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Abstract—A fundamental premise of SMS One-Time Pass-
word (OTP) is that the used pseudo-random numbers (PRNs)
are uniquely unpredictable for each login session. Hence, the
process of generating PRNs is the most critical step in the
OTP authentication. An improper implementation of the pseudo-
random number generator (PRNG) will result in predictable or
even static OTP values, making them vulnerable to potential
attacks. In this paper, we present a vulnerability study against
PRNGs implemented for Android apps. A key challenge is that
PRNGs are typically implemented on the server-side, and thus
the source code is not accessible. To resolve this issue, we build an
analysis tool, OTP-Lint, to assess implementations of the PRNGs
in an automated manner without the source code requirement.
Through reverse engineering, OTP-Lint identifies the apps using
SMS OTP and triggers each app’s login functionality to retrieve
OTP values. It further assesses the randomness of the OTP values
to identify vulnerable PRNGs. By analyzing 6,431 commercially
used Android apps downloaded from Google Play and Tencent
Myapp, OTP-Lint identified 399 vulnerable apps that generate
predictable OTP values. Even worse, 194 vulnerable apps use
the OTP authentication alone without any additional security
mechanisms, leading to insecure authentication against guessing
attacks and replay attacks.

Index Terms—OTP Authentication Protocol; Mobile Applica-
tion Security; Pseudo-Random Number Generator; Vulnerability
Detection; Randomness Evaluation

I. INTRODUCTION

SMS One-Time Password (OTP) is widely used for authen-
tication and authorization in Android apps [1], which employs
a uniquely generated pseudo-random number (PRN) for each
login session to verify each user’s identity. A pseudo-random
number generator (PRNG) is commonly used to generate
unpredictable OTP values. Some cryptographically insecure
randomness algorithms, such as Mersenne Twister (MT) [2]
and Linear Congruential Generator (LCG) [3], have been used
in practice. A PRNG using any of these insecure randomness
algorithms would generate highly predictable OTP values.
Even though the utilized randomness algorithm is secure, the
generated PRNs may still be problematic if the algorithm is not
implemented correctly (e.g., seeding the randomness algorithm
by using a constant) [4], [5].

Many studies [6], [7] have been proposed to analyze the
security of pseudo-random number generating algorithms;

however, these studies seldom analyze PRNG implementations
in apps. The techniques proposed for assessing the PRNG
implementations mainly focus on open-source systems (e.g.,
Linux [8], OpenSSL [9]). However, these techniques rely on
code analysis and thus cannot be applied to analyze PRNGs
of Android apps. This paper focuses on the following two
goals: 1) exploring security vulnerabilities in SMS OTP values
generated by Android apps; 2) gaining insights into potential
implementation issues of PRNGs used by these vulnerable
apps, without accessing the source code of the PRNGs.

Towards fulfilling our goals, we first study the algorithms
and functions for generating PRNs to understand what types
of vulnerabilities may occur in PRNGs. Next, based on the
official RFC documents [10], [11], [12], [13] and research
work [14], [15], [16], we introduce three critical randomness
rules: Rule 1 – Do not use a static OTP value; Rule 2 – Do
not generate OTP values according to specific patterns; Rule
3 – Do not use a constant or predictable seed to initialize a
randomness function (Section III). If the OTP values generated
for user authentication violate any of the randomness rules,
those OTP values can be predicted, and thus the authentication
scheme can eventually be cracked.

We develop a novel analysis tool, OTP-Lint, to assess
the randomness of OTP values and analyze the potential
implementation vulnerabilities of the corresponding PRNGs
without having access to the PRNG source code. OTP-Lint
first identifies the login Activity declared in each app using
a fuzzing-inspired approach. It then recognizes those apps
which use SMS OTP authentication through keyword match-
ing. By locating the OTP login widgets, OTP-Lint triggers
the relevant app functionalities and sends OTP requests to
the app server to retrieve OTP values. Finally, OTP-Lint
evaluates whether the gathered OTP values violate any of
the three introduced randomness rules. A major challenge
in the vulnerability analysis of OTP values is to determine
which algorithm and function are used to generate PRNs
and which parameters they are given as input. To address
this challenge, we collected PRNG sample codes written in
diverse programming languages shared by app developers on
GitHub [17] and Stack Overflow [18] to learn the popular
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approaches for implementing PRNGs.
We used OTP-Lint to analyze 6,431 real-world Android

apps, downloaded from both Google Play and Tencent MyApp
markets (1,000 from Google Play and 5,431 from Tencent
MyApp). Out of these apps, OTP-Lint successfully detected
that 2,022 apps implemented SMS OTP login, and 399
(19.7%) of these violated the defined randomness rules. Our
results demonstrate that a significant number of Android apps
would be at real risk of cyber-attacks exploiting such OTP
login functions.

We believe that OTP-Lint would help service providers
and users test whether the OTP authentication in Android apps
is securely implemented and highlight potential security issues
without accessing PRNG source code. Our main contributions
are as follows:

• Through an examination of the official RFC documents
and research works, we provide insights into potential
implementation issues in vulnerable PRNGs and propose
three types of randomness rules that must be followed for
implementing secure PRNGs.

• To the best of our knowledge, this is the first random-
ness study of OTP values generated by PRNGs used in
Android apps. Without knowing the detailed implementa-
tions of PRNGs, we infer the potential vulnerabilities that
might exist in the PRNGs through OTP value analysis.

• We build a novel analysis tool, OTP-Lint. By trigger-
ing OTP authentication in apps, OTP-Lint simulates
the most common vulnerable PRNG implementations
for OTP randomness analysis and checks whether the
generated OTP values are vulnerable.

• We used OTP-Lint to analyze 6,431 Android apps and
detected 399 apps that produce predictable OTP values.
Interestingly, 194 vulnerable apps use the OTP authenti-
cation alone without any additional security mechanisms,
leading to insecure authentication against guessing at-
tacks and replay attacks.

II. ANALYSIS OF RANDOMNESS WEAKNESSES

We discuss the widely used randomness algorithms and
present the randomness functions in programming languages
that can be used for Android apps.

