
Technical Leverage in a Software Ecosystem: Development
Opportunities and Security Risks

Authors:
Fabio Massacci, University of Trento (IT), Vrije Universiteit Amsterdam (NL)
Ivan Pashchenko, University of Trento (IT)

This paper was written within the H2020 AssureMOSS project that received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 952647. This paper
reflects only the author’s view and the Commission is not responsible for any use that may be made of
the information contained therein.

ar
X

iv
:2

10
3.

03
31

7v
1

 [
cs

.S
E

]
 4

 M
ar

 2
02

1

Assurance and certification in secure Multi-
party Open Software and Services (Assure-
MOSS) No single company does master its own na-
tional, in-house software. Software is mostly assem-
bled from “the internet” and more than half come
from Open Source Software repositories (some in
Europe, most elsewhere). Security & privacy assur-

ance, verification and certification techniques designed for large, slow and
controlled updates, must now cope with small, continuous changes in weeks,
happening in sub-components and decided by third party developers one did
not even know they existed. AssureMOSS proposes to switch from process-
based to artefact-based security evaluation by supporting all phases of the
continuous software lifecycle (Design, Develop, Deploy, Evaluate and back)
and their artefacts (Models, Source code, Container images, Services). The
key idea is to support mechanisms for lightweigth and scalable screenings
applicable automatically to the entire population of software components
by Machine intelligent identification of security issues, Sound analysis and
verification of changes, Business insight by risk analysis and security eval-
uation. This approach supports fast-paced development of better software
by a new notion: continuous (re)certification. The project will generate
also benchmark datasets with thousands of vulnerabilities. AssureMOSS:
Open Source Software: Designed Everywhere, Secured in Europe. More
information at https://assuremoss.eu.

Fabio Massacci (Phd 1997) is a professor at the
University of Trento, Italy, and Vrije Universiteit
Amsterdam, The Netherlands. He received the Ten
Years Most Influential Paper award by the IEEE
Requirements Engineering Conference in 2015. He
is the the European Coordinator of the AssureMOSS
project. Contact him at fabio.massacci@ieee.org.

Ivan Pashchenko (PhD 2019) is a Research
Assistant Professor at the University of Trento,
Italy. He was awarded a silver medal at the
ACM/Microsoft Student Graduate Research Com-
petition at ESEC/FSE. He is UniTrento main contact
in “Continuous analysis and correction of secure
code” work package for the AssureMOSS project.
Contact him at ivan.pashchenko@unitn.it.

How to cite this paper:
• Massacci, F. and Pashchenko, I. Technical Leverage in a

Software Ecosystem: Development Opportunities and Se-
curity Risks. Proceedings of the International Conference
on Software Engineering (ICSE 2021). IEEE Press.

License:
• This article is made available with a perpetual, non-

exclusive, non-commercial license to distribute.
• The graphical abstract is an artwork by Anna Formilan.

https://assuremoss.eu

Technical Leverage in a Software Ecosystem:
Development Opportunities and Security Risks

Fabio Massacci
University of Trento (IT), Vrije Universiteit Amsterdam (NL)

fabio.massacci@ieee.org

Ivan Pashchenko
University of Trento (IT)
ivan.pashchenko@unitn.it

Abstract—In finance, leverage is the ratio between assets
borrowed from others and one’s own assets. A matching situation
is present in software: by using free open-source software
(FOSS) libraries a developer leverages on other people’s code
to multiply the offered functionalities with a much smaller own
codebase. In finance as in software, leverage magnifies profits
when returns from borrowing exceed costs of integration, but it
may also magnify losses, in particular in the presence of security
vulnerabilities. We aim to understand the level of technical
leverage in the FOSS ecosystem and whether it can be a potential
source of security vulnerabilities. Also, we introduce two metrics
change distance and change direction to capture the amount and
the evolution of the dependency on third-party libraries.

The application of the proposed metrics on 8494 distinct
library versions from the FOSS Maven-based Java libraries
shows that small and medium libraries (less than 100KLoC)
have disproportionately more leverage on FOSS dependencies
in comparison to large libraries. We show that leverage pays off
as leveraged libraries only add a 4% delay in the time interval
between library releases while providing four times more code
than their own. However, libraries with such leverage (i.e., 75%
of libraries in our sample) also have 1.6 higher odds of being
vulnerable in comparison to the libraries with lower leverage.

We provide an online demo for computing the proposed
metrics for real-world software libraries available under the
following URL: https://techleverage.eu/.

Index Terms—software security, dependencies, vulnerabilities,
leverage, technical debt, empirical analysis, maven, free open
source software

I. INTRODUCTION

Finance and software have always found interesting cor-
respondences between concepts [1]. For example, the notion
of technical debt captures the short-term developers’ action
(actually inaction to fix) that may lead to a later cost of
maintenance [2]. Most academic studies (see a review in [3])
only consider poorly written own code of a project as a source
of a technical debt for a software project. At the Dagstuhl
Seminar 16162, researchers reviewed and consolidated the
view on technical debt [2] to clearly limit its scope to the
“internal system qualities” of a software project.

Nowadays developers often import functionality from third-
party free open-source software (FOSS) libraries by including
them into their projects as dependencies [4]–[6]. Such software
engineering practice allows developers to use FOSS libraries
as building blocks, and therefore, reduce development cost
and time [7]. Even for proprietary software, the fraction of
homegrown code decreased to 5% [8]. Industry reports show

that third party code inherited through dependencies is four
times larger than the size of the own code base as an industry
average [9]. It can be up to four orders of magnitude in our
FOSS sample.

To capture this phenomenon, we introduce the notion of
technical leverage to assess the dependence on third-party
functionalities. Similarly to the financial ratio between debt
(other people’s money) and equity (one’s own money), lever-
age is the ratio between third party code and one’s own code.

Additionally, we introduce the change distance and change
direction metrics to measure the qualitative changes of a li-
brary between two consecutive versions. These metrics capture
the polar coordinates of the changes in the plane described
by the sizes of own code and third party code. An angle of
90 degrees means that in the new version the developer is
improving its own ‘capital’ (i.e., code) while keeping the same
third party code on which is old version is leveraged.

Since developers have different strategies [10], we are
interested to check whether the proposed metrics characterizes
in some way the FOSS ecosystem. For example, developers
of a small library may want to increase functionality of their
library as fast as possible, while developers of a mature and
large library (i.e., with more than 100KLoC) might likely focus
on fixing bugs and vulnerabilities and refining functionalities.
RQ1: Is there a difference in leverage, distance and direction

of changes between small and large libraries?
The next two research questions focus on the trade-off

between risk and opportunity that leverage may bring. For
example, a large leverage means that several libraries are used
and they might require integration and update costs. Indeed,
developers often decide not to update the third party libraries
they are using [11], [12] due to the possibility of introducing
incompatible, breaking changes [10]. Thus leverage might
significantly delay the releases of one’s own code. If that
happened, the opportunity of leverage would turn out to be
not a real opportunity but only an illusion since the time
interval between library releases is linked to profitability [13]
and costs [14].
RQ2 - Opportunity: do leverage, distance, and direction of

changes impact the time interval between library re-
leases?

