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Abstract—Representing code changes as numeric feature vec-
tors, i.e., code change representations, is usually an essential
step to automate many software engineering tasks related to
code changes, e.g., commit message generation and just-in-
time defect prediction. Intuitively, the quality of code change
representations is crucial for the effectiveness of automated
approaches. Prior work on code changes usually designs and
evaluates code change representation approaches for a specific
task, and little work has investigated code change encoders that
can be used and jointly trained on various tasks. To fill this
gap, this work proposes a novel Code Change Representation
learning approach named CCRep, which can learn to encode
code changes as feature vectors for diverse downstream tasks.
Specifically, CCRep regards a code change as the combination
of its before-change and after-change code, leverages a pre-
trained code model to obtain high-quality contextual embeddings
of code, and uses a novel mechanism named query back to
extract and encode the changed code fragments and make them
explicitly interact with the whole code change. To evaluate CCRep
and demonstrate its applicability to diverse code-change-related
tasks, we apply it to three tasks: commit message generation,
patch correctness assessment, and just-in-time defect prediction.
Experimental results show that CCRep outperforms the state-of-
the-art techniques on each task.

Index Terms—code change, representation learning, commit
message generation, patch correctness assessment, just-in-time
defect prediction

I. INTRODUCTION

During software development, developers constantly per-
form code changes to implement new features, fix bugs, and
maintain existing code (e.g., refactoring) [1]]. A code repository
can be regarded as a sequence of ordered code changes. A
code change can be represented as the combination of the
code versions before and after the change or as a flat text,
such as diff.

Analyzing and understanding code changes are important
for a bulk of software engineering tasks. For example, commit
message generation [2] requires to summarize the content and
intent of code changes, and vulnerability fix identification [3]]
needs to analyze vulnerability-related information in a code
change. To automate these tasks, a popular and effective
paradigm is first encoding code changes into feature vectors,
which are expected to capture the information related to the
target task, and then leveraging machine learning or informa-
tion retrieval (IR) techniques for automation [2f], [4]—[7]. Such

*Corresponding author.

Xin Xia* Xiaohu Yang
Huawei Zhejiang University
China Hangzhou, China

xin.xia@acm.org yangxh@zju.edu.cn

feature vectors are referred to as code change representations.
Intuitively, the more precise the code change representations
are, the less challenging the downstream learning or retrieval
process will be. In contrast, if the representations miss some
key information, it would be very hard, if not impossible, to
obtain good results. Therefore, for code-change-related tasks,
the quality of code change representations is critical to the
effectiveness of automated approaches [8].

Many researchers have investigated code change repre-
sentation techniques for specific downstream tasks. Some
studies converted code changes into numerical vectors based
on manually crafted features, such as the sizes of code
changes and the syntactic structures being changed [4], [5]],
[O], [10]. Another line of work leverages neural networks
to learn code change representations on downstream tasks
in an end-to-end manner [2f, [3[I, [11], [12], i.e., learning-
based techniques. Compared to the techniques based on manu-
ally crafted features, learning-based approaches automatically
learn representations from data and have shown to be more
effective in many tasks [3[], [[13]-[15]. However, many of
them adopt task-specific architectures and are trained from
scratch, which makes it non-trivial to adapt them to other
tasks, especially the tasks with only small datasets. In addition,
existing learning-based techniques either only focus on the
changed code [3], [8]l, [16], separately encode the changed
code and its context [14], [17], or encode the code change
as a whole [2], [13], [18]. Some of them ignore the context
or do not highlight the changed code. All of them lack
explicit interaction between the changed code and the whole
code change. These hinder existing techniques from effectively
capturing information from code changes.

Only a few studies focus on general approaches for learn-
ing code change representations that can be used in diverse
tasks [8f], [16]]. Yin et al. [16] proposed to learn distributed
representations of small code edits by training an auto-encoder
to reconstruct edits. Unfortunately, their approach only focuses
on small code edits (i.e., a single hunk with no more than 3
changed lines) while many software engineering tasks require
encoding code changes with multi hunks [2], [3[]. Hoang et
al. [8] proposed an approach named CC2Vec to learn code
change representations that can be used to boost multiple code-
change-related tasks. However, CC2Vec only considers the
added and removed code lines and ignores their context. Also,



it requires commit messages, i.e., natural language descriptions
of code changes, to supervise the representation learning
process. However, commit messages are not always available
for code-change-related tasks [6]], [14], and it is challenging to
collect and identify high-quality commit messages [2[, [19],
[20].