A. Randomness Algorithms

Linear Congruential Generator (LCG). LCG is one of
the most popularly used algorithms that generate a sequence
of pseudo-random numbers (PRNs), using a discontinuous
linear equation. LCG is defined by the recurrence relation
Sn+1 = a × Sn + C mod m. Starting with a seed, LCG
repeatedly applies the recurrence relation to generate the
subsequent PRNs. Such an algorithm is not cryptographically
secure [19]. If a sufficient number of PRNs are gathered, an
attacker can predict subsequent values.
Lagged Fibonacci generator (LFib). LFib is an improvement
of the “standard” LCG, where PRNs are derived as a general-
ization of the Fibonacci sequence. Such a sequence is gener-
ated according to the recurrence relation Sk = Sn−j ⊗ Sn−p

mod m (0 < j < p) [14], where ⊗ is any binary function such
as addition, subtraction, multiplication, or even the bitwise
XOR. LFib thus requires an initial sequence and two seeds to
begin. However, such algorithms using two seeds can be vul-
nerable to birthday attacks [3]. Alternatively, therefore, three
seeds are recommended to be used according to the expression
Sk = Sn−q ⊗ Sn−j ⊗ Sn−p mod m (0 < q < j < p). In
addition, the initial sequence of LFib should contain at least
one odd number; otherwise, the generated PRNs would be all
even. However, even if these issues are addressed, LFib is
still not cryptographically secure because it is represented as
a linear recursion.
Mersenne Twister (MT). MT [6] is another popular algo-
rithm. MT does not use any arithmetic operations (i.e., +, ×,
−, ÷) but is based on a group of permutation and tempering
operations with shifts (<< and >>), AND (&), OR (||), and
XOR(⊕). Since MT is based on a linear recursion, it is not
cryptographically secure [2]. One can determine the internal
state of the algorithm once a sufficiently long sub-sequence of
outputs is observed. The most common implementation of MT
is MT19937, in which only 624 distinct outputs can be used
to derive all the internal state variables of the PRNG [20].
Well Equidistributed Long-period Linear (WELL). Similar
to the MT algorithm, WELL is also a form of linear feedback
shift register using simple bitwise operations. A seed value is
required to start the generation process. With only a slightly
higher time cost, WELL obtains better equidistribution than
MT [15]. WELL512, with a state size of 512 bits, is a
widely used version. Its generated outputs are only selected
within the restricted state instead of unbounded dynamic
memory allocation. The period length of the generated PRNs
is approximately 2512. At first glance, the use of WELL512
is sufficiently secure for OTP generation. However, when the
same seed is used, WELL512 also becomes vulnerable [21].

B. Randomness Functions

Most programming languages provide the functions for
generating PRNs by default. Instead of analyzing all of them,
we only consider the most common ones — C/C++, Python,
PHP, Java, and JavaScript [22]. We introduce the randomness
functions that are frequently used to generate PRNs and
discuss each function’s security issues.

1) C/C++: Many PRNG functions are provided in the C
library. Two primary functions are listed below.
rand(): This function is a C standard built-in generator. To
ensure that the sequence of PRNs is unpredictable, srand(·)
is called to initialize the PRNG with a seed value beforehand.
The algorithm of rand() is adapted from the BASIC PRNG
algorithm, and simple operations such as arithmetic (e.g., ×)
and bitwise operations (e.g., &) are involved. If a static seed is
used, the rand() generates the same stream of PRNs. Hence,
in order to produce an unpredictable sequence of PRNs, the
initialization should not be a constant value, but a pseudo-
random value instead. Nonetheless, rand() uses the LCG
algorithm without adding any entropy to the generator, which
is not cryptographically secure. Although the LCG parameters



are unknown, the attacker can easily identify the parameters
when consecutive outputs are collected.
rand s(): This is a secure alternative for rand(). It generates
cryptographically secure PRNs depending on the operating
system. It is not affected by the seed produced by srand();
it also does not affect the pseudo-random number sequence
used by rand(). It is essential to mention that this function
only works on Windows XP and its later versions.

2) Python: Python uses the MT algorithm as the core
generator and leverages the standard MT implementation (i.e.,
MT19937). Hence, the randomness functions in Python are
unsuitable for cryptographic purposes.
random.randrange(start, stop): This function generates a
pseudo-random integer within a range of [start, stop]. By
default, start is defined as zero.
numpy.random.rand(d0, d1, . . . , dn): This function takes as
input the dimensions of the array to be created. It then creates
the array and fills it with PRNs from a uniform distribution
over [0, 1).

3) PHP: PHP is the most popular programming language
for server-side scripting. Three main functions are discussed.
lcg value(): This function is used in numerous places within
the Zend engine code as an internal function. This function
leverages two LCGs to get better quality PRNs. A default
seeding algorithm uses time and process id inputs to calculate
a value to seed both LCGs. The function implementation is
proved to be cryptographically insecure as one can determine
the generated values by only using consecutive outputs [2].
rand(min, max): This function generates a pseudo-random
integer. By default, it falls back to rand() supported by C
with the range [min, max] is [0, 231−1]. The implementation
of this PRNG generates a default seed by taking the current
timestamp and the value generated by lcg_value() as
input. Alternatively, users can call srand(·) to set the seed
externally. When a constant or predictable seed is chosen, this
PRNG becomes insecure.
mt rand(): This function is implemented using the MT al-
gorithm. By implementing MT19937, namely, the standard
implementation of MT, this function is not cryptographically
secure because the algorithm’s internal states can be observed
when 624 successive outputs are gathered.

4) Java: There are three primary functions for PRNG
implementations in the Java development kit (JDK).
random(): This function is included in the class
java.util.Random for generating a stream of PRNs with
positive signs and restricted within [0.0, 1.0]. This function
is created based on Knuth’s subtractive algorithm [23],
that is, an internal PRNs repeated cycle length is fixed. In
addition, this class utilizes LCG with a 48-bit static seed.
Without any entropy added to the generator, this function
is not cryptographically secure because two pseudo-random
sequences created by the same seed are the same. When the
PRNG is unknown, the PRNG parameters can be calculated
when 232 consecutive outputs are known.
Math.random(): This function is included in the java.util
package. Without giving any seed, a java.util.Random

object is created when Math.random() is called; hence
the PRNs generated by Math.random() depend on
random(). It is also cryptographically insecure.
SecureRandom(): This function is included in the Java
class java.security.SecureRandom to produce secure
PRNs. By using SHA-1 as part of the random algorithm,
the generated PRNs are hashed; hence SecureRandom()
provides a strong PRNG implementation to ensure a non-
deterministic output.

In Java, it is thus critical to use the randomness function
SecureRandom in java.security.SecureRandom
class instead of using random() or Math.Random() to
generate PRNs for security reasons.

