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Abstract—App stores allow users to give valuable feedback on
apps, and developers to find this feedback and use it for the
software evolution. However, finding user feedback that matches
existing bug reports in issue trackers is challenging as users
and developers often use a different language. In this work,
we introduce DeepMatcher, an automatic approach using state-
of-the-art deep learning methods to match problem reports in
app reviews to bug reports in issue trackers. We evaluated
DeepMatcher with four open-source apps quantitatively and
qualitatively. On average, DeepMatcher achieved a hit ratio of
0.71 and a Mean Average Precision of 0.55. For 91 problem
reports, DeepMatcher did not find any matching bug report.
When manually analyzing these 91 problem reports and the
issue trackers of the studied apps, we found that in 47 cases,
users actually described a problem before developers discovered
and documented it in the issue tracker. We discuss our findings
and different use cases for DeepMatcher.

Index Terms—app store analytics, natural language processing,
deep learning, mining software repositories, software evolution

I. INTRODUCTION

The app market is highly competitive and dynamic. Google
Play Store and Apple App Store offer together more than ∼4
million apps [46] to users. In this market, it is essential for
app vendors to regularly release new versions to fix bugs and
introduce new features [33], as unsatisfied users are likely
to look for alternatives [8], [50]. User dissatisfaction can
quickly lead to the fall of even popular apps [26]. It is
thus indispensable to continuously monitor and understand the
changing user needs and habits for a successful app evolution.

However, identifying and understanding user needs and
encountered problems is challenging as users and developers
work in different environments and have different goals in
mind. On the one hand, software developers professionally
report bugs in issue trackers to document and keep track of
them, as illustrated in Figure 1. On the other hand, users
voluntarily provide feedback on apps in, e.g., app reviews as
shown in Figure 2 – using a different, often non-technical,
and potentially imprecise language. Consequently, seriously
considering and using app reviews in software development
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and evolution processes can become time-consuming and
error-prone.

App vendors can regularly receive a large number of user
feedback via various channels, including app stores or social
media [10], [37]. Manually filtering and processing such
feedback is challenging. In recent years, research developed
approaches for filtering feedback, e.g., by automatically iden-
tifying relevant user feedback [4] like bug reports [44] and
feature requests [16], or by clustering the feedback [47] to
understand how many users address similar topics [49]. While
these approaches are helpful to cope with and aggregate large
amounts of user feedback, the gap between what happens
in the issue tracker and what happens online in the user
space remains unfilled. For instance, developers remain unable
to easily track whether an issue reported in an app review
is already filed as a bug report in the issue tracker; or to
quickly find a related bug they thought is already resolved.
Additionally, user feedback items often lack information that is
relevant for developers, such as steps to reproduce or versions
affected [31], [53].

To address this gap, we introduce DeepMatcher, which is,
to the best of our knowledge, the first approach that matches
official and technically-written bug reports with informal,
colloquially-written app reviews. DeepMatcher first filters app
reviews into problem reports using the classification approach
by Stanik et al. [44] Subsequently, our approach matches
the problem reports with bug reports in issue trackers using
deep learning techniques. We use the state-of-the-art, context-
sensitive text embedding method DistilBERT [41] to transform
the problem report and bug report texts into the same vector
space. Given their vector embeddings, we then use cosine
similarity as a distance metric to identify matches.

For 200 randomly sampled problem reports submitted by
users of four Google apps, DeepMatcher identified 167 match-
ing bug reports when configured to show three suggestions
per problem report. In about 91 cases, DeepMatcher did not
find any matches. We manually searched for these 91 cases
in the issue trackers to check whether there are indeed no
matching bug reports. We found that in 47 cases, developers
would have benefited from DeepMatcher, as no corresponding
bug reports were filed. We also qualitatively analyzed the
context-sensitive text embeddings, which identified recurring
bug reports and cases in which users reported problems before
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Fig. 1. List of bug reports from the issue tracker of the app Signal Messenger.

developers documented them. We found that our approach
can detect semantically similar texts such as “draining vs.
consuming battery” and “download vs. save PDF”, filling the
gap between users’ and developers’ language. Our qualitative
analysis further revealed cases of recurring and duplicated bug
reports. We share our replication package1 for reproducibility.

The remainder of the paper is structured as follows. First,
we introduce DeepMatcher in Section II explaining our de-
sign rationales. Section III introduces our evaluation setting,
including the research questions, data, and process. Section
IV presents our quantitative and qualitative evaluation re-
sults. Then, we discuss how developers can use and modify
DeepMatcher to detect bugs earlier and enrich existing issue
descriptions with information extracted from user feedback in
Section V. Finally, we discuss the threats to validity in Section
VI, related work in Section VII, and conclude the paper in
Section VIII.

II. APPROACH

Figure 3 shows an overview of DeepMatcher’s technical
approach. The input of DeepMatcher is a problem report (an
app review describing a problem with an app) and a bug
report summary. In Section II-A, we discuss how we automat-
ically identified problem reports from the review. Section II-B
describes the text embedding creation process shown in the
middle part of the figure. This represents the transformation
of textual data into numeric values, which we then use to
calculate a similarity value as explained in Section II-C.

