
One Adapter for All Programming Languages?
Adapter Tuning for Code Search and Summarization

Deze Wang†, Boxing Chen, Shanshan Li†∗, Wei Luo, Shaoliang Peng§, Wei Dong†, Xiangke Liao†
†National University of Defense Technology, Changsha, China

§Hunan University, Changsha, China
{wangdeze14,shanshanli,wdong,xkliao}@nudt.edu.cn, chenboxing@gmail.com, luowei828@163.com, slpeng@hnu.edu.cn

Abstract—As pre-trained models automate many code intel-
ligence tasks, a widely used paradigm is to fine-tune a model
on the task dataset for each programming language. A recent
study reported that multilingual fine-tuning benefits a range of
tasks and models. However, we find that multilingual fine-tuning
leads to performance degradation on recent models UniXcoder
and CodeT5.

To alleviate the potentially catastrophic forgetting issue in
multilingual models, we fix all pre-trained model parameters,
insert the parameter-efficient structure adapter, and fine-tune
it. Updating only 0.6% of the overall parameters compared to
full-model fine-tuning for each programming language, adapter
tuning yields consistent improvements on code search and sum-
marization tasks, achieving state-of-the-art results. In addition,
we experimentally show its effectiveness in cross-lingual and low-
resource scenarios. Multilingual fine-tuning with 200 samples per
programming language approaches the results fine-tuned with the
entire dataset on code summarization. Our experiments on three
probing tasks show that adapter tuning significantly outperforms
full-model fine-tuning and effectively overcomes catastrophic
forgetting.

Index Terms—transfer learning, adapter, multilingual task

I. INTRODUCTION

Deep learning models are widely applied to tasks of
different programming languages, such as code search and
summarization in programming languages like Java, Python,
Ruby, etc. The existing paradigm to solve these tasks is first
loading pre-trained language models and then training and
evaluating them on language-specific datasets. For a given
task, it is necessary to train and maintain separate models for
each language.

N programming languages require N separate models, which
are challenging to train, deploy and maintain individually.
In addition, researchers in the Natural Language Processing
(NLP) field have reported that exposing models to multi-
ple languages improves performance in low-resource lan-
guages [1–3]. Unlike natural languages, multiple program-
ming languages have similar grammatical forms, and different
monolingual models fine-tuned from the same pre-trained
model would share a common vocabulary. Therefore, multilin-
gual training may be more beneficial for knowledge transfer
between programming languages than natural languages.

The most related work by Ahmed and Devanbu [4] investi-
gates that based on pre-trained code models CodeBERT [5]
and GraphCodeBERT [6], multilingual fine-tuning leads to

∗ Shanshan Li is the corresponding author.

almost consistent improvement for all six programming lan-
guages [7] on code search and summarization tasks. However,
we experimentally find that this conclusion cannot be general-
ized to the latest pre-trained code models UniXcoder [8] and
CodeT5 [9]. On these models, multilingual fine-tuning leads
to performance degradation in most programming languages
for code search and summarization tasks. It is challenging to
train a model that supports multiple programming languages
simultaneously and maintains comparable performance to a
dedicated monolingual model.

Many studies have shown that multilingual models may
suffer from negative transfer due to catastrophic forgetting of
knowledge gained from pre-training [10]. We simply fix all
parameters of the pre-trained model, insert the adapter [11]
into the model and fine-tune it. As a result, we find that it
can alleviate the above issue. Furthermore, we demonstrate
why adapter tuning is effective through probing [12] analysis
experiments.

We introduce the adapter module to different pre-trained
code models. Compared to training the entire model for each
programming language, adapter tuning only tunes no more
than 0.6% of the whole parameters. The newly obtained
models outperform models fine-tuned with all parameters
and achieve state-of-the-art results on code search and sum-
marization tasks. We experimentally find that on the code
summarization task, adapter tuning with a small number of
samples per language can approach the results of fine-tuning
with the entire dataset, demonstrating that it is possible to
adapt to a new programming language quickly. Furthermore,
we show its effectiveness in cross-lingual tasks and conduct
linguistic probing experiments to show why it works.

The main contributions of our paper are as follows:
• We experimentally find that multilingual fine-tuning,

which obtains significant performance gains on Code-
BERT and GraphCodeBERT, leads to performance degra-
dation on UniXcoder and CodeT5.

• We show evidence that adapter tuning can significantly
overcome catastrophic forgetting in multilingual fine-
tuning through three probing tasks.

• Based on the pre-trained UniXcoder and CodeT5, our
models tune no more than 0.6% of the whole parameters
on code search and summarization tasks for six program-
ming languages, obtain consistent performance gains and
achieve state-of-the-art results.

ar
X

iv
:2

30
3.

15
82

2v
1

 [
cs

.S
E

]
 2

8
M

ar
 2

02
3

Adapter

Layer Norm

2x Feed-forward layer

+

+

Multi-head Attention

Feed-forward layer

Layer Norm

Adapter

Transformer
Layer

Nonlinearity

+

Down-projection
layer

Up-projection
layer

Adapter

Fig. 1. Architecture of the adapter module and its integration with the
Transformer. Left: Adapter is inserted after the multi-head attention and the
two feed-forward layers. Right: The adapter contains a bottleneck, which
has fewer parameters than the attention and feed-forward layers, and it also
contains a skip-connection. The green part of the figure shows the parameters
to tune.

• We show that adapter tuning with 200 samples per
programming language (∼0.02% of the original dataset)
can perform well in the code summarization task.

II. PRELIMINARIES

A. Fine-tuning

With the great success of pre-trained models, the pretrain-
then-finetune paradigm has become the dominant paradigm in
the NLP field. Fine-tuning uses the parameters of the pre-
trained model as initialization and quickly adapts to new
tasks without training from scratch. It trains the model in
a supervised manner. Formally, given a set of task-specific
samples X and corresponding labels Y , fine-tuning is to find
a set of parameters satisfying θ = arg min

θ
P (Y |X; θ).

In this paper, multilingual training we study here refers to
the fine-tuning stage of pre-trained models. It is performed on
the combined dataset of all programming languages. The pre-
trained models have been trained using multilingual data in
an unsupervised manner. Unlike fine-tuning a model using a
monolingual dataset and building a model for each language,
we expect to fine-tune a multilingual model that is competent
for multiple programming languages simultaneously.

B. Adapters

When the prevalent paradigm of transfer learning is to
fine-tune all parameters of a pre-trained model, the adapter
module provides a lightweight alternative to update only a
small number of extra parameters while keeping pre-trained
parameters frozen.

Fig. 1 illustrates the standard adapter architecture [11].
For a Transformer-based architecture [13], a small set of
new parameters is introduced in every transformer layer. It
is inserted behind the attention and feed-forward layer of
each transformer layer, respectively. The adapter contains two
projection layers and a nonlinear layer. A skip-connection

layer is employed across the adapter. Given a hidden input
vector h, the output of the adapter is:

Z =WUp(σ(WDown(h))) + h (1)

where σ is the activation function, WUp ∈ Rm×d and
WDown ∈ Rd×m are parameters of projection layers. d is the
hidden size of the Transformer model, and m is the dimension
of the adapter. As shown in Fig. 1, the dimension of m is
generally smaller than d. The two projection layers form a
bottleneck structure.

