
White-Box Performance-Influence Models:
A Profiling and Learning Approach

Max Weber
Leipzig University

Germany

Sven Apel
Saarland University

Saarland Informatics Campus
Germany

Norbert Siegmund
Leipzig University

Germany

Abstract—Many modern software systems are highly config-
urable, allowing the user to tune them for performance and
more. Current performance modeling approaches aim at finding
performance-optimal configurations by building performance
models in a black-box manner. While these models provide
accurate estimates, they cannot pinpoint causes of observed
performance behavior to specific code regions. This does not only
hinder system understanding, but it also complicates tracing the
influence of configuration options to individual methods.

We propose a white-box approach that models configuration-
dependent performance behavior at the method level. This allows
us to predict the influence of configuration decisions on individual
methods, supporting system understanding and performance
debugging. The approach consists of two steps: First, we use a
coarse-grained profiler and learn performance-influence models
for all methods, potentially identifying some methods that are
highly configuration- and performance-sensitive, causing inaccu-
rate predictions. Second, we re-measure these methods with a
fine-grained profiler and learn more accurate models, at higher
cost, though. By means of 9 real-world JAVA software sys-
tems, we demonstrate that our approach can efficiently identify
configuration-relevant methods and learn accurate performance-
influence models.

Index Terms—Configuration management, performance, soft-
ware variability, software product lines

I. INTRODUCTION

Many software systems today are configurable, supporting
multiple application scenarios, hardware platforms, and soft-
ware stacks. Configuration options are used to tailor a system’s
behavior and its non-functional properties by (de-)activating
or tuning corresponding code. Performance measures, such as
response time and throughput, are among the most important
non-functional properties of software systems [1], [2]. So,
it is crucial to know how individual configuration decisions
will influence a system’s performance. Several approaches of
accurately modeling and learning the performance behavior of
configurable systems have been proposed in the literature [3]–
[7]. The underlying idea is to sample a set of configurations
from the configuration space and measure their performance.
Machine-learning techniques, such as multi-variable regres-
sion [7], [8] or classification and regression trees [5], [6], [8]
can be used to learn a performance-influence model from these
measurements, to accurately predict the performance of unseen
configurations or to find performance-optimal configurations
with search-based techniques [9]–[12].

System runtime

B E C E⋅C B C B E C

m3m1 m2

E⋅C B C

Performance

System runtime

System-Level Performance-
Influence Models

Method-Level Performance-
Influence Models

Performance

Sys
tem

Meth
od

s

Opti
on

s

Which methods
are relevant?

Fig. 1: Comparison of the black-box performance-influence
modeling at system level (left) and white-box performance-
influence modeling at method level (right), explaining how
feature values at system level are composed of feature values
at method level.

These and similar approaches based on parameter tun-
ing [13] and algorithm selection [] have in common that they
conceive the configurable software system as a black box.
That is, they model the performance of a software system
as a function of its configuration (i.e., a set of selected
configuration options) without knowledge of the software’s
internals. For illustration, let us consider a database system
with three features Base (B), Encryption (E), Compression
(C), and E·C (interaction between E and C), as illustrated in
Figure 1 on the left side. From such a system-level model, we
can infer the most influential options (e.g., Compression) and
possible interactions. However, we have no information about
the root cause of interactions or influential options. We do not
know where in the system’s code base we spent execution time
depending on the configuration. Essentially, developers want
information at the level of individual methods, as illustrated
in Figure 1 at right-hand side.

Knowing performance influences at the method level helps
detecting performance bottlenecks [14], [15], pinpointing per-
formance bugs [16], [17], or assigning performance tests in a
CI pipeline to specific configurations. This is a developer’s
perspective, which is not supported by current black-box
approaches.

From a performance-analysis perspective, there are mon-
itoring and profiling techniques whose goal is to identify
performance hot spots [18], [19]. Specialized performance
engineers typically supervise performance of Web and cloud
applications or identify bottlenecks using stress tests [20],
[21]. Unfortunately, state-of-the-art approaches in this area

ar
X

iv
:2

10
2.

06
39

5v
1

 [
cs

.S
E

]
 1

2
Fe

b
20

21

usually disregard the fact that today’s software systems have
huge configuration spaces. Typically, only a single configu-
ration of a system is considered, which is insufficient since
performance bugs and related issues are often configuration-
dependent [17]. Few approaches aim at creating white-box
performance models of configurable systems [3], [22], [23],
but they either require explicit tracing information about which
code regions are affected by which configuration options [3]
or they rely on expensive and potentially imprecise static and
dynamic program analysis [22], [23].

Our goal is to devise a white-box performance analysis
technique for configurable software systems that, with high
precision and at low cost, infers which methods are most
affected by configuration decisions and which source-code
regions exhibit the highest configuration-dependent perfor-
mance variation. Our approach substantially widens the ap-
plication scenarios of former black-box approaches [3]–[5]
and introduces the concept of configurability and performance
predictions to current white-box approaches [18], [19]. The
right part of Figure 1 shows the essence of the approach: it
creates a performance-influence model for each method of the
system.

To realize our goal, we combine approaches from two
fields: (1) profiling program behavior in a white-box manner
and (2) predictive modeling of performance of configurable
software systems. We use a two-step approach to direct the
profiling activities to methods that are performance-relevant
(i.e., contribute to a system’s performance) and that are highly
affected by configuration options. This way, we substantially
reduce the influence of measurement overhead, thereby in-
creasing prediction accuracy. In a nutshell, we draw samples
from the configuration space based on well-established sam-
pling strategies [24] and measure the selected system configu-
ration with a low-overhead profiling tool. We use classification
and regression trees (CART) to learn a performance-influence
model per method based on the measured performance data.
In this course, we identify methods that exhibit high perfor-
mance variance, possibly caused by configuration options. In
a second step, we re-measure all methods with high variance
to improve the accuracy of the final performance models, this
way, focusing on the difficult-to-learn methods. Here is the
key: Methods are affected to different extents by configuration
options, and only for a fraction of methods, a more fine-
grained performance analysis is required. We use machine
learning to find those methods.

Focusing on methods with high performance variation,
we need to distinguish three causes: configuration variance,
measurement variance, and a method’s context variance. Con-
figuration variance emerges from the (de-)selection of config-
uration options. This is what we aim to learn as influences of
options and interactions on individual methods. Measurement
variance corresponds to the measurement setup’s inherent
systematic bias. Context variance represents the performance
variation of a method execution due to varying input parame-
ters or program states. So, given these three types of variance,
a method’s performance can vary for each run of a software

system, even with the same configuration. To learn accurate
performance models for configurable software systems, we
need to measure, distinguish, and control sources for all three
types of variance.

To provide a robust empirical foundation as a base line
for evaluation, we measured the performance of 9 software
systems from various application domains, resulting in 19
years of CPU time of continuous measurements. We demon-
strate that our approach can efficiently identify configuration-
relevant methods and learn accurate performance models at
the method level.

We contribute and evaluate not only an approach for learn-
ing white-box performance models, but also important empiri-
cal findings about the distribution and nature of configuration-
dependent performance-relevant methods. We contribute an
analysis that reveals the influence of the types of variance
on the runtime of methods. These findings shall inform further
work on tailoring and guiding sampling techniques, static code
analyses, and performance-anomaly detection.

To summarize, we make the following contributions:
• An approach to learn white-box performance-influence

models of configurable software systems at method level
using profiling and prediction modeling;

• A performance analysis providing insights into statistical
performance properties of methods related to configura-
tion decisions;

• An evaluation of our approach with respect to prediction
accuracy and scalability for 9 real-world software sys-
tems;

• A replication package including our implementation and
measurements1.