A. Automatic Problem Reports Classification

Challenges. One of the major problems when working with
user feedback is the vast amount that software developers
receive. Particularly in app stores, Pagano and Maalej [37]
showed that developers of popular apps receive about 4,000
app reviews daily. When considering Twitter as an alternative
feedback source, Twitter accounts of popular software vendors
receive about 31,000 tweets daily [10]. Besides the amount,
the quality of the written feedback differs. Most of the
received app reviews simply praise, e.g., “I like this app” or

1https://mast.informatik.uni-hamburg.de/replication-packages/

Fig. 2. Example problem report for Nextcloud answered by the app developer.

dispraise, e.g. “I hate this app!” [37]. However, developers are
particularly interested in the user experience, feature requests,
and problem reports [11], [27], [47]. Our approach uses
automatically classified problem reports from app reviews and
subsequently matches them to bug reports in issue trackers.
Approach and Rationale. We applied a four-step process to
filter relevant app reviews. First, we removed all user feedback
containing less than ten words as previous research has shown
that such feedback is most likely praise or spam [37] and does
not contain helpful information [42]. Second, we downloaded
the replication package of Stanik et al. [44], and applied
the bug report, feature request, and irrelevant classification
approach to also filter the user feedback for bug reports. The
classification reduced the initial number of app reviews to
9,132 problem reports. Fourth, to check the reliability of the
classification, we randomly sampled and manually analyzed
automatically classified app reviews for each of the four stud-
ied apps for manual analysis. Two coders manually checked
if the classified problem reports were correctly classified. In
case of disagreement, we did not include the app review but
sampled a new one. We repeated this step until we had 50
verified problem reports for each app, which is 200 in total.

B. Text Representation with Word Embeddings

Challenges. We further convert the text into a numerical
presentation for further interpretation. In natural language
processing, practitioners usually transfer texts into vectors by
applying techniques including bag-of-words, tf-idf [29], or
fastText [20]. When representing text in a vector space, we
can perform calculations, such as comparing text similarity,
which becomes essential in a later step for identifying matches.
Selecting the right word embedding technique is crucial, as
it decides how precisely the vectors represent the text. We
face two major challenges. First, users and developers usually
use different vocabularies. User feedback is more prone to
spelling mistakes, often contain emoticons. Moreover, users
write mostly in an informal, colloquial, and non-technical
way. Second, bug reports are usually written in a more formal
way, e.g., following templates, containing metadata, and may
provide technical information like stack traces [53].
Approach and Rationale. Both data sources consist of dif-
ferent text components. While user feedback consists of a
single text body, bug reports have a summary and a detailed
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Fig. 3. Overview of the DeepMatcher approach.

description. The description may contain a long explanation,
including steps to reproduce, stack traces, and error logs. We
determined which text components of the bug report to include
for the calculation of the text embedding. Previous research
showed that the detailed bug report description contains noise
for information retrieval tasks [51]. In particular, it contains
technical details that users usually omit in their user feed-
back [31]. Further, research shows that the summary already
contains the essential content of the long description [22],
[25], [48]. Therefore, we calculated the word embeddings only
based on the bug report’s summary.

Regarding the word embedding technique, we chose Dis-
tilBERT [41], a light-weight version of BERT [6] that is
trained with a fewer number of parameters but has a similar
generalization potential. Alternative techniques would be, e.g.,
BERT, XLNet, or RoBERTa. But as DistilBERT requires
significantly fewer hardware resources and training time, it is
more applicable for various development teams. Our technique
first tokenizes the input text and then calculates vectors for
each token. Compared to other text representations like bag-of-
words or tf-idf, these vectors are contextualized; they consider
the context of the surrounding words. For example, the two
sentences “I love apples” and “I love Apple macbooks”
contain the token “apple”. Contextualized embeddings take
into account that the token’s semantics differs in these two sen-
tences. In our approach, DistilBERT creates a 768-dimensional
contextualized embedding for each token.

We calculated the document embedding from the individual
token embeddings. To reduce the weight of frequent but unim-
portant words such as “I”, “have”, or “to”, previous research
in text mining suggests removing stopwords [38], [45], [47].
In our approach, we went one step further and only included
embeddings of nouns, which we can automatically detect
with a part-of-speech (POS) tagger. We carefully decided to
remove other parts of speech like the verb tokens as first trials
showed that including frequent verbs like “crash”, “freeze”,
and “hangs” heavily biased our results toward these terms. For
example, DeepMatcher would match “The app crashes when
I open a new tab” (problem report) with “Firefox crashes on
the home screen” (bug report) because the verb “crash” puts
the vectors of both texts closer together. Based on this design
decision, DeepMatcher weights essential words, i.e., nouns
that describe components or features higher, while the contex-

tualized token embeddings still contain information about the
surrounding context, e.g., the verbs. As a result, DeepMatcher,
e.g., emphasizes the nouns “new tab” and “home screen” in
the previous example and, therefore, would not consider the
bug and problem report as a potential match. Another positive
side-effect of the surrounding context is that it helps to deal
with misspelled words as their surrounding context is usually
similar to the correct word’s context. Therefore DistilBERT
calculates similar embeddings for them.

The automatic noun detection of the input texts is part
of DeepMatcher and uses SpaCy’s tokenizer and POS-tagger
[15]. As SpaCy’s tokenizer and the DistilBERT’s tokenizer
split the input text into different token sequences, we mapped
the two sequences to each other by aligning them using pyto-
kenizations. For calculating the embedding for the full text of
the problem report or bug report’s summary, we added all noun
word vectors of the text and averaged them. Alternatively, we
could have summed up the noun word vectors but decided
to average them as the cosine similarity function depends
on the vector angles and not on their lengths. Therefore, the
choice of summing or averaging would not influence the cosine
similarity score in our approach.

C. Identifying relevant Bug Reports for a Problem Report

Challenges. Given the numerical representation of the prob-
lem report and the bug report, DeepMatcher finally requires
a method to decide whether a bug report is relevant for a
problem report or not. The main challenge in this task is cal-
culating matching problem reports and bug reports with short
text similarity [40]. Besides semantic features, research tried
text similarity approaches like simple substring comparisons
[17], lexical overlap [18], or edit distances [34]. Kenter and
de Rijke [21] state that these approaches can work in some
simple cases but are prone to mistakes.
Approach and Rationale. We considered two options for this
task. One option is to model this task as a binary classification
problem using the two classes, “relevant” or “not relevant”.
However, this approach would require a large labeled dataset
to train a classifier for this task, which is expensive and time-
consuming [5]. Therefore, we chose the second option, which
models this task as an information retrieval task. Given a
problem report as a query, we designed DeepMatcher to return
a ranked list of suggested relevant bug reports. We chose a



distance function to measure the similarity between the two
text embeddings and further rank the bug report summaries in
decreasing order.