III. RESEARCH METHOD

To address multilingual tasks for source code understanding
and generation, we investigate a series of research questions
and describe their study design.

A. RQ1: How Does Multilingual Fine-tuning Perform on
Different Models and Downstream Tasks?

Ahmed and Devanbu [4] find that multilingual fine-tuning
can benefit CodeBERT and GraphCodeBERT, and we inves-
tigate whether this finding can be generalized to other pre-
trained models.

RQ1 Design: We fine-tune UniXcoder and CodeT5 with the
multilingual dataset on code search and code summarization
tasks. The multilingual dataset is a combination of datasets
in six programming languages [7], including Python, Java,
JavaScript, Ruby, Go, and PHP. On code search and code
summarization, we evaluate the performance of models fine-
tuned on the multilingual dataset and compare them with
models fine-tuned on the monolingual datasets. To check
whether multilingual fine-tuning performs consistently across
different pre-trained code models, we also compare the results
of CodeBERT, GraphCodeBERT, and PLBART with the same
settings [4].

B. RQ2: How Effective is Adapter Tuning in Cross-lingual
Scenarios?

A cross-lingual task is to fine-tune pre-trained models with
the dataset in one programming language and test on the
dataset in another. By inserting the adapter into pre-trained
models and then adjusting only this small number of extra
parameters, we are interested in whether adapter tuning is
effective in solving cross-lingual tasks.

RQ2 Design: We fine-tune UniXcoder and CodeT5 with
six monolingual datasets, and for each monolingual model, we
test it on all programming languages separately. For adapter
tuning, we tune an adapter for each language and then test
these adapters on all programming languages equally. We
further compare the performance of adapter tuning and full-
model tuning on each cross-lingual task.

C. RQ3: How Effective is Adapter Tuning Over Multilingual
Full-model Fine-tuning on Different Pre-trained Models?

As cross-lingual tasks require knowledge transfer capabil-
ities in pairs of programming languages, multilingual tasks
require a model competent in multiple programming languages

simultaneously. We expect to investigate whether adapter
tuning effectively solves multilingual tasks.

RQ3 Design: We insert the adapter into UniXcoder and
CodeT5 and fine-tune the adapter with the multilingual dataset.
The performance of the adapter is evaluated on code search
and code summarization tasks. We compare the performance
of multilingual models fine-tuned by the adapter with all
other models, including corresponding monolingual models
and multilingual models with full-model fine-tuning.

D. RQ4: How Effective is Multilingual Fine-tuning in Low-
resource Scenarios?

For a multilingual model, we expect it to learn and gener-
alize to new programming languages quickly. However, there
is limited labeled data for models to learn for many program-
ming languages. Therefore, we sample existing datasets and
study the performance of multilingual learning in low-resource
scenarios.

RQ4 Design: We randomly sample the datasets in each
programming languages, and choose 100, 200, 500 and 1000
samples for each language. Then, we insert the adapter into
CodeT5 and evaluate the model on the combinations of these
data. We vary the random seed, repeat the experiment several
times, and average the results to check the effectiveness of
multilingual learning.

E. RQ5: Why is Adapter Tuning Better than Full-model Fine-
tuning in the Above Scenarios?

Although adapter tuning shows superior performance in the
above scenarios, it does not directly provide insights into
why adapter tuning can surpass full-model fine-tuning with
very few parameters. We use linguistic probing experiments
to explore this point.

RQ5 Design: We employ probing experiments to assess the
hidden state embeddings of multiple models and measure their
ability to capture fundamental characteristics related to code.
We adopt three probing tasks of code length prediction, cyclo-
matic complexity and invalid type detection [14]. These tasks
correspond to probing surface-level, syntactic and semantic
information of source code, respectively. Precisely, after fine-
tuning various models on downstream tasks, we extract pre-
trained vector embeddings on probing tasks to check whether
the models reflect the understanding of code information.
In particular, we verify whether adapter tuning that shows
effectiveness in the above scenarios performs consistently in
the probing experiments.

IV. EXPERIMENTAL SETUP

This paper adopts three downstream tasks: code search, code
summarization, and low-resource code summarization. We
also apply three probing tasks to examine models: code length
prediction, cyclomatic complexity and invalid type detection.
We next describe the details of pre-trained models, tasks, and
datasets.

A. Pre-trained Models

We choose the state-of-the-art model UniXcoder for code
search and the state-of-the-art model CodeT5 for code sum-
marization task. UniXcoder can support both source code
comprehension and generation tasks. It controls the model
behavior through self-attention masks, applying an encoder-
only architecture for code search and an encoder-decoder
architecture for code summarization. For CodeT5, it has two
versions of CodeT5-small (60M) and CodeT5-base (220M).
We use the well-performing CodeT5-base for code summa-
rization.

We also compare the results with those on Code-
BERT, GraphCodeBERT and PLBART [15] models. Code-
BERT and GraphCodeBERT apply the same architecture as
RoBERTa [16] with 125M parameters. CodeBERT is pre-
trained with bimodal data of source code and natural language.
GraphCodeBERT incorporates data flow information into the
pre-training process on top of CodeBERT. These two models
are encoder-only models for source code understanding. We
follow the previous work and add six transformer layers
to them as the decoder for source code generation task.
PLBART adopts the encoder-decoder architecture and applies
denoising objectives to pre-train the model with source code
and natural language. It has 140M parameters for both source
code understanding and generation tasks.

B. Tasks

a) Code Summarization: Code summarization aims to
generate a text summary describing the code. The input to the
model is a code snippet, and the output is a natural language
description of the code functionality.

b) Code Search: Given a natural language query as the
input, code search task is to find the most semantically related
code from a collection of candidate programs. Since CodeT5
does not provide any results on code search, we only utilize
UniXcoder for this task.

c) Code Length Prediction (LEN): The amount of in-
formation in codes may vary across lengths. We expect to
use an intuitive task to predict the code length and to check
whether different models encode such surface information. For
simplicity, this task is converted to a classification task that
predicts which of the five length intervals the code sequence
falls in.

d) Cyclomatic Complexity (CPX): The cyclomatic com-
plexity reflects the structure information of the source code.
In order to perform code tasks such as code summarization, it
is necessary for models to understand the syntactic structure
of input code tokens. This task aims to predict the cyclomatic
complexity corresponding to code tokens and check to what
extent different models encode structure information. Since the
number of linearly independent paths through a code snippet
determines the complexity of the code, it may be a challenge
to predict it based on the token sequence alone.

e) Invalid Type Detection (TYP): Similar to denoising
tasks of BART [15, 17], this task is to distinguish semantically
valid code snippets from invalid ones. Invalid samples are

TABLE I
CODESEARCHNET DATASET

Programming
language Training Dev Test Candidate codes

Ruby 24,927 1,400 1,261 4,360
JavaScript 58,025 3,885 3,291 13,981
Java 164,923 5,183 10,955 40,347
Go 167,288 7,325 8,122 28,120
PHP 241,241 12,982 14,014 52,660
Python 251,820 13,914 14,918 43,827

constructed by randomly tampering with the original data
types in code snippets. The purpose of TYP is to check
whether different models can identify invalid data types by
code context and further verify to what extent these models
understand code semantics.