5) JavaScript.: JavaScript also provides
Math.Random(), which is insecurely implemented
in the same manner as Java. However, several
cryptographically secure randomness functions are
also supported. A web cryptographic function
window.crypto.getRandomValues with a high
entropy seed is recommended. Furthermore, a secure crypto
library (SJCL)1 is also provided.

III. RANDOMNESS RULES FOR ONE-TIME PASSWORD

While weaknesses and recommended implementations of
the randomness algorithms and functions are precisely de-
scribed, we are curious whether the PRNGs implemented by
developers achieve the expected security level. Therefore, we
introduce three generic types of randomness rules for OTP.
The sequence of the gathered OTP values that violate any
of these rules indicates that the OPT values can be predicted
with a significant probability. Note that we assume the network
channel is secure when OTP values are transmitted.

1) Rule 1. Do not use a static OTP value [5]: It forbids
using a static value for all login sessions of different accounts,
which violates the requirement of OTP randomness. Conse-
quently, the security of the OTP authentication scheme is not
guaranteed once the OTP value is exposed to attackers.
Threat. When a static OTP value is used, the OTP authenti-
cation is vulnerable to replay attacks. If the length of the OTP
value is insufficient [12], the OTP is guessable through brute
force attacks.

2) Rule 2. Do not generate OTP values according to specific
patterns [12] [13]: OTP values should be unpredictable.
However, some real-world randomness functions generate OTP
values in specific patterns, which can be statistically observed.
We discuss the three sub-rules below.
Rule 2-1. Do not generate a repeated sequence of OTP values:
It states that the PRNG should not generate PRNs with a fixed
period length. Unsurprisingly, if OTP values are periodically
repeated, attackers can easily predict the OTP values when the
number of generated OTP values is larger than the period size.
Rule 2-2. Do not repeat each distinct OTP value n times:
It demonstrates that each OTP value should not be used
repeatedly for the n consecutive login sessions.

1SJCL: https://crypto.stanford.edu/sjcl/



Rule 2-3. Do not generate OTP values with predictable binary
representations: It states that the PRNs should be pseudo-
random in any format. Even though the generated OTP values
in the decimal format seem unpredictable, they may have some
specific patterns in the binary format. For example, the parity
of OTP values has a specific pattern such as all evens or
(odd, even, odd, even, . . . ) parity. In such cases, the possible
space of the possible OTP values can be reduced significantly.
Threat. OTP authentication is vulnerable to replay attacks
when the generation pattern of OTP values is exploited. The
attacker first collects a certain number of the login commu-
nication packets. Without retrieving the plaintext of the OTP
values, the attacker can send the corresponding packet to the
server consistent with the generation pattern.

3) Rule 3. Do not use a constant or predictable seed
to initialize a randomness function [24]: It states that the
randomness functions should not be seeded with a constant
or predictable seed. When the seed is a constant value,
the attacker can duplicate the sequence of PRNs when the
seed is guessed. For example, when using srand(1) to
seed rand(), rand() always outputs the same sequence
because the initialization status is determined. Note, when a
dynamically changed seed is used for the randomness function,
the OTP authentication can still be insecure if the seed is
predictable (e.g., use of a timestamp) [25].
Threat. When a randomness function (e.g., rand()) is
seeded by a constant or a predictable value, the attacker can
test the possible seeds through brute force attacks and infer
the following OTP values.

IV. CHALLENGES

Three challenges need to be addressed while analyzing the
real-world apps to identify the implementations violating the
randomness rules introduced in Section III.
Challenge 1: How can we determine the selected random-
ness algorithm and the PRNG implementation resided on
the server-side? App developers typically select a particular
randomness algorithm to generate OTP values. However, gen-
eral program analysis techniques such as program slicing [26]
cannot be used here. We cannot access the OTP generation
implementation because it resides on the server-side. Diverse
PRNG implementation options (written in many different pro-
gramming languages) make it harder to decide which PRNG
is specifically used for the OTP functionality.
Challenge 2: How many OTP values should be gathered
to infer potential patterns in an OTP sequence? A large
number of OTP values are needed to determine whether any
pattern exists in the OTP sequence. Therefore, multiple login
attempts should be made. However, it is time-consuming or
often not allowed to gather a massive number of OTP values
through login attempts. Therefore, we need to minimize the
number of login attempts as much as possible.
Challenge 3: How can we collect OTP values for our
experiments without affecting the OTP server? We can
perform the login process repeatedly to collect a sufficient
number of OTP values. However, sending a large number

of login requests can interfere with the OTP server’s normal
operations. More worryingly, it can raise ethical issues.

To address these challenges, we propose three approaches:
1) We analyze the existing PRNG implementations written in
diverse programming languages and then abstract the common
implementations in Android apps. 2) Based on the analysis of
existing PRNG implementations, we obtain vulnerable codes
in each code snippet. If a predictable pattern is found, we
then determine how many OTP values are sufficient to infer
the following PRNs. 3) We set a maximum number of login
attempts for collecting OTP values because we need to stop
the OTP data collection process when we fail to identify a
specific pattern from a sequence of OTP values. Moreover,
since some apps limit the number of login attempts per day
(e.g., 20 per day), it would be time-consuming to collect the
number of OTP values larger than such a maximum number
of login attempts. Therefore, we empirically set the maximum
login attempts as 1,000 by considering both practicality and
efficiency.

V. OVERVIEW OF OTP-LINT

To investigate the randomness of OTP values, we build
OTP-Lint to collect a sufficient number of OTP values
from a given Android app using the SMS OTP authentication.
OTP-Lint then checks whether randomness rules listed in
Section III are violated. Figure 1 shows the workflow of
OTP-Lint, which includes three components: Authentication
Locator, Request Processor, and Vulnerability Detector.
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Fig. 1. Workflow of OTP-Lint.

A. Authentication Locator
In order to trigger login requests for OTP collection,

OTP-Lint first identifies whether there are any login Ac-
tivities implemented in apps. The variety of login Activities,
which are named differently, makes it challenging to identify
login Activities by simply using keywords matching [27] [5].
The customized functions are generally declared by us-
ing abbreviations and informal terms (e.g., AccountAct,
AuthAccount), which are difficult to recognize.

For two functions using similar keywords, these functions’
semantics might be different if the order of these keywords



in the two names is different. As an example consider the
functions SMSLoginAct and LoginSMS. They have differ-
ent semantics although both of them utilize the keywords SMS
and login. The SMSLoginAct function represents a SMS
login Activity, whereas function LoginSMS requires the OTP
value for identity verification. Therefore, only matching the
keywords makes the Activities identification inaccurate.