Two popular similarity measures for text embeddings are
the euclidian similarity, and cosine similarity [9], [43]. The
euclidian distance can increase depending on the number of
dimensions. In contrast, the cosine similarity measures the
angle of the two text vectors and is independent of their
magnitude. The benefit is that it results in a similarity value of
1 if the two vectors have a zero-degree angle. A non-similarity
occurs when the vectors have a 90-degree angle to each other.
Previous research [1]–[3], [9], showed that cosine similarity
performs equally or outperforms other similarity measures for
dense text embedding vectors, which is why we also used it
for DeepMatcher.

III. EMPIRICAL EVALUATION

A. Research Questions

Apps usually receive user feedback as app reviews, which
may contain the user’s opinion and experience with the soft-
ware. Our study focuses on the app review category problem
reports, which is about users describing a faulty app behavior.
Figure 2 shows an example of a problem report. Bug reports
are issues in an issue tracker, complying with a certain
template and contain information including summary, body,
app version, timestamp, and steps to reproduce. Figure 1 shows
a list of four bug report summaries of the Signal Messenger
app in GitHub.

Our evaluation focuses on the following research questions:
RQ1 How accurate can DeepMatcher match app re-

views with bug reports?
In this research question, we analyze if we can identify

bug reports in issue tracker systems for which users wrote
app reviews. For example, a developer filed the following bug
report: “I am able to type words in Firefox search bar but
unable to type anything in the websites”. Can we find app
reviews that describe the same issue, like the following app
review? “When I type into the search box’s it type’s random
words on it’s own even when I delete the random words it
adds words in, it’s not my prediction keyboard that’s messing
up it only happens on Firefox.”

RQ2 What can we learn from DeepMatcher’s relevant
and irrelevant matches?

To answer this question, we checked a sample of relevant
and irrelevant matches. We analyzed cases in which contex-
tual embeddings identify words with similar meanings, the
language gap between developers and users, recurring bug
reports, and a potential chronological dependency between
problem reports and bug reports. We highlight our findings
and explain them with examples from our dataset.

B. Evaluation Data

For creating the evaluation data, we first collected app
reviews and issues of four diverse apps. We selected the apps
Firefox (browser), VLC (media player), Signal (messenger),

TABLE I
OVERVIEW OF THE EVALUATION DATA.

App name Bug reports App reviews
Time
period Count Time

period Count Problem
reports [44]

Firefox Browser 01/2011
08/2019 29,941 09/2018

07/2020 5,706 3,314

VLC Media Player 05/2012
07/2020 553 09/2018

07/2020 5,026 2,988

Signal Messenger 12/2011
08/2020 7,768 09/2018

08/2020 10,000 2,583

Nextcloud 06/2016
08/2020 2,462 06/2016

08/2020 774 247

Total 40,724 21,506 9,132

and NextCloud (cloud storage) to cover different app domains
and usage scenarios in our analysis. As Pagano and Maalej
showed [37], most app reviews rather represent noise for
software developers as they only contain praise like “I like
this app” or insults like “this app is trash”. Therefore, we
applied the bug report classification approach from Stanik et al.
[44] to identify problem reports. We chose this classification
approach, as it uses state-of-the-art approaches, achieves high
F1-scores of 79% for English app reviews, and we could
include the replication package in our pipeline without major
modifications. Eventually, we created a random sample from
the collected data that we then used in the evaluation.

As our study is concerned with matching problem reports
found in app reviews with bug reports documents in issue
trackers, we collected both—problem reports and bug reports.
In our study, we decided to evaluate our approach against
four popular open-source Android apps, which stretch over
different app categories. We cover the categories browsing
(Firefox), media player for audio, video, and streaming (VLC),
a cloud storage client (Nextcloud), and a messaging app
(Signal). As these apps use different issue tracker systems
to document bug reports, we developed crawlers for Bugzilla
(Firefox), Trac (VLC), and GitHub (Nextcloud and Signal).
For each app, we collected all bug reports from the issue
tracker systems. As a requirement for our analysis, each bug
report contains at least an ID, summary, and status (e.g., open
and resolved), as well as the creation date. Additionally, we
also collected the remaining data fields provided by the issue
tracker systems, such as issue descriptions and comments. A
complete list of the collected data fields is documented in our
replication package.

We then collected up to 10,000 app reviews of the cor-
responding apps following Google’s default sort order “by
helpfulness”. Sorting by helpfulness helped us to not only
considering the most recent app reviews (sort by date) but also
emphasized the app reviews that other users deemed helpful.
For Nextcloud, we could not collect more than 774 app reviews
as it seems that from their total 5,900 reviews in the Google
Play Store, 5,126 reviews only contain a star rating without
any text. Our app review dataset covers a time frame of two to
four years. In total, we were able to collect 21,506 app reviews
from the Google Play Store. After applying the problem report



classifier [44], we could reduce the number of app reviews to
9,132 problem reports.

Table I summarizes our study data. The table reveals that
while the time range of bug reports covers at least four years,
Firefox has the highest number of bug reports filed from
January 2011 to August 2019. In total, we collected 40,724 bug
reports, of which 29,941 belong to Firefox. We focused on bug
reports but ignored other issues like feature or enhancement
requests by filtering the issues that developers labeled as such
in the issue tracker systems.