C. Evaluation Datasets

a) Code Summarization: We choose the dataset from
CodeXGLUE, which incorporates CodeSearchNet [18] and
is carefully de-duplicated. Table I shows the statistics of the
dataset. This dataset contains pairs of code snippets and natural
language descriptions for six programming languages, includ-
ing Python, Java, JavaScript, Ruby, Go, and PHP. From the
table, it can be seen that there is a significant difference in the
data size for different programming languages. In particular,
the datasets of Ruby and JavaScript are much smaller than the
datasets of other programming languages.

b) Code Search: This dataset we use is adapted from
the same CodeSearchNet dataset with additional candidate
codes by Guo et al. [6]. Except for the extra candidate codes
for retrieval, the dataset is the same as we use for code
summarization.

c) Datasets for Probing Tasks: We adopt datasets from
Karmakar and Robbes [14] for probing tasks. In detail, The
length labels is set to 5 class-bins (0-50, 50-100, etc.) for
LEN task. Complexity labels of CPX are obtained with the
metrix++ tool, ranging from 0 to 9. Code snippets are divided
into two classes for TYP task based on whether it contains
invalid types. Datasets for each task contain 10k samples and
are class-balanced.

D. Evaluation Metrics

a) Code Summarization: Following the previous work,
we use smoothed BLEU-4 [19] as the evaluation metric. It is
a precision-based metric and measures the n-gram geometric
precision between the generated text and ground truth text. We
also follow the previous work and average the BLEU across
programming languages to report the overall score.

b) Code Search: We use Mean Reciprocal Rank (MRR)
as the evaluation metric. MRR is the average of the reciprocal
rank of results of a set of queries. The reciprocal rank of a
query is the inverse of the rank of the first hit result.

c) Probing Tasks: All the probing tasks we use are
classification tasks, and we use classification accuracy as the
metric for these tasks.

E. Implementation Details

Our code is all implemented in Pytorch1. We load the
pre-trained models from Huggingface2 while keeping their
hyperparameter settings. Since adapter tuning adjusts fewer
parameters than full-model fine-tuning, we set the learning rate
of UniXcoder to 5e−5, and CodeT5 to 1e−4. We reproduce
the results of these models on downstream tasks and present
them below.

For the adapter setting, we insert the adapter behind the
self-attention layer and feed-forward layer of the encoder and
decoder. The dimension of the adapter is set to 128. All
experiments are conducted on 4 NVIDIA Tesla V100 cards
and each card has 32GB graphic memory.

V. EXPERIMENTAL RESULTS

A. RQ1: How Does Multilingual Fine-tuning Perform on
Different Models and Downstream Tasks?

a) Code Summarization: In this subsection, we compare
the results of multilingual and monolingual fine-tuning on
the code summarization task based on different pre-trained
models. Monolingual fine-tuning is the original way of fine-
tuning one model on the dataset in each language, and
multilingual fine-tuning tunes only one model of the same
size for all programming languages. The pre-trained models
include CodeBERT, GraphCodeBERT, PLBART, UniXcoder,
and CodeT5, where CodeT5 is the state-of-the-art model for
this task.

The results are shown in Table II. We denote multilingual
fine-tuned models with the prefix m, as mCodeBERT is
a multilingual model fine-tuned based on CodeBERT. The
results on CodeBERT and GraphCodeBERT are from Ahmed
and Devanbu [4]. It can be clearly noticed that the results of
multilingual fine-tuning based on CodeBERT and GraphCode-
BERT are significantly better than monolingual fine-tuning,
and multilingual fine-tuning shows its effectiveness in all six
programming languages. Overall, the improvements are also
significant, with a 6.90% improvement on CodeBERT and
5.64% on GraphCodeBERT.

However, on PLBART, UniXcoder, and CodeT5, the results
show a different trend. The overall scores of PLBART, UniX-
coder, and CodeT5 drop instead. The results of PLBART are
from its open source repository3, where the authors conducted
exploratory experiments on multilingual code summarization
and generation tasks. Results on both tasks show that multi-
lingual fine-tuning leads to performance degradation on most
programming languages. On UniXcoder, multilingual tuning
causes performance degradation in half of the programming
languages. On CodeT5, multilingual tuning only improves on
Ruby.

b) Code Search: We also test the effectiveness of multi-
lingual fine-tuning on code search, and the results are shown
in Table III. Since CodeT5 does not report results on code

1https://pytorch.org/
2https://huggingface.co/models
3https://github.com/wasiahmad/PLBART/tree/main/multilingual/

TABLE II
EFFECTIVENESS OF MULTILINGUAL FINE-TUNING FOR CODE SUMMARIZATION

Model Ruby JavaScript Java Go PHP Python Overall
CodeBERT 12.53 13.86 18.72 18.15 25.48 18.25 17.83
mCodeBERT 14.75 15.80 20.11 18.77 26.23 18.71 19.06
GraphCodeBERT 12.62 14.79 19.22 18.40 25.45 18.02 18.08
mGraphCodeBERT 14.95 15.79 19.91 18.92 26.15 18.90 19.10
PLBART 13.94 16.36 18.73 17.99 24.21 19.79 18.50
mPLBART 13.99 14.11 18.14 17.82 23.41 17.48 17.49
UniXcoder 15.07 15.69 20.15 19.22 26.36 19.14 19.27
mUniXcoder 14.97 15.78 19.95 19.13 26.41 19.38 19.27
CodeT5 15.18 16.09 20.23 19.70 25.88 20.26 19.56
mCodeT5 15.23 15.61 19.99 19.66 25.78 20.17 19.41

TABLE III
EFFECTIVENESS OF MULTILINGUAL FINE-TUNING FOR CODE SEARCH

Model Ruby JavaScript Java Go PHP Python Overall
CodeBERT 67.7 61.6 67.6 88.5 62.9 67.6 69.3
mCodeBERT 73.2 64.3 69.7 88.5 63.5 67.8 71.2
GraphCodeBERT 70.8 64.4 69.3 89.4 64.8 69.2 71.3
mGraphCodeBERT 73.8 66.0 71.0 89.4 64.6 69.5 72.4
UniXcoder 73.9 68.9 72.9 91.6 67.5 72.2 74.5
mUniXcoder 76.4 68.4 72.5 91.2 66.8 72.0 74.6

search, we only compare the results based on CodeBERT,
GraphCodeBERT, and UniXcoder. UniXcoder is the state-of-
the-art model for this task.