II. PRELIMINARIES AND RELATED WORK

A black-box performance-influence model does not contain
information to map performance to source code. Yet, there
exists substantial work conducting root-cause analysis, trying
to locate, for example, performance bugs or memory leaks.
However, prior work rarely takes configurability into account.

A. White-Box Performance Analysis

There are only few approaches that tackle performance
analysis for configurable software systems. Reisner et al. [25]
and Meinicke et al. [26] use symbolic and variational execu-
tion to analyze the behavior of interactions of configuration
options at the level of control and data flow. They found that
software systems in practice do have a much smaller relevant
configuration space than theoretically possible, because only a
few options interact at all. Many approaches in this area rely
on this fact.

Hoffmann et al. [27] use dynamic influence tracing to
convert static parameters to dynamic control variables (global
variables) with the goal of adapting properties of an applica-
tion. They do not consider interactions among parameters and

1The supplementary material can be found at https://git.io/JtnTa or
an archived version at https://archive.softwareheritage.org/browse/revision/
2e61f8ce57498194c2af0cd76e87498a174f07fa/

https://git.io/JtnTa
https://archive.softwareheritage.org/browse/revision/2e61f8ce57498194c2af0cd76e87498a174f07fa/
https://archive.softwareheritage.org/browse/revision/2e61f8ce57498194c2af0cd76e87498a174f07fa/

cannot pinpoint code regions of interest. Their approach works
only when static parameters are convertible, whereas our
approach is agnostic to the type of configuration parameters.

Family-based performance measurement [3] aims at apply-
ing family-based analysis [28] to performance analysis. The
idea is to create a variant simulator, which converts compile-
time variability into run-time variability [29]. Then, the variant
simulator is executed incorporating variability constraints. This
way, multiple variants can be executed and measured in a
single run by informing the analysis which method’s per-
formance is configuration-specific. On the downside, family-
based performance measurement requires the construction of
a variant simulator (or other variational representation), which
is, in general, a non-trivial task [30].

Lillack et al. [31] use taint analysis to identify which code
fragments are executed depending on which configuration
options. This static code analysis technique is used in Config-
Crusher for deriving performance models [22]. Specifically,
ConfigCrusher employs static data-flow analysis to identify
code regions whose performance is likely to be influenced
by configuration decisions. It traces individual configuration
options (represented by program variables)—following the call
graph—and taints code regions influenced by configuration
options or combinations thereof. Subsequently, ConfigCrusher
merges regions to larger ones, such that it can efficiently
measure performance of each individual region. Performance
is measured by weaving instructions into the byte-code rep-
resentation of the target program at the beginning and end of
each region.

In contrast to our approach, ConfigCrusher requires modi-
fying the source code of the target system to make the taint
analysis run. Beside integrating an interface between anal-
ysis and target system, further substantial code refactorings
are required to achieve scalability and precision [32]. The
background is that configuration options are often stored in
complex data structures (lists, maps, structs, etc.), causing the
taint analysis to no longer differentiate among the options
stored in the data structures. The result is that either all
accesses to the data structure are tainted with all configuration
options or the analysis stops tainting at this point. The first
variant leads to memory explosion and timeouts, the second
results in incomplete and possibly very short taints, rendering
the resulting performance models inaccurate and effectively
useless. To circumvent this problem, one can always refactor
the entire system such that configuration options are stored
in individual variables, which is usually infeasible in practice.
Finally, in contrast to our approach, ConfigCrusher does not
support numeric configuration options and is limited to single-
threaded applications.

Velez et al. [23] proposed COMPREX, a tool that builds
white-box performance models based on dynamic taint anal-
ysis and local performance measurement. COMPREX requires
expensive dynamic analysis and focuses only on configuration
specific code, whereas our approach covers the whole code
base by building a model for each method of the system.

B. Black-Box Performance Analysis

Obtaining accurate performance models requires a series
of measurements. Conducting measurements for each possible
configuration, however, is infeasible due to the combinatorial
complexity of the problem. Instead, sampling a representative
subset of configurations can achieve high accuracy. For con-
figurable software systems, there are various sampling strate-
gies that are suitable for learning performance models [24],
[33]: random sampling [5], [12], solver-based sampling [9],
coverage-based sampling [34], [35], and distance-based sam-
pling [36].

Courtois and Woodside [37] use regression splines to model
the black-box performance behavior of a software system
without taking configuration options into account. In the same
vein, Israr et al. [38] and Mizan and Franks [39] obtain perfor-
mance models at a coarser granularity using Layered Queuing
Networks without considering variability, though. Instead, they
produce models that provide event sequences for distributed
systems. Westermann et al. [40] aim at finding optimal soft-
ware configurations with performance modeling at the black-
box level. However, they consider only little variability. Also,
Krogmann et al. [41] build parameterized performance models
at the component level. That is, they build black-box models
for components and do not address fine-grained, possibly
cross-cutting configuration options among several components.
Ackermann et al. [42] propose an approach to automatically
find a suitable machine-learning technique to learn black-
box performance models using monitoring data. Grohmann
et al. [43] use feature selection in the context of machine
learning to obtain black-box performance dependencies. In
contrast to these approaches, we use profiling information to
build performance models at the method level, which is one
of the main challenges and novelties of our approach.

Siegmund et al. [4], [44], [45] propose SPLConqueror, an
approach to construct performance-influence models as linear
functions over binary and numeric configuration options (or
more complex combinations thereof). The key is to combine
binary and numeric sampling and to symbolically learn the
influence model in an iterative manner. Other approaches
propose learning techniques based on classification and re-
gression trees [5], [6] and spectral learning [11], or even
learn when to stop the learning procedure [8]. Our approach
takes advantage of these modeling capabilities to pinpoint
performance properties, but at the method level.

Nair et al. [46] reduce the number of measurements by iter-
atively measuring and only adding configurations that improve
accuracy the most. Another approach by Nair et al. [11] ex-
plores the configuration space by clustering, therefore, requir-
ing measurements of only few representative configurations
per cluster. This way, the sampling procedure can be directed
to unveil performance influences and near-optimal configu-
rations efficiently. However, all these approaches consider a
software system as a black box, not allowing for pinpointing
performance behavior and root causes in code.

C. Profiling

Profiling refers to the white-box analysis of the run-time
behavior of a program execution with respect to memory
consumption or execution time [47]. By contrast, measuring
execution time of a system as a whole refers to black-box
performance measurement.

Mytkowic et al. [48] analyzed the accuracy of Java pro-
filers by comparing four commonly used profilers regarding
their agreement on which methods are performance-critical.
The profilers reported different sets of methods as hot-spots.
Reasons for the disagreement are implementation details of
the profilers (e.g., whether native methods are treated as part
of the program) and the measurement overhead of the profiler
(observer effect).

Some profiling approaches aim at automatically finding
specific inefficient structures in the source code. Song and
Lu [49] designed LDOCTOR, and Selakovic et al. [19] de-
signed DECISIONPROF. Both tools search for redundant loops
and optimization opportunities in the order of evaluating
expressions. They focus only on specific code structures, but
provide also suggestions for improvements.

There are many other approaches of how to profile different
properties of software systems. However, these approaches do
not consider configuration dependent performance variation.
Still, profilers have been shown an important tool in industry
to debug software systems with respect to resource usage. We
do not want to replace but build on industry-strength profilers
(i.e., JPROFILER) to reach our goal.

