1910.05177v2 [cs.LG] 14 Jan 2021

arxXiv

IdBench: Evaluating Semantic Representations of
Identifier Names in Source Code

Yaza Wainakh
Department of Computer Science
TU Darmstadt
Darmstadt, Germany
yaza.wainakh @ gmail.com

Abstract—Identifier names convey useful information about
the intended semantics of code. Name-based program analyses
use this information, e.g., to detect bugs, to predict types,
and to improve the readability of code. At the core of name-
based analyses are semantic representations of identifiers, e.g.,
in the form of learned embeddings. The high-level goal of
such a representation is to encode whether two identifiers, e.g.,
len and size, are semantically similar. Unfortunately, it is
currently unclear to what extent semantic representations match
the semantic relatedness and similarity perceived by developers.
This paper presents IdBench, the first benchmark for evaluating
semantic representations against a ground truth created from
thousands of ratings by 500 software developers. We use IdBench
to study state-of-the-art embedding techniques proposed for
natural language, an embedding technique specifically designed
for source code, and lexical string distance functions. Our
results show that the effectiveness of semantic representations
varies significantly and that the best available embeddings
successfully represent semantic relatedness. On the downside,
no existing technique provides a satisfactory representation of
semantic similarities, among other reasons because identifiers
with opposing meanings are incorrectly considered to be similar,
which may lead to fatal mistakes, e.g., in a refactoring tool.
Studying the strengths and weaknesses of the different techniques
shows that they complement each other. As a first step toward
exploiting this complementarity, we present an ensemble model
that combines existing techniques and that clearly outperforms
the best available semantic representation.

Index Terms—source code, neural networks, embeddings, iden-
tifiers, benchmark

I. INTRODUCTION

Identifier names play an important role in writing, under-
standing, and maintaining high-quality source code [1]. Be-
cause they convey information about the meaning of variables,
functions, classes, and other program elements, developers of-
ten rely on identifiers to understand code written by themselves
and others. Beyond developers, various automated techniques
analyze, use, and improve identifier names. For example,
identifiers have been used to find programming errors [2]-
[5], to mine specifications [6], to infer types [7], [8], to
predict the name of a method [9], or to complete partial
code using a learned language model [10]. Techniques for

This work was supported by the European Research Council (ERC, grant
agreement 851895), and by the German Research Foundation within the
ConcSys and Perf4JS projects.

Moiz Rauf
Department of Computer Science
University of Stuttgart
Stuttgart, Germany
moiz.rauf @iste.uni-stuttgart.de

Michael Pradel
Department of Computer Science
University of Stuttgart
Stuttgart, Germany
michael @binaervarianz.de

improving identifier names pinpoint inappropriate names [[11]]
and suggest more suitable names [12]. The basic idea of all
these approaches is to infer the intended meaning of a piece
of code from the natural language information in identifiers,
possibly along with other information, such as the structure of
code, data flow, and control flow. We here refer to program
analyses that rely on identifier names as a primary source of
information as name-based analyses.

Most name-based analyses reason about names in one of
two ways. First, some approaches build upon string distance
functions, such as the Levenshtein distance, sometimes in
combination with algorithms for tokenizing names, e.g., based
on underscore or camel-case notation [13|]. Given a pair of
identifiers, e.g. 1len and length, a string distance function
yields a real-valued number that indicates to what extent the
character sequences in the identifiers resemble each other.
String distance functions are at the core of name-based anal-
yses to detect name-related bugs [2], [3], to predict types [7]],
to improve identifier names [14]], or to suggest appropriate
names [15]. Second, another approach, which has become
popular more recently, are neural network-learned embeddings
of identifiers. An embedding maps each identifier into a
continuous vector representation, so that similar identifiers
are mapped to similar vectors. Embeddings implicitly define
a similarity function via the cosine similarity of embedding
vectors. For example, embeddings of identifiers are at the
core of neural program analyses [16] to predict types [8], to
detect bugs [4]], to de-obfuscate code [17], to complete partial
code [10], and to map API elements across programming
languages [18].

The common aim of both string distance functions and
embeddings of identifiers is to reason about the semantics of
identifiers, and we hence call both of them semantic represen-
tations of identifiers, or short semantic representations. The
overall effectiveness of a name-based analysis relies on the as-
sumption that the underlying semantic representation encodes
some kind of semantic relationship between identifiers. For
example, two semantically similar identifiers, such as 1en and
length, should be closer to each other than two unrelated
identifiers, such as length and click.

Despite the importance of semantic representations for
name-based analyses, it is currently unclear how well existing

approaches actually represent semantic relationships. Specifi-
cally, we are interested in the following questions:

a) RQ 1: How accurately do state-of-the-art semantic
representations match the semantic relatedness of identifiers as
perceived by software developers?: “Relatedness” here means
the degree of association between two identifiers, which covers
various possible relations between them, e.g., being used in
the same application domain or being opposites of each other.
For example, top and bottom are related because they are
opposites, click and dblclick are related because they
belong to the same general concept, and getBorderWidth
and getPadding are related because they belong to the
same application domain. The relatedness of identifiers is
relevant for tools that reason about the broad meaning of code
elements, e.g., to predict the types of functions [8], [[19].

b) RQ 2: How accurately do state-of-the-art semantic
representations match the semantic similarity of identifiers as
perceived by software developers?: “Similarity” here means
the degree to which two identifiers have the same meaning, in
the sense that one could substitute the other without changing
the overall meaning [20]]. For example, length and size,
as well as username and userid, are similar to each other.
The similarity of identifiers is, e.g., relevant for name-based
bug detection tools [4]], [21]].

c) RQ 3: What are the strengths and weaknesses of the
existing semantic representations?: Better understanding why
particular techniques sometimes succeed or fail to accurately
represent identifiers will enable improving the current seman-
tic representations.

d) RQ 4: Do the existing semantic representations com-
plement each other?: If current techniques are complementary,
it may be possible to combine them in a way that outperforms
the individual techniques.

Addressing these questions relies on a way to measure
and compare the effectiveness of semantic representations of
identifiers in source code. This paper presents IdBench, the
first benchmark for this task, which is based on a dataset of
developer assessments about the relatedness and similarity of
pairs of identifiers. We gather this dataset through surveys that
show real-world identifiers and code snippets to hundreds of
developers, asking them to rate their semantic relationship.
Taking the developer assessments as a gold standard, IdBench
allows for evaluating semantic representations in a systematic
way by measuring to what extent a semantic representation
agrees with ratings given by developers. Moreover, inspecting
pairs of identifiers for which a representation strongly agrees
or disagrees with the benchmark helps understand the strengths
and weaknesses of the representation.

Applying our methodology to seven widely used semantic
representations leads to various novel insights. We find that
different techniques differ heavily in their ability to accurately
represent identifier relatedness and similarity. The best among
the studied techniques, the CBOW variant of FastText [22],
accurately represents the relatedness of identifiers (RQ 1),
but none of the available techniques accurately represents
the similarity of identifiers (RQ 2). Studying the strengths

and weaknesses of each technique (RQ 3) shows that some
embeddings are confused about identifiers with opposite mean-
ing, e.g., rows and cols, about identifiers that belong to
the same application domain but are not similar, and about
synonyms, e.g., £ile and record. Furthermore, practically
all techniques struggle with identifiers that use abbreviations,
which are very common in software. We also find that simple
string distance functions, which measure the similarity of
identifiers without any learning, are surprisingly effective, and
even outperform some learned embeddings for the similarity
task.