As can be seen from Table III, multilingual fine-tuning
shows effectiveness on CodeBERT and GraphCodeBERT,
outperforming fine-tuning for each language separately on
all programming languages. On UniXcoder, multilingual fine-
tuning only improves on Ruby and degrades on other program-
ming languages. Multilingual fine-tuning greatly improves the
performance in Ruby, which should be attributed to its data
size. Its dataset has the smallest data size, and from Table I it
can be noticed that datasets of other programming languages
are even two to ten times larger than its dataset.

On both tasks, our experiments reflect similar results. Multi-
lingual fine-tuning is no longer as effective on UniXcoder and
CodeT5 as on CodeBERT and GraphCodeBERT. It only shows
its superiority in low-resource languages, and this is consistent
with the findings of previous studies [1–3] that low-resource
languages can benefit through positive knowledge transfer in
multilingual learning. While in other programming languages,
the results of multilingual fine-tuning are worse than that
of monolingual fine-tuning. The reason may be catastrophic
forgetting due to learning multiple programming languages on
the same model.

Finding 1: Based on CodeBERT and GraphCodeBERT,
multilingual fine-tuning has shown its effectiveness in all
programming languages. On UniXcoder and CodeT5, mul-
tilingual fine-tuning benefits low-resource languages and
simultaneously results in performance degradation in other
programming languages.

Python PHP Go Java JavaScript Ruby
Target rogramming language

Py
th
on

PH
P

Go
Ja
va

Ja
va
Sc
ri

t
Ru

by
So
ur
ce

ro
gr
am

m
in
g
la
ng
ua
ge

0.09 0.49 0.06 0.54 0.39 0.17

0.4 0.21 -0.72 1 0.26 0.26

-0.97 -1.3 0.09 -0.37 -0.5 -0.33

0.24 0.71 0.1 0.03 0.25 0.37

0.28 0.45 0.04 0.92 -0.07 0.48

0.32 1.3 -0.07 1.5 0.22 0.33
−1.0

−0.5

0.0

0.5

1.0

Fig. 2. Relative BLEU-4 improvement of adapter tuning over full-model
tuning on cross-lingual code summarization task.

B. RQ2: How Effective is Adapter Tuning in Cross-lingual
Scenarios?

When fine-tuning the entire model for multiple program-
ming languages causes performance degradation due to catas-
trophic forgetting, we choose adapter tuning to fix most of
the pre-trained parameters and update a small number of
parameters. We first experiment with applying adapter tuning
to cross-lingual scenarios of code summarization and code
search.

a) Code Summarization: Based on CodeT5, we compare
the performance of adapter tuning and full-model fine-tuning

Python PHP Go Java JavaScript Ruby
Target rogramming language

Py
th
on

PH
P

Go
Ja
va

Ja
va
Sc
ri

t
Ru

by
So
ur
ce

ro
gr
am

m
in
g
la
ng
ua
ge

-0.3 0 0.9 0.6 0.2 0.2

0.4 -1 0.2 0 1.1 0.5

0.4 0 0.1 -0.1 0.8 0.7

-0.1 -0.9 0.9 -0.8 0.7 -0.1

1.1 0.2 0.4 0.7 0.1 1.1

0.9 0.1 1.1 0.7 0.7 1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Fig. 3. Relative MRR improvement of adapter tuning over full-model tuning
on cross-lingual code search task.

on code summarization in cross-lingual scenarios. We fine-
tune the model parameters on the dataset in one programming
language and evaluate the model on the dataset in the other.
To get a visual impression of the performance difference,
Fig. 2 shows the relative BLEU-4 improvement of adapter
tuning over full-model fine-tuning. The vertical axis is the
programming language of the training set, and the horizontal
axis is the programming language for evaluation. Fig. 2 shows
that adapter tuning performs better than full-model fine-tuning
on most cross-lingual tasks. The exception is that adapter
tuned in Go language performs worse in most programming
languages than full-model fine-tuning. It can be noted that
adapter tuning in other programming languages does not
benefit significantly in Go language either. For adapter, data
in Go language are not easy to adapt. More data or parameters
may need to be involved.

b) Code Search: On code search task, we also test the
relative performance of adapter tuning versus full-model fine-
tuning based on UniXcoder, as shown in Fig. 3. In most cross-
lingual tasks, adapter tuning outperforms full-model fine-
tuning with fewer parameter updating. The tasks where adapter
tuning performs worse than full-model fine-tuning are mainly
distributed in the diagonal part of the figure. These tasks
are trained and evaluated in the same language and are not
cross-lingual tasks. On these monolingual tasks, full-model
fine-tuning allows more parameters to be adjusted to fit the
task than adapter tuning, without the concern of catastrophic
forgetting.

Finding 2: Adapter tuning is more effective than full-model
fine-tuning in most cross-lingual scenarios on code search
and summarization tasks.

C. RQ3: How Effective is Adapter Tuning Over Multilingual
Full-model Fine-tuning on Different Pre-trained Models?

When adapter tuning demonstrates its effectiveness in cross-
lingual scenarios, we further explore its performance in mul-
tilingual tasks.

a) Code Summarization: Table IV shows the comparison
results on the code summarization task. The model with prefix
m is a multilingual model that requires only one set of
parameters and the other models have to train models for
six programming languages separately. Based on UniXcoder
and CodeT5, adapter tuning shows its effectiveness in all
programming languages compared to multilingual full-model
fine-tuning. Compared to original fine-tuning, madapter also
outperforms various monolingual models in most program-
ming languages with fewer parameter updating.

In order to verify whether the improvement of madapter on
pre-trained models over multilingual full-model fine-tuning is
significant, we apply one-sided pairwise t-test for statistical
analysis. The null hypothesis is rejected for all six languages
on CodeT5 and most languages on UniXcoder. It is evident
that madapter has a statistically significant improvement over
multilingual training on code summarization.

b) Code Search: On code search, as shown in Table V,
adapter tuning also outperforms monolingual and multilingual
full-model fine-tuning in most programming languages. The
improvement is particularly significant for low-resource pro-
gramming languages, such as Ruby and JavaScript. Statistical
analysis results show that the improvement of madapter over
multilingual training is statistically significant (p <0.001) for
all programming languages except Ruby with a 0.004 p-value.

Finding 3: Although fewer parameters are updated, adapter
tuning is more effective in multilingual learning than full-
model fine-tuning. Moreover, it also outperforms the results
of fine-tuning separately for each programming language.

D. RQ4: How Effective is Multilingual Fine-tuning in Low-
resource Scenarios?

Multilingual models are fine-tuned from data of multiple
programming languages. Joint training and consequent pos-
itive transfer benefit the learning of various programming
languages. In reality, many programming languages lack high-
quality labeled data. Therefore, we evaluate whether a well-
performing multilingual model can be learned with extremely
limited data for each programming language.