III. UNTANGLING PERFORMANCE VARIANCE

At the method level, learning performance models is a task
that is highly sensitive to measurement bias. As execution
times can be short, influences of concurrent processes can
easily distort measurements. In the context of configurability
and method context, many sources contribute to the overall
variation in performance. To use machine learning effectively
on measurement data, we need to quantify possible sources
of performance variance and adjust our model accordingly.
To this end, we conducted an analysis of possible causes
of performance variance: measurement variance, configuration
variance, and context variance. To devise an approach for
learning method-level performance models, it is necessary to
know how the variance in the execution time is composed and
how to control the three contributing factors to pin down the
influence of configuration options on performance.

For illustration, Figure 2 shows the execution time of
a single method executed in three different configurations,
repeated three times each. Each histogram shows the dis-
tribution of the execution time of all calls to that method.
Measurement variance becomes visible when comparing rows:
The performance distribution of a row’s plots should not
change since the measurement setup is the same. That is,
any change here can only be caused by the measurement
process (e.g., overhead) or measurement environment (e.g.,
context switches). Context variance is represented by the shape
of the histogram. That is, for different contexts during a

0

50

100

Configuration 1 Configuration 2
Repetition 1

Configuration 3

0

50

100

M

et
ho

d
ca

lls Repetition 2

100 200 300 400
0

50

100

100 200 300 400
Execution time (ms)

100 200 300 400

Repetition 3

Fig. 2: Performance variances for different executions of
method waitUntilSynced of PREVAYLER. Columns represent
different configurations (configuration variance), rows repre-
sent different repetitions of a program execution (measurement
variance), and each cell depicts the performance distribution
of multiple executions of the same method in a single program
run (context variance).

single program run, we might call the method with different
parameters, different cache states, etc., leading to different
execution times. So, a histogram shows the distribution of
execution times for a single method in a single program
run. Finally, configuration variance manifests as differences
among plots of different columns. If the plots differ across
the columns, the root cause of the performance changes are
due to changes in the system’s configuration. In what follows,
we provide an in-depth analysis of three real-world subject
systems (CATENA, H2, and PREVAYLER; see Section V-C
for more details) regarding the three sources of variations.
The goal is to obtain insights into which variance needs to
be controlled when learning performance-influence models at
method level. This helps us in devising sensible means for
sampling, measuring, and learning instead of blindly applying
an off-the-shelf machine-learning approach.

A. Measurement Variance

Measurement variance affects the accuracy with which we
get stable results while repeating experiments. High measure-
ment variance adversely affects the accuracy of performance-
influence models. Therefore, it is crucial to estimate mea-
surement variance with a sufficient number of experiment
repetitions. The aim of our analysis is to determine the number
of repetitions needed to trust the estimated measurement
variance.

Our analysis setup is as follows: We profile a given con-
figurable software system with 50 repetitions and report the
coefficient of variation (cv = σ

µ ; σ represents the standard
deviation of all method executions; µ the mean of all method
executions in a single run) as a standardized measure of
dispersion of a probability distribution to quantify the stability
of measurement results [50]. To check whether measurement
variance is independent of configuration variance, we ran-

0 10 20 30 40 50
Measurement repetitions

0

10

20

30
Co

ef
fic

ie
nt

 o
f v

ar
ia

tio
n

Catena
H2
Prevayler

Fig. 3: Measurement variance with increasing number of repe-
titions. The dashed red line denotes the maximal measurement
variance (4 %).

domly select 100 configurations for each of the three software
systems.

To better visualize the effect of repeating experiments,
we compute the coefficient of variation after each repetition
and show it for our three configurable software systems in
Figure 3. For all three systems, the variance is below 5 %. This
indicates a reliable measurement setup and the need for only
a limited number of repetitions (INSIGHT 1) as the coefficient
remains stable already around three repetitions. Moreover, the
coefficient is equal for all configurations, so configurations
have no effect on measurement bias. Hence, we can neglect
possible hidden dependencies here.

B. Configuration Variance

Configuration variance captures the variation in a method’s
execution time due to selecting different configuration options.

Our analysis setup is as follows: We profile a given con-
figurable software system by measuring the execution time of
each method. We aggregate the execution time per method and
repeat this process five times to account for measurement bias.
We repeat this process for different configurations. Again, we
use the coefficient of variation per method as a measure to
determine whether methods have a constant average execution
time across different configurations. If the coefficient of vari-
ation is higher than the measurement variance (4 % for all of
our subject systems; see Section III-A), the method’s execution
time is configuration-dependent.

Figure 4 depicts the coefficient of variation (y-axis) for each
method (x-axis) ordered from low variation to high variation.
We observe that a large number of methods have only limited
variance (INSIGHT 2) and only few methods exhibit high
performance variance (INSIGHT 3). Interestingly, the variance
for these few methods is huge, and the percentage of methods
affected by configuration decisions is also sensitive to the
software system. From this analysis, we infer that method-level
performance-influence models should concentrate on these
highly varying methods; profiling all methods of the program
would be wasteful. This is good news as profiling is usually
expensive and affects measurement results. Hence, we con-
clude that an efficient and accurate learning approach would

0 20 40 60 80 100
Methods in percent

0

10

20

30

Co
ef

ici
en

t o
f v

ar
ia

tio
n

Catena
H2
Prevayler

Fig. 4: Configuration variance of the methods per subject
system sorted by their coefficient of variation. The dashed red
line denotes the maximal measurement variance (4 %) such
that all method execution times above the line change due to
configuration decisions.

first need to find the relevant methods and then concentrate
learning these.

C. Context Variance

Context variance of a method’s execution time originates
from changes in the method’s calling context (e.g., method
parameters and cache state). In Figure 2, we visualize context
variance as a histogram of performance values for each method
execution in a single program run. We observe that the
execution time of some methods remains constant during a
program run, whereas other methods show high variance.

Overall, we observe highly skewed execution times that
heavily affect a method’s average execution time (INSIGHT 4).
That is, we observe few but very large outliers, which are
several orders of magnitude slower than about 99 % of the
other method executions. This resembles a Cauchy distribu-
tion with no defined mean and standard deviation for these
methods [51]. The problem for learning is that the Cauchy
distribution is a well-known case where maximum-likelihood
estimation fails and, subsequently, the likelihood principle
in general [52], [53]. So, this can cause highly unreliable
performance models.

Finally, we also see an interaction between context and
configuration variance when analyzing Figure 2: Not only the
execution times vary, but also the number of method executions
(INSIGHT 5), so an algorithm that takes only the average
execution time of a method in to account for learning the
influence of options is doomed to fail. Instead, an accurate
approach needs to account for the number of method calls in
relation to their execution time.

D. Summary

From our analysis of variance, we can learn two important
things: First, we see that the distribution of method executions
changes for different configurations. That is, configuration
influences a method’s context causing a variation in the
method’s execution time. Second, based on our insight that
some methods’ performance values are Cauchy distributed,
we cannot resort to a sample-based profiling technique, but

0.025 0.030 0.035 0.040 0.045 0.050
Execution time (ms)

0

200

400

600

M

et
ho

d
ca

lls
99% mass

5 10
Execution time (ms)

1% mass

Fig. 5: Context variance of method rotr64; right: the 1 %
longest running method executions; left: the remaining 99 %
method executions.

rather need to tap the entire performance distribution using
an instrumentation-based approach (INSIGHT 6). This is nec-
essary as there might be large outliers that could skew the
average method execution time substantially and would need
to be filtered out. This is hardly possible with sample-based
profiling.

IV. PERFORMANCE-INFLUENCE MODELING AT THE
METHOD LEVEL

Our goal is to learn performance-influence models at the
method level, so that we can pinpoint methods with high
configuration-dependent performance variability and identify
code regions that cause performance interactions. Our method-
level performance-influence modeling approach builds on the
insights that we gained from our variance analysis and is
separated into two steps, as illustrated in Figure 6: coarse-
grained analysis and fine-grained analysis.

