
Fault Localization with Code Coverage
Representation Learning

Yi Li
Department of Informatics

New Jersey Institute of Technology
New Jersey, USA

Email: yl622@njit.edu

Shaohua Wang∗
Department of Informatics

New Jersey Institute of Technology
New Jersey, USA

Email: davidsw@njit.edu

Tien N. Nguyen
Computer Science Department

The University of Texas at Dallas
Texas, USA

Email: tien.n.nguyen@utdallas.edu

Abstract—In this paper, we propose DEEPRL4FL, a deep
learning fault localization (FL) approach that locates the buggy
code at the statement and method levels by treating FL as
an image pattern recognition problem. DEEPRL4FL does so
via novel code coverage representation learning (RL) and data
dependencies RL for program statements. Those two types of
RL on the dynamic information in a code coverage matrix are
also combined with the code representation learning on the static
information of the usual suspicious source code. This combination
is inspired by crime scene investigation in which investigators
analyze the crime scene (failed test cases and statements) and
related persons (statements with dependencies), and at the same
time, examine the usual suspects who have committed a similar
crime in the past (similar buggy code in the training data).

For the code coverage information, DEEPRL4FL first orders
the test cases and marks error-exhibiting code statements, ex-
pecting that a model can recognize the patterns discriminating
between faulty and non-faulty statements/methods. For depen-
dencies among statements, the suspiciousness of a statement is
seen taking into account the data dependencies to other state-
ments in execution and data flows, in addition to the statement
by itself. Finally, the vector representations for code coverage
matrix, data dependencies among statements, and source code
are combined and used as the input of a classifier built from a
Convolution Neural Network to detect buggy statements/methods.
Our empirical evaluation shows that DEEPRL4FL improves the
top-1 results over the state-of-the-art statement-level FL baselines
from 173.1% to 491.7%. It also improves the top-1 results over
the existing method-level FL baselines from 15.0% to 206.3%.

Index Terms—fault localization, code coverage, representation
learning, machine learning, deep learning

I. INTRODUCTION

Finding and fixing software defects is an important process
to ensure a high-quality software product. To reduce devel-
opers’ effort, several fault localization (FL) approaches [49]
have been proposed to help localize the source of a defect (also
called a bug or fault). In the FL problem, given the execution
of test cases, an FL tool identifies the set of suspicious lines of
code with their associated suspiciousness scores [49]. The key
input of an FL tool is the code coverage matrix in which the
rows and columns correspond to the source code statements
and test cases, respectively. Each cell is assigned with the value
of 1 if the respective statement is executed in the respective test
case, and with the value of 0, otherwise. In recent FL, several
∗

Corresponding Author

researchers also advocate for fault localization at method
level [27]. FL at both levels are useful for developers.

Spectrum-based fault localization (SBFL) approaches [6],
[20], [22] take the recorded lines of code that were covered
by each of the given test cases, and assigned each line of code
a suspiciousness score based on the code coverage matrix.
Despite using different formulas to compute that score, the
idea is that a line covered more in the failing test cases than
in the passing ones is more suspicious than a line executed
more in the passing ones. A key drawback of those approaches
is that the same score is given to the lines that have been
executed in both failing and passing test cases. An example is
the statements that are part of a block statement and executed
at the same nested level. Another example is the conditions of
the condition statements, e.g., if, while, do, and switch.

To improve SBFL, mutation-based fault localization
(MBFL) approaches [33], [37], [38] enhance the code coverage
information by modifying a statement with mutation operators,
and then collecting code coverages when executing the mu-
tated programs with the test cases. They apply suspiciousness
score formulas in the same manner as the spectrum-based FL
approaches on the code coverage matrix for each original
statement and its mutated ones. Despite the improvement,
MBFL are not effective for the bugs that require the fixes
that are more complex than a mutation (Section II).

Machine learning (ML) and deep learning (DL) have been
used in fault localization. DeepFL [27] computes for each
faulty method a vector with +200 scores in which each score
is computed via a specific feature, e.g., a spectrum-based or
mutation-based formula, or a code complexity metric. Despite
its success, the accuracy of DeepFL is still limited. A reason
could be that it uses various calculated scores from different
formulas as a proxy to learn the suspiciousness of a faulty
element, instead of fully exploiting the code coverage. Some
formulas, such as the spectrum- and mutation-based formulas,
inherently suffer from the issues as explained earlier with the
statements covered by both failing and passing test cases.

We propose DEEPRL4FL, a fault localization approach
for buggy statements/methods that exploits the image classi-
fication and pattern recognition capability of the Convolution
Neural Network (CNN) [24] to apply on the code coverage
(CC) matrix. Instead of summarizing each row in that matrix

ar
X

iv
:2

10
3.

00
27

0v
1

 [
cs

.S
E

]
 2

7
Fe

b
20

21

with a suspiciousness score, we use its full details. Importantly,
we enhance the matrix to facilitate the application of the CNN
model in recognizing the key characteristics in the matrix
to discriminate more easily between faulty and non-faulty
statements/methods. Toward that end, we order the columns
(test cases) of the CC matrix so that the test cases with
the non-zero values on nearby statements are close together.
Specifically, the first test case covers the most statements. The
next test case shares with the previous one as many executed
statements as possible. We expect that the CNN model with its
capability to learn the relationships among nearby cells via a
small filter can recognize the visual characteristic features to
discriminate faulty and non-faulty statements/methods.

Inspired by the method in crime scene investigation, we use
three sources of information for FL: 1) code coverage matrix
with failed test cases (the crime scene and victims), 2) similar
buggy code in the history (usual suspects who have committed
a similar crime in the past), and 3) the statements with data
dependencies (related persons). First, the evidences at the
crime scene are always examined. For an analogy, the CC
matrix for the occurrence of the fault is analyzed. Second, an
investigator also makes a connection from the crime scene to
the usual suspects. This is analogous to the modeling of the
code of the faults that have been encountered in the training
dataset. The idea is that if the persons (analogous to the code)
who have committed the crimes with similar modus operandi
(M.O.) in the past are likely the suspects (code with high
suspiciousness) in the current investigation.

Third, in addition to the crime scene, the investigator also
looks at the relationships between the victim or the things hap-
pening at the scene and other related persons. Thus, in addition
to the statement itself, its suspiciousness is viewed taking into
account the data dependencies to other statements in execution
flows and data flows. The idea is that some statements, even far
away from the buggy line, could have impacts or exhibit the
consequences of the buggy line when they are data-dependent.
Thus, for a test, we first identify the error-exhibiting (EE) line
(defined as the line where the program crashed or exhibited an
incorrect value(s)/behavior(s)). That is, if the program crashes,
the error-exhibiting line is listed. If there is no crash and an
assertion fails, assertion statement is EE line. EE line is usually
specified in a test execution. To identify the related statements,
from the EE line, we consider the execution order. However,
if the statements are in the same block of code (i.e., being
executed sequentially), we also consider the data dependencies
among them and with the EE line. Finally, all three sources
of information are encoded into vector/matrix representations,
which are used as input to the CNN model to act as a classifier
to decide whether a statement/method as a faulty or not.

We conducted several experiments to evaluate DEEPRL4FL
on Defects4J benchmark [1]. Our empirical results show that
DEEPRL4FL locates 245 faults and 71 faults at the method
level and the statement level, respectively, using only top-
1 candidate (i.e., the first ranked element is faulty). It can
improve the top-1 results of the state-of-the-art statement-
level FL baselines by 317.7%, 273.7%, 173.1%, 195.8%,

1 public static String join(Object[] array, char separator,
2 int startIndex, int endIndex) {
3 if (array == null) {
4 return null;
5 }
6 int noOfItems = (endIndex - startIndex);
7 if (noOfItems <= 0) {
8 return EMPTY;
9 }

10 -StringBuilder buf = new StringBuilder((array[startIndex]
11 == null? 16 : array[startIndex].toString().length())+1);
12 + StringBuilder buf = new StringBuilder(noOfItems * 16);
13 for (int i = startIndex; i < endIndex; i++) {
14 if (i > startIndex) {
15 buf.append(separator);
16 }
17 if (array[i] != null) {
18 buf.append(array[i]);
19 }
20 }
21 return buf.toString();
22 }

Fig. 1: An Example of a Buggy Statement

and 491.7% when comparing with Ochiai [6], Dstar [48],
Muse [33], Metallaxis [38], and RBF-Neural-Network-based
FL (RBF) [47], respectively. DEEPRL4FL also improves
the top-1 results of the existing method-level FL baselines,
MULTRIC [52], FLUCCS [43], TraPT [28], and DeepFL [27],
by 206.3%, 53.1%, 57.1%, and 15.0%, respectively. Our
results show that three sources of information in DEEPRL4FL
positively contribute to its high accuracy.

We also evaluated DEEPRL4FL on ManyBugs [25], a ben-
chmark of C code with 9 projects. The results are consistent
with the ones on Java code. DEEPRL4FL localizes 27 faulty
statements and 98 faulty methods using only top-1 results.