Considering the lack of general code change repre-
sentation approaches and to boost existing solutions to code-
change-related tasks, this paper proposes a Code Change
Representation learning approach named CCRep, which acts
as a general code change encoder and can be used in various
downstream tasks. Compared to Yin et al.’s work [16], CCRep
targets commit-level code changes, which are employed by
plenty of common code-change-related tasks. Different from
CC2Vec [8]], our approach is jointly trained with task-specific
components like classifiers on the target task, not requiring
additional labels for supervision. Considering the limitations of
existing task-specific learning-based techniques, first, CCRep
adopts a pre-trained code model to learn the representations
of the code before and after a change. The pre-trained code
model can build strong code representations [21]], forming a
good basis for learning code change representations on di-
verse downstream tasks. Moreover, a novel mechanism named
query back is proposed and used in CCRep to highlight
the changed code and learn to adaptively select important
information from the code change by explicitly interacting the
changed code fragments with the whole code change.

Specifically, given a code change, CCRep first splits it into
the before-change code and the after-change code, compares
the two code versions, and records the alignment information
between them. Next, a pre-trained code model is adopted to
compute the contextual embeddings of the two code versions,
respectively. Then, the query-back mechanism is leveraged
to capture the information related to the changed code from
the contextual embeddings. In detail, it locates the changed
code fragments via the alignment information and extracts
a feature vector from them to capture change details. This
change-aware feature vector is used as a query to “retrieve”
related context information from the before-change and after-
change code through attention [22], namely query back, and
produce the final code change representation.

To show the effectiveness and the generalization of CCRep,
we evaluate CCRep on three code-change-related tasks: 1)
commit message generation (CMG), 2) automated patch cor-
rectness assessment (APCA), 3) just-in-time defect prediction
(JIT-DP). Experimental results show that: on CMG, CCRep
improves the state-of-the-art approaches by 11.8% and 12.8%
in terms of BLEU on two datasets. For APCA, CCRep
improves the best baseline by 5.0% and 10.2% in terms of F1
and AUC, respectively. On JIT-DP, CCRep also outperforms
the best-performing baseline by 2.1%-10.7% in terms of AUC
on five projects. We also conduct ablation studies, which
show that both the pre-trained code model and the query-back
mechanism are helpful for each task.

The contributions of this work can be summarized as
follows:

o We propose the novel query-back mechanism for encod-
ing code changes, which can highlight the changed code
and learn to adaptively select important information from
a code change.

o We propose a novel code change representation approach
named CCRep, which consists of a pre-trained code
model and the query-back mechanism. CCRep is plug-
and-play and can be used in diverse code-change-related
tasks.

o« We comprehensively evaluate CCRep on three down-
stream tasks. Experimental results show that CCRep
outperforms the state-of-the-art baselines on each task.

o We provide empirical evidence of the generalizability of
pre-trained code models on diverse code-changed-related
tasks.

o We release our replication packag including our source
code and used datasets, for follow-up works.

The remainder of this paper is organized as follows: Section
2 introduces the problem, pre-trained code models and the
motivation of the query-back mechanism. Section 3 elaborates
on our approach. Section 4 presents the procedures and results
of our evaluation on three tasks. We discuss the variants and
the limitations of our approach and the threats to validity in
Section 5. After briefly reviewing the related work in Section
6, we conclude and point out future work in Section 7.

II. PROBLEM AND PRELIMINARY

This section describes the problem we aim to solve, briefly
introduces pre-trained code models and presents the motivation
of the query-back mechanism.

A. Problem

This work focuses on proposing a learning-based code
change representation approach, or in other words a code
change encoder, that can be used in various code-change-
related tasks. A code change T consists of the code versions
before and after the change, i.e., T? and T*. Both T? and T
consist of a sequence of tokens, i.e., T° = [t8,15, ..., thbl] and
T* = [t1,15, ..., t{pa)], where |z] refers to the length of z. A
code change encoder can be viewed as a function f which
converts 7' into a numeric vector v, i.e., v = f(T). Because
different tasks may value different properties of code changes,
in this work, we expect the proposed approach to be jointly
trained with task-specific components on the target task.