We know that the execution time of only few methods
varies for different configurations (INSIGHT 3), so we aim
at identifying exactly these methods in the first step. For
this purpose, we use a light-weight, coarse-grained profiler
(JPROFILER) to obtain performance measures for all methods
under different configurations using an established sampling
approach. Then, we extract those methods that exhibit (i)
a performance-relevant execution time (e.g., we filter out
getter/setter methods) and (ii) a performance variation across
different configurations. In the second step, we instrument the
source code (INSIGHT 6) using the tool KIEKER to obtain an
execution time distribution (an execution time for each method
call). We filter from this distribution long running outliers
(INSIGHT 4) and summarize the distribution as a histogram
(INSIGHT 5). Finally, we learn one performance-influence
model per method based on these fine-grained values.

A. Sampling Configurations

As a prerequisite to step 1, we sample a set Ĉ from the set
C of all valid configurations. There is a substantial corpus
of approaches that successfully applied different sampling
strategies to obtain a representative set of configurations [8],
[12], [24], [36]. Following previous work, we opt for feature-
wise and pair-wise sampling for binary and Plackett-Burman

sampling for numeric options [4], but other sampling strategies
might be appropriate, as well.

With feature-wise sampling, we obtain a set of configura-
tions in which each option is enabled once. With pair-wise
sampling, also called t-wise sampling with t = 2, this set is
enriched by all pair-wise combinations of configuration op-
tions. We use the extended Plackett-Burman design, proposed
by Wang and Wu [54], for sampling numeric configuration
options. Compared to binary options, adding a numeric option
with n different values increases the configuration space by
factor n instead of factor 2. The Plackett-Burmann design
selects a fixed set of configurations determined by a pre-chosen
seed, which strongly reduces the effect of the combinatorial
explosion.

B. Coarse-grained Profiling

Our approach automatically runs a given software system
for each configuration of the sample set (denoted as run) with
JPROFILER 2, a coarse-grained profiler that uses the JVMTI
interface of the JVM. For each run, we obtain the absolute
execution time and the number of calls for each method. We
repeat each run five times and report the mean time to account
for measurement bias (INSIGHT 1).

Next, we learn a performance-influence model per method
m ∈ M (where M is the set of all methods of a software
system) from these measurements using classification and
regression trees (CART) as the learning method [5]. In the
case that all methods have been learned accurately, there is
no need to continue with the second step. However, we have
seen in our variance analysis that, typically, some methods are
highly sensitive to context variance (INSIGHT 4 AND 5), which
makes a second learning step necessary.

C. Filtering

To identify methods that are hard to learn and that contribute
substantially to a system’s performance (INSIGHT 5), we apply
a filter to all methods M of a system obtaining a subset
Mhard ⊆M for further measurement and learning (cf. Eq. 1).
The filter relies on a predicate φ(m,α, β, γ), with α, β, γ ∈ R
(cf. Eq. 2), which states whether a given method m ∈ M
belongs to the set of performance-relevant methods.

Mhard =
{
m | m ∈M ∧ φ(m,α, β, γ)

}
(1)

Πerr (m,α) Πabs(m,β) ∨Πrel(m, γ)

φ(m,α, β, γ)
(2)

Πerr (m,α) evaluates whether the error of the corresponding
method’s performance model exceeds the given threshold α
(cf. Eq. 3). All methods that have been learned with a pre-
diction error (mean absolute percentage error, MAPE, Eq. 4)
of α or worse get selected. For this purpose, we compare
the measured performance for method m of configuration c
denoted with πc(m) with the performance π′c(m) predicted
with the model of step 1. Following Siegmund et al. [4], we

2https://www.ej-technologies.com/products/jprofiler/overview.html

https://www.ej-technologies.com/products/jprofiler/overview.html

Profiling
(coarse-grained)

Performance
Modeling

Profiling
(fine-grained)

Performance
Modeling

Configurable
Software System

Filter Methods

Filter
Outlier

Sampling

All
Methods

Fig. 6: Method-level white-box-modeling pipeline for configurable software systems

fix α to 5 % in our experiments, which represents an already
strict filter criterion just above the measurement bias (cf.
Section III-A). Increasing α decreases the number of methods
that have to be analyzed further, but this way more inaccurate
performance models are accepted.

Πerr (m,α) = MAPE(m) ≥ α (3)

MAPE(m) =
100

|Ĉ|
·
∑
c∈Ĉ

∣∣∣∣πc(m)− π′c(m)

πc(m)

∣∣∣∣ (4)

Πabs(m,β) (Eq. 5) evaluates whether a method’s execution
time is longer than β. A method’s execution time here is
defined as the accumulated execution times over a run (Eq. 6).
By setting β, we control to which extent we want to invest
measurement effort for short-running methods.

Πabs(m,β) = absPerf(m) ≥ β (5)

absPerf(m) =
1

|Ĉ|
·
∑
c∈Ĉ

πc(m) (6)

Πrel(m, γ) (Eq. 7) evaluates whether a method has a
relative run-time (Eq. 8) of more than γ in relation to the
accumulated black-box time of the overall software system
(sum of performance values of all methods, Eq. 9). Adjusting
γ enables us to focus on methods that contribute the most to
the overall performance of the system.

Πrel(m, γ) = relPerf(m) ≥ γ (7)

relPerf(m) =
1

|Ĉ|
·
∑
c∈Ĉ

πc(m)

blackBoxPerf(c)
(8)

blackBoxPerf(c) =
∑
m∈M

πc(m) (9)

To sum up, predicate φ selects methods that have been
inaccurately learned (α), have a total run time of, at least,
β, and contribute to the overall software’s performance by, at
least, γ percent.

D. Fine-Grained Profiling and Learning

We use KIEKER [18], an aspect-oriented JAVA performance
profiling tool, to measure the methods Mhard obtained from

the filtering step. To analyze the variation across all calls of a
method, we extended KIEKER by logging the assignment of
values to method arguments of each method call together with
the measured execution time.

Profiling with KIEKER involves three steps: First, we in-
clude an annotation (pointcut) into the source code of the
subject system at the beginning of each selected method.
Second, we compile the software system into an executable.
Third, we execute the software with KIEKER as JVM argument
(JAVA agent) to weave the monitoring code (advice) around
method executions. We run our experiments with the same set
of configurations and workloads as used in the coarse-grained
profiling phase, obtaining performance data per method execu-
tion of the relevant methods. Based on our variance analysis,
we filter outliers that make up 1 % of the longest execution
times and we learn new models with the remaining aggregated
data using CART.

V. EXPERIMENT SETUP

In this section, we present the measurement setup that we
use for profiling as well as the software systems that we
selected for evaluation.

A. Measurement Setup
All measurements ran on a cluster of 27 computers, each

of which has an Intel Quad-Core processor, an SSD running
a headless operating system (Ubuntu 18.04.3 LTS), an HDD
to store experiment data, and 8 or 16GB of RAM.3

B. Measurement Procedure
For each subject system, we generate two sample sets

for learning (according to the two sampling strategies of
Section IV-A), as shown in Table I. For each learning set,
we measure the runtime with our two-step approach, learning
a model per method. We sample an additional test set of
100 fresh configurations at random. We use the test set to
evaluate the prediction error of the models learned based on
the learning sets. Furthermore, we repeat all measurements five
times, which results in 94,000 measurement runs (RQ1 and
RQ2). Additionally, we measure the black-box execution time
of all configurations to determine the execution time without
profiling (RQ3).

3For a single software system, we conducted all measurements either on
the systems with 8 or 16GB memory.