The contributions of this paper are listed as follows:
1. Novel code coverage representation. Our representation

enables fully exploiting test coverage matrix and taking advan-
tage of the CNN model in image recognition to localize faults.

2. DEEPRL4FL: Novel DL-based fault localization ap-
proach. Test case ordering and three sources of information al-
low treating FL as a pattern recognition. Without ordering and
statement dependencies, the CNN model will not work well.

3. Extensive empirical evaluation. We evaluated our model
against the most recent FL models at the statement and method
levels, in both within-project and cross-project settings, and for
both C and Java. Our replication package is available at [5].

II. MOTIVATING EXAMPLES

Fig. 1 shows a real-world example of a bug in Defects4J [1].
The bug occurs at line 10 in which the length of the string to
be built via StringBuilder was not set correctly. A developer
fixed the bug by modifying lines 10–11 into line 12.

To localize the buggy line, there exist three categories of
approaches. The first one is spectrum-based fault localization
(SBFL). The key idea in SBFL is that in a test dataset, a line
executed more in the failing test cases than in the passing ones
is considered as more suspicious than a line executed more in
the passing ones. A summary of the CC matrix for this bug is
shown in Fig. 2a. The lines 3, 6–7, and 10–11 in Fig. 1 are

t1 t2 ...
line-3 ◦ ... • ... • ... ◦ ... • ... •
line-4 ◦ ... ◦ ... ◦ ... ◦ ... ◦ ... ◦
line-6 ◦ ... • ... • ... ◦ ... • ... •
line-7 ◦ ... • ... • ... ◦ ... • ... •
line-8 ◦ ... ◦ ... • ... ◦ ... ◦ ... •

line-(10-11) ◦ ... • ... • ... ◦ ... • ... •
line-13 ◦ ... • ... • ... ◦ ... ◦ ... •
line-14 ◦ ... • ... • ... ◦ ... ◦ ... •
line-15 ◦ ... • ... • ... ◦ ... ◦ ... •
line-17 ◦ ... • ... • ... ◦ ... ◦ ... •
line-18 ◦ ... • ... • ... ◦ ... ◦ ... •
line-21 ◦ ... • ... • ... ◦ ... ◦ ... •

(a)

t9 t33 ...
line-3 • • • • ◦ ... ◦
line-4 ◦ ◦ ◦ ◦ ◦ ... ◦
line-6 • • • • ◦ ... ◦
line-7 • • • • ◦ ... ◦
line-8 ◦ ◦ • • ◦ ... ◦

line-(10-11) • ? • • ◦ ... ◦
line-13 ? • • • ◦ ... ◦
line-14 • ◦ • • ◦ ... ◦
line-15 • ◦ • • ◦ ... ◦
line-17 • ◦ • • ◦ ... ◦
line-18 • ◦ • • ◦ ... ◦
line-21 • ◦ • • ◦ ... ◦

(b)
Fig. 2: Code Coverage for Fig. 1 (Note: ◦, •, ? for 0,1,-1)

executed in both passing and failing test cases, and as a
result, given the same suspiciousness scores. Thus, SBFL is
ineffective to detect the buggy line 10 and this buggy method.

The second category is mutation-based fault localization
(MBFL). A MBFL approach (e.g., Metallaxis [38]) modifies
a statement using mutation operators. After collecting code
coverage information for each statement regarding to multiple
mutations, it computes the suspiciousness score for each state-
ment using a spectrum-based formula (e.g., Ochiai [6]) on the
CC matrix for each original statement and for its mutated ones.
However, the fix for the buggy line 10 requires more com-
plex code transformations than a mutation. Thus, an MBFL
approach cannot detect this buggy line and buggy method.

The third category is deep learning and machine learning-
based FL approaches [27], [47]. Specifically, Wong el al. [47]
use a backpropagation neural network on code coverage for
each statement. Since the lines 3, 6–7, and 10–11 are executed
in both passing and failing test cases, the model cannot learn
to distinguish them to detect the buggy line 10. DeepFL [27],
uses multilayer perceptron (MLP) on a matrix in which each
row corresponds to a statement, while each column is a sus-
piciousness score computed by a spectrum-based formula, or
a code complexity metric. In our experiment (Section IX-C1),
DeepFL could not detect the buggy line 10. Despite combining
several scores, the aforementioned lines are given the same
suspiciousness scores by each spectrum-based formula.
Observation 1. The state-of-the-art spectrum-based [22], [31],
mutation-based [33], [37], [38], and deep learning-based FL
approaches [27] do not consider the full details of the CC
matrix. Instead, they summarize each statement/row with a
suspiciousness score, thus limiting their capabilities.

To address that, we aim to exploit the full details of the CC
matrix via the use of the CNN model [24], which has been
shown to be effective in image pattern recognition. However,
there is a challenge: if we do not enforce an order on the test
cases (columns), we might end up with a CC matrix with the
dark cells (the values of 1) that are far apart (Fig. 2a). Note that
the CNN model is effective to learn the relationships among the
nearby cells in a matrix with its small sliding window (called
filter) [24]. Thus, we need to enforce an order on the test cases,
i.e., the columns of the CC matrix so that the values of 1 on
the same or nearby rows get to be close to one another. For
example, if we enforce an order with the mentioned strategy
(we will explain the detailed algorithm later) for the running
example, we will have the matrix in Fig. 2b. That is, the results

1 public int Compute(int x, int y, int z){
2 int i = x + 1;
3 int j = x + y;
4 int m = 5;
5 - if (i < y + 4)
6 + if (i < y + 7)
7 if (j > 5 & z > j){
8 m = m + z;
9 } else {

10 m = m + j;
11 }
12 } else {
13 m = m + i;
14 }
15 i = m + 1;
16 return m;
17 }

Fig. 3: A Buggy Statement and Interdependent Statements

for the test cases 9, 33, etc. in the test dataset of Defects4J for
this example are shown in the leftmost columns. We expect
that the CNN model with its sliding window is more effective
in the resulting matrix after the ordering due to the nearby
dark cells on the left side. The empirical study on the impact
of such ordering will be explained in Section IX.

Let us consider another example in Fig. 3. The bug occurs at
line 5 and is fixed in line 6. The program fails in two test cases:
1) x=5, y=0, z=1, and 2) x=7, y=1, z=9. In this example, the
lines 2, 3, 4, 5, 15, and 16 are all executed in both passing and
failing test cases. Thus, the spectrum-based, mutation-based
approaches, and DeepFL give them the same suspiciousness
scores, and do not detect the buggy line 5 and this buggy
method. The line 16 returns the unexpected results for the two
failing test cases. In fact, the spectrum-based and mutation-
based approaches locate line 16 as the buggy line. However,
the actual error occurs at line 5, steering the execution to the
incorrect branch of the if statement. This implies that while
the source of the bug is at line 5, the error exhibits at line
16, which is far apart from line 5, yet has a dependency with
it. However, the line 15, immediate preceding of line 16, does
not contribute to the incorrect result at line 16.
Observation 2. We observe that the line that exhibits erro-
neous behavior (e.g., line 16) might not be the buggy line
(line 5). However, the buggy line 5 has a dependency with
the line 16. Thus, identifying the key line exhibiting the
erroneous behavior is crucial for FL. We also observe that
the lines with program dependencies with one another are in
fact more valuable in helping localize the buggy line than the
lines without such dependencies. Thus, while considering the
execution order of statements, an FL approach should consider
the statements with program dependencies as well.

III. EXPLORATORY STUDY

Inspiring by the above observations, to further study the im-
pact of ordering of the columns (i.e, the test cases) of the code
coverage matrix, we conduct an exploratory experiment with
the Convolution Neural Network (CNN) model. Specifically,
we choose a simple CNN model having 2D convolutional
layer and 15 convolutional cores with the size of 3 ∗ 3. In

Fig. 4: A Feature Map after Ordering of Test Cases

this experiment, we use all the bugs in the Defects4J dataset
(will be explained in Table I). As for training and testing, we
use the leave-one-out strategy on the entire Defects4J dataset.
That is, when we perform testing on a fault, we use all other
faults in the dataset as the training data to train the model.
As for the ordering in the code coverage matrix, the first test
case is the one covering as many statements as possible, and
the subsequent test case is the one that runs through as many
same statements as the previously selected test cases (will be
detailed in Section V-C). To encode the pass/fail information,
we detected the error-exhibiting lines (EE) (see Section V-B)
and marked them with -1 values.