C. Evaluation Method

We evaluated DeepMatcher with respect to quantitative and
qualitative aspects. Starting from a set of manually verified
problem reports, DeepMatcher suggested three bug reports
for each. We evaluated how accurately DeepMatcher finds
matching bug reports based on their summaries for a given
problem report. We conducted a manual coding task, which
consisted of two steps.

In the first step, we classified the app reviews using an
existing approach [44] into problem reports to remove ir-
relevant feedback such as praise and dispraise (F1-score of
0.79 for English app reviews). Then, we randomly sampled
50 problem reports per app and manually verified whether
the classified app reviews are problem reports. Two coders
independently annotated the classification results according to
a coding guide from previous research [27]. We randomly
sampled new problem reports until we reached 50 verified
problem reports per app, which made 200 in total.

In the second step, we used DeepMatcher to calculate three
suggestions of potentially matching bug reports for each of
the 200 problem reports. Again, two coders independently
read each problem report and the three suggested bug reports.
For each matching, the coders annotated whether the match
is relevant or irrelevant. We consider the match relevant if
the problem report and the bug report describe the same app
feature (e.g., watch video) and behavior (e.g., crashes in full
screen). For example, for the problem report: “Latest update
started consuming over 80% battery. Had to uninstall to even
charge the phone!” DeepMatcher suggested the relevant bug
report match “Only happening with latest version, But keep
getting FFbeta draining battery too fast”. We documented the
inter-coder agreement and resolved disagreements by having
the two coders discussing each. We report further analysis
results based on the resolved annotations.

To answer RQ1, we calculated DeepMatcher’s performance.
We report the number of relevant/irrelevant matches found per
app and the mean average precision (MAP) [52]. It describes
the average precision AveP for each problem report p and
its suggestions and then calculates the mean over all problem
reports P :

MAP =

∑P
p=1 AveP (p)

P

This is a conservative evaluation metric because it assumes
that we have at least three relevant bug reports per problem

report. If this is not the case, even a perfect tool cannot achieve
the highest average precision [30]. However, in our setting, the
actual number of relevant bug reports is unknown. Therefore,
we additionally report on the hit ratio, which describes the
share of problem reports for which DeepMatcher has sug-
gested at least one relevant match. For the irrelevant matches,
we further tried to manually find relevant bug reports in issue
trackers. We further analyzed DeepMatcher’s similarity score
to identify a possible threshold, which users can use for the
relevance assessment.

To answer RQ2, we conducted a qualitative analysis of the
data. For each app, we analyzed the language of app reviews
and bug reports by counting the nouns used in both datasets
in relation to the nouns used overall. We highlight the strength
of contextual word embeddings and show how DeepMatcher
matches different words with similar semantic meaning. We
further analyze the cases in which developers report a bug
report after a user submitted a related problem report in the
app store.

IV. EVALUATION RESULTS

This section reports the results of our evaluation study. We
analyze DeepMatcher’s cosine similarity values to understand
if we could use a certain similarity score threshold to identify
matching problem reports and bug reports. Further, we report
on our qualitative analysis and describe relevant and irrele-
vant suggestions to find potential ways to improve automatic
matching approaches.

A. Matching Problem Reports with Bug Reports (RQ1)

As introduced earlier, we sampled 50 problem reports
per app (200 in total) and applied DeepMatcher to suggest
matching bug reports. In the first step, DeepMatcher suggested
one matching bug report per problem report. Then, we changed
that parameter and let DeepMatcher suggest two matching
bug reports. Finally, DeepMatcher suggested three matching
bug reports per problem report, which led to 600 suggestions.
Since DeepMatcher suggests bug reports based on the highest
cosine similarity, it added one additional suggestion per step
while keeping the previous ones. This way, we could evaluate
DeepMatcher’s performance based on this parameter (number
of suggestions). Two authors independently annotated each of
the 600 bug report suggestions as either a relevant or irrelevant
match.

Table II summarizes the overall result of the peer-coding
evaluation. The table shows that the inter-coder agreement for
the whole dataset (3 suggested bug reports per problem report)
is ≥ 0.88. From the 600 matching bug report suggestions,
the two coders identified 167 developer relevant matching
suggestions. These 167 suggestions occurred in 109 problem
reports with the parameter number of suggestions set to three.
Multiple relevant matches occurred either for generic problem
reports like “the app crashes often” or for similar, recurring,
or duplicated bug reports in the issue tracker.

Suggestions Without Relevant Matches. For 91 problem
reports, DeepMatcher could not find a relevant match within



TABLE II
RESULTS OF THE MANUAL CODING FOR 4 OPEN SOURCE APPS, EACH WITH 50 APP REVIEWS. LEGEND: MEAN AVERAGE PRECISION (MAP), NUMBER

OF SUGGESTED BUG REPORTS (#).

App 1 Suggestion 2 Suggestions 3 Suggestions

# MAP Hit
Ratio # MAP Hit

Ratio # MAP Hit
Ratio

#
Relevant
Matches

Coder
Agreement

Firefox 50 0.50 0.50 100 0.54 0.58 150 0.58 0.74 38 0.93
VLC 50 0.32 0.32 100 0.38 0.44 150 0.40 0.51 26 0.91
Signal 50 0.38 0.38 100 0.47 0.57 150 0.50 0.68 45 0.89
Nextcloud 50 0.62 0.62 100 0.73 0.84 150 0.73 0.89 58 0.88
Total 200 ∅ 0.45 ∅ 0.46 400 ∅ 0.53 ∅ 0.61 600 ∅ 0.55 ∅ 0.71 167 ∅ 0.90

the three suggestions. The reason for this is twofold: either no
relevant bug report actually exists in the issue tracker system,
or DeepMatcher missed relevant matches. To understand why
DeepMatcher did not identify any matches for 91 problem
reports, we manually searched the issue tracker systems by
building a query using different keyword combinations from
the problem reports. For example, Table III shows a problem
report of VLC for which DeepMatcher could not find a
relevant matching bug report. However, in our manual check,
we found the bug report “When the device’s UI language is
RTL, no controls are shown in the notification card”, which
the two coders consider a relevant match. For 47 problem
reports, we could not find any relevant match in the issue
tracker system, while DeepMatcher missed potentially relevant
matches in 44 cases. Consequently, DeepMatcher identified 47
problem reports that were undocumented in the issue trackers.
This can help developers create new bug reports.