TABLE I: Overview of subject systems. |F | denotes the
number of configuration options (binary and numeric); |C|
denotes the number of the valid configurations C; |ĈFW |
denotes the number of configurations sampled feature-wise;
|ĈPW | denotes the number of configurations sampled in a
pair-wise manner.

System Domain |F | |C| |ĈFW | |ĈPW |

BATIK SVG rasterizer 31 9.6 · 104 28 337
CATENA Password hashing 12 1.0 · 109 875 2625
CPD Copy-paste detector 7 1.1 · 104 40 115
DC Image density converter 24 3.4 · 106 1600 9700
H2 Database 16 6.5 · 1011 375 2275
KANZI Data compression 40 4.3 · 103 34 458
PMD Source-code analyzer 11 5.1 · 102 36 104
PREVAYLER Database 12 1.3 · 105 250 400
SUNFLOW Rendering engine 6 5.4 · 106 125 n/a

C. Subject Systems

We evaluate our approach with 9 real-world software sys-
tems. Our selection includes configurable JAVA applications,
covering different domains, including databases, rendering
engines, and static code analyzers. Our selection was driven
by covering a diverse set of domains, having memory and
CPU-intensive tasks, and providing configuration options that
affect performance of the system. We provide an overview of
the software systems in Table I. Next, we present the systems
and benchmark workloads. When possible, we reused existing
workloads provided by the respective software systems. 4

The BATIK rasterizer converts SVG files to a raster format.
As workload, we used the DACAPO benchmark suite [55],
which contains a set of SVG images of different sizes that
can be used for performance tests.

CATENA is a secure password scrambling framework that
implements a corresponding hashing function. As workload,
we used its password hashing benchmark. With the provided
configuration options, it is possible to select one out of four
graphs as well as different seeds and security values that
influence how much main memory has to be used to encrypt
or decrypt a password and how long this process takes.

CPD is a code duplication detector. It detects duplicate
source code sections to support developers with code refac-
toring. As a benchmark workload, we detect code duplicates
in CATENA’s code base.

DENSITY-CONVERTER (DC) is an image density converter
that, given an image or folder, converts these inputs into image
formats with different resolutions. As workload, we used a set
of high resolution images provided by the developers.

H2 is an open-source relational database system that can
operate both in an embedded and a client-server setting. As
workload, we use the subset of tests of the POLEPOSITION
benchmark, with which developers compare H2 to other
database applications.

4We provide all benchmarks on the supplementary Website: https://git.io/
JtnTa or an archived version at https://archive.softwareheritage.org/browse/
revision/2e61f8ce57498194c2af0cd76e87498a174f07fa/

KANZI is a lossless data compressor. It provides various
configuration options for composing and tuning the com-
pression process. As workload, we used the SILESIA corpus
benchmark 5.

PMD is an extensible cross-language static code analyzer
that checks source code against a set of rules. As a workload,
we selected all rules that try to identify performance violations
in the system to analyze. The system that we analyzed is
PREVAYLER.

PREVAYLER is an open-source object persistence library
for JAVA supporting in-memory storage. It provides a scal-
ability and performance benchmark consisting of transaction-
processing and query scalability tests that are applied to a
JDBC-compatible database.

SUNFLOW is an open-source global illumination rendering
system. It provides a selection of example scenes (objects
to illuminate and render), of which we selected the golden
scene (a teapot in a colored room with one light source and
128× 128 pixels).

VI. EVALUATION

The goal of our approach is to pin down the influence of
configuration options on individual methods. In our evaluation,
we address three research questions:

RQ1: Can we learn accurate performance-influence models at
the method level?

Previous work has shown that performance can be accurately
modeled for a system as a whole. However, it is unclear
whether this level of accuracy can be achieved when modeling
performance at the method level, due to measurement overhead
and the various sources of variance that we have described in
Section III.
RQ2: How do system-level and method-level models compare

in terms of information they provide?
Knowing the influence of a configuration option at the system
level is helpful for tuning a system’s performance. However,
identifying the root cause of the influence of features helps
developers, for example, to spot performance bugs and to focus
on specific performance tests in a CI pipeline.
RQ3: What is the relation of the runtimes of profiled and

unprofiled methods?
An important measure for validity is whether the actual
(unprofiled) method execution time relates to the measured
(profiled) method execution time. Profiling introduces over-
head, and therefore the models we learn may be biased. With
this question, we aim at quantifying the extent of the profiling
overhead.

As ConfigCrusher is closest to our approach (cf. Section II),
it would be a natural candidate for comparison. In Sec-
tion VI-D, we report on why a comparison is not feasible,
though.

5Silesia Corpus: http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

https://git.io/JtnTa
https://git.io/JtnTa
https://archive.softwareheritage.org/browse/revision/2e61f8ce57498194c2af0cd76e87498a174f07fa/
https://archive.softwareheritage.org/browse/revision/2e61f8ce57498194c2af0cd76e87498a174f07fa/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

Ba
tik

Ca
ten

a
cp

d dc H2
Ka

nz
i

pm
d

Pre
va

yle
r

Su
nfl

ow

10 1

100

101

102

103

104

M
AP

E
[%

]
All methods (M)

Ba
tik

Ca
ten

a
cp

d dc H2
Ka

nz
i

pm
d

Pre
va

yle
r

Su
nfl

ow

Filtered methods (Mhard)

Fig. 7: Error (MAPE) of method-level performance-influence
models of all methods (M) and of the filtered methods
(Mhard). Dashed red line denotes 5 % MAPE.

TABLE II: Method and correlation analysis. |M | denotes the
total number of methods and |Mhard | the number of filtered
methods. Configuration-wise linear correlation (LC) and rank
correlation (RC) of black-box measurements (BB) using a
coarse-grained profiler (CG) and a fine-grained profiler (FG).

System |M | |Mhard | BB vs. CG BB vs. FG

LC RC LC RC

BATIK 122 9 0.82 0.89 0.76 0.87
CATENA 128 7 0.94 0.98 0.81 0.95
CPD 125 11 0.25 0.55 0.57 0.76
DC 435 3 0.51 0.91 0.53 0.96
H2 238 43 0.32 0.42 0.12 0.34
KANZI 386 27 0.65 0.87 0.38 0.77
PMD 218 5 0.32 0.72 0.18 0.38
PREVAYLER 166 7 0.94 0.97 0.84 0.88
SUNFLOW 128 6 0.62 0.62 0.26 0.38

A. Method-Level Performance Models (RQ1)

a) Operationalization: To answer RQ1, we calculate the
MAPE of the performance-influence models of each method
separately. We follow the measurement procedure described in
Section V-B. We assume an influence model to be sufficiently
accurate if it predicts the execution time of the method in the
test set with an average error below 5 %, which is stricter than
10 % as used in previous work [5].

b) Results: Figure 7 summarizes the results regarding
RQ1. The plot on the left shows the prediction-error distribu-
tion of all method-level models based on data measured with
the coarse-grained profiler. All methods that are below the
dashed red marker (5 % prediction error) can be accurately
learned based on a single profiling run per configuration,
which makes up 84.8 % of all methods. Hence, the Πerr

condition of our filter selects about 15 % of the methods for
step 2. When using the additional conditions with respect
to performance relevance (Πabs and Πrel), we obtain a set
comprising of about 6 % of all methods. Table II depicts for
each system the set of filtered methods, denoted as Mhard .