On the risk side, using many libraries increases the attack
surface, and third-party libraries are known to introduce func-
tionality bugs and security vulnerabilities into the projects that

3

https://techleverage.eu/

use them [12], [15]. In some cases, dependent projects keep
using outdated components for a decade or more [16] thus
increasing also the window of possible exploitations.
RQ3 - Risk: does leverage, distance and direction of changes

impact the risk of including vulnerabilities?
To answer the RQs above, we applied the proposed metrics

to more than 10K distinct library instances used in the FOSS
Java Maven-based ecosystem distinguishing between large
libraries (over 100KLoC) and small-medium libraries.
Summary of Findings Our analysis suggests that small-
medium libraries (less than 100KLoC) have a high leverage
on third-party FOSS dependencies and their developers prefer
to adopt new dependencies (change direction at 0 degrees).
Large libraries have far smaller leverage and their developers
mostly increase their own code. The proposed metrics also
partly explain the time interval between library releases but
even a large leverage (more than 4 times one’s own code,
which is present in 75% of the small and medium libraries
in our sample) yield a very minimal change to such interval
(less than 4%). Leverage is thus a concrete opportunity for the
developers of a library. Yet, a large leverage also increases the
odds ratio of shipping code with vulnerabilities by 60%. So
leverage is an equally concrete risk for the users of the library.

Such findings bring new challenges for empirical software
engineering (your ‘software’ and hence its quality depends
way more from your choices of third party libraries than your
coding) and software security economics (code users bear the
risk while code developers reap the benefits).

II. TERMINOLOGY

We rely on the terminology established among practitioners
(e.g., the users of Apache Maven) and consolidated in [12]:
• A library is a separately distributed software component,

typically consisting of a logically grouped set of classes
(objects) or methods (functions). To avoid ambiguity, we
refer to a specific version of a library as a library instance.

• A dependency is a library instance whose functionalities
are used by another library instance (dependent instance).

• A direct dependency is directly invoked from the depen-
dent library instance.

• A dependency tree is a representation of a library instance
where each node is a library instance and edges connect
dependent library instances to their direct dependencies.

• A transitive dependency of a library instance at a root of
a dependency tree is connected to the root library through
a path with more than one edge.

• A project is a set of libraries developed and/or maintained
together by a group of developers. Dependencies belong-
ing to the same project of the dependent library instance
are own dependencies, while library instances maintained
by other projects are third-party dependencies.

Additionally, for each library instance in our sample we
identify the following dimensions that characterize a library:
• Own code size (`own) as the number of lines of own code

in the files of a library.

• Dependency code size (`dep) as the sum of the lines
of code of third-party direct dependencies (`dir) and
transitive dependencies (`trans) of a library

• Total code size (`total) as the sum of the two.
The qualifier ‘third party’ is important as noted by Pashchenko
et al. [12]: for convenience, developers might have decided to
structure their own code in separate libraries. They might be
mistakenly counted as other people’s code while in reality is
developed within the same project and by the same developers,
hence, should be counted as own code. As an example one
could refer to Scala libraries.

Software projects always leverage some functionality from
standard libraries of the programming language, so that one
should consider also the size of the the baseline of program-
ming language libraries `std.

III. TECHNICAL LEVERAGE

To capture the effect of software dependencies on the depen-
dent projects, we introduce the notion of technical leverage:

Definition. The technical leverage λ of a library is the ratio
between the size of code imported from third-party libraries
besides the baseline of programming language libraries `std
and the own code size of the library:

λ =
`dir + `trans + `std

`own
(1)

In our empirical analysis, the programming
language/platform is the same over all libraries (Java
and Maven) so `std = const. If one wanted to compare
libraries across different ecosystems (e.g. Python vs C
libraries) the difference can be significant. Further, standard
libraries are typically more mature than a third party library
and splitting leverage by type might be needed for a more
fine grained analysis. This is also done in finance where one
distinguishes between different type of debts.

Similarly to Allman [17], who drew parallels between
technical and monetary debts, we illustrate the similarities
between financial and technical leverages in Table I.

Additionally, the project maintenance routine requires devel-
opers to assess whether they have to update dependencies of
their project, i.e., to evaluate the difference between different
versions of the same library. To facilitate this process and help
developers to have more meaningful comparison of changes
occurred between two library versions, we propose to use
change velocity vectors (Figure 1).

Definition. Change Velocity Vector 〈∆`dep,∆`own〉 charac-
terizes how a library changes between releases r0 and r1 with
respect to the size of its dependencies and its own size:

〈∆`dep,∆`own〉 = 〈`dep(r1)− `dep(r0), `own(r1)− `own(r0)〉
(2)

In particular, the library development behavior can be
qualitatively described using polar coordinates of the change
velocity vector θ and ρ. We use them to introduce the notions
of change direction and change distance.

4

TABLE I
FINANCIAL LEVERAGE VS TECHNICAL LEVERAGE

Financial leverage Technical leverage
Financial leverage is used to undertake some investment or
project with the help of borrowed money (debt)

Software developers reuse already existing functionality from dependencies to focus
only on new features in their projects

Financial leverage decreases the corporate income tax liability
and increases its after-tax operating earning [18]

Using dependencies reduce the time (and thus, cost) to develop new projects [19], [20]
and sometimes increase project performance (e.g., numpy or pandas in Python)

The debt implies an interest rate [18] and must be eventually
paid or refinanced (an observation not present in [17])

Dependencies have to be monitored and updated (the concept similar to refinancing
one’s monetary debt) unless one introduces security vulnerabilities [12], [15]

Financial leverage multiplies losses as well, which might lead
to a crisis [21]

If the amount of work required for the dependent project to update its dependencies
become too high, the developers might decide to stop updating dependencies and
experience serious technical difficulties [10]

Fig. 1. Library change types depending on the angle of a change velocity vector

Definition. The change distance ρ characterizes the amount of
change in code size between two consecutive library version.

ρ =
√

∆`2own + ∆`2dep (3)

Albeit still measured in KLoC, this is obviously different
than the pure change in the code base captured by ∆`own.
Table II and Table IV, later in Section IV, show that ρ is on
average larger than the library total size `own.

