors. The variety of the detected translation errors demonstrates
RTI’s (offered by Purity) efficacy and broad applicability. We
align the definition of these errors with SIT [28] because it
is the first work that found and reported these 5 kinds of
translation errors.

1) Under-translation: If some parts of the source text are
not translated in the target text, it is an under-translation
error. For example, in Fig. 7, “magnitude of” is not translated
by Google Translate. Under-translation often leads to target
sentences of different semantic meanings and the lack of
crucial information. Fig. 2 also reveals an under-translation
error. In this example, the source text emphasizes that the
bilateral talks are chummy while this key information is
missing in the target text.

Source the sorts of problems we work on and the almost anxiety provoking magnitude of 
data with which we get to work

Target 我们正在研究的各种问题以及几乎令人焦虑的数据 (by Google)

Target 
meaning

the sorts of problems we work on and the almost anxiety provoking data with 
which we get to work

Fig. 7. Example of under-translation error detected.

2) Over-translation: If some parts of the target text are not
translated from word(s) of the source text or some parts of
the source text are unnecessarily translated for multiple times,
it is an over-translation error. In Fig. 8, “was an honor” is
translated twice by Google Translate in the target text while it
only appears once in the source text, so it is an over-translation
error. Over-translation brings unnecessary information and
thus can easily cause misunderstanding.

3) Word/phrase Mistranslation: If some words or phrases
in the source text is incorrectly translated in the target text, it
is a word/phrase mistranslation error. In Fig. 9, “creating hous-
ing” is translated to “building houses” in the target text. This
error is caused by ambiguity of polysemy. The word “housing”
means “a general place for people to live in” or “a concrete
building consisting of a ground floor and upper storeys.” In this
example, the translator mistakenly thought “housing” refers to

Source
Covering a memorial service in the nation's capital and then traveling to Texas for 
another service as well as a funeral train was an honor

Target 荣幸地报道了该国首都的追悼会，然后前往得克萨斯州进行另一项服务以及

葬礼列车，这是一种荣幸 (by Google)

Target 
meaning

It was an honor  to cover a memorial service of the nation's capital and then 
traveling to Texas to conduct another service and a funeral train was an honor

Fig. 8. Example of over-translation error detected.

the later meaning, leading to the translation error. In addition to
ambiguity of polysemy, word/phrase mistranslation can be also
caused by the surrounding semantics. In the second example
of Fig. 9, “plant” is translated to “company” in the target
text. We think that in the training data of the NMT model,
“General Motors” often has the translation “General Motors
company”, which leads to a word/phrase mistranslation error
in this scenario.

Source Advertisers who are not creating housing  , employment or credit ads

Target 未制作住房，就业或信用广告的广告客户 (by Google)

Target 
meaning

Advertisers who are not building houses  , employment or credit ads

Source the General Motors plant

Target 通用汽车公司 (by Bing)

Target 
meaning

the General Motors company

Fig. 9. Examples of word/phrase mistranslation errors detected.

4) Incorrect Modification: If some modifiers modify the
wrong element, it is an incorrect modification error. In Fig. 10,
“better suited for a lot of business problems” should modify
“more specific skill sets”. However, Bing Microsoft Translator
inferred they are two separate clauses, leading to an incorrent
modification error.

Source more specific skill sets that are better suited for a lot of business problems

Target 更具体的技能集，更适合于许多业务问题 (by Bing)

Target 
meaning

more specific skill sets, better suited for a lot of business problems

Fig. 10. Example of incorrect modification error detected.