Applying the second step, we are able to model nearly all
of the remaining methods accurately as shown in Figure 7 on
the right-hand side. From a total number of |Mhard | = 118
methods across all systems, only 5 methods cannot be learned

accurately in step 2. A closer manual analysis of these methods
revealed that they depend either heavily on thread-dependent
file IO operations in the case of H2 or nested loops (number
of loops depends exponentially on an option) that copy an
internal state array (width of array depends exponentially on
a configuration option) in the case of CATENA.

Answering RQ1, the coarse-grained profiling step is able
to learn models with a MAPE below 5 % for 84.8 % of
all methods. Applying the fine-grained profiler in a second
step, the MAPE is below 5 % for 95.8 % of the performance-
relevant methods.

B. Tracing Option Influences (RQ2)

a) Operationalization: To answer RQ2, we focus on the
importance of configuration options and interactions in white-
box models. Specifically, we learn one random forest [56],
consisting of 100 classification and regression trees, at system-
wide level as well as one random forest for each method
and extract all options and interactions. For this analysis and
without loss of generality, we concentrate on the two options
(or interactions) per system that have the largest performance
influence on the system determined by the black-box model
(similar to the scenario sketched in Figure 1). We aim at
identifying the root cause for high influences by analyzing
all performance-influence models at method level. Since there
might be hundreds of methods per system, we analyze only
performance-relevant methods, whose total sum can explain
80 % of the system performance. Having determined influ-
ential options and methods, we count those methods as root
cause for which the configuration options (or interactions)
we are interested in, have an influence that exceeds the
measurement error. Furthermore, we sort the methods by the
options’ influences revealing, which method contributes most
to an option’s influence.

b) Results: Tracing the influence of an option from the
system level to the method level uncovers the cause of its
influence. We present the results for CATENA in Figure 8.
There are some configuration options and interactions that
have an high influence on performance compared to the others;
12 options have no relevant influence. Focusing on an option
of interest—the most important option in our example—
reveals that only a small portion (12 out of 128) of the
methods contribute to the option’s system-wide performance
influence. These 12 methods are responsible for more than
2/3 of the system’s performance. This kind of information
is not available in black-box models. It does not only help
selecting important configuration options for guiding sampling
and performance tuning, but also identifying the small set
of methods that causes possible performance bugs, this way,
facilitating performance bug detection of configurable systems.

Answering RQ2, white-box performance-influence models
can successfully guide us to performance-relevant methods
that are dependent on influential configuration options and
interactions.

Fig. 8: Overview of the influence of options and interactions
on CATENA’s performance. The background plot shows the
distribution of all influential options and interactions (influence
greater then the measurement error). The small inner plots
focus on the interaction gamma · garlic, which is the most
influential option/interaction of the model. The left plot shows
the number of methods that contribute and do not contribute
to the interaction’s performance. The right plot shows the
performance portion of these methods.

C. Profiled vs. Unprofiled Methods (RQ3)

a) Operationalization: To answer RQ3, ideally we would
need to compare the execution time between a profiled method
and an unprofiled method. Since we cannot know an unprofiled
method’s execution time, we use a proxy to infer the actual un-
profiled method execution times. For this purpose, we consider
the black-box execution time of a system as the aggregation
of all true method’s execution times. We compare this time
against the aggregated (i.e., system-wide) predictions of white-
box performance models for all methods. By repeating this
process for all measured configurations, we approximate the
relation of our estimates to the actual method execution times.

We use two different indicators to quantify the relation:
Pearson’s correlation coefficient and Spearman’s rank correla-
tion coefficient. The former tests whether there is a linear de-
pendency between the aggregated, system-wide execution time
with and without profiling. A high linear correlation would
indicate that it is possible to infer the unprofiled execution
time from the profiled execution time with a constant factor.
This way, white-box performance influence models could even
provide a precise prediction of method performance running
in operation (without profiler). A high linear correlation is un-
likely, though, because the overhead during profiling increases
while the number of profiled methods grows. Spearman’s rank
correlation coefficient tests whether the order between profiled
and unprofiled execution times is preserved. A high rank
correlation indicates that fast configurations measured without
profiling stay fast, even if profiling is enabled. This would
mean that our approach has accurately learned the relative
influences of configuration options per method.

b) Results: In Table II, we show the correlation between
system-wide unprofiled execution time compared to using the

500 1000
jProfiler configs (time in sec)

10

12

14

16

18

Un
pr

of
ile

d
co

nf
ig

s (
tim

e
in

 se
c)

0 2000 4000
Kieker configs (time in sec)

10

12

14

16

18 Unprofiled configs (tim
e in sec)

Fig. 9: Configuration-wise execution time of SUNFLOW: black-
box measurements vs. profiling. Left: using JPROFILER, right:
using KIEKER. Different symbols visualized different numeric
values of configuration option SAMPLES.

coarse-grained profiler (BB vs. CG) and unprofiled execution
time compared to using the fine-grained profiler (BB vs. FG).
As expected, rank correlation is higher than linear correlation
across all subject systems and for both profilers. That is,
the fastest configurations remain the fastest independently of
whether we use our learned models for predicting execution
times or measuring execution time. This is good news as
this property has been shown the main tuning objective
for configurable systems [57]. Furthermore, we can see that
different subject systems exhibit different correlations. Some
systems, such as BATIK, PREVAYLER, and CATENA, exhibit
even nearly perfect linear correlation. For them, the execution
time depends strongly on the configuration for both types
of experiments: measuring with a profiler and measuring the
overall execution time of a program. There are also subject
systems for which rank correlation is much higher than linear
correlation: DENSITY CONVERTER, CPD, and PMD. There
are two systems stand out with a generally low correlation:
SUNFLOW and H2, which we analyze next.

Figure 9 shows the dependency between unprofiled exe-
cution time and aggregated execution time measured with a
profiler per configuration for SUNFLOW. We concentrate on
the measurement overhead as the main cause for a low correla-
tion. Interestingly, when highlighting configuration options, we
observe a strong pattern for the overhead. There are multiple
groups that follow a linear trend, but with different slopes.
The determining factor for this slope is the configured value
of the numeric configuration option SAMPLES. This option is
used as a seed for method calculatePhotons that compute
the global illumination of the scene as part of the rendering
process. By increasing the numeric value for this option, the
overhead increases disproportionally. For H2, there is also a
strong pattern, again, caused by a numeric configuration option
(ANALYZEAUTO) 6. This is important for other studies in this
area: Profiling overhead of configurable system depends on
configuration options.

6More details on the supplementary Website.

Answering RQ3, we observed a generally high rank cor-
relation between system-wide profiled and unprofiled per-
formance, demonstrating that the use of a profiler does
not change the relative importance of configuration options
and that white-box models are able to reveal performance-
relevant methods. Some show even a linear correlation.
A notable exception to this rule is a numeric option in
SUNFLOW, which directly impacts the overhead introduced
by the profiler.

D. Comparison to CONFIGCRUSHER

Closest to our approach is CONFIGCRUSHER [22]. The main
difference to our approach is that CONFIGCRUSHER relies
on static taint analysis with the goal of determining which
code regions are affected by which configuration options to
weave measurement code at according statements. Due to
this conceptual difference, we face both qualitative as well as
technical challenges that render a comparison infeasible. As
explained in Section II-A, there are three ways of propagating
taints through a program: (A) taint every access to the data
structure(s) that hold(s) the configuration options; (B) stop
tainting at this point; and (C) rewrite the program, such that all
options are stored in individual variables and are accordingly
accessed across the code-base.

Variant C is infeasible in practice and also not in our case, as
a substantial rewrite is not only impractical for larger systems
such as H2, but this would also change the program structure
such that a performance comparison has no longer a common
ground. For the purpose of comparison, we tried variant A
first, but quickly run into timeouts and memory limitations,
due to the inherent limitations of static code analysis. We
communicated with CONFIGCRUSHER’s main author, who
confirmed our findings.