In order to achieve an accurate login Activity identification,
OTP-Lint applies a fuzzing-inspired approach. Fuzzing [28]
is an automatic test generation and execution to find security
vulnerabilities. We aim to combine fuzzing with program anal-
ysis to address the issues of inconsistent function naming and
ambiguous function semantics. Instead of matching keywords,
OTP-Lint relies on code dependencies to understand the
purpose of each function. In particular, it creates a test Activity
consisting of dependencies to locate login Activities. Accord-
ing to the previous test executions’ feedback, OTP-Lint
dynamically optimizes the dependencies in the test Activity
for the next round of Activity identification.

The authentication locator executes five steps: 1) a candi-
date creator generates candidate samples; 2) an app code
analyzer analyzes the code of the target app and extracts
dependencies; 3) an input generator creates a test Activity;
4) a login locator identifies login Activities from the real-
world Android apps; and 5) a feedback handler optimizes
the test Activity when the login Activity is not identified in
an app. OTP-Lint executes steps 3–5 iteratively until the
number of iterations exceeds a threshold, which indicates that
there would likely be no login Activity implemented in the
apps. Referring to the previous fuzzing approaches [29] [30],
we set the iteration threshold as 1,000 by considering both
effectiveness and efficiency.

1) Candidate Creator: Candidate samples are a group of
sample codes used as references when OTP-Lint is creat-
ing the test Activity for further login Activity identification.
However, it is difficult to determine whether a piece of code
is relevant to user authentication. Hence, OTP-Lint obtains
the authentication code from GitHub repositories.

Specifically, OTP-Lint first crawls all the repositories by
searching for the keyword authentication and selects
those whose read.md and the title contain the keyword. As
login Activities in Android apps are typically written in Java
and the invoked functions are Java methods, OTP-Lint
initially takes as input the GitHub repositories for authentica-
tion [31]. As Android apps are generally written in Java, we
only consider the repositories in Java. In total, 9,134 GitHub
repositories were analyzed to construct a candidate list.

Instead of analyzing the entire project, OTP-Lint only
extracts the code snippets that are relevant to authentication.
Each candidate is represented according to the format of C =
(tx1, tx2, . . . , txn), where C is the authentication method
name and (tx1, tx2, . . . , txn) are the invoked functions. Two
steps are proceeded to construct each candidate:
Step 1: Method Determination. To identify authentication
code snippets, we follow the same natural language processing
technique used by NLP-EYE [27]. First, we manually recog-

nize the login-related classes from the GitHub repositories to
construct a reference set. Then we use all posts on Stack Over-
flow2 (https://stackoverflow.com/) to generate a code corpus.
Given each method name in a project, OTP-Lint compares
it with the words in the reference set and uses the code corpus
to measure the semantic similarity between the method name
and the word in the reference set. If two words are regarded
as similar, then the method is labeled as an authentication
method.
Step 2: Dependency Construction. After identifying the
authentication method, OTP-Lint derives the in-method and
external-method correlations by conducting the intra- and
inter-dependency analyses. To extract the in-method corre-
lations, OTP-Lint constructs an intra-dependency graph to
extract in-method correlations by exploring the invoked func-
tions. Nodes in the intra-dependency graph and the inter-
dependency graph are the invoked functions, and each directed
edge represents a dependency from a caller function to a callee
function. By creating the inter-dependency graph, OTP-Lint
obtains the external-method correlations. It locates where
the customized function is declared and constructs an intra-
dependency graph for the customized function. Through the
customized function, its intra-dependency graph is connected
with the graph of the authentication method.

Since some Java functions that execute common behaviours
(e.g., nextLine(), toString()) and exception handling
functions (e.g., printStackTrace) might affect the detec-
tion precision, OTP-Lint further removes these redundant
functions.

2) App Code Analyzer: OTP-Lint takes each Android
app as input and proceeds two steps: Decompilation and De-
pendency Construction. First, OTP-Lint uses JEB Android
decompiler [32] to decompile each app into Java source code.
Similar to the candidate creator’s dependency construction
step, OTP-Lint constructs the intra- and inter-dependency
graphs to extract the in-method and external-method corre-
lations. Since we do not know which methods are relevant
to authentication, OTP-Lint targets the entire app code
to conduct the dependency analysis. Again, the redundant
functions are excluded in the generated dependency graphs.

3) Input Generator: OTP-Lint creates a test Activity that
can be adapted to search for the authentication login Activity in
each app. Instead of manually defining the test Activity, which
would be time-consuming and inaccurate, the input generator
constructs and optimizes the test Activity by using a fuzzing-
inspired approach.

A test Activity consists of the functions that are commonly
invoked for authentication login, represented according to the
notation A = (fc1, fc2, . . . , fcx), where A is a login Activity
represented by a two-tuple (Name, ArgumentNames) and
(fc1, fc2, . . . , fcx) are a sequence of function names that
must be invoked for authentication. OTP-Lint optimizes the
test Activity used for the previous iteration to generate the

2Stack Overflow is the most popular web service to programmers for
discussing technical issues, in the form of Question and Answers.

https://stackoverflow.com/


next test Activity. It takes the following two steps. Note that
OTP-Lint randomly selects a candidate from the candidate
list as initial input for the input generator.
Step 1: Activity Selection. OTP-Lint reconstructs the test
Activity A by referring to the candidate samples. By com-
paring A with the candidate samples, OTP-Lint finds the
candidate Csim that is the most similar to A and then selects
the functions in Csim to replace the inappropriate functions in
A. Such a reconstruction follows two principles:

• Candidate Selection – Since every single word generally
covers one functionality to ensure code readability [33],
we assume that two methods with similar method names
may fulfill the same functionality. Therefore, OTP-Lint
pinpoints Csim by extracting the longest common sub-
string (LCS) [34]. Considering the length of the LCS
as the similarity score between A and each candidate,
OTP-Lint selects Csim with the highest similarity
score.

• Probability distribution – Although A and Csim are as-
sumed to fulfill a similar functionality, the invoked func-
tions in A and Ci might be different. Hence, OTP-Lint
randomly selects only one function txj in Ci to replace
the function in A at the same position during each
iteration.

Step 2: Argument Creation. After selecting the functions
in the test Activity selection, OTP-Lint fills in the required
arguments for the test Activity. With the matched candidate
Ci, OTP-Lint identifies the arguments that do not exist in
A and then inserts the corresponding argument names.