Average Mean Precision and Hit Ratio. We calculated
the Mean Average Precision (MAP) and the hit ratio of our
manual annotated data for all three parameters (one sugges-
tion, two suggestions, and three suggestions). The MAP is
a conservative score, which assumes that each problem report
has at least as many relevant bug reports in the issue tracker as
the parameter states. For example, if we set the parameter for
the number of suggested bug reports to three, the MAP score
assumes that at least three relevant matching bug reports exist.
In case the problem report has less than three relevant bug
reports, the average precision for that problem report cannot
get the maximum value of one [30]. For our calculation, we
excluded the problem reports for which we could not find a
relevant bug report manually. The hit ratio, on the other hand,
is the number of problem reports for which DeepMatcher
found at least one relevant match divided by the number of
all problem reports.

Table II shows the MAP and the hit ratio scores for each
parameter setting. Increasing the parameter from one to two
shows that the MAP score increases by 8%, while the hit ratio
increases by 15%, which means that we increase the chance of
finding a relevant match to 61%. When further increasing the
parameter to three, we observe that the probability of having
at least one relevant match increases to 71%, however as the
MAP score reveals, developers might have to consider more
irrelevant matches. We found that for Nextcloud, DeepMatcher
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Fig. 4. Similarity values for relevant and irrelevant matches per app.

achieved the highest Mean Average Precision (0.73) and Hit
Ratio (0.89). In contrast, VLC achieved the lowest scores with
a MAP of 0.40 and a hit ratio of 0.51. Averaged over all apps,
DeepMatcher achieved a mean average precision of 0.55 and
a hit ratio of 0.71.

Cosine Similarity Analysis. We analyzed the cosine sim-
ilarity values of relevant bug report suggestions and the
irrelevant bug report suggestions. Figure 4 shows the cosine
similarity values for the manual labeled suggestions for each
app. It shows that the medians of the similarity scores of
relevant bug report matches are higher than the irrelevant
matches. However, the similarity scores vary between their
min and max values by up to ∼ 0.15. All similarity scores are
overall high (≥ 0.5) as all texts are in the technical domain.

We found that VLC has the lowest cosine similarity score
compared to the other apps, which is also the app for which
DeepMatcher found the fewest relevant bug report matches
(26 matches). The lower cosine similarity indicates a higher
language gap between VLC problem reports and bug reports.
To further analyze this indication, we calculated the overlap
of nouns used in problem reports with the nouns used in bug
report summaries. We only checked the noun overlap as this
is the part-of-speech category DeepMatcher uses to generate
matches. For each app, we calculated the ratio between the
number of nouns used in problem reports and bug reports,
and the number of nouns used overall. The apps’ ratios are:



Firefox 19%, VLC 11%, Signal 24%, and Nextcloud 25%. The
noun overlap calculation strengthens our assumption that the
language between the VLC problem reports and the bug report
summaries diverge more than the other apps, which negatively
affects DeepMatcher’s automatic matching approach.

B. Qualitative Analysis of DeepMatcher’s Relevant, Wrong,
and Missed Suggestions (RQ2)

We summarize and describe qualitative insights to learn
about DeepMatcher’s relevant and irrelevant suggestions. Ta-
ble III provides examples of problem reports, DeepMatcher
suggested bug report summaries, and our coding of whether
we think that there is a relevant match for developers. In the
table, we selected one problem report per app and searched for
cases that highlight some of our insights, like recurring bug
reports for Signal, or a problem report submitted long before
a bug report was filed in the Nextcloud app. In the following,
we discuss our findings.

Strength of Contextual Embeddings. One strength of our
approach is to learn the context of words (which words belong
together). Other approaches like bag-of-words or tf-idf do
not consider the context of words and, therefore, fall short
in representing a deeper understanding of the language. The
following two examples illustrate the strength of word context.
DeepMatcher suggested matches that included the phrases
“automatic synchronization” and “auto upload” in Nextcloud
bug reports, as well as “download pdf” and “save pdf” for
the Firefox browser. One full example is shown in Table III.
The Firefox problem report discusses a “consuming battery”
problem that happens since the “latest update”. The relevant
matching bug report states that the “battery draining” becomes
a problem in the “latest version”. It shows that the contextual
embeddings of the noun tokens, e.g., “synchronization” and
“upload” reach a high text similarity score as they are consid-
ered closely related.

Language Gap Leads to Fewer Relevant Matches. During
the manual coding task, we noticed that the phrasings in
VLC’s bug reports often contain technical terms, for example:
“Freeze entire android OS when playing a video. libvlc stream:
unknown box type cTIM (incompletely loaded)”. However,
users are typically not part of the development team and do
not include technical words like specific library names used
by the developers. Our previously reported plot of the cosine
similarity values in Figure 4 quantitatively indicated that there
might be a language gap as the text similarity scores between
problem reports and bug reports were the lowest for VLC. We
then performed a noun overlap analysis, which strengthened
the indicator for the language gap as VLC has the lowest noun
overlap with 11%. Eventually, we looked into the problem
reports, bug reports, the Google Play Store, and the issue
trackers.

We found that the developers of Nextcloud sometimes reply
to problem reports in the Google Play Store and ask the users
to also file a bug report in the issue tracker systems. We do not
know how many users are actually going to the issue tracker

to report a bug. But this could also explain why Nextcloud has
the highest cosine similarity score and highest noun overlap
(25%). Consequently, DeepMatcher is more accurate if bug
report summaries contain non-technical phrases, as users rarely
use technical terms.