In a second attempt, we followed variant B. We again
consulted the main author of CONFIGCRUSHER for guid-
ance to avoid introducing bias and setting up the subject
system consistently with the original approach. As a result,
we obtained reasonable taints for DENSITY-CONVERTER. For
H2, the largest of our subject systems, we ran into memory
overflows for all analyzed configuration options. The analysis
of SUNFLOW, BATIK, and PREVAYLER produced tainted code
regions of size 1, which are basically useless. The reason was
that the configuration options are immediately stored in a data
structure, leading to a termination of the taint analysis. We
provide all analysis log files at our supplementary Website.

In addition to the limitations of the taint analysis, CONFIG-
CRUSHER can handle only binary configuration options,
whereas our approach can handle numeric options (as we do
in our evaluation). Furthermore, CONFIGCRUSHER is capable
of tainting only single-threaded applications due to the under-
lying taint analysis. Our approach can produce performance
models also for multi-threaded applications, such as H2.

E. Threats to Validity

The selection of the profiler represents a threat to construct
validity. We mitigated this threat by a pre-study (not shown in

the paper) where we evaluated several profilers. JPROFILER is
an industrial-strength profiler with low overhead, which turned
out to be the best choice for the first phase. However, to obtain
fine-grained performance data, we required more flexibility
and opted for KIEKER. A threat to internal validity arises
from the measurement overhead introduced by the profiler.
We reduce this threat by selecting a low-overhead profiler for
measurement in the coarse-grained step and devoted a whole
research question to analyze its influence.

The selection of subject systems threatens external valid-
ity. Although we cannot claim that we can learn white-box
models accurately for all JAVA systems with proper profiling
capabilities. Our results show that this is in principle possible
for a large, industry-relevant branch of configurable software
systems.

VII. CONCLUSION

We have proposed an approach to learn white-box
performance-influence models at the method level, enabling
tracing configuration effects from the system level to individ-
ual methods. Based on a pre-study on 3 software systems, we
analyzed possible causes of performance variance of method
execution times to design an integrated profiling and learning
approach. We found that the majority of methods can be easily
learned, as they either do not contribute much to the system’s
overall performance or do not contribute to configuration
variance. Based on these insights, we have devised a two step
approach in which we learn performance-influence models
for all methods of a software system using a cheap, coarse-
grained profiler in a first step, and filter inaccurate and relevant
methods to be measured and learned again with an expensive,
fine-grained profiler in a second step. We found that, despite
the overhead introduced by profiling, the correlation between
profiled and unprofiled method execution time is high and
that white-box models can accurately predict the profiled
execution time. More importantly, we were able to show
that performance models at the method level can be used to
pinpoint the contribution of individual configuration options
and interactions to individual methods, helping developers
to chase configuration-related performance bugs or to focus
performance testing on specific configurations.

ACKNOWLEDGMENT

Apel’s work has been supported by the German Research
Foundation (DFG) under the contract AP 206/11-1. Sieg-
mund’s work has been supported by the DFG under the
contracts SI 2171/2 and SI 2171/3-1 and by the German
Ministry of Education and Research (BMBF, 01IS19059A and
01IS18026B) by funding the competence center for Big Data
and AI “ScaDS.AI Dresden/Leipzig”. We thank our reviewers
for their thoughtful comments. Especially, we thank Miguel
Velez for his helpful comments on the specifics of the taint
analysis and for supporting the set-up of ConfigCrusher for
comparison.

REFERENCES

[1] C. U. Smith, “Software performance engineering,” in Performance
Evaluation of Computer and Communication Systems. Springer, 1993,
pp. 509–536.

[2] M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in Future of Software Engineering (FOSE).
IEEE, 2007, pp. 171–187.

[3] N. Siegmund, A. von Rhein, and S. Apel, “Family-based performance
measurement,” in Proc. Int. Conf. Generative Programming and Com-
ponent Engineering (GPCE). ACM, 2013, pp. 95–104.

[4] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence models for highly configurable systems,” in Proc. Europ. Soft-
ware Engineering Conference and ACM SIGSOFT Symp. Foundations
of Software Engineering (ESEC/FSE). ACM, 2015, pp. 284–294.

[5] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wąsowski,
“Variability-aware performance prediction: A statistical learning ap-
proach,” in Proc. Int. Conf. Automated Software Engineering (ASE).
IEEE, 2013, pp. 301–311.

[6] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czar-
necki, A. Wasowski, and H. Yu, “Data-efficient performance learning for
configurable systems,” Empirical Software Engineering (EMSE), vol. 23,
no. 3, pp. 1826–1867, 2018.

[7] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and
S. Kolesnikov, “Scalable prediction of non-functional properties in soft-
ware product lines: Footprint and memory consumption,” Information
and Software Technology (IST), vol. 55, no. 3, pp. 491–507, 2013.

[8] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K. Czarnecki, “Cost-
efficient sampling for performance prediction of configurable systems
(t),” in Proc. Int. Conf. Automated Software Engineering (ASE). IEEE,
2015, pp. 342–352.

[9] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, “Combining
multi-objective search and constraint solving for configuring large soft-
ware product lines,” in Proc. Int. Conf. Software Engineering (ICSE).
IEEE, 2015, pp. 517–528.

[10] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Scalable product
line configuration: A straw to break the camel’s back,” in Proc. Int. Conf.
Automated Software Engineering (ASE). IEEE, 2013, pp. 465–474.

[11] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Faster discovery of
faster system configurations with spectral learning,” Automated Software
Engineering, vol. 25, no. 2, pp. 247–277, 2018.

[12] J. Oh, D. Batory, M. Myers, and N. Siegmund, “Finding near-optimal
configurations in product lines by random sampling,” in Proc. Europ.
Software Engineering Conference and ACM SIGSOFT Symp. Founda-
tions of Software Engineering (ESEC/FSE). ACM, 2017, pp. 61–71.

[13] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijan-
toro, “Understanding and auto-adjusting performance-sensitive config-
urations,” in Proc. Int. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2018, pp. 154–
168.

[14] D. Shen, Q. Luo, D. Poshyvanyk, and M. Grechanik, “Automating per-
formance bottleneck detection using search-based application profiling,”
in Proc. Int. Symp. Software Testing and Analysis (ISSTA). ACM, 2015,
pp. 270–281.

[15] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Computing Sur-
veys, pp. 1–35, 2015.

[16] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” Proc. Int. Conf. Programming
Language Design and Implementation (PLDI), vol. 47, pp. 77–88, 2012.

[17] X. Han and T. Yu, “An empirical study on performance bugs for highly
configurable software systems,” in Proc. Int. Symp. Empirical Software
Engineering and Measurement (ESEM). ACM, 2016, pp. 1–10.

[18] A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
Proc. Int. Conf. Performance Engineering (ICPE). ACM, 2012, pp.
247–248.

[19] M. Selakovic, T. Glaser, and M. Pradel, “An actionable performance
profiler for optimizing the order of evaluations,” in Proc. Int. Symp.
Software Testing and Analysis (ISSTA). ACM, 2017, pp. 170–180.

[20] N. Snellman, A. Ashraf, and I. Porres, “Towards automatic performance
and scalability testing of rich Internet applications in the cloud,” in Proc.
Europ. Conf. Software Engineering and Advanced Applications (SEAA).
IEEE, 2011, pp. 161–169.

[21] M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk, “Smart
cloudbench–automated performance benchmarking of the cloud,” in
Proc. Int. Conf. Cloud Computing (CLOUD). IEEE, 2013, pp. 414–421.