We sample training examples equally from datasets of
six programming languages, and gather multiple multilingual
datasets of sizes 600, 1200, 3000 and 6000. We fine-tune
mAdapter-CodeT5 on these datasets and compare the results
with adapter tuning on the whole dataset. The results are
shown in Table VI.

The table shows that as the number of training samples
increases, the performance of adapter tuning continues to
improve. There is a significant difference between training
results using 100 samples for each programming language and
the other results. At this point, the model fails to converge due

TABLE IV
CODE SUMMARIZATION COMPARISON

Model Parameters Ruby JavaScript Java Go PHP Python Overall
CodeBERT 6x 173M 12.16 14.90 17.65 18.07 25.16 19.06 17.83
GraphCodeBERT 6x 173M 12.39 14.81 19.00 18.41 25.59 18.06 18.04
PLBART 6x 140M 14.11 15.56 18.45 18.91 23.58 19.30 18.32
UniXcoder 6x 253M 15.07 15.69 20.15 19.22 26.36 19.14 19.27
mAdapter-UniXcoder 10M 15.43 15.87 20.01 19.49 26.46 19.83 19.52
mUniXcoder 263M 14.97 15.78 19.95 19.13 26.41 19.38 19.27

p-value <0.001 <0.001 0.440 <0.001 0.386 <0.001 <0.001
CodeT5 6x 223M 15.18 16.09 20.23 19.70 25.88 20.26 19.56
mAdapter-CodeT5 9M 15.49 16.06 20.42 19.84 26.08 20.52 19.74
mCodeT5 232M 15.23 15.61 19.99 19.66 25.78 20.17 19.41

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

TABLE V
CODE SEARCH COMPARISON

Model Parameters Ruby JavaScript Java Go PHP Python Overall
CodeBERT 6x 125M 67.9 62.0 67.6 88.2 62.8 67.2 69.3
GraphCodeBERT 6x 125M 70.3 64.4 69.1 89.7 64.9 69.2 71.3
PLBART 6x 140M 67.5 61.6 66.3 88.7 61.1 66.3 68.5
UniXcoder 6x 126M 73.9 68.9 72.9 91.6 67.5 72.2 74.5
mAdapter-UniXcoder 5M 77.3 70.2 73.5 90.9 67.1 72.7 75.3
mUniXcoder 131M 76.4 68.4 72.5 91.2 66.8 72.0 74.6

p-value 0.004 <0.001 <0.001 0.986 0.445 <0.001 <0.001

TABLE VI
RESULTS OF MULTILINGUAL TUNING IN LOW-RESOURCE CODE SUMMARIZATION TASK

Training samples Ruby JavaScript Java Go PHP Python Overall
6x 100 12.81 13.41 12.44 14.89 19.35 15.28 14.70
6x 200 15.03 15.24 18.92 16.38 23.65 18.85 18.01
6x 500 15.21 15.64 19.28 18.34 24.76 19.02 18.71

6x 1,000 15.32 15.62 19.36 18.79 24.72 19.26 18.85
908,224 15.49 16.06 20.42 19.84 26.08 20.52 19.74

to a lack of training data. When training with 200 samples
per programming language, there is a difference of fewer
than 2 BLEU-4 from fine-tuning the entire dataset. When the
number of samples is increased to 1000 for each language, the
difference with the baseline is less than 1 BLEU-4. It is evident
that multilingual training is effective for the low-resource code
summarization task.

It can be noticed that the growth of model performance
gradually slows down as the data increase. In the comparison
between the last row and the penultimate row, even more than
900,000 samples bring an improvement of no more than 1
BLEU-4 score. This shows, on the one hand, that the pre-
trained model is robust enough and can be quickly adapted to
the downstream task with very few data. On the other hand, it
demonstrates the potential of multilingual fine-tuning, which
can make full use of multilingual data for rapid convergence
of the model in low-resource scenarios.

Finding 4: Multilingual fine-tuning is so effective in the
low-resource code summarization task that it is possible to
approach the results of fine-tuning with the entire dataset
using very few samples per programming language.

E. RQ5: Why is Adapter Tuning Better than Full-model Fine-
tuning in the Above Scenarios?

Adapter tuning demonstrates its effectiveness in cross-
lingual, multilingual and low-resource scenarios by updating
only few parameters. To inspect models at a fine-grained level
and check whether the adapter behaves consistently, we apply
probing experiments to examine whether models encode a set
of code characteristics. We adopt LEN, CPX and TYP tasks
to probe for code surface, structural and semantic information,
respectively.

Specifically, we insert the adapter to BERT [20], Code-
BERT, GraphCodeBERT and UniXcoder, and fine-tune them
on code search along with the original models. Then we extract
feature vectors from the hidden layers of these models and
train a simple linear classifier to associate these feature vectors
with different code characteristics. Since the linear classifier
has no hidden units, its performance on probing tasks heavily
depends on the feature vectors from these models.

We extract feature vectors from the final hidden layers of
these models for probing, and the results are presented in
Table VII. Overall, these models perform best on invalid type
prediction. Adapter-UniXcoder achieves 92.65% accuracy on
this task, indicating that the model does encode such semantic

20

25

30

35

40

45

50

55

60

65

70

75

80

0 1 2 3 4 5 6 7 8 9 10

Ac
cu
ra
cy

Layer

LEN

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10

Ac
cu
ra
cy

Layer

CPX

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10

Ac
cu
ra
cy

Layer

TYP

BERT

Adapter-BERT

CodeBERT

Adapter-CodeBERT

GraphCodeBERT

Adapter-GraphCodeBERT

Fig. 4. Accuracy of different models on LEN, CPX and TYP tasks. The horizontal axis indicates the index of the hidden layer used for probing.

TABLE VII
PROBING TASK ACCURACY

Model LEN CPX TYP
surface structural semantic

BERT 23.85 15.55 54.10
Adapter-BERT 65.20 37.00 79.70
CodeBERT 24.15 17.70 53.60
Adapter-CodeBERT 57.95 35.65 87.50
GraphCodeBERT 35.25 24.30 61.85
Adapter-GraphCodeBERT 44.95 40.35 82.30
UniXcoder 47.25 31.30 86.70
Adapter-UniXcoder 52.55 36.25 92.65

information. Adapter-BERT performs the best on code length
prediction with 65.20% accuracy. This task essentially predicts
the number of tokens in the input sequence, and the additional
pre-training task of other models may hurt this task. The
finding is also consistent with the conclusion found by Kar-
makar and Robbes [14] in their probing experiments. On the
cyclomatic complexity task, Adapter-GraphCodeBERT is the
best-performing model. Since GraphCodeBERT is specifically
pre-trained on the structural information, this result is not
unexpected. However, its advantage over other models is not
obvious, perhaps because the task itself is more challenging.

Further comparing models fine-tuned with the adapter to
the original models in Table VII, there is a pretty significant
difference in their performance, especially on BERT, Code-
BERT and GraphCodeBERT. On all probing tasks, models
with adapter tuning show a clear superiority over the original
models.