Sometimes users do not understand the app features. The
following example from a Signal problem report shows a
user confusing a feature with a bug: “Works well but gives
me 2 check marks immediately after sending my text. I
know the receivers are not reading the texts so fast. Why 2
checkmarks?” The two checkmarks in Signal are shown as
soon as the addressed user successfully received the message.
Signal has an optional feature that changes the color of the
two checkmarks to blue if the recipient reads the message.

Recurring Bug Reports. Table III shows an example of
recurring bug reports. The problem report of the Signal app
states that the user did not receive notifications of incoming
messages. We considered all three matching bug report sug-
gestions of DeepMatcher as relevant, as they state the same
problem. The interesting insight in this example is that with
DeepMatcher we were able to identify a recurring bug report,
as the first one was filed in September 2015, the second in
January 2016, the third in April 2016. The problem report of
the user happened in October 2017, more than one year after
the last suggested match. In Section V-C, we discuss how
DeepMatcher can help systematically find such cases.

Date Case Analysis. Regarding the date analysis, we found
that in 35 of 167 relevant matches, developers reported the bug
reports after the users submitted the corresponding review in
the Google App Store. The time differences of the 35 cases
in which the problem report submission happened before the
bug report, is 490 days later, on average. In the following, we
illustrate three examples.

Table III shows one problem report for Nextcloud, submitted
in October 2017, while the matching bug report was filed in
July 2018. Another user submitted the following problem re-
port on the Nextcloud app: “Autoupload not working, android
7, otherwise all seems good. Happy with app and will increase
stars to 5 when auto upload is working.” DeepMatcher identi-
fied the matching bug report “Android auto upload doesn’t do
anything” that was created 29 days after the problem report.
In the last example, a developer documented a matching bug
report 546 days after the corresponding problem report for
the Signal app. Both the user and the developer address the
in-app camera feature: “Newest update changes camera to
add features, but drastically reduces quality of photos. Now it
seems like the app just takes a screenshot of the viewfinder,
rather than taking a photo and gaining from software post-
processing on my phone. [...]”. The bug report stated: “In-app
camera shows different images for preview and captured”.

V. DISCUSSION

This section discusses potential use cases of DeepMatcher
to support developers in their software evolution process.



TABLE III
EXAMPLE PROBLEM REPORTS FROM APP REVIEWS AND DeepMatcher’S SUGGESTED MATCHING BUG REPORTS. THE RELEVANT COLUMN SHOWS

WHETHER THE TWO CODERS ANNOTATED THE SUGGESTIONS AS RELEVANT FOR DEVELOPERS.

Problem Report Suggested Bug Report Summary Relevant

Date: 2018-01-04

Report: Only happening with latest version, But keep getting FFbeta draining battery too fast
yes

Date: 2017-11-20

Report: The topbar on android phone becomes white, which makes the time and battery life invisible.
no

App: Firefox
Date: 2020-04-21

Report:
Latest update started consuming over
80% battery. Had to uninstall to even
charge the phone!

Date: 2016-12-13

Report: ”Offline version” snackbar is displayed when device is very low on power and in battery saving mode
no

Date: 2015-09-13

After update: no notification sent with TextSecure message. I have to open the app to see if there’s something new
yes

Date: 2016-01-17

Report: No notifications show up until the app is manually open
yes

App: Signal
Date: 2017-10-09

Report:
it is a good app. i am mostly satisfied with
it but sometimes, the notifications would not
work; so, I would not know that someone
messaged me until I open the app. it might
have been fixed because it hasn’t been
happening in the last month or so. Would
recommended.

Date: 2016-04-17

Report: Not getting notification in real time unless I open the app
yes

Date: 2019-04-13

Report: android navigation bar, shown after a click, shifts and resizes full-screen video
no

Date: 2018-09-27

Report: Play/pause button icon is not shifting while pausing the audio on notification area
no

App: VLC
Date: 2020-05-17

Report:
So many bugs... Plays in background, but
no controls in notifications. When you tap
the app to bring up the controls, the video
is a still screen. Navigating is a pain.
Resuming forgets my place constantly.
Basically unusable

Date: 2013-09-16

Report: [Android] On video playing the navigation bar is not hidden on some tablets
no

Date: 2016-07-09

Report: nextcloud android client can’t login but android webdev clients do
no

Date: 2018-07-20

Report: AutoUpload stuck on ”Waiting for Wifi” when using VPN
yes

App: Nextcloud
Date: 2017-10-09

Report:
I have a nextcloud server and the way I
access my server is via OpenVPN. The
problem now is the nextcloud native app
doesn’t work through vpn. It is an odd
behavior. I highly recommend to use
owncloud app instead.

Date: 2020-06-18

Report: SecurityException in OCFileListAdapter: uid 10410 cannot get user data for accounts of type: nextcloud
no

A. Detecting Bugs Earlier

It is essential for app developers to address users’ problems
as their dissatisfaction may lead to the fall of previously
successful apps [26], [50]. One way to cope with user sat-
isfaction is to quickly fix frustrating bugs, which may cause
users to switch to a competitor and submit negative reviews.
However, bugs may occur for different reasons. Some bugs
affect only a few users with specific hardware or software
versions, while others affect a large user group. Further, not
all bugs are immediately known to developers, particularly,
non-crashing bugs, which are hard to discover in automated
testing and quality assurance [31]. Our results show that
some users submit problem reports in the Google Play Store
months before developers document them as bug reports in the
project’s issue tracker. When considering additional feedback
channels such as social media and other stores, this might get
even worse.