A close inspection of the results shows that different tech-
niques complement each other (RQ 4). To benefit from the
strengths of multiple techniques, we present a new semantic
representation that combines the available techniques into an
ensemble model based on features of identifiers, such as the
number of characters or whether an identifier contains non-
dictionary words. The ensemble model clearly outperforms
each of the existing semantic representations, improving agree-
ment with developers by 6% and 19% for relatedness and
similarity, respectively.

In summary, this paper makes the following contributions.

e A reusable benchmark. We make available a benchmark
of hundreds of pairs of identifiers, providing a way to
systematically evaluate existing and future embeddingsE]
To the best of our knowledge, this is the first benchmark
to systematically evaluate semantic representations of
identifiers.

e Novel insights. Our study reveals both strengths and
limitations of current semantic representations, along
with concrete examples to illustrate them. These insights
provide a basis for future work on better semantic repre-
sentations.

o A technique that outperforms the state-of-the-art. Com-
bining the currently available techniques based on a
few simple features yields a semantic representation that
clearly outperforms all individual techniques.

II. METHODOLOGY

To measure and compare the accuracy of semantic represen-
tations, we gather thousands of ratings from 500 developers
(Section [[I-A). Cleaning and compiling this raw dataset into a
benchmark yields several hundreds of pairs of identifiers with
gold standard similarities (Section [[I-B). We then measure
the agreement between the gold standard and state-of-the-
art semantic representations (Section , where we study
two string distance functions and five learned embeddings
(Section [[I-D). We apply our methodology to JavaScript code,
because recent work on identifier names and code embeddings
focuses on this language [4], [8], [17]], [23]], but our method-
ology can also be applied to other languages.

A. Developer Surveys

IdBench includes three benchmark tasks: A relatedness
task and two tasks to measure how well an embedding

Uhttps://github.com/sola-st/IdBench

https://github.com/sola-st/IdBench

Identifiers: radians, angle
1) How related are the identifiers?

Unrelated O O O O

2) Could one substitute the other?

O O O O O Substitutable

(a) Direct survey.

O Related

Not substitutable

Which identifier fits best into the blanks?

(O positions O indices

Opentip._ = ["top", "topRight",
"right", "bottomRight", "bottom",
"bottomLeft", "left", "topLeft"];

Opentip.position = {};

_ref = Qpentip. ;

(b) Indirect survey.

Fig. 1: Examples of the developer surveys.

reflects the similarity of identifiers: a similarity task and a
contextual similarity task. The following describes how we
gather developer assessments that provide data for these tasks.
The supplementary material provides additional examples and
details of the survey setup.

a) Direct Survey of Developer Assessments: This survey
shows two identifiers to a developer and then directly asks
how related and how similar the identifiers are. Figure
shows an example question from the survey. The developer
is shown pairs of identifiers and is then asked to rate on
a five-point Likert scale how related and how similar these
identifiers are to each other. In total, each developer is shown
18 pairs of identifiers, which we randomly sample from
a larger pool of pairs. Before showing the questions, we
provide a brief description of what the developers are supposed
to do, including an explanation of the terms “related” and
“substitutable”. The ratings gathered in the direct survey are
the basis for the relatedness task and the similarity task of
IdBench.

b) Indirect Survey of Developer Assessments: This sur-
vey asks developers to pick an identifier that best fits a given
code context, which indirectly asks about the similarity of
identifiers. The motivation is that identifier names alone may
not provide enough information to fully judge how similar they
are [20]]. For example, without any context, identifiers idx
and h1 may cause confusion for developers who are trying to
judge their similarity. The survey addresses this challenge by
showing the code context in which an identifier occurs, and by
asking the developers to decide which of two given identifiers
best fits this context. If, for a specific pair of identifiers,
the developers choose both identifiers equally often, then the
identifiers are likely to be similar to each other, since one can
substitute the other. Figure [1b| shows a question asked during

TABLE I: Occurrences of IdBench identifiers in code corpora
of different languages.

Total occurrences Occurrences of individual identifiers

Language Number Perc. ‘ Min Mean Max
JavaScript 3,697,498 12.5% 62 7,639 629,413
Python 2,279,866 14.8% 0 4710 1,367,832
Java 757,064 6.3% 0 1,564 119424

the indirect survey. As shown in the example, for code contexts
where the identifier occurs multiple times, we show multiple
blanks that all refer to the same identifier. In total, we show
15 such questions to each participant of the survey, where the
15 identifier pairs are randomly selected from the set of all
studied pairs. The ratings gathered in the indirect survey are
the basis for the contextual similarity tasks of IdBench.

c) Selection of Identifiers and Code Examples: We se-
lect identifiers and code contexts from a corpus of 50,000
JavaScript files [24]. We select 300 pairs, made out of 488
identifiers, through a combination of automated and manual
selection, aimed at a diverse set that covers different degrees
of similarity and relatedness. At first, we extract from the code
corpus all identifier names that appear more than 50 times,
including method names, variable names, property names,
and other types of identifiers. A naive approach would be
to randomly sample pairs among those identifiers. However,
this naive approach would result almost only in unrelated and
dissimilar identifier pairs. Instead, we follow a methodology
proposed for natural language [25]], which ranks all pairs based
on the cosine similarity according to a given embedding, and
then selects pairs from different ranges in the ranking. We
select pairs using two embeddings [17], [26]]. The fact that
these embeddings are later also evaluated with the benchmark
does not introduce bias because the ground truth of the
benchmark is constructed only from the human ratings, not
from the embeddings. In addition to pairs selected as suggested
in [25], we manually select some synonym pairs, which we
observed to lack otherwise, and add randomly selected pairs,
which are likely to be unrelated. The manual selection was
done before evaluating any semantic representations to avoid
biasing the benchmark.

To gather the code contexts for the indirect survey, we
search the code corpus for occurrences of the selected identi-
fiers. As the size of the context, we choose five lines, aiming
to provide sufficient context to pick the best identifier without
overwhelming the study participants with large amounts of
code. For each identifier, we randomly select five different
contexts. When showing a specific pair of identifiers to a
developer, we randomly select one of the gathered contexts
for one of the two identifiers.

Table [l shows how often the selected identifiers occur in
the JavaScript corpus. Overall, the identifiers in IdBench occur
3.7 million times, which covers 12.5% of all identifier occur-
rences. Even though this was not a criterion when selecting
the identifiers, the benchmarks covers a non-negligible portion

of real-world code. The table also shows how often individual
identifiers occur, which is 7,639 times, on average. To assess
whether IdBench could also be used for other languages, we
also measure the occurrences in Python [27] and Java code
corpora [28] with 50,000 files each. As shown in Table El,
the identifiers are also frequent in code beyond JavaScript,
with an average number of occurrences of 4,710 and 1,564 in
the Python and Java corpora, respectively. A manual analysis
shows that identifiers that occur across languages cover general
programming terminology, whereas identifiers that appears in
JavaScript only are mostly specific to the web domain, e.g.,
tag_h4 or DomRange.

To better understand whether IdBench covers identifiers
that appear in different syntactic roles, we measure for each
identifier how often it used as a function name, variable name,
or property name. We then assign each identifier to one of
these roles based on whether the majority of its occurrences
is in a specific role. The measurements show that 17% of the
identifiers are primarily function names, 18% are primarily
variables names, 34% are primarily property names, and the
rest is commonly used in multiple roles.

d) Participants: We recruit developers to participate in
the survey in several ways. About half of the participants are
volunteers recruited via personal contacts, posts in public de-
veloper forums, and a post in an internal forum within a major
software company. The other half of the participants were
recruited via Amazon Mechanical Turk, where we offered a
compensation of one US dollar for completing both surveys.
On average, participants took around 15 minutes to complete
both surveys. That is, the offered compensation matches the
average salary of software developers in some countries of the
worldE] In total, 500 developers participate in the survey. Most
participants live in North America and in India, and they have
at least five years of experience in software development.