Definition. The change direction θ characterizes the type of
evolution of a library between two consecutive versions.1

θ = arccos

(
∆`dep
ρ

)
∗
{

+1 ∆`own > 0
−1 otherwise (4)

Considering different values of θ, we identify four main
directions of a library evolution (Figure 1):
• Dependency adopting (θ ≈ 0o) - software developers

increase the size of library dependencies, while not
changing its own size: ∆`dep > 0,∆`own → 0

• Own size increasing (θ ≈ 90o) - developers do not
change the dependency size, while increasing its own
size: ∆`dep → 0,∆`own > 0

• Dependency removing (θ ≈ 180o) - software developers
decrease the dependency size, while not changing its own
size: ∆`dep < 0,∆`own → 0

• Own code removing (θ ≈ 270o) - developers do not
change the dependency size, while decreasing own size
of their libraries: ∆`dep → 0,∆`own < 0

Combination of these library evolution directions can de-
scribe every change of a library. For example, if both own

1Formally, when ρ = 0 we assume that θ = 0. Experimentally, ρ is never
zero as some changes are always present when one releases a new version.

and dependency sizes increase between two library releases
(θ ∈ (0o; 90o)), one may say that its developers both adopt new
dependencies and perform self-development of this library.
Hence, we qualitatively classify developers’ actions as follows:
• θ ∈ (315o; 45o] ∪ (135o; 225o] – developers mostly

operate with dependencies: ∆`dep > ∆`own (grey area
in Figure 1)

• θ ∈ (45o; 135o]∪(225o; 315o] – developers mostly change
own code: ∆`own > ∆`dep (dotted area in Figure 1)

Moreover, the change velocity angle θ indicates whether
developers increase or decrease the total size of their libraries:
• θ ∈ (315o; 135o] – developers increase total size `total ↑
• θ ∈ (135o; 315o] – developers decrease total size `total ↓

IV. DATA SELECTION

For the study of the FOSS ecosystem, we have selected the
Maven ecosystem. We use the information directly available
from the dependency management system. The FOSS libraries
distributed via Apache Maven are published on the Maven
Central Software Repository2, that keeps all the publicly
released versions of its libraries, i.e., their packages (for
example, jar), project object model files (pom-files), and, often,
some extra information, such as source code of a library or its
documentation (JavaDoc). Maven also provides a Dependency
plug-in, that allows us to retrieve a list of dependencies of a
particular library instance.

In this study, we use only direct dependencies, since devel-
opers have a habit of reacting to the issues connected with the
own code of their libraries or their direct dependencies [10],

2https://repo.maven.apache.org/maven2/

5

https://repo.maven.apache.org/maven2/

TABLE II
DESCRIPTIVE STATISTICS OF THE LIBRARY SAMPLE

We consider 8464 distinct library versions (GAVs - Group, Artifact, Version
coordinate in Maven Terminology) starting from the 200 most popular FOSS
Java libraries (GA) used by a multinational software development company in
its customers or internal production-level software and removing the library
versions that have no source code in Maven Central.

mean st.dev min Q25% median Q75% max
#lib versions 55 49 1 15 35 87 248
#direct deps 4 7 0 0 2 6 51
`own (KLoC) 37 56 2 5 15 42 350
`dep (KLoC) 591 764 0 69 302 828 4489
rel interval (days) 41 94 0 1 22 47 2235

[22]. Moreover, including the analysis of transitive dependen-
cies increases the chance of introducing additional biases as
transitive vulnerabilities are known to be overcounted [12],
[23]. We do not preclude the analysis of transitive dependen-
cies as they are known to introduce security vulnerabilities
to some extent [9], [15], [24]. Proper understanding of their
effects requires networks and contagion analysis [25], an
interesting challenge for future work (Section X).

To identify the relevant ‘main libraries’ and compute their
leverage one needs a reference point (anchor) selected from
the outside of the analysed ecosystem. Indeed, just using the
number of usages of within Maven itself would have been
severely biased as it would not correspond to the popularity
of the software in the world (which is what makes the study
interesting), but only to the internal use. Hence, selecting an
anchor from within an ecosystem, we would have some im-
portant libraries (e.g., Apache Tomcat) underrepresented in the
library sample, while several service libraries (which nobody
really uses) would have been disproportionately selected.

Hence, we follow [26] and started from the top 200
FOSS Maven-based libraries used by a large software man-
ufacturer across over 500 Java projects (actual customers
products or production-level software developed by the com-
pany for internal use). The resulting set corresponds to
10905 library instances when considering all versions and
includes widely used libraries such as org.slf4j:slf4j-api and
org.apache.httpcomponents:httpclient.

Algorithm 1 is used to identify the own size of a library
instance. To calculate the size of library dependencies, we
recursively apply the Algorithm 1 to each dependency and
then sum the resulting number of lines of code (LoCs).

For some library instances (or their dependencies) there
was no source code available, so we removed them from our
analysis. We have also removed 555 library versions with own
size < 100 lines of code as these library versions do not
carry actual functionality but only serve as APIs or docu-
mentations for other libraries. The final list comprises 8464
library instances. Table II presents the descriptive statistics of
the selected library sample.

Developers of some libraries maintain several versions of
the library at the same time3. For example, the developers
of Apache Tomcat4 project supported four versions (7.0.x,

3In our sample, 570 libraries supported several versions simultaneously for
a total of 15814 chains.

4http://tomcat.apache.org/

Algorithm 1: Extract own size of a library version

input : A folder dir with the source code of a library
output: The number of lines of code in a library num locs

1 file list← getAllF ileNames(dir) // Get the list of
all file names in the folder dir

2 num locs← 0;
3 for file|file ∈ file list do

// Counting the number of lines in a file
4 lines← readAllLines(file) // Load content of a

file
5 if isCodeF ile(file) then

// Including only code containing files
6 for line ∈ lines do

// Counting only lines that are not
empty and are not comments

7 if line <> ∅ and isNotComment(line) then
8 num locs← num locs+ 1;
9 end

10 end
11 end
12 end

Algorithm 2: Extract consecutive release chains from
a library set

input : A set of library names libraries
output: A set of lists of consecutive releases releases

1 releases← [];
2 for library ∈ libraries do
3 cur lib = library.getGA() // Use

groupId:artifactId as identificator for
the current library

4 releases[cur lib]← [];
5 branches← []// Prepare a list for storing

library branches
6 for i ∈ range(0, len(library)) do
7 lib version← library[i] // get i-th library

instance of a library
8 if releases[cur lib] == ∅ then
9 releases[cur lib]← [lib version];

10 end
11 lib v id = cur lib+ lib version[0] // Calculate

id of a library version
12 if lib v id ∈ branches then
13 releases[lib v id].append(lib version);
14 else
15 if lib version < releases[cur lib][−1] then
16 branches.append(lib v id);
17 releases[lib v id] = [lib version];
18 else
19 releases[cur lib].append(lib version);
20 end
21 end
22 end
23 end

8.0.x, 8.5.x, and 9.0.x) of org.apache.tomcat:tomcat-catalina
library for the last three years (starting from March, 2016).
These parallel versions might introduce errors into the analysis
results if date ordering of library releases is used. Ordering
versions by date we obtain: 8.5.30->9.0.7->7.0.86->8.0.51-
>9.0.8->8.5.31 because versions are released in groups (typ-
ically a simultaneous fix of bugs): 8.5.30 and 9.0.7 were
released within 17 minutes. Hence, before the analysis we
have distinguished release chains according to Algorithm 2.