[22] M. Velez, P. Jamshidi, F. Sattler, N. Siegmund, S. Apel, and C. Kästner,
“ConfigCrusher: towards white-box performance analysis for config-
urable systems,” Automated Software Engineering, vol. 27, no. 3, pp.
265–300, 2020.

[23] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and C. Kästner, “White-
box analysis over machine learning: Modeling performance of config-
urable systems,” in Proc. Int. Conf. Software Engineering (ICSE). IEEE,
2021.

[24] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,” in
Proc. Int. Conf. Software Engineering (ICSE). IEEE, 2016, pp. 643–
654.

[25] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using
symbolic evaluation to understand behavior in configurable software
systems,” in Proc. Int. Conf. Software Engineering (ICSE). ACM,
2010, pp. 445–454.

[26] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, and G. Saake, “On
essential configuration complexity: Measuring interactions in highly-
configurable systems,” in Proc. Int. Conf. Automated Software Engi-
neering (ASE). ACM, 2016, pp. 483–494.

[27] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in
Proc. Int. Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2011, pp. 199–212.

[28] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification
and survey of analysis strategies for software product lines,” ACM
Computing Surveys, vol. 47, no. 1, pp. 1–45, 2014.

[29] A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, and S. Apel, “Variability
encoding: From compile-time to load-time variability,” Journal of Logi-
cal and Algebraic Methods in Programming, vol. 85, no. 1, pp. 125–145,
2016.

[30] A. von Rhein, J. Liebig, A. Janker, C. Kästner, and S. Apel, “Variability-
aware static analysis at scale: An empirical study,” ACM Trans. Software
Engineering and Methodology (TOSEM), vol. 27, no. 4, pp. 1–33, 2018.

[31] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time configura-
tion options,” IEEE Trans. Software Engineering (TSE), vol. 44, no. 12,
pp. 1269–1291, 2018.

[32] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,” in
Proc. Int. Conf. Software Engineering (ICSE). IEEE, 2015, pp. 426–
436.

[33] C. Kaltenecker, A. Grebhahn, N. Siegmund, and S. Apel, “The interplay
of sampling and machine learning for software performance prediction,”
IEEE Software, vol. 37, no. 4, pp. 58–66, 2020.

[34] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for generating
t-wise covering arrays from large feature models,” in Proc. Int. Software
Product Line Conference (SPLC). ACM, 2012, pp. 46–55.

[35] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical pairwise
testing for software product lines,” in Proc. Int. Software Product Line
Conference (SPLC). ACM, 2013, pp. 227–235.

[36] C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo, and S. Apel,
“Distance-based sampling of software configuration spaces,” in Proc.
Int. Conf. Software Engineering (ICSE). IEEE, 2019, pp. 1084–1094.

[37] M. Courtois and M. Woodside, “Using regression splines for software
performance analysis,” in Proc. Int. Workshop Software and Performance
(WOSP). ACM, 2000, pp. 105–114.

[38] T. A. Israr, D. H. Lau, G. Franks, and M. Woodside, “Automatic gener-
ation of layered queuing software performance models from commonly
available traces,” in Proc. Int. Workshop Software and Performance
(WOSP). ACM, 2005, pp. 147–158.

[39] A. Mizan and G. Franks, “An automatic trace based performance
evaluation model building for parallel distributed systems,” in Proc. Int.
Conf. Performance Engineering (ICPE). ACM, 2011, pp. 61–72.

[40] D. Westermann, J. Happe, R. Krebs, and R. Farahbod, “Automated
inference of goal-oriented performance prediction functions,” in Proc.
Int. Conf. Automated Software Engineering (ASE). ACM, 2012, pp.
190–199.

[41] K. Krogmann, M. Kuperberg, and R. Reussner, “Using genetic search
for reverse engineering of parametric behavior models for performance
prediction,” IEEE Transactions on Software Engineering, vol. 36, no. 6,
pp. 865–877, 2010.

[42] V. Ackermann, J. Grohmann, S. Eismann, and S. Kounev, “Blackbox
learning of parametric dependencies for performance models,” in MOD-
ELS Workshops, 2018.

[43] J. Grohmann, S. Eismann, S. Elflein, J. V. Kistowski, S. Kounev,
and M. Mazkatli, “Detecting parametric dependencies for performance
models using feature selection techniques,” in Proc. Int. Symp. Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2019, pp. 309–322.

[44] N. Siegmund, M. Rosenmuller, C. Kastner, P. G. Giarrusso, S. Apel, and
S. S. Kolesnikov, “Scalable prediction of non-functional properties in
software product lines,” in Proc. Int. Software Product Line Conference
(SPLC). IEEE, 2011, pp. 160–169.

[45] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in Proc. Int. Conf. Software Engineering
(ICSE). IEEE, 2012, pp. 167–177.

[46] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, “Finding faster
configurations using FLASH,” IEEE Trans. Software Engineering (TSE),
vol. 46, no. 7, pp. 794–811, 2018.

[47] J. Du, N. Sehrawat, and W. Zwaenepoel, “Performance profiling of
virtual machines,” in Proc. Int. Conf. Virtual Execution Environments
(VEE). ACM, 2011, pp. 3–14.

[48] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Evaluating
the accuracy of Java profilers,” in Proc. Int. Conf. Programming Lan-
guage Design and Implementation (PLDI). ACM, 2010, pp. 187–197.

[49] L. Song and S. Lu, “Performance diagnosis for inefficient loops,” in
Proc. Int. Conf. Software Engineering (ICSE). IEEE, 2017, pp. 370–
380.

[50] B. Everitt and A. Skrondal, The Cambridge Dictionary of Statistics.
Cambridge University Press, 2002, vol. 106.

[51] N. S. Pillai and X.-L. Meng, “An unexpected encounter with Cauchy
and Lévy,” The Annals of Statistics, pp. 2089–2097, 2016.

[52] T. S. Ferguson, “Maximum likelihood estimates of the parameters of
the Cauchy distribution for samples of size 3 and 4,” Journal of the
American Statistical Association, vol. 73, no. 361, pp. 211–213, 1978.

[53] J. A. Reeds, “Asymptotic number of roots of Cauchy location likelihood
equations,” The Annals of Statistics, pp. 775–784, 1985.

[54] J. Wang and C. J. Wu, “A hidden projection property of Plackett-Burman
and related designs,” Statistica Sinica, pp. 235–250, 1995.

[55] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,”
in Proc. Int. Conf. Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM, 2006, pp. 169–190.

[56] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[57] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Using bad learners to
find good configurations,” in Proc. Europ. Software Engineering Con-
ference and ACM SIGSOFT Symp. Foundations of Software Engineering
(ESEC/FSE). ACM, 2017, pp. 257–267.

	I Introduction
	II Preliminaries and Related Work
	II-A White-Box Performance Analysis
	II-B Black-Box Performance Analysis
	II-C Profiling

	III Untangling Performance Variance
	III-A Measurement Variance
	III-B Configuration Variance
	III-C Context Variance
	III-D Summary

	IV Performance-Influence Modeling at the Method Level
	IV-A Sampling Configurations
	IV-B Coarse-grained Profiling
	IV-C Filtering
	IV-D Fine-Grained Profiling and Learning

	V Experiment Setup
	V-A Measurement Setup
	V-B Measurement Procedure
	V-C Subject Systems

	VI Evaluation
	VI-A Method-Level Performance Models (RQ1)
	VI-B Tracing Option Influences (RQ2)
	VI-C Profiled vs. Unprofiled Methods (RQ3)
	VI-D Comparison to ConfigCrusher
	VI-E Threats to Validity

	VII conclusion
	References