5) Unclear Logic: If all the words are correctly translated
but the logic of the target text is wrong, it is an unclear
logic error. In Fig. 11, Bing Microsoft Translator correctly
translated “approval” and “two separate occasions”. However,
Bing Microsoft Translator returned “approve two separate
occasions” instead of “approval on two separate occasions”
because the translator does not understand the logical relation
between them. Fig. 1 also demonstrates an unclear logic error.
Unclear logic errors widely exist in the translations returned by
modern machine translation software, which is to some extent
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TABLE V
RUNNING TIME OF Purity (SEC)

Google 
Politics

Google 
Business

Bing 
Politics

Bing 
Business

Initialization 0.0048 0.0042 0.0058 0.0046

RTI 
construction 0.83 0.85 0.86 0.89

Translation 11.51 12.22 72.79 71.66

Detection 0.0276 0.0263 0.0425 0.0301

Total 12.38 13.10 73.70 72.59

391.83 365.22 679.65 631.26

15.17 12.71 56.39 54.24

Pu
rit

y

SIT

TransRepair

a sign of whether the translator truely understands certain
semantic meanings.

Source approval on  two separate occasions

Target 批准两个不同的场合 (by Bing)

Target 
meaning

approve two separate occasions

Fig. 11. Example of unclear logic error detected.

E. Running Time

In this section, we study the efficiency (i.e., running time) of
Purity. Specifically, we adopt Purity to test Google Translate
and Bing Microsoft Translator with the “Politics” and the
“Business” dataset. For each experimental setting, we run
Purity 10 times and use the average time as the final result.
Table V presents the total running time of Purity as well as the
detailed running time for initialization, RTI pairs construction,
translation collection, and referential transparency violation
detection.

We can observe that Purity spent less than 15 seconds on
testing Google Translate and around 1 minute on testing Bing
Microsoft Translator. Specifically, more than 90% of the time
is used in the collection of translations via translators’ APIs .
In our implementation, we invoke the translator API once for
each piece of source text and thus the network communication
time is included. If developers intend to test their own machine
translation software with Purity, the running time of this step
will be even less.

Table V also presents the running time of SIT and Tran-
sRepair using the same experimental settings. SIT spent more
than 6 minutes to test Google Translate and around 11 minutes
to test Bing Microsoft Translator. This is mainly because
SIT translates 44,414 words for the “Politics” dataset and
41,897 words for the “Business” dataset. Meanwhile, Purity
and TransRepair require fewer translations (7,565 and 6,479
for Purity and 4,271 and 4,087 for TransRepair). Based on

these results, we conclude that Purity achieves comparable
efficiency to the state-of-the-art methods.

F. Fine-tuning with Errors Reported by Purity

The ultimate goal of testing is to improve software ro-
bustness. Thus, in this section, we study whether reported
mistranslations can act as a fine-tuning set to both improve
the robustness of NMT models and quickly fix errors found
during testing. Fine-tuning is a common practice in NMT since
the domain of the target data (i.e. data used at runtime) is often
different than that of the training data [47], [48]. To simulate
this situation, we train a transformer network with global
attention [3]—a standard architecture for NMT models—on
the WMT’18 ZH–EN (Chinese-to-English) corpus [49], which
contains ∼ 20M sentence pairs. We reverse the standard
direction of translation (i.e. to EN–ZH) for comparison with
our other experiments. We use the fairseq framework [50] to
create the model.

To test our NMT model, we crawled the 10 latest articles
under the “Entertainment” category of CNN website and
randomly extract 80 English sentences. The dataset collection
process aligns with that of the “Politics” and the “Business”
datasets [28] used in the main experiments. We run Purity
with the “Entertainment” dataset using our trained model as
the system under test; Purity successfully finds 42 erroneous
translations. We manually label them with correct translations
and fine-tune the NMT model on these 42 translation pairs
for 8 epochs—until loss on the WMT’18 validation set stops
decreasing. After this fine-tuning, 40 of the 42 sentences are
correctly translated. One of the two translations that were not
corrected can be attributed to parsing errors; while the other
(source text: “one for Best Director”) has an “ambiguous ref-
erence” issue, which essentially makes it difficult to translate
without context. Meanwhile, the BLEU score on the WMT’18
validation set stayed well within standard deviation [51]. This
demonstrates that error reported by Purity can indeed be fixed
without retraining a model from scratch – a resource and time
intensive process.