To estimate security risks, we use the presence of a se-

6

http://tomcat.apache.org/

TABLE III
DESCRIPTIVE STATISTICS OF THE VULNERABILITIES IN THE SAMPLE

mean st.dev min Q25% median Q75% max
#vulns/own 2 5 0 0 0 1 43
#vulns/dep 8 10 0 0 3 13 63

TABLE IV
DESCRIPTIVE STATISTICS OF THE PROPOSED METRICS

We report the values of the introduced metrics for the 8464 library instance
in our sample for which source code could be extracted and had at least 100
lines of own code (i.e. where not clearly just APIs for other libraries).

mean median st.dev min max Q25% Q75%
λdir 2489 22 21775 0 373195 4 74
ρ (KLoC) 98 8 284 0 3480 0.71 66
θ (degrees) 81 31 91 -45 315 0 180

curity vulnerability that affects the analysed library. Here,
we consider only vulnerabilities that affect the own code of
analysed libraries for the quality assessment and not the one
coming through transitive dependencies. In other words, when
claiming that a library is vulnerable we will only count the
library own vulnerabilities and the vulnerabilities of the direct
dependencies (which would be own vulnerabilities for each
dependency). At first, this avoids double counting (as the same
library may be transitively included several times). Second,
the presence of vulnerabilities in the direct dependencies is a
knowledge available to a developer. Thus, there is a potentially
deliberate choice of selecting a new vulnerable direct depen-
dency or keeping vulnerable dependencies outdated [10].

To identify whether the own code of a library is affected by
vulnerabilities, we used the Snyk database5 that is constantly
updated and for August 2020 contains data about more than
3900 vulnerabilities on the Maven based libraries. Each entry
in the database contains the information about a security
vulnerability; the library, which own code is affected by
the vulnerability; and the range of affected library versions.
Table III shows the descriptive statistics of vulnerabilities per
individual library in the selected library sample.

Finally, Table IV shows the descriptive statistics of the
proposed metrics for the selected library sample. In the Sec-
tion VII, we will use a leverage of four as a running example
for the impact of direct leverage on small and medium libraries
which is the reported value for industry average [9], it is the
value for Q25% in our sample (Table IV), and corresponds to
the log-mid point between a leverage of 1 (almost all libraries
are above it) and 16 (over half of the the libraries are above
it) as visible from Figure 2. The equivalent number for big
libraries would be 12.5% (log mid point between the median
direct leverage of 50% and the bottom line of 1%).

V. RQ1: DIFFERENCE IN DIRECT LEVERAGE AND
DIRECTION OF CHANGES BETWEEN LIBRARIES

Several studies [27]–[29] suggested that a software project
might have different development practices depending on its
size. Hence, we present results separately for small-medium
libraries whose code size does not exceed 100K lines of code
(KLoCs) and large libraries that have more than 100 KLoCs.

5https://snyk.io/vuln

As we observe from Table II, FOSS developers widely
adopt dependencies to reduce their development effort. This
especially applies for the small-medium libraries with a code
base less than 100 KLoCs (Figure 2): we observe that library
instances use a large code base of direct dependencies that
may 10.000 times exceed their own size and 50% of small-
medium libraries rely on 14.65 times bigger code base of their
direct dependencies (λmediansmall libs = 14.65), which is bigger
than the direct technical leverage of any library in our sample
with own size exceeding 100 KLoCs.

The increase of the own size of a library obviously leads
to a decrease in its leverage: the Pearson correlation test [30]
suggests that there exists linear negative correlation between
log(λdir) and log(`own) (r = −0.629; p-value � 10−4).
From the selected library sample, 50% of big libraries have
direct technical leverage less than half of their own size
(λmedianbig libs = 0.48), including several libraries that have
10.000 times smaller size of software dependencies.

Considering the kernel density estimation (KDE) plot for
the change velocity angle θ for the libraries in our sample
(Figure 3), we observe the following:

• small-medium libraries (`own ≤ 100KLoCs) (Fig-
ure 3a): the developers mostly prefer to adopt third-
party dependencies (the pick around θ ≈ 0o), rather than
focus only on increasing the code of their own libraries
(the KDE for θ ≈ 90o is less than 0.005). Sometimes
developers also reduce the size of their dependencies
and/or optimize the size of their libraries (the KDE for
θ ≈ 180o and for θ ≈ 315o are higher 0.005).

• large libraries (`own > 100KLoCs) (Figure 3b): the
developers tend to increase the size of their libraries (the
KDE for θ ≈ 90o is 0.010), however, the maximum KDE
value for the large libraries is more than 2 times lower
than the maximum KDE for the small-medium libraries.
Moreover, we observe that the developers also sometimes
adopt new dependencies but they simultaneously increase
own code of their libraries (the KDE for θ ≈ 45o is
around 0.005). Sometimes developers of big libraries also
optimize their libraries by reducing their own code and
the code of their dependencies (a pick around θ ≈ 250o).

Discussion: Both analysis of direct leverage and change
direction suggest that the developers of small and medium
libraries rely on functionality of third-party FOSS dependen-
cies. This corresponds to a general intuition since the third-
party dependencies allow small libraries to grow faster. Too
many dependencies might become difficult to manage, which
exposes dependent libraries to bugs and security vulnerabilities
introduced by library dependencies. Hence, developers of big-
ger (and consequently more mature) libraries tend to decrease
the direct leverage of their libraries on third-party dependen-
cies: the negative linear correlation between log(λdir) and
log(`own) (Figure 2) and a shift of development preferences
from dependency adopting in small and medium libraries to
mostly increasing the own code for large libraries (Figure 3).

7

https://snyk.io/vuln

Developers of relatively small software libraries (with own size smaller than 100 KLoCs) almost always ship more code than their own direct leverage > 1).
For the majority, their own code is only a small fraction of the overall codebase (less than 6%, corresponding to a median direct leverage of 15). In other
words, they ship mostly somebody else code. The direct leverage of large libraries (> 100 KLoCs) is typically much smaller than the size of their own code
and hardly exceed 2, corresponding to at least 33% of own code.

Fig. 2. The direct leverage in comparison to the own size of a library

Key Takeaway: small-medium libraries by far ship
other people’s code, and at each round they add more.

VI. RQ2: DOES DIRECT LEVERAGE IMPACT TIME
INTERVAL BETWEEN LIBRARY RELEASES?

Big software projects typically involve developers working
in parallel [29] to increase the speed of development. To
capture this phenomena, we will use log(rel interval + 1)
as the dependent variable for the regression. We add ‘+1’
to a time interval between library releases to correct for the
approximate granularity in the measurement as in some cases
releases happen on the same day (although at different times).

A large direct leverage means that a library mostly relies
on the work of other developers. So we expect that direct
leverage and library release time interval have a proportional
relation rather than a linear one. Since we define λ as a
fraction of dependency and own size of a library, we could
use λdir directly in the regression. However, this would mean
that moving direct leverage by a factor of 10 would yield an
exponential jump in a time interval between library releases.
However, we observe that direct leverage spans eight orders
of magnitude (Fig 2) while the leverage coefficient in Table V
suggests that a change in magnitude in direct leverage (aka,
‘effect of scale’) does not determine a proportional change in
the time interval between library releases, only a small linear
change. Therefore, we use log(λdir) for the regression.

We expect that the change distance in own and dependency
sizes will mostly require an increase of the time to test the
added functionality into a new library version, i.e. a ‘returns
to scale’ effect. Hence, we use log(ρ) for the regression. Notice
that ρ > 0 as a new release always implies some changes.