We conduct two executions with two different inputs for the
CNN model. In the first one, for training, we use the original
spectrum-based CC matrix as the input. The output is a matrix
with the same size as the input CC matrix, however, the row
corresponding to the buggy statements/lines are marked with
all the 1 values and all other rows are marked with the zeros.
For the second execution, we use the CC matrix after ordering.
The output is the same as in the first execution. For testing, we
use the trained CNN model to run on the buggy methods under
test. We examine the output of that execution. The CNN model
generates 15 feature maps as the output from the 15 different
convolutional cores. The feature maps of a CNN capture the
result of applying the CNN filters to an input matrix. That
is, at each layer, the feature map is the output of that layer.
By visualizing a feature map for a specific input image, i.e.,
an CC matrix, we aim to gain some understanding of what
features the CNN model can detect.

We randomly select 10 faults as the testing data. In two of
them, the result of the CNN model indicates the correct buggy
statement for the fault. Fig. 4 shows the result for one of the
faults. We visualized the code coverage matrices and feature
maps as gray-scale images. In the code coverage matrices on
the left, rows represent statements from the top to the bottom,
and columns represent test cases. The buggy statement/line is
marked with a red rectangle. As seen, after ordering, the left
side of the CC matrix becomes darker. The white part, which
represents the zero values, corresponds to the test cases that
do not go through the statements in this buggy method.

Fig. 5: DEEPRL4FL’s Architecture

For the feature maps corresponding to before and after
ordering, the rows also correspond to the statements and the
columns represent the test cases. We examine all 15 feature
maps when running the CNN model on an input. Among
the 15 feature maps for the case of ordering, we found one
feature map (feature map 2: the bottom right image) contains
the darker spot at the buggy statement/line compared to the
lighter spots for the non-buggy statements/lines. We examine
all 15 feature maps for the case of the original CC matrix and
visualize the corresponding feature map (feature map 1: the
upper right image). As seen in the red rectangle, there is no
dark line/spot around the buggy statement. In brief, with the
ordering of the columns in the CC matrix, we make the CNN
model recognize visual characteristics corresponding to the
buggy statement and distinguish it from the non-buggy ones.
This motivates us to integrate the ordering of the columns in
the CC matrix for code coverage representation learning.

IV. APPROACH OVERVIEW

Inspired by the crime scene investigation method, we ex-
plore three aforementioned sources of information. Correspon-
dingly, DEEPRL4FL has three representation learning pro-
cesses: code coverage representation learning (crime scene),
statements dependency representation learning (relations), and
source code representation learning (usual suspects) (Fig. 5).

1) Code Coverage Representation Learning: This learn-
ing is dedicated to the “crime scene” analysis of the bug. This
process has two parts. First, to help the CNN model recognize
the patterns, we take the given (un-ordered) set of test cases
and perform an ordering algorithm to arrange the columns of
the CC matrix. The strategy of ordering is to enable the values
of 1 to be closer to form darker spots in the left side of the
matrix, expecting that the CNN model can work effectively to
recognize nearby cells to distinguish the buggy and non-buggy
statements (see exploratory study and empirical evaluation).

Second, we also perform the analysis on the output of test
cases to locate the error-exhibiting (EE) lines (Observation
2). If the execution of a test crashes, the line information is
always available. Even if there is no crash, the test fails, the
program often explicitly lists the lines of code that exhibit the
incorrect results/behaviors. We use such information to locate
the EE line in the buggy source code corresponding to each test

case. Finally, the results of individual test cases are encoded as
follows. The cells in the matrix corresponding to the EE lines
of test cases will be marked with -1 values (see the stars in
Fig. 2b). Thus, if a column has a value of -1 at a row, the
corresponding test case is a failing one. The values of 1 and
0 represent the coverage or non-coverage of the test case to a
statement. Thus, a column has no value of -1 (all the values are
0 or 1), the corresponding test case is passing. The resulting
matrix is called the enhanced CC matrix (ECC).

2) Dependency Representation Learning: The suspi-
ciousness of a statement is seen taking into account the data
dependencies to other statements in the execution flows and
data flows, in addition to the statement itself (Observation 2).
Specifically, we consider both the execution orders and data
dependencies among the statements. For example, if the state-
ments are executed sequentially in the same nested level as
part of a block statement, data dependencies will help the
model in FL as shown in Section II. Additionally encoding
the statements with such dependencies has the same effect
as putting together the rows corresponding to the dependent
statements in the CC matrix. In our example, in addition to the
entire matrix in Fig. 3, we also encode the data dependencies
among statements (i.e., in the same spirit with the case of
putting closer the rows 2, 3, 4, 5, 13, 15, and 16), and feed
them into the CNN model. In our tool, we collect execution
paths and data flow graph for each test case.

3) Source Code Representation Learning: For each
buggy code in the training data, we choose to represent the
code structure by the long paths that are adapted from a prior
work [10], [29]. A long path is a path that starts from a leaf
node, ends at another leaf node, and passes through the root
node of the AST. The AST structure can be captured and
represented via the paths with certain lengths across the AST
nodes [10]. After this, we have the vectors for the buggy code.
Finally, all the representation vectors are used as the inputs of
the CNN model, which is part of the FL module in Fig. 5.

V. CODE COVERAGE REPRESENTATION LEARNING

A. Generating Code Coverage Matrices

As in prior FL studies [6], [7], [30], we obtain a code
coverage matrix for each method of a given project and error
messages of the failing test cases using GZoltar [2], a tool for
code coverage analysis. We further modify GZoltar to record
the actual execution path of statements within a method during
the execution of a test case. For example, for the method in
Fig. 1, the execution path of running the first selected test
case is line 3 ⇒ line 6 ⇒ line 7 ⇒ line (10 − 11) ⇒ line 13 ⇒
line 14⇒ line 15⇒ line 17⇒ line 18⇒ ...︸ ︷︷ ︸

Statements repeated in the for loop

⇒ line 21.

We also use mutation to generate more coverage informa-
tion. First, we apply the same mutators as in DeepFL [27] to
mutate each statement within a method using the mutation tool
PIT-1.1.5 [4]. To generate a mutation-based matrix, we apply
one mutator to mutate a statement and use GZoltar to record
the execution. Thus, given n mutators that can be applicable to
a statement, we generate n new versions of the given method.

Fig. 6: Error Message Example

If it has m statements, we generate n ∗ m matrices for the
method. We refer the mutation-generated n ∗ m matrices as
mutation-based matrices and for clarification, we refer the
non-mutator-generated matrix as the spectrum-based matrix.

B. Identifying Error-Exhibiting Lines

A cell in the CC matrix can have three values: {1,0,-1}.
While the values of 1 and 0 indicate passing, the values of (-1)
indicate failing. We obtain -1 for an error-exhibiting statement
or crashed statement from the error messages of failing test
cases. An error message shows the names of classes, methods,
and line numbers exhibiting an error. We directly use the
line numbers, method and class names to assign -1s to the
statements in the matrix. Fig. 6 shows an example of the error
message containing a stack trace produced by running a test
case on the project Chart with the bug Chart-24. Because the
current method under investigation is getPaint, our algorithm
searches for that method in the stack trace to derive the EE
statement at the line 128 of the file GrayPaintScale.java (which
contains the method getPaint). Each failing test case has only
one EE statement for the current method under study.

C. Test Case Ordering Algorithm

Algorithm 1 takes the set of test cases S and enforces an
order on S. The strategy is to move the values of 1 and -1
closer to one another in the left side. First, if there exist failing
test cases, i.e., test cases with -1s, we select the test case with
the value of -1 at the statement appearing latest in the code. We
then find the test case that shares the same statement having
-1 with the last selected test case (line 9). That is, we group
together the test cases that go through the same statement and
also fail. If we do not have such test case, then we repeat the
process of looking for another failing test case (i.e., with -1).
In Fig. 2b, the test case 9 is selected as the first one with only
one -1 (marked with a star) at the line 13 (latest statement).
We search for the next test case that has a -1 at the latest. The
test case 33 is chosen at the second column.

If we do not have any failing test case left, we select the test
case that has the most 1s (line 13). Next, we select the next
test case that shares the most number of the same statements
having the values of 1s with the last selected test case. This
helps move the values of 1 closer. We repeat this step to select
a new test case compared with the previously selected one until
all the test cases were ordered. We stop this step if no test case
has the same statements with 1s as the last selected test case
(column). If two test cases are tie, we select the one with the

Algorithm 1 Test Case Ordering Algorithm
1: function ORDERINGTESTCASES(S : testSet)
2: List = []
3: while (S <> ∅) do
4: if HAVETESTCASESWITHMINUSONE(S) then
5: selT = FINDTESTCASEWITHMINUSONEWITHHIGHESTINDEX(S)
6: S.remove(selT)
7: List.append(selT)
8: while HAVETESTCASESAMESTMTWITHMINUSONE(selT, S) do
9: selT = FINDTESTCASESAMESTMTWITHMINUSONE(selT, S)

10: S.remove(selT)
11: List.append(selT)

12: else
13: selT = FINDTESTCASEWITHMOSTONE(S)
14: S.remove(selT)
15: List.append(selT)
16: while HAVETESTCASEWITHSAMESTMTSWITHONE(selT, S) do
17: selT = FINDTESTWITHMOSTSAMESTMTSWITHONE(selT, S)
18: S.remove(selT)
19: List.append(selT)

20: return List

last value of 1 at a statement appearing latter. The rationale is
that such a test case covers more statements than the other. If
they are still tie, the selection of either of them will result in
similar visual effects locally at that row. In brief, in any cases
of ties, the visual effects around the statements are similar.