V. DISCUSSION

A. RTI for Robust Machine Translation

In this section, we discuss the utility of referential trans-
parency towards building robust machine translation software.
Compared with traditional software, the error fixing process
of machine translation software is arguably more difficult
because the logic of NMT models lies within a complex model
structure and its parameters rather than human-readable code.
Even if the computation which causes a mistranslation can
be identified, it is often not clear how to change the model
to correct the mistake without introducing new errors. While
model correction is a difficult open problem and is not the
main focus of our paper, we find it important to explain that
the translation errors found by Purity can be used to both fix
and improve machine translation software.

For online translation systems, the fastest way to fix a
mistranslation is to hard-code the translation pair. Thus, the
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translation errors found by Purity can be quickly and easily
addressed by developers to avoid mistranslations that may lead
to negative effects [9]–[14]. The more robust solution is to
incorporate the mistranslation into the training dataset. In this
case, a developer can add the source sentence of a translation
error along with its correct translation to the training set of
the neural network and retrain or fine-tune the network. While
retraining a large neural network from scratch can take days,
fine-tuning on a few hundred mistranslations takes only a few
minutes, even for the large, SOTA models. We note that this
method does not absolutely guarantee the mistranslation will
be fixed, but our experiments (Section IV-F) show it to be
quite effective in resolving errors. The developers may also
find the reported issues useful for further analysis/debugging
because it resembles debugging traditional software via input
minimization/localization. In addition, as RTI’s reported re-
sults are in pairs, they can be utilized as a dataset for future
empirical studies on translation errors.

B. Change of Language

In our implementation, Purity, we use English as the source
language and Chinese as the target language. To match our ex-
act implementation, there needs to be a constituency parser—
or data to train such a parser—available in the chosen source
language, as this is how we find RTIs. The Stanford Parser7

currently supports six languages. Alternatively, one can train a
parser following, for example, Zhu et al. [32]. Other modules
of Purity remain unchanged. Thus, in principle, it is quite easy
to re-target RTI to other languages. Note that while we expect
the RTI property to hold for most of the languages, there may
be confounding factors in the structure of a language that break
our assumptions.

VI. RELATED WORK

A. Robustness of AI Software

Recently, Artificial Intelligence (AI) software has been
adopted by many domains; this is largely due to the modelling
abilities of deep neural networks. However, these systems
can generate erroneous outputs that, e.g., lead to fatal acci-
dents [52]–[54]. To explore the robustness of AI software, a
line of research has focused on attacking different systems that
use deep neural networks, such as autonomous cars [25], [55]
and speech recognition services [20], [56]. These work aim to
fool AI software by feeding input with imperceptible perturba-
tions (i.e., adversarial examples). Meanwhile, researchers have
also designed approaches to improve AI software’s robustness,
such as robust training mechanisms [57]–[59], adversarial ex-
amples detection approaches [60], [61], and testing/debugging
techniques [15], [16], [62]–[67]. Our paper also studies the
robustness of a widely-adopted AI software, but focuses on
machine translation systems, which has not been explored by
these papers. Additionally, most of these approaches are white-
box, utilizing gradients/activation values, while our approach
is black-box, requiring no model internal details at all.

7https://nlp.stanford.edu/software/lex-parser.html#Download

B. Robustness of NLP Systems

Inspired by robustness studies in the computer vision field,
NLP (natural language processing) researchers have started
exploring attack and defense techniques for various NLP
systems. Typical examples include sentiment analysis [17]–
[19], [68], [69], textual entailment [18], and toxic content
detection [19]. However, these are all basic classification tasks
while machine translation software is more complex in terms
of both model output and network structure.