4) Login Locator: Given the test Activity and the depen-
dency graphs of each Android app, OTP-Lint locates the
login Activity via Activity Searching. Since we only consider
the Activities defined in each app, OTP-Lint selects the
dependency graphs that illustrate the Activities. Each depen-
dency graph will be compared against the test Activity to
verify whether there is any dependency graph that contains
a subgraph, which is isomorphic to the test Activity. A graph
is considered relevant to the login Activity if a subgraph is
identified; otherwise, OTP-Lint selects the next dependency
graph.

When all the dependency graphs are analyzed, and none
of them are defined as login Activity, OTP-Lint continues
the following steps to optimize the test Activity. Alternatively,
OTP-Lint reports the identified login Activity for further
analysis.

5) Feedback Handler: To optimize the test Activity,
OTP-Lint analyzes the similarity between the test Activity
and each dependency graph. Since the test Activity is com-
posed of functions named variously by different developers,
OTP-Lint compares the test Activity A and the dependency
graph G = (g1, g2, . . . , gm) function by function.
OTP-Lint conducts a transformed pairwise compari-

son [35] to compare each fc in A with all g in G. It first
computes the similarity score of two functions by using the
length of LCS and then constructs a similarity set, which
consists of the similarity scores of fc. While comparing fci

and gj , OTP-Lint only considers fci and gj as similar if
and only if the length of LCS is higher than a threshold
LCSthresh. Otherwise, OTP-Lint follows the dependency
in G to compare fci with the rest functions, i.e., [gj+1, gm].

Among the similarity sets, OTP-Lint chooses the set with
the highest total score and replaces the corresponding function
with the lowest similarity score in the next iteration.

B. Request Processor

After locating the login Activity in each app, OTP-Lint
follows the steps used by AUTH-EYE to identify the app with
the SMS OTP authentication scheme and then triggers the
login request button to retrieve OTP values from the app server.
Step 1: SMS OTP Location. For each SMS OTP authenti-
cation scheme, the specific widgets (i.e., EditText and Button)
are required. Therefore, OTP-Lint identifies the SMS OTP
authentication scheme by recognizing whether there exist rele-
vant widgets. Since widgets used in apps are named typically,
which is easier for users to recognize, OTP-Lint performs
keyword matching directly to identify the necessary widgets.
We created a keyword list containing the keywords such as
“sms” and “mobilephone”. To extract the widget information
(i.e., type, text, orientation, and layout), OTP-Lint utilizes
UI Automator to parse the XML layout files. Then it matches
the keywords with the text in the field of android:text
to identify an SMS OTP login. As a result, a list of apps that
implement SMS OTP authentication is retrieved.
Step 2: OTP Extraction. In order to send OTP requests auto-
matically, OTP-Lint executes Monkey3 to fill in the mobile
phone number and trigger the button to start a login attempt.
However, Monkey only generates pseudo-random streams of
user events without locating where the corresponding wid-
gets are. In terms of the collected widget information (e.g.,
layout, type), OTP-Lint uses UI/Application Exerciser to
locate EditText and Button and calls the dispatchString
method to enter a valid phone number. Because the Android
phone involved in the experiment is rooted, OTP-Lint
obtains the returned SMS messages from the dataset
/data/data/android.providers.telephony/
databases/mmssms.db. Finally, it parses the SMS mes-
sages to extract the OTP values.

C. Vulnerability Detector

OTP-Lint evaluates whether randomness of OTP values
produced by real-world Android apps violates the randomness
rules summarized in Section III. We set the waiting time
interval between two login requests to one minute.

1) Rule 1: Do not use a static OTP value: To identify
whether a static OTP value is used, OTP-Lint first requests
five OTP values and checks whether they are the same. If so,
OTP-Lint then requests 15 OTP values to check whether
the value changed4. OTP-Lint labels an app generating

3UI/Application Exerciser Monkey: It acts as a stress test on the developed
app, downloaded from https://developer.android.com/studio/test/monkey

4In many apps, the maximum number of login attempts allowed per day is
20.



static OTP values when the 20 OTP values are the same.
When an app renews the OTP value within the 20 times
of login requests, such a vulnerable situation is discussed in
Rule 2-2. In this paper, we only retrieve OTP values without
consuming them. However, we observed that some apps would
only generate a new OTP value when the previous value is
consumed. Such a scheme is also insecure because attackers
have time to launch attacks before the OTP value is consumed.

2) Rule 2: Do not generate OTP values according to
specific patterns: Without the knowledge about the PRNG
implementation on the server-side, we downloaded the sample
codes of the PRNG implementations shared on GitHub [17]
and Stack Overflow [18] as references. Then we identify a
range of implementations that violate the randomness rules.
Rule 2-1: Do not generate a repeated sequence of OTP val-
ues. Referring to the PRNG functions introduced in Section II,
we select the vulnerable implementations and identify the fixed
repeat length of the PRNG. According to the sequence length,
OTP-Lint sends a sufficient number of login requests to
check whether the OTP values are repeated after a certain
number of values are generated. In particular, when a PRNG
only generates N distinct PRNs (i.e., the fixed repeat length
of the PRNG is N ), OTP-Lint sends 2 × N OTP requests
and then compares the sequences {1st, 2nd, . . . , Nth} and
{(N + 1)th, (N + 2)th, . . . , 2×N th}. If two sequences are
identical, OTP-Lint labels the PRNG as insecure.
Rule 2-2: Do not repeat each distinct OTP value n times.
OTP-Lint examines generated OTP values to determine
whether an OTP value is repeated consecutively (i.e., for n
consecutively login sessions, where n = 2, 3, . . . ). The PRNG
is labeled as insecure when an OTP value is repeated n times.
Rule 2-3: Do not generate OTP values with predictable
binary representations. Some OTP values seem to be pseudo-
random in their decimal formats. While analyzing the sample
code, we found that some developers create their PRNGs using
shift operations instead of invoking the corresponding APIs.
Thus, OTP-Lint converts the decimal format into the binary
format to check whether there is any pattern in generated
PRNs.

Since various shift operations can be utilized, it is chal-
lenging to determine generally about what operations are
carried out. We only focus on the simple shift operations
(i.e., in clockwise/anticlockwise). First, OTP-Lint obtains
an OTP value and transforms the value into its binary format.
According to the number of digits included in the binary value,
OTP-Lint requests the corresponding number of OTP values
and retrieves their binary values. By comparing the ith and the
(i+ 1)th values, OTP-Lint identifies whether the ith value
can be transformed to the (i+1)th value through digit shifting
(either forward or backward). Additionally, we also observed
that the digits in some sequences do not shift iteratively, but a
new digit (“1” or “0”) is inserted at the end of the sequence.
Therefore, OTP-Lint only analyzes how the digits of the first
binary value shift instead of considering the newly inserted
digits. If a shift operation is recognized, the PRNG is labeled
as insecure.