In addition to the spectrum-based matrices, we also apply
the same enhancements, identifying error-exhibiting lines and
ordering text cases to mutation-based code coverage matrices.

VI. STATEMENT-DEPENDENCY REPRESENTATION

We aim to model the execution orders and data dependen-
cies among the statements of the method under study.

1) Execution Order Representation: We obtain the ex-
ecution path (e-path) as each test case was executed. We
only consider the relations among statements within a method.
Since an e-path is a sequence of statements, we apply
word2vec [32] on all execution paths of test cases to learn
the vectors that encode the relations among statements. Thus,
each statement has a word2vec-generated vector.

2) Data Dependency Representation: Using execution
paths is not sufficient due to the following. First, the statements
in a loop may repeat multiple times in an e-path, thus, they
may dominate vector learning using word2vec and weaken the
relations between the statements inside and outside of a loop,
which is also crucial in FL. Second, interdependent statements
might not be nearby in an e-path, yet are useful in detecting
the buggy line (Observation 2). To address those, we also use
the data-flow graph (DFG) for the statements in a method.

We use WALA [45] to generate DFGs in which a node rep-
resents a statement and an edge represents a data flow between
two nodes. If A connects to B, we assign the weight of 1.
If there is no edge from B to A, we create that edge but
assign the weight of -1. This makes node2vec [18], a network
embedding technique, applicable to our graph. The value
of -1 helps distinguish between the artificial edges and the
real ones. After this step, some statements (nodes) with data
dependencies have node2vec-generated vectors.

3) Vectors for Statements with Dependencies: The
word2vec vector for a statement s in the execution order and

the node2vec vector for s in program dependencies among the
statements are combined via Hadamard product to represent s.
Finally, the output vector is a statement-dependency vector
for a statement, modeling the statement with the dependen-
cies and/or execution orders among statements.

4) Combining Statement Dependencies and ECC Matri-
ces: To further enrich the ECC matrix (a spectrum-/mutation-
based matrix), we incorporate the dependencies among the
statements in a method under study into that matrix. In the en-
hanced matrix, we have the i-th statement (Si) of a method un-
der test with the test cases, T = {T1, . . . , Tj . . . , Tn}, where
j indicates the j-th test case, 1 ≤ j ≤ n, and n is the number
of test cases. The statement Si under a test case Tj has a cell
value vij that can be either {1, 0, or -1}. Thus, the statement
Si can be represented as a vector ~Si = {vi1, . . . , vij , . . . , vin}.
Each statement (Si) has a statement-dependency vector (~Ssd

i).
We multiply each vij with ~Ssd

i , to obtain vij ∗ ~Ssd
i , for each

cell of Si and Tj in the enhanced matrix. Thus, the statement
Si can be represented as a new 2-dimensional vector ~S2d

i =
< vi1 ∗ ~Ssd

i , . . . , vij ∗ ~Ssd
i , . . . , vin ∗ ~Ssd

i >. Any vector ~Ssd
i

multiplied by a vij = 0 results in a vector with all 0s.
A method often has multiple statements {S1,. . . , Si, . . .

Sm}, where i indicates the i-th statement, 1 ≤ i ≤ m, and m
is the number of statements. Thus, a method is presented as
a 3-D matrix, i.e., a list of 2-D statement vectors.

The same steps are used to enhance and combine statement
dependencies into a mutation-based matrix. A statement Si

in a mutation-based matrix is represented as a set of mutated
statements and each mutated statement is represented as a 2-D
vector. Thus, in this case, the statement Si is represented as a
3-D matrix. After enhancing the ECC matrix and combining
statement-dependencies as explained, we obtain the following:
• In a spectrum-based matrix (SBM), a statement is repre-

sented as a 2-D vector and a method as a 3-D matrix;
• In mutation-based matrices (MBM), a statement is repre-

sented as a 3-D matrix and a method as a 4-D matrix.
5) Encoding Code Coverage Matrices with a CNN

Model: After obtaining those representations for statements
and methods, we apply the Convolution Neural Network
(CNN) [23] to learn features. We use a typical CNN with the
following layers: a convolutional layer, a pooling layer and a
fully connected layer. We feed the followings into the CNN
model separately to detect a buggy statement/method:
i) For spectrum-based matrices (SBM), we fed a 2-D vector
representing for a statement and a 3-D matrix for a method,
ii) For mutation-based matrices (MBM), we fed a 3-D matrix
representing for a statement and a 4-D matrix for a method.

We apply a fully connected layer before CNN on the method
in a mutation-based matrix (i.e., represented as a 4-D matrix)
to reduce an 4-D matrix into an 3-D matrix.

The outputs of the CNN include the vectors for a statement
or a method in spectrum-based or mutation-based matrices:

i) Vss, 1-D vector for a statement in SBM,
ii) Vsm, 1-D vector for a method in SBM,
iii) Vms, 1-D vector for a statement in MBM, and
iv) Vmm, 1-D vector for a method in MBM.

VII. SOURCE CODE REPRESENTATION LEARNING

Let us explain how we capture the usual suspicious source
code via code representation learning.

For a statement, we tokenize it and treat each token in the
statement as a word and the entire statement as a sentence. We
use word2vec [32] on all the statements of a project to compute
a token vector for each token. After having the vectors for
all the tokens, for a statement, we have a matrix [Token-
Vector1, Token-Vector2, . . . , Token-Vectorm]. To obtain a
unified vector to represent a statement instead of a matrix,
we apply a fully connected layer to reduce the matrix into
1-D vector. Thus, we have one vector for each statement.

At the method level, we used two existing code representa-
tion learning techniques code2vec [29] and ASTNN [53] for
a method. In code2vec, we use long paths over the AST. A
long path is a path that starts from a leaf node, ends at another
leaf node, and passes through the root node of the AST. The
AST structure can be represented via the paths with certain
lengths across the AST nodes. Specifically, we regard a long
path as a sequence and apply word2vec on all the long paths
of a method to generate a vector representation for each AST
node. Now, each path is represented as an ordered list of node
vectors (the order is based on the appearance order of the
nodes in a path), and each method is represented as a bag of
paths, i.e., ordered lists of node vectors. Essentially, a method
is represented by a matrix. We use a fully connected layer to
transform the matrix into 1-D vector for a method.

At the method level, we also used tree-based representation
ASTNN [53]. ASTNN splits the AST of a method into
small subtrees at the statement level and applies a Recursive
Neural Network (RNN) [42] to learn vector representations
for statements. The ASTNN exploits the bidirectional Gated
Recurrent Unit (GRU) [44] to model the statements using the
sequences of sub-tree vectors. After obtaining the long-path-
based vector and the tree-based vector for a method, we apply
a fully connected layer as the one in CNN [23] to combine
these two vectors into one unified vector for a method.

VIII. FAULT LOCALIZATION WITH CNN MODEL

A. Statement-level Fault Localization

After all the previous steps, each statement has 3 vectors:
1) ~Vss, a SBM-based statement vector (Section VI-5);
2) ~Vms, a MBM-based statement vector (Section VI-5); and
3) ~Vcs, a source code-based statement vector (Section VII).
The vectors are combined via Hadamard Product [19]:

Ms = [len(~Vss), 1, 1],Mm = [1, len(~Vms), 1],Mc = [1, 1, len(~Vcs)]

Mcombined = broadcast(Ms) ◦ broadcast(Mm) ◦ broadcast(Mc)

M is the matrix which is expanded from v by keeping one
dimension as v and adding two more dimensions with the size
of 1. broadcast() is the operation to copy a dimension into
multiple times to expand the matrix to the suitable size for
Hadamard product. The rationale is that all three vectors from
three different aspects should be fully integrated. The resulting
matrix is of the size [len(~Vss), len(~Vms), len(~Vcs)]. Next, we

use the trained CNN model with a softmax on the matrix to
classify a statement into faulty or non-faulty. The output of
the softmax is standardized to be between 0 to 1. To train the
model, the same combined matrix for a statement is used at
the input layer and the corresponding classification (faulty or
not) is used at the output layer of the CNN model.

B. Method-level Fault Localization

Similar to statement-level FL, each method has 3 vectors:
1) ~Vsm, a SBM-based method vector (Section VI-5);
2) ~Vmm, a MBM-based method vector (Section VI-5); and
3) ~Vcm, a source code-based method vector (Section VII).