To more clearly compare adapter tuning with their original
models, we also extract hidden representations of all previous
layers as feature vectors and evaluate their performance on
probing tasks. Fig. 4 shows how the performance on three
probing tasks varies with the hidden layer index on BERT,
CodeBERT and GraphCodeBERT.4

The dashed lines in the figure represent the performance
of models with adapter tuning in probing tasks. The solid

4The detailed results on all models are shown in the following anonymous
repository.

lines of the same colour represent the performance of the
corresponding original models. Overall, although each probing
task corresponds to different code characteristics for exam-
ination, there is a great deal of similarity in the accuracy
variation across models on these tasks. In the first six hidden
layers, there is little difference between the performance of
adapter tuning and full-model fine-tuning. In the subsequent
hidden layers, the performance gap between adapter tuning
and original fine-tuning becomes increasingly prominent.

It should be noted that these tasks are fine-tuned for
code search. However, code characteristics needed for these
probing tasks are not always helpful for the downstream task.
Therefore, the accuracy of different models on probing tasks
decreases on the last hidden layers. Since adapter tuning
performs significantly better than full-model fine-tuning in the
last hidden layers, models with adapter tuning encode more
information than origin models. In contrast, full-model fine-
tuning suffers from catastrophic forgetting and discard this
information. These code characteristics are low-level infor-
mation and generalized across languages than that required
for downstream tasks. Therefore, adapter tuning can perform
better on cross-lingual and multilingual tasks with the help of
this information. We conjecture that this is why adapter tuning
can mitigate catastrophic forgetting issues.

From overall changes of the accuracy, it can be noticed
that the accuracy on LEN decreases with the depth of hidden
layers. In contrast, the accuracy of CPX increases first and
then decreases gradually. Except for natural language pre-
trained model BERT, the best performance of CodeBERT
and GraphCodeBERT is also achieved in the middle hidden
layer on TYP. Since LEN corresponds to probing surface
information and CPX and TYP correspond to structural and
semantic information of the code, it is clear that these models
learn surface information in the lower layers and structural
and semantic features in the deeper layers. This conclusion is
consistent with previous studies.

From the perspective of each task, Adapter-BERT con-
sistently maintains high accuracy on LEN, while all other
models discard some of the surface information. This probing

TABLE VIII
COMPARISON OF DIFFERENT ADAPTER DESIGNS ON CODE SUMMARIZATION AND CODE SEARCH

Task Model Ruby JavaScript Java Go PHP Python Overall

Code Summarization mAdapter-CodeT5 15.49 16.06 20.42 19.84 26.08 20.52 19.74
mAdapter-MoE-CodeT5 15.62 16.04 20.03 19.79 25.75 20.36 19.60

Code Search mAdapter-UniXcoder 77.3 70.2 73.5 90.9 67.1 72.7 75.3
mAdapter-MoE-UniXcoder 76.6 69.1 72.8 90.7 66.3 72.1 74.6

TABLE IX
IMPACT OF DIFFERENT MINI-BATCHES ON CODE SUMMARIZATION AND CODE SEARCH

Task Method Ruby JavaScript Java Go PHP Python Overall

Code Summarization mAdapter-CodeT5 - Multilingual 15.49 16.06 20.42 19.84 26.08 20.52 19.74
- Monolingual 15.66 16.03 20.14 19.76 25.63 20.29 19.59

Code Search mAdapter-UniXcoder
- Multilingual 76.7 69.3 73.1 90.7 66.5 72.2 74.8
- Monolingual 77.3 70.2 73.5 90.9 67.1 72.7 75.3
- w/o tags 76.6 69.9 73.1 90.7 66.9 72.6 75.0

task shows the difference between source code and natural
language pre-trained models in handling code downstream
tasks. On the CPX task, GraphCodeBERT maintains high
accuracy in the shallow hidden layers, which confirms that
GraphCodeBERT adequately encodes that structural informa-
tion. However, the performance of CPX drops significantly
in the last hidden layers. The downstream task may not
require the involvement of cyclomatic complexity information.
On TYP task, different models with adapter tuning end up
with high accuracy, and that semantic information may be
effectively involved in the downstream task. The variation in
accuracy is consistently best on GraphCodeBERT, followed
by CodeBERT and then BERT. This also coincides with the
performance of pre-trained models in the downstream task.

Finding 5: Adapter tuning significantly outperforms full-
model fine-tuning on all probing tasks. In addition, we ob-
serve that the hidden layers of these models gradually encode
higher-level information from shallow to deep, consistent
with previous studies.

VI. ANALYSIS

In this section, we consider several factors that significantly
impact the results, including the adapter design, data batch,
and the adapter dimension.

A. One or Multiple Adapters?

This study employs a multilingual model to handle tasks
in multiple programming languages. Therefore, mutual in-
terference within the model is inevitable when dealing with
tasks in different programming languages. To alleviate this
issue, we take inspiration from the Sparsely-Gated Mixture-of-
Expert (MoE) layer [21] and split the original 128-dimensional
adapter into four 32-dimensional adapters. Without signifi-
cantly increasing the parameters, we expect the model to learn
multiple adapters as experts dealing with data in different
programming languages separately. We use a gating network to

implement the selection of adapters and select the two best-
performing adapters to participate in the computation when
processing different samples.

Based on two pre-trained models, UniXcoder and CodeT5,
we compare the performance of this implementation with that
of the original adapter on code search and code summarization.
The experimental results are shown in Table VIII. The method
performs worse than the original adapter on both tasks. We
conjecture that there is not enough information to guide the
model to select different adapters as experts, and more data
may be needed to support this.

B. Monolingual Mini-batches vs Multilingual Mini-batches

When learning multilingual data, an interesting question is
whether it is better for the model to learn samples of the same
language each time or to learn random samples. Specifically,
when optimizing a model using stochastic gradient descent,
gradients are computed over mini-batches. The samples of a
mini-batch are all the data that the model is exposed to in
one training step. A better mini-batch choice would facilitate
model convergence, which in turn improves performance on
the downstream task.

We test two mini-batch settings. One uses multilingual mini-
batch, which randomly sorts multilingual datasets and then
divides mini-batches. The other applies monolingual mini-
batches by dividing mini-batches on each monolingual dataset
and then randomly ordering these mini-batches. We evaluate
these settings on both tasks and models. The experimental
results are shown in Table IX.

On code summarization, CodeT5 trained with multilingual
mini-batches outperforms the same model with monolingual
mini-batches. On code search, the experimental finding of
UniXcoder is the opposite. However, Ahmed and Devanbu [4]
find that the performance of multilingual mini-batch setting is
always better in multilingual full-model fine-tuning. We argue
that the phenomenon is task-related. The code search task may
require more programming language category information to
match code and queries. In contrast, the goal of multilingual
code summarization task is about generating natural language

TABLE X
IMPACT OF ADAPTER BOTTLENECK DIMENSION SIZE ON CODE SUMMARIZATION AND CODE SEARCH

Task Method Dimension Ruby JavaScript Java Go PHP Python Overall

Code Summarization mAdapter-CodeT5
24 15.82 15.95 18.76 15.32 24.34 20.35 18.42
64 15.69 16.03 20.42 19.73 25.54 20.02 19.57

128 15.49 16.06 20.42 19.84 26.08 20.52 19.74

Code Search mAdapter-UniXcoder
24 73.9 66.5 70.7 87.9 64.7 70.1 72.3
64 76.8 69.6 73.0 90.7 66.5 72.3 74.8

128 77.3 70.2 73.5 90.9 67.1 72.7 75.3

descriptions. We further introduce language-specific tags as
prompts into code search task to supplement the programming
language category information. Experimentally, we find that
adding language-specific tags does improve the performance.