Change direction indicates (i) how developers change the
total size of their libraries (increase or decrease) and (ii)
whether they mostly change a library’s own code or its
dependencies. To capture the effect of change in the total code
size, we consider the following:
• θ = 135o and θ = 315o correspond to 0 change in `total,

while θ = 45o and θ = 225o indicates max change in
`total

• `total increases when θ ∈ (315o; 45o)∪ (135o; 225o) and
decreases when θ ∈ (225o; 315o) ∪ (45o; 135o).

To consider these effects into the regression, we introduce
the cos(θ−45o) transformation of the change direction metric.

If developers change own code of their libraries they have
to both develop and test their projects. On the other hand,
the change of library dependencies in most cases require
only testing of dependent projects. To capture these effects
into the regression, we consider the values of θ that indicate
whether developers work with dependencies or own code of
their libraries and introduce the sin(θ) transformation of the
change direction metric6.

Finally, we consider the time interval between the previous
release and its preceding one with the corresponding trans-
formations as for the current time interval between library
releases into the regression to capture the impact of project
release practices (e.g., bi-/weekly/daily releases).

We use the multivariate linear regression model [32] to
check the correlation between the proposed metrics and the
time interval between library releases. The previous discussion
clarifies how the transformations above may help towards a
linear regression model as the direct relation between the
proposed metrics and the estimated parameters might not be
necessarily linear (e.g., consider the example of Figure 2).

The resulted linear regression model has the following form:

log(rel interval + 1) ∼ 1 + log(rel interval prev + 1)+

+ log(λdir) + log(ρ) + cos(θ − 45o) + sin(θ) (5)

Table V shows the estimates, standard errors, t-statistics,
and p-values for both small-medium and large libraries. We
observe that for the libraries with own code smaller than 100
KLoCs all metrics have significant impact on the time interval
between library releases (p-value < 0.05), Direct leverage,
the change in total code, and previous release have positive
correlation with the release time interval of a library, while the

6One might argue that cos(θ) and sin(θ) correlate, and therefore, could
not be used as variables into a linear regression. However, Eubak and
Speckman [31] proved that cos(θ) and sin(θ) can be used simultaneously
in a linear regression model and cos(θ + d) can be transformed in a linear
combination of cos(θ) and sin(θ).

8

(a) θ for Small and Medium libraries: The picks at the KDE for the angles of library evolution plots suggest that developers of libraries with own code size
smaller than 100 KLoCs tend to operate with their dependencies: they mostly adopt new dependencies and sometimes consolidate them.

(b) θ for Large libraries: The KDE of the library evolution vectors for the libraries bigger than 100 KLoCs suggest that developers of such libraries tend to
increase the size of own code while importing some functionality from new dependencies (both adopting new dependencies and upgrading currently used ones).

Fig. 3. Kernel density estimation plots for angles of library evolution vectors

change distance and change in own code correlate negatively
with such interval. For large libraries, the change distance
and time interval between the previous and its preceding
releases have significant impact on time interval between
library releases (p-value < 0.05).

Discussion. The increase of change distance corresponds to
a slight decrease in the time interval between library releases.
Such change is minor in quantity: when change distance
doubles, such interval decreases only by 7%. Since the size
of ρ is mostly determined by dependencies, this observation
shows that adopting dependencies speed up the evolution of a
library in spite of large (implicit) changes to the code base.

What makes the difference is the type of changes. For
small libraries, changing `total(cos(θ−45o) in the regression)
lengthen the time interval between library releases. Most
likely, we observe such an effect, since the change in total code
base means the major functionality changes (e.g., addition
of new functionality). In contrast, when developers focus on
own code of their libraries, such interval reduces by 35% –
the developers are likely fixing bugs and vulnerabilities in
their libraries, which might be of a higher priority due to
the necessity to ship the fixed version to the library users. A
qualitative study might yield more insights into such changes.

A. Does direct technical leverage pay off?

To understand the practical implication of direct technical
leverage, we analyze further the impact of the coefficient of
direct technical leverage in (5).

Since the log(λdir) coefficient is positive, having a large
direct leverage increases the time interval between releases
of a small-medium library: having too many dependencies
might require additional time for the library developers to
manage them. However, the value of the coefficient is small,
and therefore, a more precise estimation is needed.

Let the rel interval′ and the rel interval be two release
time intervals of libraries that are separated by a leverage
factor of Λ, i.e. λ′ = Λ · λ. From the regression we can
reconstruct the following (approximate) relation:

log(rel interval′ + 1)− log(rel interval + 1) =

= βλ(log(Λ · λ)− log(λ))

which can be simplified to

rel interval′ + 1

rel interval + 1
= Λβλ (6)

Considering the estimates in Table V, for a library with own
code < 100KLoCs and direct technical leverage of four (the

9

TABLE V
LINEAR MODEL FIT TO CHECK THE CORRELATION BETWEEN θ, ρ, λdir AND RELEASE TIME INTERVAL

These are the result of the regressions log(rel interval+1) ∼ 1+log(λdir)+ log(ρ)+cos(θ−45o)+sin(θ)+ log(rel interval prev+1). For small
and medium libraries with own size smaller than 100 KLoCs there is root mean squared error = 1.68; R2 = 0.038 and R

2
= 0.036. For large libraries

with own size greater than 100 KLoCs the root mean squared error = 1.53, R2 = 0.058, and R
2
= 0.044.

release time interval Small-Medium Libraries Large Libraries >100KLoC
log(rel interval + 1) coefficients estimate std.err. tStat p-value estimate std.err. tStat p-value
intercept 1 2,847 0,1 28,413 0 3,849 0,389 9,886 0
direct leverage log(λdir) 0,059 0,012 4,849 0 -0,002 0,041 -0,041 0,968
change distance log(ρ) -0,072 0,01 -7,022 0 -0,147 0,036 -4,091 0
change in total code cos(θ − 45o) 0,492 0,07 7,011 0 -0,182 0,219 -0,829 0,408
change in own code sin(θ) -0,355 0,075 -4,709 0 0,237 0,244 0,97 0,333
previous release interval log(rel interval prev + 1) 0,083 0,016 5,033 0 -0,131 0,055 -2,36 0,019

size of its direct dependencies is four times bigger than its own
size), the delay in the time interval between library releases
in days will be less than 4%. So, leveraging on third-party
libraries pays off: you add 4x more code at the price of a
small delay in your release time interval (around two days on
average). Even if you have many dependencies (e.g. , Λ = 16,
slightly above the median for small libraries, and your own
code is essentially 6% of the total code size), the time interval
between library releases only increases by 17% (around a week
considering the average time interval in Table II).

Key Takeaway: Direct leverage pays off. Shipping an
overall project four times larger than your own code
base will only take a couple of extra days (on average).