Moreover, we also consider the similarity between the
source code and the error messages of the failing test cases as
in DeepFL [27]. We first collect 3 types of information from
failed tests, including the name of the failed tests, the source
code of the failed tests and the complete failure messages
(including exception type, message, and stacktrace). Second,
we collect 5 types of information from source code, including
the full qualified name of the method, accessed classes,
method invocations, used variables, and comments. For each
combination, we calculate the similarity score between each
information from the failed tests and each from the source
code using the popular TF-IDF method [27]. We generate 15
similarity scores as 15 features for a method. Thus, a method
also has the fourth vector, ~V sim

m with 15 features.
For fault localization, we combine the above method vectors

into a matrix by using the Hadamard product as in Sec-
tion VIII-A, then use the trained CNN model with a softmax
to classify a method into faulty or non-faulty. We train the
model in the same manner as FL at the statement level.

IX. EMPIRICAL EVALUATION

A. Research Questions

We seek to answer the following research questions:
RQ1. Statement-level FL Comparison. How well does our
tool perform compared with the state-of-the-art statement-level
FL models?
RQ2. Method-level FL Comparison. How well does our tool
perform compared with the existing method-level FL models?
RQ3. Impact Analysis of Different Matrix Enhancing
Techniques. How do those techniques including test case
ordering, and statements dependency affect the accuracy?
RQ4. Impact Analysis of Different Representations Learn-
ing. How do different types of information affect the accuracy?
RQ5. Cross-project Analysis. How does DEEPRL4FL per-
form in the cross-project setting?
RQ6. Performance on C Code. How does DEEPRL4FL
perform in C projects for FL?

B. Experimental Methodology

1) Data Set: We use the benchmark, Defects4J V1.2.0 [1]
with ground truth (Table I). For a bug in project P , Defects4J
has a separate copy of P but with only the corresponding
test suite revealing the bug. For example, P1, a version of P ,
passes a test suite T1. Later, a bug B1 in P1 is identified. After

TABLE I: Defects4J Dataset

Identifier Project name # of bugs
Chart JFreeChart 26
Closure Closure compiler 133
Lang Apache commons-lang 65
Math Apache commons-math 106
Mockito Mockito 38
Time Joda-Time 27

debugging, P1 has an evolved test suite T2 detecting the bug.
In this case, Defects4J has a separate copy of the buggy P1

with a single bug, together with the test suite T2. Similarly, for
bug B2, Defects4J has a copy of P2 together with T3 (evolving
from T2), and so on. For within-project setting, we test one
bug Bi with test suite T(i+1) by training on all other bugs
in P . To reduce the influence of the overfitting problem, we
applied L2 regularization and added dropout layers.

2) Experiment Metrics: Following prior studies [27], [28],
we use the following metrics to evaluate an FL model:

Recall at Top-K: is the number of faults with at least one
faulty statement that is correctly predicted in the ranked list
of K statements. We report Top-1, Top-3, and Top-5.

Mean Average Rank (MAR): We compute the average
rank of all faulty elements for each fault. MAR of each project
is the mean of the average rank of all of its faults.

Mean First Rank (MFR): For a fault with multiple faulty
elements (methods/statements), locating the first one is critical
since the others may be located after that. MFR of each project
is the mean of the first faulty element’s rank for each fault.

3) Experiment Setup and Procedure:
RQ1: Statement-level Fault Localization Comparison.

Baselines. We compare DEEPRL4FL with the following
statement-level FL approaches:
• Two spectrum-based fault localization (SBFL) tech-

niques: Ochiai [6] and Dstar [48];
• Two recent mutation-based fault localization (MBFL)

techniques: MUSE [33] and Metallaxis [38];
• Two deep-learning based FL approaches: RBF Neural

Network (RBF) [47] and DeepFL [27]. DeepFL [27]
works at the method level with several features. For
comparison, in this RQ1 for the statement level, we can
only use DeepFL’s spectrum- and mutation-based features
applicable to detect faulty statements.

As in FL work [12], [27], [28] using Defects4J, we used the
setting of leave-one-out cross validation on the faults for each
individual project (i.e., within-project setting). Specifically, we
use one bug (i.e., with one buggy statement or method) as
testing, and the remaining bugs in a project for training.

Tuning DEEPRL4FL and the baselines. We tuned our
model with the following key hyper-parameters to obtain the
best performance: (1) Epoch size (i.e., 100, 200, 300); (2)
Batch size (i.e., 64, 128, 256); (3) Learning rate (i.e., 0.001,
0.003, 0.005, 0.010); (4) Vector length of word representation
and its output (i.e., 150, 200, 250, 300); (5) Convolutional core
size (i.e., 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11); (6) The
number of convolutional core (3, 5, 7, 9, and 11).

As for word2vec, for a method, we consider all tokens in the
source code order as a sentence. We tune the following hyper-
parameters for DeepFL (using only the features relevant to
statements): Epoch number (5, 10, 15, ..., 60), Loss Functions
(softmax, pairwise), and learning rate (0.001, 0.005, 0.010).

RQ2: Method-level Fault Localization Comparison.
Baselines: We also compare our approach with the follow-

ing state-of-the-art approaches that localize faulty methods.
MULTRIC [52] is a learning-based approach to combine

different spectrum-based ranking techniques using learning-to-
rank for effective fault localization.

FLUCCS [43] is a learn-to-rank based technique using
spectrum-based scores and change metrics (e.g., code churn
and complexity metrics) to rank program elements.

TraPT [28] is a learn-to-rank technique to combine
spectrum-based and mutation-based fault localization.

DeepFL [27] is a DL-based model to learn the existing/la-
tent features from multiple aspects of test cases and a program.
We used all the features of DeepFL in this method-level study.

Tuning DEEPRL4FL and the baselines. Similar to RQ1, we
perform our experiments using leave-one-out cross validation
on the faults for each project. We use the same settings in RQ1
to train our model. Note that in DeepFL paper [27], DeepFL,
MULTRIC, FLUCCS, and TraPT have been evaluated using
leave-one-out cross validation and other settings on the same
data set of Defects4J V1.2.0. DEEPRL4FL is also evaluated
on Defects4J V1.2.0 using the same settings and procedure as
DeepFL. Thus, we used the result on the numbers of detected
bugs reported in DeepFL [27] for those models.

RQ3: Impact Analysis of Different Matrix Enhancing
Techniques. We evaluate the impact of the following tech-
niques on accuracy: (1) test case ordering algorithm utilizing
the EE lines (Order); (2) statements’ dependencies (StatDep).
We first build a base model by using only the spectrum- and
mutation- based matrices in DEEPRL4FL (without using the
above techniques), then apply the above techniques on the ma-
trices to build two variants of DEEPRL4FL: {Base+Order},
and {Base+Order+StateDep (DEEPRL4FL)}. We train each
variant using the same settings as in RQ1. Due to space limit,
we show only the analysis results obtained in the within-
project setting for method-level FL.

RQ4: Impact Analysis of Learning Representations. We
have the following representation learning schemes: the en-
hanced spectrum-based CC matrix (NewSpecMatrix) and
the enhanced mutation-based CC matrix (NewMutMatrix).
We also have source code representation (CodeRep) and
textual similarity between source code and error messages
in failing tests (TextSim). To test the impact of those rep-
resentation learning schemes on accuracy, we built a base
model using only NewSpecMatrix, and three other variants:
{NewSpecMatrix+NewMutMatrix}, {NewSpecMatrix+ New-
MutMatrix+CodeRep}, and {NewSpecMatrix+ NewMutMa-
trix+CodeRep+TextSim}. We trained each variant using the
same settings as in RQ1. Due to space limit, we show only
the results for the within-project setting for method-level FL.

TABLE II: RQ1. Results of comparative study for statement-
level fault localization. P% = |Top-1|/{395 Bugs}

Approach Top-1 Top-3 Top-5 P% MFR MAR
Ochiai 17 88 115 4.3% 54.29 71.32
Dstar 19 92 115 4.8% 48.67 69.51
MUSE 26 47 63 6.6% 36.34 48.73
Metallaxis 24 81 108 6.1% 34.59 49.21
RBF 12 37 52 3.0% 22.54 57.47
DeepFL 39 114 129 9.9% 24.09 31.28
DEEPRL4FL 71 128 142 18.0% 20.32 28.63

RQ5: Cross-project Analysis. We also setup the cross-project
scenario: testing one bug in a project, but training a model on
all of the bugs of other projects. For a project, we test every
bug and sum up the total number of bugs in the project that
can be localized in the cross-project scenario.

RQ6: DEEPRL4FL’s Fault Localization Performance on C
Code. We also evaluated DEEPRL4FL on C projects from the
benchmark dataset, ManyBugs [3], [25], with 185 bugs from 9
projects. We used the same model in RQ1 for statement-level
FL and the model in RQ2 for method-level FL.