Our qualitative analysis of bug reports shows that these
earlier submitted problem reports contain valuable information

for app developers, such as the affected hardware. Therefore,
we emphasize that developers should continuously monitor
user feedback in app stores to discover problems early and
document them as bug reports in their issue trackers [32].
For this purpose, developers can first apply the automatic
problem report classification of app reviews and subsequently
use DeepMatcher to find existing matching bug reports. In
case DeepMatcher does not find matching bug reports, we
suggest that developers should consider the problem report as
an unknown bug. However, to avoid the creation of duplicate
bugs, we further suggest checking the issue tracker beforehand.
Mezouar et al. [7] suggest a similar recommendation for
developers when considering tweets instead of app reviews.
They show that developers can identify bugs 8.4 days earlier
for Firefox and 7.6 days earlier for Chrome (on average).

We envision different ways to suggest new bugs to de-
velopers. First, we could build a system that shows newly
discovered bugs to developers. From that system, developers
can decide to file a new issue in the issue tracker, delay, or
reject it. Alternatively, a bot can, e.g., file a new issue in the



issue tracker systems automatically [31]. For the latter, future
research could develop, e.g., approaches could prepare certain
text artifacts, including steps to reproduce, meaningful issue
description, or context information in a template for creating
a new issue.

Furthermore, DeepMatcher’s application is not limited to
user feedback in the form of app reviews. Our approach can
generally process user feedback on various software, which
developers receive via different channels, including app stores,
social media platforms like Twitter and Facebook, or user
support sites. DeepMatcher’s main prerequisite is written text.

B. Enhancing Bug Reports with User Feedback

Martens and Maalej [31] analyzed Twitter conversations
between vendors’ support accounts like @SpotifyCares and
their users. Similarly to our statement, the authors highlight
that users who provide feedback via social media are mostly
non-technical users and rarely provide technical details. As
support teams are interested in helping users, they initiate a
conversation to ask for more context and details. They ask
for context information like the affected hardware device, the
app version, and its platform. Their objective is to better
understand the issue to potentially forward that feedback to the
development team and provide more helpful answers. Hassan
et al. [14] show that developers also communicate with their
users in the app stores to better understand their users.

Zimmermann et al. [53] show that the most important
information in bug reports are steps to reproduce, stack traces,
and test cases. The participants of their survey found that
the version and operating system have lower importance than
the previously mentioned information. However, the authors
also argue that these details are helpful and might be needed
to understand, reproduce, or triage bugs. Nevertheless, the
authors did not focus on apps but developers and users of
Apache, Eclipse, and Mozilla.

Developers could further use DeepMatcher to understand
the popularity of bugs. They can achieve this in two steps.
First, change DeepMatcher to take bug reports as an input
to suggest problem reports (inverting the order as reported
in the approach). Second, the parameter for the number of
suggestions can either be increased or removed to enable
suggesting all problem reports sorted by the similarity to the
given bug report. This leads to an aggregated crowd-based
severity level, a bug popularity score, or an indicator of how
many users are affected by a certain bug report.

We further envision extracting context information and steps
to reproduce from user feedback to enhance the issue tracker’s
bug report description. Having this information at hand can
help developers narrow down the location of an issue and
understand how many users are affected. Developers can use
DeepMatcher to find problem reports related to bug reports
by simply using a bug report summary as the input in our
approach. Then, developers can skim through the suggested
problem reports, select those that seem relevant, and then
check whether they contain relevant context information. In
case users did not provide useful information, developers can

take the IDs of the relevant problem reports and request more
information from users in the Google Play Store. This process
can partly be automated, e.g., using bots.

C. Extending DeepMatcher to Identify Duplicated, Recurring,
or Similar Bug Reports

In Section IV, we found that DeepMatcher identified re-
curring bug reports. The Signal example in Table III shows a
recurring bug report. Within the three bug report suggestions,
DeepMatcher found three relevant matches. While the first bug
report was filed in September 2015, the second in January
2016, the third in April 2016, a user reported the problem
again in October 2017.

Consequently, developers might want to adapt DeepMatcher
to either find recurring, similar, or duplicated bug reports
even though it is not DeepMatcher’s primary goal. However,
since the approach evaluates the matches based on context-
sensitive text similarity, it could lead to promising results.
Developers interested in these cases could, for example, in-
crease DeepMatcher’s parameter number of matching bug
report suggestions and use a bug report summary as the input
for DeepMatcher to identify these cases. Future work could
investigate and evaluate the use of DeepMatcher for such cases
by utilizing our replication package.

VI. THREATS TO VALIDITY

We discuss threats to internal and external validity. Con-
cerning the internal validity, we evaluated DeepMatcher by
manually annotating 600 suggested bug reports for 200 prob-
lem reports. We performed two annotation tasks. One task to
verify that the automatically classified app reviews are problem
reports, and one to annotate whether DeepMatcher’s suggested
matches are relevant for developers. As in every other manual
labeling study, human coders are prone to errors. Additionally,
their understanding of “a relevant match” may differ, which
could lead to disagreements. To mitigate this risk, we designed
both annotation tasks as peer-coding tasks. Two coders, each
with several years of app development experience, indepen-
dently annotated the bug report matches. For the verification
of problem reports, we used a well-established coding guide by
Maalej et al. [27], which Stanik et al. [44] also reused for the
automatic problem report classification. To mitigate the threat
to validity regarding the annotation of relevant matches, we
performed test iterations on smaller samples of our collected
dataset and discussed different interpretations and examples to
create a shared understanding.

Further, we tried to collect a representative sample of
meaningful app reviews. Thereby, we collected up to 10,000
app reviews for each app, ordered by helpfulness, covering
more than two years. We did not aim for a comprehensive
app review sample for a specific time frame but prioritized
a meaningful app review sample from a larger time frame.
Thereby, we could identify diverse insights within our quali-
tative analysis.