VII. RQ3: DOES DIRECT LEVERAGE INCREASE SECURITY
RISK?

In medicine, the effect of a parameter on a rare disease is
described by the odds ratio OR of a disease [33]. We use the
OR to have a first understanding of the impact of leverage
on the security risk7 of using a library, by mapping (i) the
fact that at least one vulnerability affects a software library
onto ‘Disease’ and (ii) the condition that the direct technical
leverage exceeds our running example value for leverage (four
for small libraries) onto the state of ‘Exposure’:

OR =

|HighLeverageLibs ∩ V ulnLibs|
|HighLeverageLibs ∩ ¬V ulnLibs|
|LowLeverageLibs ∩ V ulnLibs|
|LowLeverageLibs ∩ ¬V ulnLibs|

(7)

Table VI shows the contingency table where we use our run-
ning example λ = 4 for small and medium libraries (own code
≤ 100KLoCs - median direct leverage around 16) and λdir =
12.5% for large libraries (own code > 100KLoCs - median
direct leverage around 50%). The corresponding library groups
have the following odds ratio: ORsmall libs = 1.6, confidence
interval [1.3 2.0]. For big libraries the ORbig libs = 0.43 with
confidence interval [0.22 0.84]. Fisher Exact test [35] for both
small-medium and big libraries rejects h0 (p-valuesmall libs �
0.05, p-valuebig libs = 0.013). These results confirm our
intuition: the more you increase your total code size, the
more likely you are to step into a vulnerability. The major

7As we only know reported vulnerabilities for the dependencies in our
sample (as vulnerabilities might be present but might not have been found
yet), we cannot use the risk ratio. However, since vulnerabilities are rare, the
OR approximates the risk ratio [34].

TABLE VI
CONTINGENCY TABLE FOR VULNERABLE/LEVERAGED LIBRARIES

For small and medium libraries, the larger the direct leverage the larger the
risk of being vulnerable (ORsmall libs = 1.61). For large libraries (own code
> 100KLoCs), the risk is inverted, the more own code the more likely to
be vulnerable (ORsmall libs = 0.43).

Small libraries Big libraries
vuln not vuln vuln not vuln

λdir > 4 716 2154 λdir > 0.125 194 74
λdir ≤ 4 121 587 λdir ≤ 0.125 73 12

difference is that for small and medium libraries some of
these vulnerabilities are most likely in other people’s code
and therefore out of control of the developer.

Since a vulnerable library has normally more than one
vulnerability (see Table III), it is interesting to understand
whether the number of vulnerabilities change with leverage8.
Further, a library may have different level of leverage from
version to version while the number of vulnerabilities may
remain unchanged. These two facts are due to the phenomenon
that some vulnerabilities are in the third party code (in
dependencies) that requires developers of these dependencies
to release a fixed version of a dependency. In other words,
developers might have added a new library (left-most peak in
Figure 3) while keeping an old version of another dependency.

Figure 4 shows the distributions of maximum direct leverage
per library in time grouped by the number of vulnerabilities
that affect that library (intended as a GA). Our running
example threshold (leverage equal to four) provides clear
visual separation of the exposed and not exposed libraries
(i.e., libraries with high direct leverage are more likely to be
exposed to a security vulnerability. The exception in Figure 4
are the libraries with a high number of vulnerabilities (extreme
right) but a direct leverage lower than 4. They are the big
libraries (`own > 100K LoCs) which are anyway exposed
to the big number of vulnerabilities due to the large own
size. Hence, the direct leverage metric has a potential to be
used as an indicator for a library to be exposed to security
vulnerabilities. Further investigations are worth pursuing.

Figure 5 shows the relation between direct leverage and di-
rection of library changes (θ). We observe that small-medium
libraries (own code ≤ 100 KLoCs) with θ ∈ [−45; 45] ∪
[135; 225] are more likely to be vulnerable. Such libraries

8From a user’s perspective the library (GA in Maven’s terminology) is the
‘same’, it is just a ‘different version‘ (GAV in Maven’s terminology).

10

Direct leverage equal to 4 allows visual separation between the libraries exposed to high number of vulnerabilities vs libraries exposed to a small number
of security vulnerabilities in our library sample. The only excpetion are the handful of libraries at the extreme right. They are libraries with large own code
base ≥ 100K LoCs which are always affected by security vulnerabilities just because of their size.

Fig. 4. Max direct leverage per library vs Number of vulnerabilities in a library version

either include/remove functionality from software dependen-
cies or increase their own code base, and therefore, are likely
to be under active development. In contract, there are less
vulnerable small libraries with θ ∈ (225; 315). Such libraries
decrease the size of their own code, and therefore, they are
likely to review the already developed functionality instead of
developing new features (i.e., to be mature). Visual analysis of
the direct leverage–change direction relation plots for libraries
with own code > 100KLoCs suggests that in case of a
big library there always exists a chance that its own code is
affected by a security vulnerability.
Discussion: We observe that the fact of being affected by a se-
curity vulnerability for small-medium libraries correlates with
direct leverage and change distance, while for big libraries the
significant effect comes from change in own and total code.
Most likely, this happens due to the different strategies fol-
lowed by library developers: the developers of small libraries
tend to quickly increase the functionality of their libraries,
and therefore, adopt new dependencies (which increase the
total code size of their libraries), while the developers of big
libraries focus on changes in their own code. While changes
in own code may increase the attack surface, they normally
also include eliminating bugs and security vulnerabilities in
software libraries. In contrast, adding libraries only eliminates
security vulnerabilities as a side effect if a version (or a whole
library) without vulnerabilities is selected.

Key Takeaway: Direct leverage increases the security
risk. Shipping four times your code base will increase
the risk of shipping a vulnerable version by 60%.

VIII. RELATED WORKS

Several technical studies [11], [12], [15], [24], [36] showed
that FOSS dependencies, although being widely used by both
commercial and FOSS projects, are not often maintained
properly: a large share of projects (up to 81%) have outdated
dependencies. Several of them (69%) are not aware that some
of those dependencies introduce serious bugs and security
vulnerabilities [15]. As Allman [17] drew parallels between
technical and monetary debts, one may relate dependencies in

FOSS to the well-studied financial leverage instruments. How-
ever, we do not find a study that would try to quantitatively
assess the technical debt introduced by software dependencies.

Manikas and Hansen [37] presented a systematic literature
review of 90 papers on the studies regarding software ecosys-
tems. Although the number of software ecosystem research
papers is increasing, the majority of studies are report papers.
Hence, the authors reported the lack of analytic studies of
software ecosystems. This statement is supported by another
extensive literature review of 213 papers on software ecosys-
tems [38]. Similar results are found by Manikas [39] in a
more recent literature review of 56 empirical studies spanning
over 55 software ecosystems: there exists a lack of deeper
investigation of technical and collaborative aspects.

Boucharas et al. [40] proposed a standards-setting ap-
proach to software product and software supply network mod-
elling. Although this allows developers to anticipate upcoming
changes in the software ecosystems, the approach aims at
development within one company, and therefore, does not suit
the purpose of modelling FOSS infrastructure.

Bonaccorsi and Rossi [41] proposed a simple model to helps
software developers to decide whether to include FOSS com-
ponents into their projects. Their model estimates the value of
FOSS libraries based on the possibility of receiving additional
support from the developers of an FOSS community.

Hence, our study fills an important gap in the state of the
art by providing instruments for evaluation of the impact of
technical leverage in the software ecosystems.