C. Experimental Results

1) RQ1-Results (Statement-level Fault Localization Com-
parison): As seen in Table II, DEEPRL4FL improves over
the state-of-the-art statement-level FL baselines. Specifically,
DEEPRL4FL improves Recall at Top-1 by 317.6%, 273.7%,
173.1%, 195.8%, 491.7%, and 82.1% in comparison with
Ochiai, Dstar, Muse, Metallaxis, RBF, and DeepFL.

We examined the results and report the following. The key
reason for the spectrum-based FL approaches fail to localize
the buggy statements is that they give the same suspiciousness
score to the statements at the same nested level. For the
mutation-based FL approaches, the key reason for not being
able to localize the buggy statements/methods is that the fix
requires a more sophisticated change than a mutation. Let us
take an example. In Fig. 7, the fault is caused by an incorrect
variable. To fix it, the variable was changed from pos to pt
at line 14. The state-of-art spectrum-based approaches cannot
localize this fault because lines 6, 7, 13, and 14 have the
same score (They were executed in both passing and failing
test cases). For the mutation-based FL approaches, there is
none of mutation operators that changes the variable pos into
pt in a method call at the buggy line 14. Thus, they cannot
observe the impact of mutations on the code coverage. As a
consequence, they cannot locate the buggy line 14.

To gain insights, we performed a visualization of a feature
map for this case. During training, CNN learns the values
for small windows, called filters. The feature maps of a CNN
capture the result of applying the filters to an input matrix.
That is, at each layer, the feature map is the output of that
layer. In image processing, visualizing a feature map for an
input helps gain understanding on whether the model detects
some part of our desired object and what features the CNN
observes. Fig. 8 shows a feature map for the example in Fig. 7.
We can see that around the lines 6–8 and 13–14, the feature

1 public void translate(CharSequence input, Writer out)...{
2 ...
3 int pos = 0;
4 int len = input.length();
5 while (pos < len) {
6 int consumed = translate(input, pos, out);
7 if (consumed == 0) {
8 char[] c=Character.toChars(Char...codePointAt(...));
9 out.write(c);
10 pos+= c.length;
11 continue;
12 }
13 for (int pt = 0; pt < consumed; pt++) {
14 - pos += Char.charCount(Char.codePointAt(input,pos));
15 + pos += Char.charCount(Char.codePointAt(input, pt));
16 }
17 }
18 }

Fig. 7: An Example from Defects4J

Fig. 8: A Feature Map Produced by CNN for Fig. 7

map is visually dark. Without ordering (i.e., a random order of
test cases), the feature map does not exhibit such visualization.

To further study the impacts of the ordering and data
dependencies, we modified DEEPRL4FL in the following
settings: 1) No ordering + No dependencies: the buggy line 14
is ranked at 43th; 2) No ordering + dependencies: it is ranked
at 29th; 3) Ordering + No dependencies: it is ranked at 7th;
and 4) Ordering + dependencies: it is ranked at the top.

2) RQ2-Results (Method-level Fault Localization Com-
parison): As seen in Table III, DEEPRL4FL improves Re-
call at Top-1 by 206.3%, 53.1%, 57.1%, and 15.0% over
MULTRIC, FLUCCS, TraPT, and DeepFL, respectively.
DEEPRL4FL’s MAR is slightly higher than DeepFL’s (3.6%
higher). On average, DEEPRL4FL ranks the correct elements
higher than DeepFL, as its MFR is lower (10.4% lower).

The spectrum-based and mutation-based FL approaches fall
short of DeepFL and DEEPRL4FL. A key reason is that they
consider only dynamic information in test cases, while DeepFL
and our model use both static and dynamic information. In
comparison with DeepFL, we further analyzed the bugs that
our tool can locate, but DeepFL missed. We found that the
mean first rank of a buggy method in the ranking lists of
potential buggy methods returned by DeepFL is 7.08. Without
the ordering and statement dependency in our model, the mean
first rank is 6.84. With only ordering in our model, the mean
first rank is 2.82. With only dependency in our model, the
mean first rank is 4.45. With both ordering and dependency,
our model can locate the bugs that DeepFL missed.

Let us use an example in Defects4J (Fig. 9) that our
model detected but DeepFL missed. The (buggy) method

TABLE III: RQ2. Results of Comparative Study for Method-
level Fault Localization. P% = |Top-1|/{395 Bugs}

Approach Top-1 Top-3 Top-5 P% MFR MAR
MULTRIC 80 163 195 20.3% 37.71 43.68
FLUCCS 160 249 275 40.5% 16.53 21.53
TraPT 156 249 281 39.5% 9.94 12.70
DeepFL 213 282 305 53.9% 6.63 8.27
DEEPRL4FL 245 294 311 62.0% 5.94 8.57

Fig. 9: Ordering and Statement Dependencies Affect Ranking

flipIfWarranted together with the other methods in the project
were fed into four variants of our model. As seen, with the
setting in which both ordering and statement dependencies are
removed, flipIfWarranted is ranked 5th in the list of all methods.
For the setting with only ordering, it is ranked at 2nd place. For
the setting with only statement dependencies, it is ranked 3rd.
With both, our model ranks the buggy method flipIfWarranted
at the 1st position. This analysis shows that ordering test cases
and statement dependencies are the key drivers that help our
model locate more bugs than DeepFL.

3) RQ3-Results (Impact Analysis of Different Matrix
Enhancing Techniques): Table IV shows that our matrix
enhancing techniques positively contribute to DEEPRL4FL.
Specifically, comparing {Base} with {Base+Order}, ordering
the test cases can improve every metric. Order helps localize
53 more bugs (13.4%) using Top-1. It helps improve MFR
and MAR by 20.1% and 12.7%, respectively, showing that
ordering can help DEEPRL4FL push the faulty methods
higher in the ranked list.

Comparing {Base+Order} with {Base+Order+StateDep},
we see that modeling dependencies into matrices is useful to
improve the performance of DEEPRL4FL. StateDep can im-
prove 8.4%, 9.6%, and 4.5% in Top-1, MFR, and MAR.

To further study the impact of the ordering, we visualize the
feature maps for the 53 bugs that Order can detect and Base
did not. Those are the cases where ordering helps. Visualizing
the feature maps for those inputs allows us to understand what
features the CNN detects in both cases of ordering and no-
ordering. Moreover, that also allows us to see if ordering can
help the CNN model learns better the discriminative features in
locating the buggy statements. To do so, for each of those bugs,
we used the CNN model as part of Base and Order to produce
two feature maps: one corresponds to Base (no ordering)
and one to Order. We then visualized and compared those
feature maps as gray-scale images. The CNN model generates
9 feature maps as the output from 9 convolutional cores.

TABLE IV: RQ3. Ordering (Order) and Adding Dependencies
(StateDep) in Method-level FL. P% = |Top-1|/{395 Bugs}

Variants Top1 P% MFR MAR
Base (DEEPRL4FL w/o Order,StateDep) 173 43.8% 8.23 10.27
Base + Order 226 57.2% 6.57 8.97
Base + Order + StateDep (DEEPRL4FL) 245 62.0% 5.94 8.57

Fig. 10: Visually Darker Lines around Buggy Statement

In all the bugs, we observe the same phenomenon. Let us
take an example. Fig. 10 shows two feature maps for one
of those bugs. The left image is for Base (without ordering),
and the right one is for Order (with ordering). We zoom
out the leftmost columns in the right feature map. The row
corresponding to the buggy line is in the red rectangle. With
ordering, one of those 9 feature maps has visually darker lines
around the buggy statement. In contrast, without ordering, all
the feature maps are similar to the one on the left, i.e., do not
show any clear visual lines. In brief, with ordering, the CNN
model, which focuses on the relations of neighboring cells,
can detect the features along the buggy statement.

4) RQ4-Results (Impact Analysis of Learning Represen-
tations): Table V shows that our representation learning has
positive contributions. Comparing {Base} with {Base+ New-
MutMatrix}, we can see that mutation-based matrices can help
locate 23 more bugs using Top-1 and improve MFR and MAR
by 8.2% and 3.5%. By adding code representation learning,
we improve DEEPRL4FL to localize 9 more bugs and gain an
increase on MFR and MAR by 7.9% and 4.0%, respectively.
Furthermore, TextSim also positively contributes to our model.
For statement-level FL, code representation is also useful,
improving Top-1 from 65 to 71 bugs, i.e., 9.2% (not shown).

5) RQ5-Results (Cross-project Analysis): As seen in Ta-
ble VI, DEEPRL4FL achieves better results in the within-
project setting than in the cross-project one. This is expected
as the training and testing data is from the same project in the
within-project setting, thus a model may see similar faults.

In the cross-project setting, DEEPRL4FL correctly de-
tects 217 bugs at Top-1 in comparison with the best result
(207 bugs) from the baselines. In the within-project setting,
DEEPRL4FL correctly detects 230 bugs at Top-1 in compar-
ison with 80/160/156/213 bugs (not shown) from the baseline
models MULTRIC/FLUCCS/TraPT/DeepFL, respectively.
Time Complexity. On average, training time is 350-380
minutes per project in the cross-project setting, and 120-130
minutes per project in the within-project setting. Once the
model is trained, the prediction time per fault is 2-7 seconds
in both the cross- and within-project settings.