For the OTP sequences whose vulnerable patterns are not
identified, OTP-Lint checks the last digit of each OTP value.
If the last digit is ‘0’, OTP-Lint labels it as odd; otherwise,
it labels it as even. To determine whether a stream of pseudo-
random values is parity-guessable, we send the login requests
20 times. If the received 20 OTP values appear by following
a specific parity pattern, OTP-Lint labels the PRNG as
insecure.

3) Rule 3: Do not use a constant or predictable seed to
initialize a randomness function: Because the same stream
of PRNs can be generated when a static value is used as the
seed of PRNGs, we manually inspect the PRNG sample code
to learn what static values are frequently used. As a result,
the rand() functions in C/C++ and PHP are commonly
seeded by srand(1); thus we simulate the PRNG by using
srand(1). First, OTP-Lint sends 1,000 login requests to
retrieve 1,000 OTP values by considering both ethnic and
efficiency issues (refer to Section IV). It then analyzes the
length of the OTP values and executes the PRNG simulation
to generate 50 PRNs in the same length. If the sequence of
the PRNs is a subsequence of the OTP sequence, OTP-Lint
labels the app PRNG as insecure.

Apart from that, we found that many posts recommend
developers to seed randomness functions by using a timestamp
(i.e., srand(time(0))). Therefore, we create a PRNG simulation
by using a flexible seed. To ensure that the same timestamp
is used for the simulated PRNG and the PRNG in an app,
OTP-Lint executes the simulated PRNG and simultaneously
sends the login requests. Then it determines whether the values
generated by the simulated PRNG and the app PRNG are the
same.

VI. EVALUATION

Our evaluation has two goals. The first is to conduct a large
scale randomness analysis on OTP values. The second is to
inspect the analysis result manually to understand the detail
implementations of these vulnerable PRNGs.

A. Dataset
We downloaded 6,431 top list apps from both GooglePlay

and Tencent MyApp market (1,000 from Google Play and 5,431
from Tencent MyApp)5. When an app is existed in both app
stores, we assumed the implementations of the both apps
are the same and removed the one from the Tencent MyApp
dataset. The apps are selected from 21 categories6 and the 300
top listed apps in each category are obtained.

B. OTP Login Activity
OTP-Lint successfully analyzed 4,015 out of 6,431

apps. The failed cases are discussed in detail in Sec-
tion VI-E. Through the fuzzing-inspired approach, OTP-Lint

5We found that the apps published on GooglePlay barely use OTP authen-
tication; thus we focus more on the Tencent MyApp market.

6Categories: Communication, Education, Health & Fitness, Medical, Books
& Reference, Photography, Productivity, Video Players & Editors, Travel &
Local, Map & Navigation, Entertainment, Lifestyle, Shopping, Tool, News
& Magazine, Personalization, Productivity, Social, Beauty, Finance, Music &
Audio, and Parenting



found 3,657 apps with login Activities. Among these apps,
OTP-Lint further identified 2,022 (55.29%) apps with SMS
OTP authentication; thus, the following experiments were
conducted on these 2,022 apps.

By manually inspecting the apps with SMS OTP authen-
tication, we found that only 214 were from GooglePlay, and
all of them utilize two-factor authentication (i.e., using both
password-based authentication and OTP authentication). The
rest 1,808 apps are from Tencent MyApp; of these apps 1,068
(59.1%) implement two-factor authentication, and 740 (40.9%)
only use a single OTP authentication scheme. Since we only
analyzed the randomness of OTP values, the parts related to
password authentication, i.e., username and password, were
filled in manually. OTP-Lint then only executed the OTP
login procedure. For the experiments, we registered an account
manually in advance for the each tested app.

C. Results

We report the randomness analysis result in Table I. In total,
399 (19.7%) apps out of the 2,022 apps exhibit of violating
the randomness rules we have introduced.

TABLE I
VIOLATIONS OF RANDOMNESS RULES.

Violated Rules # of Apps

Rule 1 41

Rule 2

Rule 2-1 162
Rule 2-2 67
Rule 2-3 125
Total 354

Rule 3 4
Total 399 (out of 2,022)

1) Rule 1: Do not use a static OTP value: OTP-Lint
detected 41 (10.3%) apps that produce OTP values violating
Rule 1. That is, those apps’ PRNGs use a static OTP value
instead of generating dynamically modified OTP values for
different login sessions. Since only one account was created
for each app and the received OTP values were not consumed,
we were interested in finding out: 1) whether the OTP value
changes after it is consumed; and 2) whether the apps produce
the same OTP value for all accounts.

We then conducted two experiments: 1) consuming each
OTP value after it is received; 2) registering an additional
account and then sending the login requests through the same
procedure. The first experiment showed that 20 apps kept
returning the same OTP values, although the values were
consumed, which indicates that OTP authentication in these
apps is mistakenly implemented as password authentication.
Due to the short length (typically in four to six digits) and
simplicity of the static value, the value can be easily cracked
through brute force attacks. For the other apps, which generate
new OTP values, we still regard the PRNGs of these apps
as vulnerable because a sufficient time window is left for
attackers to retrieve the OTP value. We further compared
the OTP values generated for the additional account with the
original OTP values. All the apps returned a different OTP

value for a different account. Therefore, we inferred that the
generated OTP values are bound to each user account uniquely.

2) Rule 2: Do not generate OTP values in specific patterns:
Among 399 vulnerable apps, 354 apps (88.7%) are categorized
as apps using OTP values in a specific pattern. Once the pattern
is recognized, an attacker can launch replay attacks to access
the victim’s account.
Rule 2-1: Do not generate a repeated sequence of OTP
values. OTP-Lint detected 162 (40.6%) apps that produce
the OTP values violating Rule 2-1. In our current implemen-
tation of OTP-Lint, we only considered the PRNGs using
MT19937 because it is widely used as a default randomness
algorithm in several programming languages such as Python
and PHP. Therefore, we set N = 624 to test apps because
MT19937 and its variants produce PRNs at a fixed period
length (i.e., 624) (see Section II-A). Each of their PRNGs
generated a pseudo-random stream with 624 unique PRNs
and then repeated the same stream. Apparently, the PRNGs
of these apps use MT19937 as the randomness algorithm. To
verify our result, we further executed a seed recovery tool,
untwister7, to reverse the PRNG and obtain its original seed.
With enough PRNs inputs, untwister successfully obtained all
their seeds with 100% confidential.