IX. THREATS TO VALIDITY

The internal validity may be influenced by the fact that we
have based the FOSS library selection for this study on their
popularity from within a company. We surveyed the usage
data of the selected sample from MVNRepository.com9 and
the number of users from BlackDuck Openhub10. Since both
sources showed that libraries in our sample are also popular

9https://mvnrepository.com/
10https://www.openhub.net/

11

https://mvnrepository.com/
https://www.openhub.net/

Fig. 5. Direct leverage vs change direction for safe libraries (blue, left) and vulnerable libraries (red, right) with own size ≤ 100KLoCs

among the FOSS developers, we believe, the internal validity
threat of our study is minimal.

The generalization of these results may be exposed to an
external validity threat since we considered only Maven based
libraries. However, since Maven has the largest share of users
between the developers in the Java ecosystem11, our results
reflect the practice of the majority of Java developers. In this
study, we aimed at creating awareness regarding the effects of
technical leverage within software ecosystems, and therefore,
proper case control studies are needed to, for example, validate
the effect of odds ratio. In this respect, our study is easy to
replicate for other dependency management systems.

X. CONCLUSIONS AND FUTURE WORK

By extending the metaphore from finance started by the
notion of technical debt [1], we have introduced the new
notion of technical leverage and some associated code metrics
(leverage, change distance, and change direction) to capture
the relative importance and evolution of one’s own code
and third party code into a software library. This notion is
particularly important in today’s software ecosystem where
homegrown code is only a fraction of the total code base that
is shipped to customers (See e.g., [9], [42], [43] and Table IV).

We have applied the proposed metrics to 8464 FOSS
library instances from Java Maven stemming from an industry
relevant sample of the top 200 libraries used by a large

11https://zeroturnaround.com/ rebellabs/java-tools-and-technologies-
landscape-2016

multi-national corporation for its customers. The results show
that small-medium libraries have high leverage on third-party
FOSS dependencies and their developers prefer to adopt new
dependencies to speed up the development process. Large
libraries have relatively small leverage and their developers
mostly increase own code of their libraries. The proposed
metrics correlate with time interval between library releases
and could be used to estimate the risk of a library to be affected
by a security vulnerability. Libraries whose developers perform
operations with (e.g., adopt or remove) dependencies tend to
be affected by vulnerabilities more often in comparison than
libraries whose developers mostly change libraries’ own code.

We briefly recap the key findings of our paper as follows:
• Small and medium libraries (with less than 100 KLoCs

of own code) by far ship other people’s code, and at
each round they typically add more. With a median direct
leverage of 14.65, most libraries in our sample include
less than 7% of homegrown code.

• Direct leverage pays off. Shipping four times the size
of your own code base (as 75% of small and medium
libraries do) will only take two extra days on average.

• Direct leverage increases the security risk. Shipping
four times the size of your own code base will increase
the odds of shipping a vulnerable version by 60%.

For sake of comparison, “if all presently unbelted drivers and
right front passengers were to use the provided three point
lap/shoulder belt, but not otherwise change their behavior,
fatalities to this group would decline by (43 ± 3)%” [44].

12

These findings have also interesting implications for novel
research directions in empirical software engineering and
software security economics.

Within empirical software engineering, metrics of devel-
oper behavior (e.g., unfocussed contribution [45], different
development priorities [46], code complexity [47], large code
changes [48], etc.) are often studied to explain code quality.
Yet, as we have seen, for small and medium libraries, devel-
opers ship overwhelmingly other people’s code. So their skills
and behavior as coders which may be captured by the logs
of software repositories only contribute in minimal part to the
quality of the overall code they ship. In contrast, their decision
making behavior about the choice of libraries to be used
as dependencies in one’s own code has much larger impact.
Unfortunately, such behavior is not equally well documented
and captured by traditional software repositories. It might be
captured by NLP analysis of the mailing lists or discussion
blogs of the FOSS project (or company internal mechanisms).

From the perspective of security economics, our empirical
data shows that technical leverage creates a decision dilemma
(a moral hazard in the economics terminology). The benefit
of a large leverage are reaped by the developers who can ship
more code, i.e. more functionalities, with a limited delay of
time interval between releases which is associated with greater
profitability [13] and have been shown to have a log-linear
relation with costs [14]. Yet, the risk of using a vulnerable
software are borne by the users of the library which might be
hit by hackers if they kept an old, vulnerable version that was
however perfectly functional from their perspective (See the
Equifax data breach12). Since updating one’s software is often
not a technically feasible solution, as illustrated by a quanti-
tative study on Android libraries in [49] (almost every second
library update broke the dependent project) and qualitatively
explained in [10], the presence of such dilemma may require
to identify alternative solutions to software updates.

We also plan to investigate the broader impact of the pro-
posed metrics. For example, leverage may predict a boundary
for the amount of dependencies beyond which maintenance
and update become unwieldy: How many are too many? This
might require to correlate leverage with additional metrics
such as the number of open issues, the effort of developers
etc. Also, we may expect that library maintainers prefer dif-
ferent development strategies (captured by change direction),
depending on the stage of maturity of a library and it would
be interesting to determine whether there is such an effect.
Another important direction for future work is the study of the
impact of transitive dependencies on technical leverage albeit
this should be done with care to avoid double or triple counting
[12]. Above all, it will be interesting to further investigate the
impact of technical leverage on other programming languages
and software repositories.

12https://blogs.apache.org/foundation/entry/
media-alert-the-apache-software

MORE INFORMATION

For the interested readers, we provide an online demo for
computing the proposed metrics for the software libraries
of this study and others at the following URL: https://
techleverage.eu/

ACKNOWLEDGMENTS

We would like to thank A.Brucker, G. Kuper and P.Tonella
for their insightful comments on early drafts of this work. The
graphical abstract for this paper is an artwork by Anna Formi-
lan http://annaformilan.com. This work was partly funded by
the European Union under the H2020 Programme under grant
n. 952647 (AssureMOSS).

REFERENCES

[1] I. Ozkaya, R. L. Nord, and P. Kruchten, “Technical debt: From metaphor
to theory and practice,” IEEESoftware, vol. 29, no. 06, pp. 18–21, nov
2012.

[2] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),” in
Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[3] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Inf. and Softw. Tech. Journ., vol. 64, pp. 52–73, 2015.

[4] C. Bird, T. Menzies, and T. Zimmermann, The art and science of
analyzing software data. Elsevier, 2015.

[5] R. E. Grinter, “Understanding dependencies: A study of the coordination
challenges in software development,” Ph.D. dissertation, Citeseer, 1996.

[6] S. A. Dilawer, Practical Guide of Software Development Project Man-
agement in Practice. Lulu.com, 2011.

[7] P. Mohagheghi and R. Conradi, “Quality, productivity and economic
benefits of software reuse: a review of industrial studies,” Emp. Soft.
Eng. Journ., vol. 12, no. 5, pp. 471–516, 2007.

[8] H. Mack and T. Schroer, “Security midlife crisis: Building security in
a new world,” IEEE Security & Privacy, vol. 18, no. 04, pp. 72–74, jul
2020.

[9] M. Pittenger, “Open source security analysis: The state of open source
security in commercial applications,” Black Duck Software, Tech. Rep.,
2016.

[10] I. Pashchenko, D. Vu, and F. Massacci, “A qualitative study of depen-
dency management and its security implications,” in Proc. of CCS’20.
ACM, 2020.