C. The Dimension of Adapters

An essential parameter of the adapter is its bottleneck
dim, which determines the capacity of the adapter. In this
paper, we vary the adapter bottleneck dim from 24 to 128
and conduct experiments on all tasks and models. Table X
shows that increasing the bottleneck dimension of adapters
can significantly improve the performance of most tasks on
UniXcoder and CodeT5. The model performs better in Ruby
for code summarization on smaller adapter dimensions. We
speculate that this low-resource language mainly benefits from
the data in other programming languages and also gives way
to learning other programming languages due to insufficient
data. A more balanced learning approach for multilingual data
may be required. In this study, we set the adapter size to
128. A larger adapter capacity may bring more performance
improvement, but we leave it for future work because of
limited computing resources.

VII. RELATED WORK

A. Pre-training for Programming Language

With the great success of pre-trained models in the field
of natural language processing, a range of pre-trained models
in programming languages have arisen to facilitate source
code understanding and generation tasks, such as code search,
code generation, and bug detection [22–27]. CuBERT [28]
and CodeBERT are first proposed to learn representations of
programming languages using large-scale unlabeled data in
a self-supervised way. CuBERT utilizes the mask language
modeling pre-training objective in BERT, and CodeBERT
is pre-trained in both natural and programming languages.
GraphCodeBERT introduces data flow information on top of
CodeBERT to facilitate the understanding of code structure.
Apart from the aforementioned encoder-only models, decoder-
only models are also proposed for programming languages.
GPT-C [29] and CodeGPT [7] both utilize unidirectional
language modeling that uses all previous tokens to predict the
next token for pre-training.

Some recent works explore encoder-decoder models to
support both understanding and generation tasks, including
PLBART, CodeT5 and UniXcoder. PLBART is based on
BART and pre-trained with denoising objectives. CodeT5

adapts T5 [30] to solve code-related tasks and allows for
multi-task learning for various downstream tasks. UniXcoder
is based on UniLM [31] and pre-trained on multi-modal data,
including code, comment, and AST. In this paper, we conduct
experiments on the recent models UniXcoder and CodeT5.

B. Adapter Tuning

Adapter modules are initially investigated in computer vi-
sion tasks and have been used to adapt models for multiple
domains [32]. In NLP, adapters are used for parameter efficient
fine-tuning of the base pre-trained Transformer model to
adapt to new tasks [11, 33]. Santoro et al. apply adapter
modules to avoid catastrophic forgetting [34]. Bapna and Firat
use adapters to fine-tune a multilingual translation model in
various languages [35]. MAD-X pre-trains task-specific and
language-specific adapters and then combines their represen-
tations to exploit cross-task and linguistic knowledge [36].
There are also research works showing that adapter-based fine-
tuning can perform better than normal fine-tuning on few-
shot and cross-lingual scenarios [37] and is more robust under
adversarial attacks [38]. In this paper, we try to adapt adapters
for source code understanding and generation tasks in multiple
programming languages.

VIII. THREATS TO VALIDITY

External Validity. In this study, we experiment on a limited
number of tasks, datasets, and pre-trained models. These may
all bring bias to the results. We select representative and
state-of-the-art models and the most widely-used datasets to
mitigate this issue. In the open source repository, we com-
plement the experiments of adapter tuning with CodeBERT
and GraphCodeBERT on code summarization and code search.
The results are still promising and consistent with UniXcoder
and CodeT5. We also maintain the same random seeds across
models to ensure the consistency of the experiments. In
the future, we would extend adapter tuning to more code
intelligence tasks and datasets. Also, probing experiments are
targeted at several local aspects of the code information, and
the final conclusion is drawn by induction rather than strict
proof.

Internal Validity. We illustrate the effectiveness of adapter
tuning in various scenarios. However, the adapter applied in
our paper is the standard structure. In fact, we try to modify
the structure of the adapter or to extend the capacity of adapter
using mixture-of-experts, but none of these attempts achieve
the desired result. Adapter can achieve better results with few

parameter tuning, which should have more exciting findings
to explore.

IX. CONCLUSION

We start this study with performance degradation of multi-
lingual fine-tuning and explore the performance of adapter tun-
ing in cross-lingual, multilingual and low-resource scenarios.
We experimentally demonstrate the effectiveness of adapter
tuning in these scenarios. It outperforms full-model fine-tuning
with fewer parameter updating in all scenarios. We find that
multilingual fine-tuning with 200 random samples per pro-
gramming language can approach the performance of training
on the entire dataset. When multilingual full-model fine-tuning
suffers from catastrophic forgetting, we demonstrate through
probing experiments that adapter tuning can overcome this
issue significantly.

As pre-trained models become increasingly huge, the
adapter as a small neural module provides a way to simplify
and accelerate transfer learning. In the future, we would like to
explore the integration of code knowledge into the adapter and
the performance of the adapter in more code intelligence tasks.
Our source code and models are publicly available at: https:
//github.com/wangdeze18/Multilingual-Adapter-for-SE.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. This work was substantially
supported by National Natural Science Foundation of China
(No. 62032019, 61872373, and 62272473). This work was
also supported by National Key R&D Program of China
2022YFC3400404.

REFERENCES

[1] T.-L. Ha, J. Niehues, and A. H. Waibel, “Toward multi-
lingual neural machine translation with universal encoder
and decoder,” ArXiv, vol. abs/1611.04798, 2016.

[2] O. Firat, B. Sankaran, Y. Al-Onaizan, F. T. Yarman-Vural,
and K. Cho, “Zero-resource translation with multi-lingual
neural machine translation,” ArXiv, vol. abs/1606.04164,
2016.

[3] R. Dabre, C. Chu, and A. Kunchukuttan, “A comprehen-
sive survey of multilingual neural machine translation,”
ArXiv, vol. abs/2001.01115, 2020.

[4] T. Ahmed and P. Devanbu, “Multilingual training for
software engineering,” 2022 IEEE/ACM 44th Interna-
tional Conference on Software Engineering (ICSE), pp.
1443–1455, 2022.

[5] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “Code-
bert: A pre-trained model for programming and natural
languages,” ArXiv, vol. abs/2002.08155, 2020.

[6] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert:
Pre-training code representations with data flow,” ArXiv,
vol. abs/2009.08366, 2021.