In this paper, we only inferred whether the randomness
algorithm of Mersenne Twister (MT) is implemented in the
PRNG. OTP-Lint can be extended easily when we exploited
the fix period length from the other randomness algorithms and
then OTP-Lint can help with the OTP randomness analysis.
Rule 2-2: Do not repeat each distinct OTP value n times
OTP-Lint detected 67 (16.8%) apps that produce the OTP
values violating Rule 2-2. That is, the detected apps iteratively
generated the same OTP value n times. According to our
manual inspection, we found that 39 apps repeated each OTP
value twice, and 27 apps repeated each value three times. Only
one app kept repeating the OTP value for five times.

Since there is no randomness algorithm that can generate a
value for n consecutive times and then renew the value. We
assume that such a scheme is implemented intentionally and
the OTP value are stored and being reused when requested.
Therefore, we are curious: 1) how long the OTP value will
be stored; 2) whether the OTP value changes after being
consumed. Firstly, we conducted three experiments to test how
long the OTP value will be stored. Originally, OTP-Lint
requested each OTP value after only one minute. We then
separately set the waiting period between two login requests
as two minutes, 20 minutes and an hour and these OTP values
were not consumed. Referring to the previous analysis result,
all vulnerable apps repeated the OTP values for less than five
times; hence we only sent six login requests in this experiment.
Surprisingly, the results showed that 44 apps renewed their
OTP values within 20 minutes and six apps generated new
OTP values in an hour. For the rest 17 apps, they did not
update the OTP values unless the values were consumed.

7untwister: https://github.com/altf4/untwister



Afterwards, we ran three similar experiments, in which the
waiting periods were set as the same, but we consumed the
OTP value after received. The result demonstrated that 62 apps
updated their OTP values immediately after the values were
consumed (within one minute). For the rest five apps, one of
them updates the OTP value within 20 minutes and the other
four apps generated new OTP values in an hour.
Rule 2-3: Do not generate OTP values with predictable
binary representations. OTP-Lint detected 125 (31.3%)
apps that produce OTP values violating Rule 2-3. That is, we
can predict the OTP values generated from those apps by con-
verting them to binary formats. Among these vulnerable apps,
OTP-Lint specifically identified 35 apps generating OTP
values with certain shift patterns. Through our manual inspec-
tion, six apps iteratively shift all binary digits in anticlockwise
direction. As an example, an app generated a sequence of OTP
values as < 081642, 032213, 064426, · · · >; then, when the
numbers are converted from the decimal format into the binary
one, the first digit of the current value always appears in the
last digit of the next OTP value, i.e., <10011111011101010,
00111110111010101, 01111101110101010, . . .>. Instead of
shifting the binary digits iteratively, 12 apps add either ‘1’ or
‘0’ at the end of the binary sequence. We also found 17 apps
that use similar substitution operations on the digits in other
positions.

Besides, OTP-Lint also exploited 90 vulnerable apps that
generate OTP values with “odd-even” patterns. Within these
apps, OTP-Lint discovered eight apps that only generate
even OTP values. We can only infer that their developers
might implement the randomness algorithm of LFib, MT, or
WELL. However, it is difficult for us to identify the use of a
specific algorithm in detail from these OTP sequences without
accessing the source code of each PRNG.

3) Rule 3: Do not use a constant predictable seed to initial-
ize a randomness function: OTP-Lint detected 4 (0.01%)
apps that produce the OTP values violating Rule 3 – the
PRNGs of three apps are written in C/C++; the PRNG of
the other app is written in PHP. When calling the randomness
function rand(), three apps use a constant srand(1) to
seed rand(). For the two apps whose PRNGs are written
in C/C++, they generate exactly the two same pseudo-random
streams. Therefore, attackers can rebuild the PRNG to extract
the sequence of OTP values. Surprisingly, we identified one
app utilizing the timestamp srand(time(NULL)) to seed
rand().

D. Insights

We manually inspected all the analysis results and gained
some insights that we report below.
App Store Comparison. As the apps are downloaded from
Google Play and Tencent MyApp, we now discuss the security
of the apps collected from each store. Table II presents
the number of vulnerable apps collected from each store.
Among the 214 apps that were downloaded from Google
Play, OTP-Lint detected a randomness vulnerability in 137
(64%) apps while it detected a randomness vulnerability in

TABLE II
# OF VULNERABLE APPS COLLECTED FROM TWO STORES.

Violated Rules # of Google Play Apps # of Tencent Myapp Apps
1-factor 2-factor 1-factor 2-factor

Rule 1 – 0 11 30

Rule 2

Rule 2-1 – 73 79 10
Rule 2-2 – 48 10 9
Rule 2-3 – 15 94 16
Total – 136 183 35

Rule 3 – 1 – 3
Total – 137 (out of 214) 194 (out of 1,808) 68 (out of 1,808)

262 (14.5%) apps out of 1,808 apps downloaded from Tencent
MyApp. At first glance, the Google Play apps would be more
vulnerable compared with the Tencent MyApp apps. However,
all the Google Play apps use a two-factor authentication
scheme, which means that the additional user credential in-
formation is needed to attack such an app from Google Play.
In contrast, 194 (74%) out of the 262 vulnerable Tencent
MyApp apps use the OTP authentication alone without any
additional security mechanisms, leading to insecure authenti-
cation against guessing attacks and replay attacks.

Furthermore, we specifically examine the difference be-
tween both app stores in terms of each randomness rule.
For Rule 1, OTP-Lint discovered 41 vulnerable apps from
Tencent MyApp only. For Rule 2, we can see a different
distribution between two stores – among the 136 vulnerable
Google Play apps, Rule 2-1 (73 violations), Rule 2-2 (48
violations), and Rule 2-3 (15 violations) are most frequently
found in order while among the 218 vulnerable Tencent MyApp
apps, Rule 2-3 (110 violations), Rule 2-1 (89 violations), and
Rule 2-2 (19 violations) are most frequently found in order.
For Rule 3, there are only a few vulnerable apps (1 in Google
Play and 3 in Tencent MyApp) commonly in both app stores.
The use of the Chi-square homongeneity test [36] revealed that
there is a significant difference in the ratios of violated rules
between two app stores (p < 0.05, χ2 = 169.827, df = 4).
App Category Security. As well as analyzing from which
app stores the apps are from, we additionally analyzed the
vulnerable apps by categories. We discovered that the top three
most vulnerable categories are Video Players & Editors, En-
tertainment, and Music & Audio. The numbers of vulnerable
apps from those categories are 182 (45.61%), 71 (17.80%),
and 34 (8.52%), respectively. Although these apps might not
be as crucial as apps such as Finance and Social, these apps
also store private and sensitive user data. For example, the user
often use the Video Players & Editors to edit her private video
clips and save them as drafts in the account. The video clips in
the draft box are stored in the cloud storage sometimes instead
of the user’s local storage on her mobile phone. From such
Video Players & Editors apps, the attacker can easily access
the user’s account and steal the stored private video clips.