B. Data Cleaning

Crowd-sourced surveys may contain noise, e.g., due to
lack of expertise or involvement by the participants [29]. To
address this challenge, we gather at least ten ratings per pair
of identifiers and then clean the data based on the inter-rater
agreement, which has been found effective in other crowd-
sourced surveys [30].

a) Removing Outlier Participants: As a first filter, we
remove outlier participants based on the inter-rater agreement,
which measures the degree of agreement between participants.
We use Krippendorf’s alpha coefficient, because it handles
unequal sample sizes, which fits our data, as not all participants
rate the same pairs and not all pairs have the same number of
ratings. The coefficient ranges between zero and one, where
zero represents complete disagreement and one represents
perfect agreement. For each participant, we calculate the
difference between her rating and the average of all the other
ratings for each pair. Then, we average these differences for
each rater, and discard participants with a difference above

Zhttps://www.payscale.com/research/IN/Job=Software_Developer/Salary

TABLE II: Benchmark sizes and inter-rater agreement (IRA).

Size Thresholds Task
T 6 | Relatedness Similarity ~ Contextual simil.
| Pairs IRA | Pairs IRA | Pairs
Small 0.215 04 167 0.67 167 0.62 115
Medium 0.23 0.5 247 0.61 247 0.57 145
Large 0.25 0.6 291 0.56 291 0.51 176

TABLE III: Pairs of identifiers with their gold standard simi-
larities.

Score

Identifier 1 Identifier 2 Related- Similar- Contextual

ness ity similarity
substr substring 0.94 1.00 0.89
setMinutes setSeconds 0.91 0.22 0.06
reset clear 0.90 0.89 0.94
rows columns 0.88 0.08 0.22
setInterval clearInterval 0.86 0.09 0.34
count total 0.83 0.81 0.79
item entry 0.78 0.77 0.92
miny ypos 0.68 0.37 0.02
events rchecked 0.16 0.14 0.18
re destruct 0.06 0.02 0.02

a threshold 7 (values given in Table [l). We perform this
computation both for the relatedness and similarity ratings
from the direct survey, and then remove outliers based on the
average difference across both ratings.

b) Removing Downer Participants: As a second filter,
we eliminate participants that decrease the overall inter-rater
agreement (IRA). We call such participants downers [31]],
because they bring the agreement level between all participants
down. For each participant p, we compute IRA;,, and IRA
before and after removing p from the data. If IRAg;, or IRA
increases by at least 10%, then we discard that participant’s
ratings.

¢) Removing Outlier Pairs: As a third filter, we eliminate
some pairs of identifiers used in the indirect survey. Since our
random selection of code contexts may include contexts that
are not helpful in deciding about the most suitable identifier,
the ratings for some pairs may be misleading. For example,
this is the case for code contexts that contain short and
meaningless identifiers or that mostly consist of comments
unrelated to the missing identifier. To mitigate this problem,
we remove a pair if the difference in similarity as rated in the
direct and indirect surveys exceeds some threshold 6 (values
given in Table [II).

Table |[I| shows the number of identifier pairs that remain
in the benchmark after data cleaning. For each of the three
tasks, we provide a small, medium, and large benchmark,
which differ in the thresholds used during data cleaning. The
smaller benchmarks use stricter thresholds and hence provide
higher agreements between the participants, whereas the larger
benchmarks offer more pairs. The thresholds are selected
to strike a balance between increasing the overall inter-rater

https://www.payscale.com/research/IN/Job=Software_Developer/Salary

agreement while keeping enough pairs and ratings to form a
representative benchmark.

C. Measuring Agreement with the Benchmark

Given the ground truth similarities and a semantic repre-
sentation technique, we want to measure to what extent both
agree with each other.

a) Converting Ratings to Scores: As a first step of
measuring the agreement with the benchmark, we convert
the ratings gathered for a specific pair during the developer
surveys into a similarity score in the [0, 1] range. For the direct
survey, we scale the 5-point Likert-scale ratings into the [0, 1]
range and average all ratings for a specific pair of identifiers.
For the indirect survey, we use a signal detection theory-based
approach for converting the collected ratings into numeric
values, which has been previously used to create a similarity
benchmark for natural languages [20]. This conversion yields
an unbounded distance measure d for each pair, which we
convert into a similarity score s by normalizing and inverting
the distance: s = 1 — % where ming and max, are
the minimum and maximum distances across all pairs.

b) Examples: Table|llll shows representative examples of
identifier pairs and their scores for the three benchmark tasksE]
The examples illustrate that the scores match human intuition
and that the gold standard clearly distinguishes relatedness
from similarity. Some of the highly related and highly similar
pairs, e.g., substr and substring, are lexically similar,
while others are synonyms, e.g., count and total. The
identifiers rows and columns are strongly related, but one
cannot substitute the other, and they hence have low similarity.
Similarly miny, ypos represent distinct properties of the
variable y, which is why they are related but not similar.
Finally, some pairs are either weakly or not at all related,
e.g., re and destruct.

c) Correlation with benchmark: We measure the magni-
tude of agreement of a semantic representation with IdBench
by computing Spearman’s rank correlation between the simi-
larities of pairs of identifier vectors according to the semantic
representation and our gold standard of similarity scores.

Definition 1 (Correlation with benchmark): Given n pairs
(si,g;) of similarity scores, where s; is computed by a se-
mantic representation and g; is the gold standard, let rank(s;)
and rank(g;) be the ranks of s; and g;, respectively. The cor-

relation of the semantic representation with the benchmark is

= cov(rank(si), rank(g;)) where cov and ¢ are covariance

Orank si)_o-ran:(g%) . .
and standard deviation of the rank variables, respectively.

The correlation ranges between 1 (perfect agreement) and
-1 (complete disagreement). For string distance functions, we
compute the similarity score s; = 1 — d o, for each pair
based on a normalized version d,, .., of the distance returned
by the string distance function. We use Spearman’s rank corre-
lation because directly comparing absolute similarities across
different embeddings may be misleading [32]. The reason is

3The full list of identifiers pairs is available for download as part of our
benchmark.

that, depending on how “wide” or “narrow” an embedding
space is, a cosine similarity of 0.3 may mean a rather high or
a rather low similarity. A rank-based comparison, as provided
by Spearman’s rank correlation, is more robust to different
ways of populating the embedding space with identifiers than
computing the correlation of absolute similarities.

D. Embeddings and String Distance Functions

To assess how accurately existing semantic representations
encode the relatedness and similarity of identifiers, we evaluate
seven semantic representations against IdBench: Two string
distance functions and five learned embeddings.

String distance functions use lexical similarity as a proxy
for the semantic relatedness of identifiers. We consider these
functions because they are used in name-based bug detec-
tion tools [2f, including a bug detection tool deployed at
Google [3], to improve identifier names [14], and to suggest
appropriate names [15]]. The two string distance functions we
evaluate are:

o “LV”: Levenshtein’s edit distance, which is the number of
character insertions, deletions, and substitutions required
to transform one identifier into another.

o “NW”: Needleman-Wunsch distance [33]], which gen-
eralizes the Levenshtein distance by computing global
alignments of two strings.