[11] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring
dependency freshness in software systems,” in Proc. of ICSE’15, ser.
ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 109–118.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2819009.2819027

[12] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: counting those that matter,” in
Proc. of ESEM’18. ACM, 2018, p. 42.

[13] T. August and M. F. Niculescu, “The influence of software process
maturity and customer error reporting on software release and pricing,”
Management Science, vol. 59, no. 12, pp. 2702–2726, 2013.

[14] H. Huijgens, A. van Deursen, L. Minku, and C. Lokan, “Effort and
cost in software engineering: A comparison of two industrial data sets,”
in Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2017, pp. 51–60.

[15] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue,
“Do developers update their library dependencies?” Emp. Soft.
Eng. Journ., May 2017. [Online]. Available: https://doi.org/10.1007/
s10664-017-9521-5

[16] S. Dashevskyi, A. D. Brucker, and F. Massacci, “On the effort for
security maintenance of free and open source components,” Proc. of
WEIS’18, 2018.

[17] E. Allman, “Managing technical debt,” Commun. ACM, vol. 55, no. 5,
2012.

[18] A. Kraus and R. H. Litzenberger, “A state-preference model of optimal
financial leverage,” J Finance, vol. 28, no. 4, pp. 911–922, 1973.

13

https://blogs.apache.org/foundation/entry/media-alert-the-apache-software
https://blogs.apache.org/foundation/entry/media-alert-the-apache-software
https://techleverage.eu/
https://techleverage.eu/
http://annaformilan.com
http://dl.acm.org/citation.cfm?id=2819009.2819027
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5

[19] M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An indus-
trial case study on reuse oriented development,” in Proc. of ICSME’05.
IEEE, 2005, pp. 283–292.

[20] M. Morisio, D. Romano, and I. Stamelos, “Quality, productivity, and
learning in framework-based development: An exploratory case study,”
TSE, vol. 28, no. 9, pp. 876–888, 2002.

[21] D. Greenlaw, J. Hatzius, A. K. Kashyap, and H. S. Shin, “Leveraged
losses: lessons from the mortgage market meltdown,” in Proceedings of
the US monetary policy forum, vol. 2008, 2008, pp. 8–59.

[22] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,” in
Proc. of CCS’17, 2017, pp. 2187–2200.

[23] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vuln4real: A methodology for counting actually vulnerable dependen-
cies,” TSE, 2020.

[24] J. Hejderup, “In dependencies we trust: How vulnerable are dependen-
cies in software modules?” Ph.D. dissertation, Computer Science, 2015.

[25] P. Glasserman and H. P. Young, “Contagion in financial networks,” JEL,
vol. 54, no. 3, pp. 779–831, 2016.

[26] Anonymous, “For blind review,” To be unblinded in the final version.
[27] W. S. Humphrey, A discipline for software engineering. Addison-

Wesley Longman Publishing Co., Inc., 1995.
[28] F. P. Brooks Jr et al., The Mythical Man-Month: Essays on Software

Engineering, Anniversary Edition, 2/E. Pearson Education India, 1995.
[29] J. Aguilar, M. Sánchez, C. Fernández, E. Rocha, D. Martı́nez, and

J. Figueroa, “The size of software projects developed by mexican
companies,” in Proc. of SERP’14. The Steering Committee of The
World Congress in Computer Science, Computer . . . , 2014, p. 1.

[30] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[31] R. L. Eubank and P. Speckman, “Curve fitting by polynomial-
trigonometric regression,” Biometrika, vol. 77, no. 1, pp. 1–9, 1990.

[32] T. W. Anderson, “An introduction to multivariate statistical analysis,”
Wiley New York, Tech. Rep., 1962.

[33] M. Szumilas, “Explaining odds ratios,” The JCACAP, vol. 19, no. 3, p.
227, 2010.

[34] L. Allodi and F. Massacci, “Comparing vulnerability severity and
exploits using case-control studies,” Proc. of TISSEC’14, vol. 17, no. 1,
2014.

[35] R. A. Fisher, “The logic of inductive inference,” J. Royal Stat. Soc.,
vol. 98, no. 1, pp. 39–82, 1935.

[36] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” in Proc. of NDSS’17, 2017.

[37] K. Manikas and K. M. Hansen, “Software ecosystems–a systematic
literature review,” Journ. of Sys. and Soft., vol. 86, no. 5, pp. 1294–
1306, 2013.

[38] K. Manikas, “Revisiting software ecosystems research: A longitudinal
literature study,” Journ. of Sys. and Soft., vol. 117, pp. 84–103, 2016.

[39] ——, “Supporting the evolution of research in software ecosystems:
reviewing the empirical literature,” in Proc. of ICSOB’16. Springer,
2016, pp. 63–78.

[40] V. Boucharas, S. Jansen, and S. Brinkkemper, “Formalizing software
ecosystem modeling,” in In Proc. of IWOCE’09. New York,
NY, USA: ACM, 2009, pp. 41–50. [Online]. Available: http:
//doi.acm.org/10.1145/1595800.1595807

[41] A. Bonaccorsi and C. Rossi, “Why open source software can succeed,”
RP, vol. 32, no. 7, 2003.

[42] H. Mack and T. Schroer, “Security midlife crisis: Building security in a
new world,” IEEE Sec. and Privacy, vol. 18, no. 4, pp. 72–74, 2020.

[43] M. J. Gallivan, “Striking a balance between trust and control in a virtual
organization: a content analysis of open source software case studies,”
ISJ, vol. 11, no. 4, pp. 277–304, 2001.

[44] L. Evans, “The effectiveness of safety belts in preventing fatalities,”
Accident Analysis & Prevention, vol. 18, no. 3, pp. 229 – 241,
1986. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0001457586900072

[45] A. Meneely and L. Williams, “Secure open source collaboration: an em-
pirical study of linus’ law,” in Proceedings of the 16th ACM conference
on Computer and communications security, 2009, pp. 453–462.

[46] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Proc. of SANER’12. IEEE, 2012, pp.
411–416.

[47] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proc. of PROMISE’07. IEEE, 2007, pp. 9–9.

[48] Y. Jiang, B. Cuki, T. Menzies, and N. Bartlow, “Comparing design and
code metrics for software quality prediction,” in Proc. of PROMISE’08,
2008, pp. 11–18.

[49] J. Huang, N. Borges, S. Bugiel, and M. Backes, “Up-to-crash: Evaluating
third-party library updatability on android,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 15–
30.

14

http://doi.acm.org/10.1145/1595800.1595807
http://doi.acm.org/10.1145/1595800.1595807
http://www.sciencedirect.com/science/article/pii/0001457586900072
http://www.sciencedirect.com/science/article/pii/0001457586900072

	I Introduction
	II Terminology
	III Technical Leverage
	IV Data selection
	V RQ1: Difference in direct leverage and direction of changes between libraries
	VI RQ2: Does direct leverage impact time interval between library releases?
	VI-A Does direct technical leverage pay off?

	VII RQ3: Does direct leverage increase security risk?
	VIII Related works
	IX Threats to Validity
	X Conclusions
	References