TABLE V: RQ4. Results of Learning Representations in
Method-level FL. P% = |Top-1|/{395 Bugs}
Variants Top-1 P% MFR MAR
Base (NewSpecMatrix) 189 47.8% 8.09 9.91
Base+NewMutMatrix 212 53.7% 7.43 9.56
Base+NewMutMatrix+CodeRep 221 55.9% 6.84 9.18
Base+NewMutMatrix+CodeRep+TextSim (DEEPRL4FL) 245 62.0% 5.94 8.57

TABLE VI: RQ5. Cross-project versus Within-project Results

Projects Cross-project Within-project
Top-1 P% MFR MAR Top-1 P% MFR MAR

Chart 13 50.0% 3.15 5.62 15 57.7% 2.85 4.65
Time 13 48.1% 9.78 14.70 14 51.9% 8.41 13.33
Math 61 57.5% 3.81 4.88 64 60.4% 2.93 4.83

Closure 71 53.4% 11.70 15.23 73 54.9% 9.38 12.37
Mockito 12 31.6% 11.42 16.42 14 36.8% 9.39 15.11

Lang 47 72.3% 2.13 2.49 50 76.9% 1.97 2.31

6) RQ6-Results (Performance on C Code): As seen in Ta-
ble VII, DEEPRL4FL can localize 27 faulty statements and 98
faulty methods with only Top-1 statements and methods. The
empirical results show that the performance of DEEPRL4FL
on the C projects is consistent with the one on the Java
projects. Specifically, at the statement level, the percentages
of the total C and Java bugs that can be localized are similar,
i.e., 14.6% vs. 18.0%, respectively. At the method level, the
percentages of the total C and Java bugs that can be localized
are also consistent, i.e., 53.0% vs. 62.0%, respectively.

7) Threats to Validity: i) Baseline implementation. For
comparative study, we implemented Ochiai, Dstar, MUSE,
Metallaxis, and RBF-neural-network for statement-level FL.
We followed the paper [27] to implement MUSE and Metal-
laxis using PIT-1.1.5. RBF-neural-network approach is built
for artificial faults and our real bug dataset cannot match the
requirements. ii) Result generalization. Our comparisons with
the baselines were only carried out on the Defects4J dataset.
Further evaluation on other datasets should be done.

8) Limitations: The quality of test cases is important for our
approach. If there are only a couple of passing test cases or the
crash occurs far apart from the faulty method, DEEPRL4FL
does not learn a useful representation matrix to localize the
faults. It does not work well on locating the faults that require
statement additions to fix (all of the baselines in this paper do
not either). Moreover, it does not work well for short methods,
as they provide less statement dependencies. It is also hard for
our model to localize the uncommon faults. Because it is DL-
based, if there is a very uncommon fault that may not be seen
in the training dataset, it will not work correctly.

X. RELATED WORK

Fault Localization (FL). The Spectrum-based Fault Local-
ization (SBFL), e.g., [6], [7], [21], [22], [30], [31], [36], [51],
[54], has been intensively studied in the literature. Tarantula
[20], SBI [30], Ochiai [6] and Jaccard [7], they share the
same basic insight, i.e., code elements mainly executed by
failed tests are more suspicious. The Mutation-based Fault
Localization (MBFL), e.g., [17], [33], [35], [55], [56], aims
to additionally consider mutated code in fault localization.
The examples of MBFL are Metallaxis [37], [38] and MUSE

TABLE VII: RQ6. ManyBugs (C Projects) versus Defects4J
(Java Projects). P% = |Top-1|/{Total Bugs in Datasets}

Level ManyBugs (C projects) Defects4J (Java projects)
Top-1 P% MFR MAR Top-1 P% MFR MAR

Statement 27 14.6% 25.74 31.33 71 18.0% 20.32 28.63
Method 98 53.0% 6.91 9.89 245 62.0% 5.94 8.57

[33]. Learning-to-Rank (LtR) has been used to improve fault
localization [12], [28], [43], [52]. MULTRIC [52] combines
different suspiciousness values from SBFL. Some work com-
bines SBFL suspiciousness values with other information, e.g.,
program invariant [12] and source code complexity informa-
tion [43], for more effective LtR in FL. TraPT [28] combines
suspiciousness values from both SBFL and MBFL. Neural
networks have been applied to fault localization [16], [50],
[58], [60]. However, they mainly work on the test coverage
summarization scores, which has clear limitations (e.g., it can-
not distinguish elements covered by both failing and passing
test cases) [28], and are usually studied on artificial faults
or small programs. DeepFL [27] was shown to improve the
method-level FL approach TraPT [28]. DEEPRL4FL is also
related to CNN-FL [57], which feeds the original coverage
matrix with passing/failing information into a CNN model.
CNN-FL is theoretically equivalent to Base model in Table IV,
without any matrix enhancements, test cases ordering, state-
ment dependencies, and code representations.

Code Representation Learning (CRL). The recent success
in machine learning has lead to much interest in apply-
ing machine learning, especially deep learning, to program
analysis and software engineering tasks, such as automated
correction for syntax errors [14], spreadsheet errors detec-
tion [13], [40], fuzz testing [39], program synthesis [11],
code clones [46], [41], [26], program summarization [8], [34],
code similarity [10], [59], probabilistic model for code [15],
and path-based code representation, e.g., Code2Vec [10] and
Code2Seq [9]. All the approaches learn code representations
using different program properties. However, none of the
existing fault localization techniques has performed direct code
modeling and learning on code coverage information of the
test cases for the FL purpose as in DEEPRL4FL.

XI. CONCLUSION

We propose a deep learning based fault localization (FL)
approach, DEEPRL4FL, to improve existing FL approaches.
The key ideas include (1) treating the FL problem as the
image recognition; (2) enhancing code coverage matrix by
modeling the relations among statements and failing test cases;
(3) combining code coverage representation learning with
statement dependencies, and the code representation learning
for usual suspicious code. Our empirical evaluation shows that
our model advances the state-of-the-art baseline approaches.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation (NSF) grants CCF-1723215, CCF-1723432, TWC-
1723198, CCF-1518897, and CNS-1513263.

REFERENCES

[1] (2019) The Defects4J data set. [Online]. Available: https://github.com/
rjust/defects4j

[2] (2019) Gzoltar. [Online]. Available: http://www.gzoltar.com/
[3] (2019) The ManyBugs data set. [Online]. Available: https:

//repairbenchmarks.cs.umass.edu/
[4] (2019) Pit. [Online]. Available: https://pitest.org/
[5] (2021) The github repository for this study. [Online]. Available:

https://github.com/deeprl4fl2021icse/deeprl4fl-2021-icse
[6] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of sim-

ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006, pp. 39–46.

[7] ——, “On the accuracy of spectrum-based fault localization,” in Testing:
Academic and Industrial Conference Practice and Research Techniques-
MUTATION (TAICPART-MUTATION 2007). IEEE, 2007, pp. 89–98.

[8] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional attention
network for extreme summarization of source code,” CoRR, vol.
abs/1602.03001, 2016. [Online]. Available: http://arxiv.org/abs/1602.
03001

[9] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.

[10] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” CoRR, vol. abs/1803.09473, 2018.
[Online]. Available: http://arxiv.org/abs/1803.09473

[11] M. Amodio, S. Chaudhuri, and T. W. Reps, “Neural attribute machines
for program generation,” CoRR, vol. abs/1705.09231, 2017. [Online].
Available: http://arxiv.org/abs/1705.09231

[12] T.-D. B Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis
(ISSTA’16). ACM, 2016, pp. 177–188.

[13] D. W. Barowy, E. D. Berger, and B. Zorn, “Excelint: Automatically
finding spreadsheet formula errors,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, Oct. 2018. [Online]. Available: https://doi.org/10.1145/
3276518

[14] S. Bhatia and R. Singh, “Automated correction for syntax errors in
programming assignments using recurrent neural networks,” CoRR, vol.
abs/1603.06129, 2016. [Online]. Available: http://arxiv.org/abs/1603.
06129

[15] P. Bielik, V. Raychev, and M. Vechev, “Phog: Probabilistic model
for code,” in Proceedings of The 33rd International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New York,
New York, USA: PMLR, 20–22 Jun 2016, pp. 2933–2942. [Online].
Available: http://proceedings.mlr.press/v48/bielik16.html

[16] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in The 18th IEEE International Symposium
on Software Reliability (ISSRE’07). IEEE, 2007, pp. 137–146.

[17] T. A. Budd, “Mutation analysis of program test data.” 1981.
[18] A. Grover and J. Leskovec, “node2vec: Scalable feature learning

for networks,” CoRR, vol. abs/1607.00653, 2016. [Online]. Available:
http://arxiv.org/abs/1607.00653

[19] Hadamard, “Hadamard product,” https://en.wikipedia.org/wiki/
Hadamard product (matrices), last Accessed July 11, 2019.