Learned embeddings are popular in recent name-based
analyses, e.g., for bug detection [4]], type prediction [8], and
for predicting names and types of program elements [17]. The
five learned embeddings we evaluate are:

e “w2v-cbow”: The continuous bag of words variant of
Word2vec [26], [34].

e “w2v-sg”: The skip-gram variant of Word2vec.

o “FT-cbow”: The continuous bag of words variant of
FastText [22]], a sub-word extension of Word2vec that
represents words as character n-grams.

o “FT-sg”: The skip-gram variant of FastText.

o “path-based”: An embedding technique specifically de-
signed for code, which learns from paths through a
structural, tree-based representation of code [17].

We train all embeddings on the same code corpus of 50,000
JavaScript files [24]. For each embedding, we experiment
with various hyper-parameters (e.g., dimension, number of
context words) and report results only for the best performing
modelsE] We provide all identifiers as they are to the semantic
representations, without pre-processing or tokenizing identi-
fiers. The rationale is that such pre-processing should be part
of the semantic representation. For example, the NW string
distance function aligns the characters of identifiers, and the
FastText embeddings split identifiers into character n-grams,
which may enable these techniques to reason about subtokens
of an identifier.

w

Similarity functions

(a) Relatedness.

Fig

ITI. RESULTS
A. RQ 1: Accuracy of Representing Semantic Relatedness

The following addresses the question how accurately the
studied techniques represent the relatedness of identifiers, i.e.,
the degree of association between the two identifiers. Figure 23]
shows the agreement of the evaluated semantic representations
with the small, medium, and large variants of the relatedness
benchmark in IdBench. All techniques achieve relatively high
levels of agreement, with correlations between 41% and 74%.
The neurally learned embeddings clearly outperform the string
distance-based similarity functions (41-74% vs. 46-49%),
showing that the effort of learning a semantic representation
is worthwhile. In particular, the learned embeddings match
or even slightly exceed the inter-rater agreement, which is
considered an upper bound of how strongly an embedding may
correlate with a similarity-based benchmark [31]. Comparing
different embedding techniques with each other, we find that
both FastText variants achieve higher scores than all other
embeddings. In contrast, despite using additional structural
information of source code, path-based embeddings score only
comparably to Word2vec.

A likely reason for the effectiveness of FastText is that
it generalizes across lexically similar names by computing
embeddings based on character n-grams of an identifier. E.g.,
given the identifier get Index, FastText computes its embed-
ding based on embeddings for its various characters n-grams,
such as Index and Ind, allowing the approach to generalize
across lexically similar identifiers, such as set Index or ind.

B. RQ 2: Accuracy of Representing Semantic Similarity

This research question is about the semantic similarity, i.e.,
the degree to which two identifiers have the same meaning.
Figure 2] shows how much the studied semantic representa-
tions agree with the similarity benchmark in IdBench. Overall,
the figure shows a much lower agreement with the gold
standard than for relatedness. One explanation is that encoding
semantic similarity is a harder task than encoding the less strict

“4Details on the hyperparameters and how we tuned them are available in
the supplementary material.

Similarity functions

(b) Similarity.

% BN Large benchm. W Small benchm. % BN Large benchm. W Small benchm. % BN Large benchm. W@ Small benchm.
IS Medium benchm. € Medium benchm. € Medium benchm.
ey ey <
20.8 20.8 20.8
[} [} [}
20.6 20.6 20.6
$04 $04 $04 . Il
c c c 1 [| n []
0.2 0.2 0.2
2] | | gmﬁh""hﬂﬂl EMHH"HnuHh
£ 2 2 3 3 %2 @ £8 % £ 22 8 9% 2 % £3 % £ 3 2 8 9 32 % £%3 %
o Z 8 [a8 L &% £ S Z 8 [a8 L1 ®% £ S Z 8 [a8 i ®% £
o S K ¢ & a8 3 o P L ¢ & af B o Y L 9 & a8 8
[> 2 IS [> 2 IS [> 2 IS
[T N 5] [T N o [T N o
() 2 Q 2 (@]

Similarity functions

(c) Contextual similarity.

. 2: Correlations of embeddings and string distance functions with the small, medium, and large variants of the benchmark.

concept of relatedness. Similar to relatedness, FT-cbow shows
the strongest agreement, ranging between 35% and 38%.

The results of the contextual similarity task (Figure
confirm the findings from the similarity task. All studied
techniques are less effective than for relatedness, and FT-cbow
achieves the highest agreement with IdBench.

A perhaps surprising result is that string distance functions
are roughly as effective as some of the learned embeddings
and sometimes even outperform them. The reason is that some
semantically similar identifiers are also lexically similar, e.g.,
len and length. One downside of string distance functions
is that they miss synonymous identifiers, e.g., count and
total.

C. RQ 3: Strengths and Weaknesses of Existing Techniques

To better understand the strengths and weaknesses of the
studied semantic representations, we inspect various examples
(Section [[II-CI)) and study interesting subsets of all identifier
pairs in isolation (Section [[II-C2).

1) Examples: To better understand why current embeddings
sometimes fail to accurately represent similarities, Table [[V]
shows the most similar identifiers of selected identifiers ac-
cording to the FT-cbow and path-based embeddings. The
examples illustrate two observations. First, FastText, due to
its use of n-grams [22], tends to cluster identifiers based on
lexical commonalities. While many lexically similar identifiers
are also semantically similar, e.g., substr and substring,
this approach misses other synonyms, e.g., item and entry.
Another downside is that lexical similarity may also es-
tablish wrong relationships. For example, substring and
substrCount represent different concepts, but FastText
finds them to be highly similar.

Second, in contrast to FastText, path-based embeddings
tend to cluster words based on the structural and syntactical
contexts they occur in. This approach helps the embeddings
to identify synonyms despite their lexical differences, e.g.,
count and total, or files and records. The down-
side is that it also clusters various related but not similar
identifiers, e.g., minText and maxText, or substr and
getPadding. Some of these identifiers even have opposing

TABLE IV: Top-5 most similar identifiers by the FT-cbow and path-based models.

Identifier Embedding ‘ Nearest neighbors

substr FT-cbow substring substrs subst substring1 substrCount
Path-based substring getInstanceProp getPadding getMinutes floor

item FT-cbow itemNr itemJ itemL iteml itemAt
Path-based entry child record targ nextElement

count FT-cbow countTbl countlnt countRTO countsAsNum countOne
Path-based total limit minVal exponent rate

rows FT-cbow rowOrRows rowXs rows_l rOWsAr rowIDs
Path-based cols cells columns tiles items

setInterval FT-cbow resetInterval setTimeoutInterval clearInterval getInterval retInterval
Path-based clearInterval assume alert nextTick ReactTextComponent

minText FT-cbow maxText minLengthText microsecText maxLengthText minuteText
Path-based maxText displayMsg blankText disableText emptyText

files FT-cbow filesObjs filesGen fileSets extFiles libFiles
Path-based records tasks names tiles todos

miny FT-cbow min_y minBy minx minPt min_z
Path-based minx ymin dataMax dataMin ymax

meanings, e.g., rows and cols, which can mislead code
analysis tools when reasoning about the semantics of code.
2) Interesting Subsets of All Identifier Pairs: To better Relatedness Similarity ~ Contextual similarity

understand the strengths and weaknesses of semantic repre-
sentations for specific kinds of identifiers, we analyze some
interesting subsets of all identifier pairs in more detail. We
focus on four subsets:

Abbreviations. Pairs where at least one identifier is an
abbreviation and where both identifiers refer to the same
concept, e.g., substr and substring, or cfg and
conf. Since abbreviations are commonly used for con-
cise source code, accurately reasoning about them is
important.