Another potential limitation is that we only considered 50
app reviews per app (200 in total), which we automatically



classified as problem reports. This classification might only
find a specific problem report type, neglecting other informa-
tive problem reports. Other kinds of app reviews, including
feature requests or praises, might also contain valuable infor-
mation for developers, which DeepMatcher could match to bug
reports. Therefore, our observations might differ for another
sample of app reviews.

In the case DeepMatcher could not find any matching bug
report among the three suggestions, we manually searched for
relevant bugs in the issue trackers. We queried different term
combinations and synonyms for certain features and compo-
nents similar to how developers would proceed. However, not
finding a relevant match in the issue tracker systems does not
prove the non-existence of a relevant bug report in the issue
tracker as we could have missed important terms in the query.

Concerning the external validity, our results are only valid
for the four open source apps of our dataset. We considered
different app categories, covering many tasks that users per-
form daily by including Firefox as an app for browsing the
internet, Signal for messaging, Nextcloud for cloud storage,
and VLC as a media player for music, videos, and streaming.
However, these app categories include popular apps that we
do not cover in our study, like Chrome or Safari. Further, the
bug report suggestions could differ for closed source projects
or apps of other mobile operating systems.

VII. RELATED WORK

A. User Feedback Analytics

Feedback-driven requirements engineering is an increas-
ingly popular topic in research often focusing on app reviews
[12], [13], [27], tweets [10], [49], product reviews such as
Amazon reviews [23], [24], or a combination of reviews and
product descriptions [19]. All of them have in common that a
software product already exists and that users rate and write
their experience with it after using it [37]. User feedback
and involvement are important to both software engineers and
requirements managers, as they often contain insights such
as introduced bugs and feature requests [28], [44], [47]. The
classification of user feedback [27] was a first step towards
understanding user needs. Further studies [23], [24] looked
at the classified feedback more closely by analyzing and
understanding user rationale—the reasoning and justification
of user decisions, opinions, and beliefs. Once a company
decides to integrate, for example, an innovative feature request
in the software product, it will be forwarded to the release
planning phase [35], [36].

In our approach, we build on top of the existing body
of research by, in particular, applying the machine learning
approach of Stanik et al. [44] to identify problem reports in app
reviews. We used that approach as an initial filter of the app
reviews because Pagano and Maalej [37] showed that popular
apps receive about 4,000 app reviews daily—which would be
unfeasible for us to filter manually. Since the classification
approach has an F1-score of 0.79 for identifying problem
reports in English app reviews, we had to manually check
the classified app reviews, as described in Section III-B.

B. Combining User Feedback and Bug Reports

El Mezouar et al. [7] present a semi-automatic approach
that matches tweets with bug reports in issue tracking systems.
They look at the bug reports of the two browsers Firefox and
Chrome. They use natural language processing techniques to
preprocess the text of both data sources and apply the Lucene
search engine to suggest potentially matching bug reports. The
approach crawls, preprocesses, filters, and normalizes tweets
before they match them with issues. During the crawling
process, the authors include tweets that either mention the
browser with the @ symbol or hashtag. Then, they remove
misspellings, abbreviations, and non-standard orthography. Af-
terward, the authors filter tweets with a list of bug related
keywords like lag and crash while also considering negated
bug terms with a part-of-speech analysis. In a final step, the
approach removes symbols, punctuation, non-English terms,
and stems the words using the porter stemmer [39]. For
matching tweets with issues, the authors extract keywords
from the tweets and use them as a search query in the Lucene
search engine2.

In contrast to El Mezouar et al., we consider app reviews
from App Stores. While Tweets allow for lengthy conversa-
tions with stakeholders [11], [31] that may lead to in-depth
insights into, e.g., the users’ context like the app version
and steps to reproduce, app stores enable developers to reply
to app reviews, and users to update their review [14]. App
reviews also contain metadata like the hardware device and
the installed app version (that information is only available to
the app developers). Further, stakeholders can ensure that users
address the app the user wrote reviews for. When analyzing
tweets and the software is available on multiple platforms
like Windows, Mac, iOS, and Android, it is often difficult
to understand which platform the user addressed without
interacting with the user. Third, in app reviews, users can write
longer texts than in tweets. Besides considering two platforms
as our data source, we further applied more sophisticated
technical solutions by applying state of the art NLP approaches
that have a deeper understanding of the language than a search
engine. We also build on top of previous research to extract
problem reports from app reviews, leading to more relevant
results than a simple keyword-based approach [27].

VIII. CONCLUSION

In this paper, we introduced DeepMatcher, an approach
that extracts problem reports from app reviews submitted by
users; and then identifies matching bug reports in an issue
tracker used by the development team. Our approach primarily
addresses the challenge of integrating user feedback into the
bug fixing process. Developers may receive thousands of
app reviews daily, which makes a manual analysis hard to
unfeasible. Additionally, most user feedback is either praise
like “I love this app.” or a dispraise like “I hate it!”. For
the latter reason, we first filtered the problem reports from
the reviews by reusing recent related work. After manually

2https://lucene.apache.org

https://lucene.apache.org


validating the problem reports, we applied DeepMatcher,
which takes a problem report and a bug report summary as
the input. DeepMatcher then transforms the text into context-
sensitive embeddings on which we applied cosine similarity to
identify potential matching problem reports and bug reports.
In total, from 200 problem reports, DeepMatcher was able
to identify 167 relevant matches with bug reports. In 91
cases, DeepMatcher did not find any match. To understand
whether indeed no match exists, we manually looked into
corresponding issue trackers and found that in 44 cases,
DeepMatcher missed a potential match while in 47 cases, no
bug report existed. Our results show that our approach can help
developers identify bugs earlier, enhance bug reports with user
feedback, and eventually lead to more precise ways to detect
duplicate or similar bugs.
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