E. Limitations

Uncertainty about Involved Parameters. Referring to the
analyses in Section II, OTP-Lint can only determine whether
the PRNG of an app is using a known cryptographically
insecure algorithm to generate OTP values by analyzing their



patterns. Nevertheless, in some cases, it is unable to decide
what PRNG parameters such as the seeds are used for the
PRNG implementation on the server-side. To overcome this
limitation, we should gather more datasets with various pa-
rameter values for PRNGs.
Limited Analysis Scope. OTP-Lint detects all violations of
randomness rules based on the code samples that are collected
from GitHub and Stack Overflow. Since we only focus on
specific randomness algorithms and randomness functions
based on our codebase, the detection ability of OTP-Lint
is inherently limited to specific algorithms and functions.
However, in practice, there are various PRNG algorithms
and implementations that we do not cover in this paper. For
example, Clipperz8 is a Javascript crypto library that we did
not consider yet. To evaluate the randomness and predictability
of new and unseen PRNGs, we need to introduce more robust
statistical tests in the existing PRNG guidelines (e.g., NIST
SP 800-22 [37]).
Failed Apps Analysis. OTP-Lint failed to decompile or an-
alyze 2,416 Android apps. By manually inspecting these apps,
we found that 889 apps use code packing to defend against
decompilation. Since their “class” files are encrypted, JEB
cannot decrypt the file to extract their source code. In addition,
412 apps have obfuscated code that cannot be analyzed. For
1,115 apps, OTP-Lint failed to send login requests because
a runtime error occurred while sending request messages.

VII. RELATED WORK

Analysis of PRNG. Several vulnerability analysis studies
have been conducted on PRNG. Most of them focus on the
PRNG in Linux because it is included in the kernel of all
Linux distributions and widely used in many security-related
applications and protocols [38] [8] [39] [40]. As the Linux
PRNG is open source, Dodis et al. [8] and Gutterman et
al. [38] assessed its security, relying on the code analysis.
Dodis et al. proposed a new formal security model for
PRNGs , which encompassed all the proposed security notions.
Then, they evaluated the security of the two Linux PRNGs,
/dev/random and /dev/urandom, and proved that these
PRNGs are not robust and do not accumulate entropy properly.
Aside from analyzing the source code, Gutterman et al. [38]
combined static reverse engineering of the source code with
dynamic tracing to learn the operation of the PRNG.

Apart from Linux PRNG, OpenSSL is another important
application for PRNG analysis [9] [41]. Kim et al. [9] investi-
gated the Android OpenSSL PRNG. Similarly, they conducted
a code analysis to analyze the Android OpenSSL architecture.
Starting from the initialization, they found that every SSL
application generates random data from the same initial state.
Thus, attackers can recover the state of the OpenSSL PRNG
from any apps.

However, the above approaches cannot be applied to analyze
the PRNG for OTP authentication because the app PRNG is
not open source and typically implemented on the server-side.

8Clipperz: https://github.com/clipperz/javascript-crypto-library

Therefore, we performed a black-box analysis to detect what
algorithm might be implemented and then verified our assump-
tion through dynamic analysis to demonstrate vulnerabilities
in the generated stream of OTP values.

Similar to our work, Argyros et al. [2] focused on the
predictability of password reset token and exploited PHP ran-
domness generators. By analyzing the randomness functions
supported by PHP, they launched attacks from the timestamp
and the seed aspects, respectively. Without the specific target
of the programming language, our analyzing objects are more
general.
OTP Authentication. We categorize the previous work on the
security of OTP authentication into two groups: vulnerability
analysis and security enhancement.

Mulliner et al. [1] analyzed SMS OTP authentication from
the perspectives of access control and involved parties. They
explored the potential weaknesses and introduced attacks to
exploit them. Several basic countermeasures were given to de-
fend against the attacks. Instead of analyzing the general OTP
authentication, Yoo et al. [42] and AUTH-EYE [5] analyzed
specific scenarios, i.e., internet banking services, and Android
OTP authentication, respectively. Yoo et al. investigated the
security measures in internet banking and discovered a novel
type of attack for hijacking the implemented OTP system.
AUTH-EYE presented six OTP rules for the implementation
of secure OTP authentication applications. It checked whether
OTP authentication violated any of these rules and deter-
mined what implementation error existed in the authentication
scheme.

Several approaches have been proposed to provide secure
OTP authentication methods. Das et al. [43] combined the
image with numeric values to ensure the unpredictable feature
for each OTP. They selected a pseudo-random value as the
first part and then randomly selected pixels of user biometric
image as the second part. A few studies on OTP authentication
schemes focus on specific scenarios. E.g., Jeong et al. [44]
designed an OTP authentication scheme for home networks
with low computation, and Rifa et al. [45] designed an OTP
authentication scheme for e-banking by combining symmetric
cryptography with a hardware security module.

Nonetheless, none of the above approaches assesses the
randomness of the generated OTP values. Our work is the
first to systemically analyze the randomness of OTP values
used in real-world Android apps.

VIII. CONCLUSION

In this paper, we analyzed randomness algorithms and
functions and then introduced three randomness rules that must
be followed in the implementation of cryptographically secure
pseudo-random number generators (PRNGs). To analyze the
PRNG implementations, we designed an automated analysis
tool, OTP-Lint, to investigate the randomness of OTP values
generated by PRNGs. Without accessing the implementation
source code, we collected PRNG implementation codes shared
by other developers to learn the most common implemen-
tations. Finally, we assessed 6,431 real-world Android apps



against the randomness rules and detected 399 apps that
generate vulnerable OTP values. Our findings demonstrated
that a significant number of existing OTP-based services can
be easily attacked in practice, and thus we need to promptly
fix those apps to protect users. Perhaps the use of naive
PRNGs for OTP authentication is another example of “security
theater,” which tackles the feeling but not the reality.
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