Opposites. Pairs where one identifier is the oppo-
site of the other identifier, e.g., xMin and xMax, or
setInstanceProp and getInstanceProp. Since
opposite identifiers often occur in similar contexts, they
may be difficult to distinguish.

Synonyms. Pairs that refer to the same concepts, e.g.,
reset and clear, or emptyText and blankText.
These identifiers often are lexically different but should
be represented in a similar way.

Added subtoken. Pairs where both identifiers are identical,
except that one adds a subtoken to the other, e.g., 1d and
sessionid, or maxLine and maxLineLength.
Tricky tokenization. Pairs where at least one of the
identifiers is composed of multiple subtokens but uses
neither camel case nor snail case to combine subtokens,
e.g., touchmove and touchend, or newtext and
content. This and the above subset are interesting be-
cause some semantic representations reason about subto-
kens of identifiers.

To extract pairs into these subsets, we inspect all 167 pairs
from the small benchmark, which yields between 7 and 22
pairs per set.

Abbrevia-
Synonyms Opposites tions

Added
subtoken

Tricky
tokenization

|
S © o
0 o u
LT

0.51
U]
st Tl
O.O'I- | | L _,IIII_
—0.51
0.51
Oo_lllllll [| I.—-, -_I—._I
—0.51
0.5 1
. [|
—-0.51
IEEREVE BZERERE 2EERESY
o953 o953 9853
t g% to3%g =g
o o o

Fig. 3: Agreement and disagreement with the benchmark for
different kinds of identifiers.

Figure [3] shows how much the different techniques agree
or disagree with the benchmark for selected subsets. As in
Figure each bar shows the Spearman rank correlation
between the predicted similarities and the ground truth. That
is, higher values are better and negative values indicate a clear
disagreement with the ground truth.

The results shows that all techniques are challenged by
abbreviations, with more than half of the correlations being
negative. The poor performance for abbreviations can be at-
tributed to the fact that fewer characters provide less informa-
tion and that there may be many variants of the same name. For
opposites and synonyms, we find that most techniques, and in
particular the learned embeddings, successfully represent the
relatedness of these identifiers. However, almost all techniques
clearly fail to capture that opposite identifiers are not similar,
as one cannot replace the other, and to capture that synonyms
are similar.

For the subtoken-related subsets, we find that most tech-
niques are challenged by pairs where one identifier adds a
subtoken to the other, in particular, when reasoning about
similarity. One explanation is that identifiers with an added
subtoken tend to be rather specialized, and hence, occur less
frequent, which gives less training data to the learning-based
techniques. When being faced with identifiers that use non-
obvious tokenization, most techniques, with the exception of
Needleman-Wunsch, perform relatively well. We attribute this
result to the fact that techniques that reason about substrings
of an identifier, such as FastText [22]], do not rely on a specific
tokenization approach, such as camel case or snail case, but
instead consider character n-grams of the given identifier.

D. RQ 4: Complementarity of Existing Techniques

Our inspection of examples and of specific subsets of
identifier pairs shows that different semantic representation
techniques work well for different kinds of identifiers. For
example, some techniques work better for abbreviations than
others. Based on this observation, we hypothesize that the
existing semantic representations complement each other. If
this hypothesis is correct, combining techniques in such a way
that the most suitable set of techniques is used for a given pair
of identifiers could represent similarities more accurately than
any of the individual techniques.

To validate this hypothesis, we present an ensemble model
that combines existing semantic representations. The key idea
is to train a model that predicts the similarity of two identifiers
based on the similarity scores provided by the existing seman-
tic representations. To this end, the approach queries each of
the seven techniques studied in this paper for a similarity score
and provides these scores to the model.

To help the model decide what representations to favor for
a given pair of identifiers, we also provide to the model a set
of features that describe some properties of identifiers. Given
two identifiers, the features we consider are:

o The length of these identifiers.

¢ The number of subtokens in each of the identifiers, based

on snail case and camel case conventions.

o The number of words among the subtokens that are not
in an English dictionary. The rationale for this feature is
to identify abbreviations, which usually are not dictionary
words.

Given the seven similarity scores and the features, we train
a model that takes the scores and features of a pair as an
input, and then that predicts a similarity score for the pair. We
train the model in a supervised way, using the ground truth
provided in IdBench as the labels for learning. We use an
off-the-shelf support vector machine model with the default
hyperparameters provided by the underlying libraryﬂ

In practice, one would train the model with all pairs in our
benchmark and then apply the trained model to new pairs. To
enable us to measure the effectiveness of the model, we here
train it with all but one pair, and then apply the trained model
to the left-out pair. We repeat this step for each pair and use
the score predicted by the model as the score of the combined
technique.

Figure [2] shows the results of the combined approach. Com-
bining different semantic representations clearly outperforms
all existing techniques. For example, for the large benchmark,
the combined approach increases the relatedness, similarity,
and contextual similarity of the best individual technique by
6%, 19%, and 5%, respectively. This result confirms our
hypothesis that the existing techniques complement each other
and shows the benefits of combining them.

IV. DISCUSSION

This section discusses some lessons learned from our study
of semantic representations, along with ideas for addressing
the current limitations in future work.

a) Neurally learned embeddings accurately represent the
relatedness of identifiers: Overall, all neural embeddings con-
sidered in our evaluation provide a high agreement with the
ground truth provided by the relatedness scores in IdBench.
This result shows that embeddings are effective at assigning
similar vector representations to identifiers that occur in the
same application domain or that are associated in some other
way.

b) No existing technique accurately represents the sim-
ilarity of identifiers: While the best available embeddings
are highly effective at representing relatedness, none of the
studied techniques reaches the same level of agreement for
similarity. In fact, even the best results in Figures [2b] and
(38%) clearly stay beyond the inter-rater agreement of our
benchmark (62%), showing a huge potential for improvement.
For many applications of embeddings of identifiers, semantic
similarity is crucial. For example, techniques that suggest
suitable variable or method names [9]], [[17] aim for the name
that is most similar, not only most related, to the concept
represented by the variable or method. Likewise, name-based
analyses for finding programming errors [4] or variable mis-
uses [21] aim at identifying situations where the developer uses
a wrong but perhaps related variable. Improving the ability of

5Class sklearn.svm.SVR from scikit-learn.

semantic representations to accurately represent the similarity
of identifiers will benefit these name-based analysis.

c) Neural embeddings generally outperform string dis-
tance functions: Our results for both relatedness and similarity
show that the best available neural embeddings outperform
classical string distance functions. For example, for the re-
latedness benchmark, the string distance functions achieve
up to 49% correlation, whereas embeddings achieve up to
74% correlation. For the similarity and contextual similarity
benchmarks, the differences are smaller (32% vs. 38% for
similarity, and 29% vs. 36% for contextual similarity), but still
clearly visible. These results suggest that name-based analyses
are likely to benefit from using embeddings instead of string
distance functions.

d) Opposite are challenging: Inspecting examples of
(in)accurately represented pairs of identifiers shows that identi-
fiers that describe opposing concepts are particularly challeng-
ing for current semantic representations. For example, both the
FT-cbow and path-based embeddings assign similar vectors
to minText and maxText, even though these identifiers
are clearly not similar but only related. Another example are
the setInterval and clearInterval function names.
Table [[V|shows these and other examples of this phenomenon.
Improving semantic representations to better distinguish iden-
tifiers with opposing meaning will benefit name-based anal-
yses that, e.g., suggest method names [9] or refactorings of
identifiers [[12].