[7] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang,
G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong,
M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu,
and S. Liu, “Codexglue: A machine learning benchmark
dataset for code understanding and generation,” ArXiv,
vol. abs/2102.04664, 2021.

[8] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin,
“Unixcoder: Unified cross-modal pre-training for code
representation,” in ACL, 2022.

[9] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi,
“Codet5: Identifier-aware unified pre-trained encoder-
decoder models for code understanding and generation,”
ArXiv, vol. abs/2109.00859, 2021.

[10] R. M. French, “Catastrophic forgetting in connectionist
networks,” Trends in Cognitive Sciences, vol. 3, pp. 128–
135, 1999.

[11] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone,
Q. de Laroussilhe, A. Gesmundo, M. Attariyan, and
S. Gelly, “Parameter-efficient transfer learning for nlp,”
in ICML, 2019.

[12] J. Hewitt and C. D. Manning, “A structural probe for
finding syntax in word representations,” in NAACL, 2019.

[13] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” ArXiv, vol. abs/1706.03762,
2017.

[14] A. Karmakar and R. Robbes, “What do pre-trained code
models know about code?” 2021 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE), pp. 1332–1336, 2021.

[15] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang,
“Unified pre-training for program understanding and
generation,” ArXiv, vol. abs/2103.06333, 2021.

[16] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“Roberta: A robustly optimized bert pretraining ap-
proach,” ArXiv, vol. abs/1907.11692, 2019.

[17] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart:
Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension,” in
ACL, 2020.

[18] H. Husain, H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt, “Codesearchnet challenge: Evaluat-
ing the state of semantic code search,” ArXiv, vol.
abs/1909.09436, 2019.

[19] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a
method for automatic evaluation of machine translation,”
in ACL, 2002.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” ArXiv, vol. abs/1810.04805,
2019.

[21] N. M. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis,
Q. V. Le, G. E. Hinton, and J. Dean, “Outrageously large

https://github.com/wangdeze18/Multilingual-Adapter-for-SE
https://github.com/wangdeze18/Multilingual-Adapter-for-SE

neural networks: The sparsely-gated mixture-of-experts
layer,” ArXiv, vol. abs/1701.06538, 2017.

[22] D. Wang, Z. Jia, S. Li, Y. Yu, Y. Xiong, W. Dong, and
X. Liao, “Bridging pre-trained models and downstream
tasks for source code understanding,” 2022 IEEE/ACM
44th International Conference on Software Engineering
(ICSE), pp. 287–298, 2022.

[23] H. Liu, Y. Yu, S. Li, Y. Guo, D. Wang, and X. Mao,
“Bugsum: Deep context understanding for bug report
summarization,” Proceedings of the 28th International
Conference on Program Comprehension, 2020.

[24] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu,
and P. S. Yu, “Improving automatic source code sum-
marization via deep reinforcement learning,” 2018 33rd
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 397–407, 2018.

[25] W. Wang, G. Li, S. Shen, X. Xia, and Z. Jin, “Modular
tree network for source code representation learning,”
ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 29, pp. 1 – 23, 2020.

[26] X. Gu, H. Zhang, and S. Kim, “Deep code search,” 2018
IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pp. 933–944, 2018.

[27] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen, “Bug localization with combination of deep
learning and information retrieval,” 2017 IEEE/ACM 25th
International Conference on Program Comprehension
(ICPC), pp. 218–229, 2017.

[28] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi,
“Pre-trained contextual embedding of source code,”
ArXiv, vol. abs/2001.00059, 2020.

[29] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundare-
san, “Intellicode compose: code generation using trans-
former,” Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, 2020.

[30] C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring
the limits of transfer learning with a unified text-to-text
transformer,” ArXiv, vol. abs/1910.10683, 2020.

[31] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang,
J. Gao, M. Zhou, and H.-W. Hon, “Unified language
model pre-training for natural language understanding
and generation,” ArXiv, vol. abs/1905.03197, 2019.

[32] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Learning mul-
tiple visual domains with residual adapters,” in NIPS,
2017.

[33] A. C. Stickland and I. Murray, “Bert and pals: Projected
attention layers for efficient adaptation in multi-task
learning,” in ICML, 2019.

[34] A. Santoro, S. Bartunov, M. M. Botvinick, D. Wierstra,
and T. P. Lillicrap, “One-shot learning with memory-
augmented neural networks,” ArXiv, vol. abs/1605.06065,
2016.

[35] E. A. Platanios, M. Sachan, G. Neubig, and T. M.
Mitchell, “Contextual parameter generation for universal

neural machine translation,” ArXiv, vol. abs/1808.08493,
2018.

[36] J. Pfeiffer, I. Vulic, I. Gurevych, and S. Ruder, “Mad-x:
An adapter-based framework for multi-task cross-lingual
transfer,” in EMNLP, 2020.

[37] R. He, L. Liu, H. Ye, Q. Tan, B. Ding, L. Cheng, J.-W.
Low, L. Bing, and L. Si, “On the effectiveness of adapter-
based tuning for pretrained language model adaptation,”
ArXiv, vol. abs/2106.03164, 2021.

[38] W. Han, B. Pang, and Y. N. Wu, “Robust transfer learn-
ing with pretrained language models through adapters,”
ArXiv, vol. abs/2108.02340, 2021.

	I Introduction
	II Preliminaries
	II-A Fine-tuning
	II-B Adapters

	III Research Method
	III-A RQ1: How Does Multilingual Fine-tuning Perform on Different Models and Downstream Tasks?
	III-B RQ2: How Effective is Adapter Tuning in Cross-lingual Scenarios?
	III-C RQ3: How Effective is Adapter Tuning Over Multilingual Full-model Fine-tuning on Different Pre-trained Models?
	III-D RQ4: How Effective is Multilingual Fine-tuning in Low-resource Scenarios?
	III-E RQ5: Why is Adapter Tuning Better than Full-model Fine-tuning in the Above Scenarios?

	IV Experimental Setup
	IV-A Pre-trained Models
	IV-B Tasks
	IV-C Evaluation Datasets
	IV-D Evaluation Metrics
	IV-E Implementation Details

	V Experimental Results
	V-A RQ1: How Does Multilingual Fine-tuning Perform on Different Models and Downstream Tasks?
	V-B RQ2: How Effective is Adapter Tuning in Cross-lingual Scenarios?
	V-C RQ3: How Effective is Adapter Tuning Over Multilingual Full-model Fine-tuning on Different Pre-trained Models?
	V-D RQ4: How Effective is Multilingual Fine-tuning in Low-resource Scenarios?
	V-E RQ5: Why is Adapter Tuning Better than Full-model Fine-tuning in the Above Scenarios?

	VI Analysis
	VI-A One or Multiple Adapters?
	VI-B Monolingual Mini-batches vs Multilingual Mini-batches
	VI-C The Dimension of Adapters

	VII Related Work
	VII-A Pre-training for Programming Language
	VII-B Adapter Tuning

	VIII Threats to Validity
	IX Conclusion