The robustness of other complex NLP systems has also
been studied in recent years. Jia and Liang [27] proposed
a robustness evaluation scheme for the Stanford Question
Answering Dataset (SQuAD), which is widely used in the
evaluation of reading comprehension systems. They found
that even the state-of-the-art system, achieving near human-
level F1-score, fails to answer questions about paragraphs
correctly when an adversarial sentence is inserted. Mudrakarta
et al. [26] also generate adversarial examples for question
answering tasks on images, tables, and passages of text. These
approaches typically perturb the system input and assume that
the output (e.g., a person name or a particular year) should
remain the same. However, the output of machine translation
(i.e., a piece of text) is more complex. In particular, one source
sentence could have multiple correct target sentences. Thus,
testing machine translation software, which is the goal of this
paper, is more difficult.

C. Robustness of Machine Translation

Recently, researchers have started to explore the robustness
of NMT models. Belinkov and Bisk [23] found that both syn-
thetic (e.g., character swaps) and natural (e.g., misspellings)
noise in source sentences could break character-based NMT
models. In contrast, our approach aims to find lexically-
and syntactically-correct source texts that lead to erroneous
output by machine translation software, which the errors
more commonly found in practice. To improve the robustness
of NMT models, various robust training mechanisms have
been studied [70], [71]. In particular, noise is added to the
input and/or the internal network embeddings during training.
Different from these approaches, we focus on testing machine
translation.

Zheng et al. [24] proposed specialized approaches to de-
tect under- and over-translation errors respectively. Different
from them, our approach aims at finding general errors in
translation. He et al. [28] and Sun et al. [29] proposed
metamorphic testing methods for general translation errors:
they compare the translations of two similar sentences (i.e.,
differed by one word) by sentence structures [28] and four
existing metrics on sub-strings [29] respectively. In addition,
Sun et al. [29] designed an automated translation error repair
mechanism. Compared with these approaches, RTI can find
more erroneous translations with higher precision and com-
parable efficiency. The translation errors reported are diverse
and distinguished from those found by existing papers [28],
[29]. Thus, we believe RTI can compliment with the state-of-
the-art approaches. Gupta et al. [72] developed a translation
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testing approach based on pathological invariance: sentences
of different meanings should not have identical translation.
We did not compare with this paper because it is based on an
orthogonal approach and we consider it as a concurrent work.

D. Metamorphic Testing

The key idea of metamorphic testing is to detect violations
of metamorphic relations across input-output pairs. Metamor-
phic testing has been widely employed to test traditional
software, such as compilers [73], [74], scientific libraries [75],
[76], and service-oriented applications [77], [78]. Because of
its effectiveness on testing “non-testable” systems, researchers
have also designed metamorphic testing techniques for a
variety of AI software. Typical examples include autonomous
cars [16], [79], statistical classifiers [80], [81], and search
engines [82]. In this paper, we introduce a novel metamorphic
testing approach for machine translation software.

VII. CONCLUSION

We have presented a general concept—referentially trans-
parent input (RTI)—for testing machine translation software.
In contrast to existing approaches, which perturb a word in
natural sentences (i.e., the context is fixed) and assume that the
translation should have only small changes, this paper assumes
the RTIs should have similar translations across different
contexts. As a result, RTI can report different translation errors
(e.g., errors in the translations of phrases) of diverse kinds and
thus complements existing approaches. The distinctive benefits
of RTI are its simplicity and wide applicability. We have used
it to test Google Translate and Bing Microsoft Translator and
found 123 and 142 erroneous translations respectively with the
state-of-the-art running time, clearly demonstrating the ability
of RTI—offered by Purity—to test machine translation soft-
ware. For future work, we will continue refining the general
approach and extend it to other RTI implementations, such as
using verb phrases as RTIs or regarding whole sentences as
RTIs, pairing them with the concatenation of a semantically-
unrelated sentence. We will also launch an extensive effort on
translation error diagnosis and automatic repair for machine
translation systems.
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