e) Distinguishing singular and plural identifiers is par-
ticularly challenging: Another challenge we observe while
inspecting pairs of inaccurately represented pairs of identifiers
is to distinguish identifiers of individual items from identifiers
of collections of items. For example, FT-cbow assigns very
similar vectors to substr and substrs (Table[[V). Such a
conflation of singular and plural concepts may be misleading,
e.g., for name-based analyses that predicts types [7[], [8], [19].

f) Shared subword information may be misleading:
String distance functions and, to some extent, also subword-
based embeddings, such as FastText, rely on the assumption
that substrings shared by two identifiers increase the chance
that the identifiers are semantically similar. While a subword-
based approach helps deal with the out-of-vocabulary prob-
lem [35]], it may also mislead the semantic representation. For
example, the FT-cbow embedding assigns similar vectors to
minText and minuteText, as well as to setInterval
and clearInterval, as these identifiers share subwords,
even though the identifiers refer to clearly different concepts.

g) Expanding abbreviations may improve semantic rep-
resentations: The finding that practically all existing seman-
tic representations have difficulties with abbreviations raises
the question how to address this limitation. One promising
direction is to expand abbreviations into longer identifiers
before querying for their relatedness or similarity to another
identifier. Several techniques for expanding identifiers have
been proposed [36]-[40], which could possibly be used as a
preprocessing step within semantic representations.

h) Different semantic representations complement each
other: The availability of different techniques for reason-
ing about the similarity of identifiers can be exploited by
combining multiple such techniques. Our ensemble model
(Section shows the potential of combined approaches.

V. THREATS TO VALIDITY
A. Threats to Internal Validity

Threats to internal validity are about factors that may
influence our results. The identifiers and the code examples
associated with them may not be representative of other code.
To mitigate this threat, we gather data from a large and diverse
code corpus, and we select identifiers that cover semantically
similar and dissimilar pairs of identifiers (Section [[I-A0c).
The decision to perform our work with code written in a
dynamically typed programming language, JavaScript, biases
our results toward such languages. The reason for focusing on
a dynamically typed language is that such languages are the
target of various name-based analyses [4]], [7]I, [8], [19], [41],
[42] and embedding techniques [[17], [23].

Some ratings gathered our surveys may be inaccurate, e.g.,
because participants may have misunderstood the instructions.
To mitigate this threat, we gather at least ten ratings per pair
of identifiers and then carefully clean the ratings gathered by
developers to remove noise and outliers (Section [[I-Bj).

B. Threats to External Validity

Threats to external validity are about factors that may
influence the generalizability of our results. One limitation
is that IdBench focuses on individual identifiers only. As
a result, it is not clear to what extent our evaluation of
semantic representations of identifiers allows for conclusions
about representations at a larger granularity, e.g., of complex
expressions, statements, or sequences of statements. We focus
on individual identifiers as they are the basic building blocks
of code. Recent work on improving name-based and learning-
based bug detection [4] by aggregating identifiers in complex
expressions suggests that improving embeddings for individual
identifiers also benefits larger-scale code representations [41]].

Another limitation is that other string distance functions
or other embeddings may perform better or worse than those
studied here. We select semantic representations that have been
used in past name-based analyses, as well as some recent em-
bedding techniques that are state of the art in natural language
processing (NLP). By making IdBench publicly available, we
enable others to evaluate future semantic representations. As
any benchmark, IdBench consists of a finite set of subjects,
which may not be representative for all others. The number of
pairs of identifiers in the benchmark (Table [II) is in the same
order of magnitude as that of word similarity benchmarks used
in NLP [20], [31], [43[|-[45]. Finally, we focus on JavaScript
code, i.e., our findings may not generalize to identifiers in
other languages.

Finally, different name-based analyses have different re-
quirements on the semantic representations they build upon.
The tasks we present to survey participants may not represent

all these requirements, and hence, a semantic representation
may perform better or worse in a specific name-based analysis
than IdBench suggests.

VI. RELATED WORK

a) Name-based Program Analysis: Various analyses ex-
ploit the rich information provided by identifier names, e.g.,
to find bugs [2]-[5] and vulnerabilities [47]], to mine specifica-
tions [6]], to infer types based on identifier names as implicit
type hints [7], [8]], to predict the name of a method [9]], to
complete partial code using a learned language model [10],
to identify inappropriate names [[11]], to suggest more suitable
names [12], to resolve fully qualified type names of methods,
variables, etc. in a given code snippet [48], or to map APIs
between programming languages based on an embedding of
code tokens [18]. A systematic way of evaluating semantic
representations of identifiers, as provided in this paper, helps
in further exploiting the implicit knowledge encoded in iden-
tifiers, and hence will benefit name-based program analyses.

b) Embeddings of Identifiers: Embeddings of identifiers
are at the core of several code analysis tools. A popular
approach, e.g., for bug detection [4], type prediction [S§]],
or vulnerability detection [47], is applying Word2vec [26],
[34] to token sequences, which corresponds to the Word2vec
embedding evaluated in Section [49] train an RNN-
based language model and extract its final hidden layer as
an embedding of identifiers. Chen et al. [50] provide a more
comprehensive survey of embeddings for source code. Beyond
learned embeddings, string distance functions are used in
other name-based tools, e.g., for detecting bugs [2], [3] or
for inferring specifications [[6]. The quality of embeddings is
crucial in these and other code analysis tools, and IdBench
will help to improve the state of the art.

c) Embeddings of Programs: Beyond embeddings of
identifiers, there is work on embedding larger parts of a
program. One approach [9]] uses a log-bilinear, neural language
model [51]] to predict the names of methods. Other work em-
beds code based on graph neural networks [21]] or sequence-
based neural networks applied to paths through a graph
representation of code [23]], [[52[]-[|56]]. Code2seq embeds code
and then generates sequences of NL words [57]]. For a broader
overview and a detailed survey of learning-based software
analysis, we refer the reader to [16] and [58]], respectively.
To evaluate embeddings of programs, the COSET benchmark
provides thousands of programs with semantic labels [59]. An-
other study measures how effective pre-trained code2vec [23]]
embeddings are for different downstream tasks [46]]. One
conclusion from Kang et al’s work [46] is that evaluating
embeddings on a specific downstream task is insufficient, a
problem we here address with a task-independent benchmark.
Both of the above [46], [59] complement IdBench because the
existing work is about entire programs, whereas IdBench is
about identifiers. Since identifiers are a basic building block
of source code, a benchmark for improving embeddings of
identifiers will eventually also benefit learning-based code
analysis tools.

d) Benchmarks of Word Embeddings: The NLP commu-
nity has a long tradition of reasoning about the semantics
of words. In particular, that community has addressed the
challenge of measuring how well a semantic representation
of words matches actual relationships between words through
a series of gold standards of words, focusing on either relat-
edness [25]], [43], [44] or similarity [20]], [31]], [45], [60] of
words. These gold standards define how similar two words are
based on ratings by human judges, enabling an evaluation that
measures how well an embedding reflects the human ratings.