[20] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering (ICSE’02), 2002, pp. 467–477.

[21] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated Software Engineer-
ing (ASE’05). ACM, 2005, pp. 273–282.

[22] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in IEEE International Conference on
Software Quality, Reliability and Security (QRS’17). IEEE, 2017, pp.
114–125.

[23] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[25] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The ManyBugs and IntroClass benchmarks
for automated repair of C programs,” IEEE Transactions on Software
Engineering (TSE), vol. 41, no. 12, pp. 1236–1256, December 2015.

[26] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “CCLearner: A
deep learning-based clone detection approach,” in IEEE International
Conference on Software Maintenance and Evolution (ICSME’17), Sep.
2017, pp. 249–260.

[27] X. Li, W. Li, Y. Zhang, and L. Zhang, “DeepFL: integrating multiple
fault diagnosis dimensions for deep fault localization,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2019, pp. 169–180.

[28] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
Oct. 2017. [Online]. Available: https://doi.org/10.1145/3133916

[29] Y. Li, S. Wang, T. N. Nguyen, and S. V. Nguyen, “Improving bug
detection via context-based code representation learning and attention-
based neural networks,” Proc. ACM Program. Lang. 3, OOPSLA, Article
1 (October 2019), 2019.

[30] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 15–26. [Online]. Available:
https://doi.org/10.1145/1065010.1065014

[31] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended compre-
hensive study of association measures for fault localization,” Journal of
software: Evolution and Process, vol. 26, no. 2, pp. 172–219, 2014.

[32] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in 27th Annual Conference on Neural Information Processing
Systems 2013 (NIPS’13), 2013, pp. 3111–3119.

[33] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in IEEE International Conference
on Software Testing, Verification and Validation, 2014, pp. 153–162.

[34] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang, “TBCNN: A
tree-based convolutional neural network for programming language
processing,” CoRR, vol. abs/1409.5718, 2014. [Online]. Available:
http://arxiv.org/abs/1409.5718

[35] V. Musco, M. Monperrus, and P. Preux, “A large-scale study of call
graph-based impact prediction using mutation testing,” Software Quality
Journal, vol. 25, no. 3, pp. 921–950, 2017.

[36] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, p. 11, 2011.

[37] M. Papadakis and Y. Le Traon, “Using mutants to locate ”unknown”
faults,” in IEEE International Conference on Software Testing, Verifica-
tion and Validation. IEEE, 2012, pp. 691–700.

[38] ——, “Metallaxis-FL: mutation-based fault localization,” Software Test-
ing, Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[39] J. Patra and M. Pradel, “Learning to fuzz: Application-independent fuzz
testing with probabilistic, generative models of input data,” TUD-CS-
2016-14664, TU Darmstadt, Tech. Rep., 2016.

[40] R. Singh, B. Livshits, and B. Zorn, “Melford: Using neural networks
to find spreadsheet errors,” Microsoft Research, Microsoft Tech Report
Number MSR-TR-2017-5, Tech. Rep., 2017.

[41] R. Smith and S. Horwitz, “Detecting and measuring similarity in code
clones,” 2009.

[42] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural scenes
and natural language with recursive neural networks,” in Proceedings of
the 28th international conference on machine learning (ICML-11), 2011,
pp. 129–136.

[43] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’17).
ACM, 2017, pp. 273–283.

[44] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent
neural network for sentiment classification,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Sep. 2015, pp. 1422–1432.
[Online]. Available: https://www.aclweb.org/anthology/D15-1167

[45] WALA, “Wala documentation.” http://wala.sourceforge.net/wiki/index.
php/Main Page, last Accessed July 11, 2019.

https://github.com/rjust/defects4j
https://github.com/rjust/defects4j
http://www.gzoltar.com/
https://repairbenchmarks.cs.umass.edu/
https://repairbenchmarks.cs.umass.edu/
https://pitest.org/
https://github.com/deeprl4fl2021icse/deeprl4fl-2021-icse
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1803.09473
http://arxiv.org/abs/1705.09231
https://doi.org/10.1145/3276518
https://doi.org/10.1145/3276518
http://arxiv.org/abs/1603.06129
http://arxiv.org/abs/1603.06129
http://proceedings.mlr.press/v48/bielik16.html
http://arxiv.org/abs/1607.00653
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://doi.org/10.1145/3133916
https://doi.org/10.1145/1065010.1065014
http://arxiv.org/abs/1409.5718
https://www.aclweb.org/anthology/D15-1167
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

[46] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016, pp. 87–
98. [Online]. Available: http://doi.acm.org/10.1145/2970276.2970326

[47] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham,
“Effective software fault localization using an RBF neural network,”
IEEE Transactions on Reliability, vol. 61, no. 1, pp. 149–169, 2011.

[48] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localization
using DStar (D*),” in 6th IEEE International Conference on Software
Security and Reliability. IEEE, 2012, pp. 21–30.

[49] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A
survey on software fault localization,” IEEE Trans. Softw. Eng.,
vol. 42, no. 8, pp. 707–740, Aug. 2016. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2521368

[50] W. E. Wong and Y. Qi, “BP neural network-based effective fault local-
ization,” International Journal of Software Engineering and Knowledge
Engineering, vol. 19, no. 04, pp. 573–597, 2009.

[51] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization
using code coverage,” in 31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), vol. 1. IEEE, 2007,
pp. 449–456.

[52] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in IEEE International Conference on
Software Maintenance and Evolution (ICSME’14). IEEE, 2014, pp.
191–200.

[53] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A
novel neural source code representation based on Abstract Syntax
Tree,” in Proceedings of the 41st International Conference on Software
Engineering (ICSE’19). IEEE Press, 2019, pp. 783–794.

[54] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing pro-

gram edits based on spectrum information,” in Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM’11).
IEEE, 2011, pp. 23–32.

[55] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei,
“Test generation via dynamic symbolic execution for mutation testing,”
in IEEE International Conference on Software Maintenance (ICSM’10).
IEEE, 2010, pp. 1–10.

[56] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults
to localize developer faults for evolving software,” in Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
765–784. [Online]. Available: https://doi.org/10.1145/2509136.2509551

[57] Z. Zhang, Y. Lei, X. Mao, and P. Li, “CNN-FL: An effective approach
for localizing faults using convolutional neural networks,” in IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER’19), 2019, pp. 445–455.

[58] Z. Zhang, Y. Lei, Q. Tan, X. Mao, P. Zeng, and X. Chang, “Deep
learning-based fault localization with contextual information,” Ieice
Transactions on Information and Systems, vol. 100, no. 12, pp. 3027–
3031, 2017.

[59] G. Zhao and J. Huang, “Deepsim: Deep learning code functional
similarity,” in Proceedings of the 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 141–151. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236068

[60] W. Zheng, D. Hu, and J. Wang, “Fault localization analysis based on
deep neural network,” Mathematical Problems in Engineering, vol. 2016,
2016.

http://doi.acm.org/10.1145/2970276.2970326
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2509136.2509551
http://doi.acm.org/10.1145/3236024.3236068

	I Introduction
	II Motivating Examples
	III Exploratory Study
	IV Approach Overview
	IV-1 Code Coverage Representation Learning
	IV-2 Dependency Representation Learning
	IV-3 Source Code Representation Learning

	V Code Coverage Representation Learning
	V-A Generating Code Coverage Matrices
	V-B Identifying Error-Exhibiting Lines
	V-C Test Case Ordering Algorithm

	VI Statement-Dependency Representation
	VI-1 Execution Order Representation
	VI-2 Data Dependency Representation
	VI-3 Vectors for Statements with Dependencies
	VI-4 Combining Statement Dependencies and ECC Matrices
	VI-5 Encoding Code Coverage Matrices with a CNN Model

	VII Source Code Representation Learning
	VIII Fault Localization with CNN Model
	VIII-A Statement-level Fault Localization
	VIII-B Method-level Fault Localization

	IX Empirical Evaluation
	IX-A Research Questions
	IX-B Experimental Methodology
	IX-B1 Data Set
	IX-B2 Experiment Metrics
	IX-B3 Experiment Setup and Procedure

	IX-C Experimental Results
	IX-C1 RQ1-Results (Statement-level Fault Localization Comparison)
	IX-C2 RQ2-Results (Method-level Fault Localization Comparison)
	IX-C3 RQ3-Results (Impact Analysis of Different Matrix Enhancing Techniques)
	IX-C4 RQ4-Results (Impact Analysis of Learning Representations)
	IX-C5 RQ5-Results (Cross-project Analysis)
	IX-C6 RQ6-Results (Performance on C Code)
	IX-C7 Threats to Validity
	IX-C8 Limitations

	X Related Work
	XI Conclusion
	References