Unfortunately, simply reusing these existing gold standards
for identifiers in source code would be misleading. One reason
is that the vocabularies of natural languages and source code
overlap only partially, because source code contains various
terms and abbreviations not found in natural language texts.
Moreover, source code has a constantly growing vocabulary,
as developers tend to quickly invent new identifiers, e.g., for
newly emerging application domains [35]]. Finally, even words
present in both natural languages and source code may differ
in their meaning due to computer science-specific terms, e.g.,
“float” or “string”. This work is the first to address the need
for a gold standard for identifiers in code.

e) Data Gathering: Asking human raters how related or
similar two words are was first proposed by [45] and then
adopted by others [20], [31]], [43]], [60]. Our direct survey also
follows this methodology. [20] propose to gather judgments
about contextual similarity by asking participants to choose
a word to fill in a blank, an idea we adopt in our indirect
survey. To choose words and pairs of words, prior work
relies on manual selection [45], pre-existing free association
databases [31]], [60]], e.g., USF [61] or VerbNet [62]], [|63]], or
cosine similarities according to pre-existing models [25]]. We
follow the latter approach, as it minimizes human bias while
covering a wide range of degrees of relatedness and similarity.

f) Inter-rater Agreement: Validating and cleaning data
gathered via crowd-sourcing based on the inter-rater agreement
has been found effective in other crowd-sourced surveys [30].
Gold standards for natural language words reach an inter-rater
agreement of 0.61 [43]] and 0.67 [31]. Our “small” dataset
reaches similar levels of agreement, showing that the rates
in IdBench represent a genuine human intuition. As noted
by [31]l, the inter-rater agreement also gives an upper bound
of the expected correlation between the tested model and the
gold standard. Our results show that current models still leave
plenty of room for improvement, especially w.r.t. similarity.

VII. CONCLUSION

This paper presents the first benchmark for evaluating se-
mantic representations of identifiers names, along with a study
of current semantic representation techniques. We compile
thousands of ratings gathered from 500 developers into a
benchmark that provides gold standard similarity scores rep-
resenting the relatedness, similarity, and contextual similarity
of identifiers. Using IdBench to experimentally compare two
string distance functions and five embedding techniques shows
that these techniques differ significantly in their agreement

with our gold standard. The best available embeddings are
effective at representing how related identifiers are. However,
all studied techniques show huge room for improvement in
their ability to represent how similar identifiers are. An in-
depth study of different subsets of identifiers shows the specific
strengths and weaknesses of current semantic representations,
e.g., that most techniques are challenged by abbreviations,
opposites, and the difference between singular and plural. To
exploit the complementarity of current techniques, we present
an ensemble model that effectively combines them and clearly
outperforms the best individual techniques.

Our work will help addressing the limitations of current
semantic representations of identifiers. Such progress will
benefit downstream developer tools, in particular, name-based
program analyses. More broadly, improving semantic rep-
resentations of identifiers will also contribute toward better
learning-based program testing and analysis techniques.

REFERENCES

[1] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,”
in European Conference on Software Maintenance and Reengineering
(CSMR). 1EEE, 2010, pp. 156-165.

[2] M. Pradel and T. R. Gross, “Detecting anomalies in the order of equally-
typed method arguments,” in International Symposium on Software
Testing and Analysis (ISSTA), 2011, pp. 232-242.

[3] A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, and
Y. Arroyo-Paredes, “Detecting argument selection defects,” in Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2017.

[4] M. Pradel and K. Sen, “DeepBugs: A learning approach to name-based
bug detection,” PACMPL, vol. 2, no. OOPSLA, pp. 147:1-147:25,
2018. [Online]. Available: https://doi.org/10.1145/3276517

[5] S. Kate, J. Ore, X. Zhang, S. G. Elbaum, and Z. Xu, “Phys:
probabilistic physical unit assignment and inconsistency detection,” in
Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018, 2018, pp. 563-573. [Online]. Available:
https://doi.org/10.1145/3236024.3236035

[6] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource speci-
fications from natural language API documentation,” in International
Conference on Automated Software Engineering (ASE), 2009, pp. 307-
318.

[71 Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python
probabilistic type inference with natural language support,” in
Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, 2016, pp. 607-618. [Online]. Available:
https://doi.org/10.1145/2950290.2950343

[8] R. S. Malik, J. Patra, and M. Pradel, “NL2Type: Inferring JavaScript
function types from natural language information,” in Proceedings
of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019, 2019, pp. 304-315.
[Online]. Available: https://doi.org/10.1109/ICSE.2019.00045

[9] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton, “Suggesting
accurate method and class names,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, 2015, pp. 38—49.

[10] M. R. Parvez, S. Chakraborty, B. Ray, and K. Chang, “Building
language models for text with named entities,” in Proceedings of
the 56th Annual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, 2018, pp. 2373-2383. [Online]. Available:
https://www.aclweb.org/anthology/P18-1221/

[11] E. W. Hgst and B. M. @stvold, “Debugging method names,” in European
Conference on Object-Oriented Programming (ECOOP). Springer,
2009, pp. 294-317.

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu,
S. Kim, and Y. L. Traon, “Learning to spot and refactor inconsistent
method names,” in Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, 2019, pp. 1-12. [Online]. Available: https:
//dl.acm.org/citation.cfm?1d=3339507

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” in European Conference on Object-
Oriented Programming (ECOOP). Springer, 2011, pp. 130-154.

Y. Jiang, H. Liu, J. Q. Zhu, and L. Zhang, “Automatic and accurate ex-
pansion of abbreviations in parameters,” I[EEE Transactions on Software
Engineering, 2018.

H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est omen:
Exploring and exploiting similarities between argument and parameter
names,” in International Conference on Software Engineering (ICSE),
2016, pp. 1063-1073.

M. Pradel and S. Chandra, “Neural software analysis,” CoRR, vol.
abs/2011.07986, 2020. [Online]. Available: https://arxiv.org/abs/2011.
07986

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” in ACM SIGPLAN
Notices, vol. 53, no. 4. ACM, 2018, pp. 404-419.

T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring
API embedding for API usages and applications,” in Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017,
Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 438—449.

V. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in FSE, 2018.

G. A. Miller and W. G. Charles, “Contextual correlates of semantic
similarity,” Language and cognitive processes, vol. 6, no. 1, pp. 1-28,
1991.

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” CoRR, vol. abs/1711.00740, 2017.
[Online]. Available: http://arxiv.org/abs/1711.00740

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
word vectors with subword information,” TACL, vol. 5, pp. 135-146,
2017. [Online]. Available: https:/transacl.org/ojs/index.php/tacl/article/
view/999

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, p. 40, 2019.

V. Raychev, P. Bielik, M. Vechev, and A. Krause, “Learning programs
from noisy data,” in ACM SIGPLAN Notices, vol. 51, no. 1. ACM,
2016, pp. 761-774.

E. Bruni, N.-K. Tran, and M. Baroni, “Multimodal distributional se-
mantics,” Journal of Artificial Intelligence Research, vol. 49, pp. 1-47,
2014.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for code
with decision trees,” in OOPSLA, 2016.

M. Allamanis and C. A. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, San
Francisco, CA, USA, May 18-19, 2013, 2013, pp. 207-216.

A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with
mechanical turk,” in Proceedings of the SIGCHI conference on human
factors in computing systems, 2008, pp. 453-456.

S. Nowak and S. Riiger, “How reliable are annotations via crowdsourc-
ing: a study about inter-annotator agreement for multi-label image an-
notation,” in Proceedings of the international conference on Multimedia
information retrieval, 2010, pp. 557-566.

F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating semantic
models with (genuine) similarity estimation,” Computational Linguistics,
vol. 41, no. 4, pp. 665-695, 2015.

V. Zhelezniak, A. Savkov, A. Shen, and N. Y. Hammerla, “Cor-
relation coefficients and semantic textual similarity,” arXiv preprint
arXiv:1905.07790, 2019.

S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443-453, 1970.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-

https://doi.org/10.1145/3276517
https://doi.org/10.1145/3236024.3236035
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1109/ICSE.2019.00045
https://www.aclweb.org/anthology/P18-1221/
https://dl.acm.org/citation.cfm?id=3339507
https://dl.acm.org/citation.cfm?id=3339507
https://arxiv.org/abs/2011.07986
https://arxiv.org/abs/2011.07986
http://arxiv.org/abs/1711.00740
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

H. Babii, A. Janes, and R. Robbes, “Modeling vocabulary for
big code machine learning,” CoRR, 2019. [Online]. Available:
https://arxiv.org/abs/1904.01873

A. Corazza, S. D. Martino, and V. Maggio, “LINSEN: an efficient
approach to split identifiers and expand abbreviations,” in 28th IEEE
International Conference on Software Maintenance, ICSM 2012, Trento,
Italy, September 23-28, 2012. 1EEE Computer Society, 2012, pp. 233—
242. [Online]. Available: jhttps://doi.org/10.1109/ICSM.2012.6405277
Y. Jiang, H. Liu, and L. Zhang, “Semantic relation based expansion
of abbreviations,” in Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel,
and A. Russo, Eds. ACM, 2019, pp. 131-141. [Online]. Available:
https://doi.org/10.1145/3338906.3338929

C. D. Newman, M. J. Decker, R. S. Alsuhaibani, A. Peruma, D. Kaushik,
and E. Hill, “An empirical study of abbreviations and expansions
in software artifacts,” in 2019 I[EEE International Conference on
Software Maintenance and Evolution, ICSME 2019, Cleveland, OH,
USA, September 29 - October 4, 2019. IEEE, 2019, pp. 269-279.
[Online]. Available: https://doi.org/10.1109/ICSME.2019.00040

D. J. Lawrie and D. W. Binkley, “Expanding identifiers to normalize
source code vocabulary,” in IEEE 27th International Conference on
Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September
25-30, 2011. IEEE Computer Society, 2011, pp. 113-122. [Online].
Available: https://doi.org/10.1109/ICSM.2011.6080778

D. Lawrie, H. Feild, and D. Binkley, “Extracting meaning from abbre-
viated identifiers,” in Working Conference on Source Code Analysis and
Manipulation (SCAM). 1EEE, 2007, pp. 213-222.

R.-M. Karampatsis and C. Sutton, “Scelmo: Source code embeddings
from language models,” 2020. [Online]. Available: https://openreview.
net/pdf?id=ryxnJISKvr

M. Pradel, G. Gousios, J. Liu, and S. Chandra, “Typewriter: Neural
type prediction with search-based validation,” in ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event,
USA, November 8-13, 2020, 2020, pp. 209-220. [Online]. Available:
https://doi.org/10.1145/3368089.3409715

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin, “Placing search in context: The concept revisited,”
ACM Transactions on information systems, vol. 20, no. 1, pp. 116-131,
2002.

T. Schnabel, 1. Labutov, D. M. Mimno, and T. Joachims, “Evaluation
methods for unsupervised word embeddings,” in Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
2015, pp. 298-307. [Online]. Available: http://aclweb.org/anthology/D/
D15/D15-1036.pdf

H. Rubenstein and J. B. Goodenough, “Contextual correlates of syn-
onymy,” Communications of the ACM, vol. 8, no. 10, pp. 627-633, 1965.
H. J. Kang, T. F. Bissyandé, and D. Lo, “Assessing the generalizability
of code2vec token embeddings,” in ASE, 2019.

J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M.
Ellingwood, M. W. McConley, J. M. Opper, S. P. Chin, and
T. Lazovich, “Automated software vulnerability detection with machine
learning,” CoRR, vol. abs/1803.04497, 2018. [Online]. Available:
http://arxiv.org/abs/1803.04497

H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen, and
T. N. Nguyen, “Statistical learning of API fully qualified names in code
snippets of online forums,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, 2018, pp. 632-642. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180230

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in ASE, 2016, pp. 87-98.

Z. Chen and M. Monperrus, “A literature study of embeddings on source
code,” arXiv preprint arXiv:1904.03061, 2019.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of machine learning research, vol. 3,
no. Feb, pp. 1137-1155, 2003.

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code
comprehension: A learnable representation of code semantics,” CoRR,
vol. abs/1806.07336, 2018. [Online]. Available: http://arxiv.org/abs/
1806.07336

J. Devlin, J. Uesato, R. Singh, and P. Kohli, “Semantic code repair using
neuro-symbolic transformation networks,” CoRR, vol. abs/1710.11054,
2017. [Online]. Available: http://arxiv.org/abs/1710.11054.

J. Henkel, S. K. Lahiri, B. Liblit, and T. W. Reps, “Code vectors:
understanding programs through embedded abstracted symbolic traces,”
in Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018, 2018, pp. 163-174.

D. DeFreez, A. V. Thakur, and C. Rubio-Gonzélez, “Path-based function
embedding and its application to specification mining,” CoRR, vol.
abs/1802.07779, 2018.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in CCS, 2017, pp. 363-376.

U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019. [Online]. Available: https://openreview.
net/forum?id=H1gKYo09tX

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, p. 81, 2018.

K. Wang and M. Christodorescu, “Coset: A benchmark for evaluating
neural program embeddings,” CoRR, 2019. [Online]. Available:
https://arxiv.org/abs/1905.11445

D. Gerz, I. Vuli¢, F. Hill, R. Reichart, and A. Korhonen, “Simverb-
3500: A large-scale evaluation set of verb similarity,” arXiv preprint
arXiv:1608.00869, 2016.

D. L. Nelson, C. L. McEvoy, and T. A. Schreiber, “The university
of south florida free association, rthyme, and word fragment norms,”
Behavior Research Methods, Instruments, & Computers, vol. 36, no. 3,
pp. 402-407, 2004.

K. Kipper, B. Snyder, and M. Palmer, “Extending a verb-lexicon using
a semantically annotated corpus.” in LREC, 2004.

K. Kipper, A. Korhonen, N. Ryant, and M. Palmer, “A large-scale
classification of english verbs,” Language Resources and Evaluation,
vol. 42, no. 1, pp. 21-40, 2008.

https://arxiv.org/abs/1904.01873
https://doi.org/10.1109/ICSM.2012.6405277
https://doi.org/10.1145/3338906.3338929
https://doi.org/10.1109/ICSME.2019.00040
https://doi.org/10.1109/ICSM.2011.6080778
https://openreview.net/pdf?id=ryxnJlSKvr
https://openreview.net/pdf?id=ryxnJlSKvr
https://doi.org/10.1145/3368089.3409715
http://aclweb.org/anthology/D/D15/D15-1036.pdf
http://aclweb.org/anthology/D/D15/D15-1036.pdf
http://arxiv.org/abs/1803.04497
http://doi.acm.org/10.1145/3180155.3180230
http://arxiv.org/abs/1806.07336
http://arxiv.org/abs/1806.07336
http://arxiv.org/abs/1710.11054
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://arxiv.org/abs/1905.11445

	I Introduction
	II Methodology
	II-A Developer Surveys
	II-B Data Cleaning
	II-C Measuring Agreement with the Benchmark
	II-D Embeddings and String Distance Functions

	III Results
	III-A RQ 1: Accuracy of Representing Semantic Relatedness
	III-B RQ 2: Accuracy of Representing Semantic Similarity
	III-C RQ 3: Strengths and Weaknesses of Existing Techniques
	III-C1 Examples
	III-C2 Interesting Subsets of All Identifier Pairs

	III-D RQ 4: Complementarity of Existing Techniques

	IV Discussion
	V Threats to Validity
	V-A Threats to Internal Validity
	V-B Threats to External Validity

	VI Related Work
	VII Conclusion
	References