B. Pre-Trained Code Model

Model pre-training is widely used in the natural lan-
guage processing (NLP) community and the produced pre-
trained models have shown to be effective in various NLP
tasks [23]-[25]]. The rationales behind the impressive effective-
ness of pre-trained models include: 1) pre-trained models learn
high-quality language representations from huge corpora, 2)
pre-trained models provide good parameter initializations for
downstream tasks [26]], and 3) pre-trained models are usually
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TABLE I
MOTIVATING EXAMPLE OF QUERY-BACK MECHANISM

} else {

2

3

4 if (extras != null) {

5 id = WordPress.currentBlog.getId();

6 try {

T+ id = WordPress.currentBlog.getId();
8 blog = new Blog(id, this);

9 } catch (Exception e) {

0 Toast .makeText (this,

Commit Message: Moved post id creation to try catch block to
help EditPost activity recover if there’s no valid currentBlog

large and can avoid overfitting on the small datasets of down-
stream tasks. [26]. Recently, researchers also applied model
pre-training to code and released a number of pre-trained code
models, such as CodeBERT [21], GPT-C [27]], PLBART [28§]]
and CodeT5 [29]. These models use Transformer-based ar-
chitectures, can be used to encode and/or generate code
or code-related texts, and have been shown to significantly
boost code understanding and generation tasks [21], [29]]. The
impressive performance and generality of these models inspire
us to investigate their feasibility in code change representation
learning.

C. Motivation of Query-Back Mechanism

A code change contains both the changed code and its
context. Table [I] presents a code change with its commit
message collected from the WordPress-Android project [30].
We can see from this example that: 1) The changed code is
the core of a code change. For this example, by inspecting line
5 and line 7, we can know that the developer “moved post id
creation”. 2) The context may provide important information
for understanding the code change. For instance, based on the
context in Table [, we can know that the code change is related
to “try catch block” and “EditPost”. 3) Not all the context
is useful. For this example, line 2-4, line 8 and line 10 are
unrelated to the content and intent of this code change. As
discussed in Section [} existing code change representation
approaches either ignore the context [3]], [8], [16]], do not
highlight the changed code [2], [13], [18]], or consider all
the context without adaptive information selection [[14f], [[17].
These hinder their effectiveness and generality, and motivate
us to propose the query-back mechanism to explicitly highlight
the changed code and learn to adaptively capture information
from the code change.

III. APPROACH

The framework of CCRep is presented in Figure I} CCRep
takes a code change as input and generates its vector repre-
sentation. It consists of three parts:

Code Change Preprocessing. Given a code change T, this
part prepares the token sequences of the before-change and
after-change code, i.e., T, and T, identifies and aligns the

modified code fragments in them, and stores their alignment
information.

Contextual Code Embedding. This part leverages a pre-
trained code model to obtain the contextual embedding of each
token in 7} and T}, respectively.

Query-Back Mechanism. This part takes as input the contex-
tual embeddings of T} and T, and the alignment information
of the changed code fragments, leveraging the query-back
mechanism to produce the vector representation of 7.

A. Code Change Preprocessing

Given a code change 7', we first use a text diff tool, such
as Python difflib [31]], to convert it as a code diff. A code
diff contains one or more hunks and each hunk includes the
lines that are deleted from the before-change code (the deleted
lines), the lines that are added in the after-change code (the
added lines), and the unchanged lines before and after them
(the context). We can extract the changed code fragments
at different granularity levels, e.g., changed code tokens or
changed code lines, from a code diff. Then, we split the code
diff as a sequence of hunks and preprocess these hunks as
follows:

Line Aligning. As demonstrated in Table I} for each hunk,
we first align the before-change and after-change code line-
by-line using Python difflib and obtain multiple aligned line
pairs. A newly added/deleted line is regarded to be aligned
with an empty line. We label the lines in each pair with a line
index [; starting from 1. Specifically, for each line pair: 1) If it
refers to a line change, i.e., addition, deletion or replacement,
we label the lines in the pair with [;. 2) If its two lines are
the same, they are both labeled with the default index 0. After
processing one aligned line pair, no matter whether this line
pair refers to a line change or not, [; is increased by 1. For
example, in Table the first, second, and fourth line pairs
refer to line replacement, deletion, and addition, respectively.
The lines in them are labeled with 1, 2 and 4, respectively.
The lines in the third/fifth line pairs are the same, so they are
labeled with 0. When we finish aligning one hunk, the current
line index [; is passed to the next hunk as its initial line index.
After this step, every line in both the before-change and after-
change code will have a line index, denoted as [ and [¢.

Tokenizing. The embedding layer in the pre-trained code
model is tightly bound to the vocabulary of the model’s
tokenizer. Therefore, to correctly make use of the pre-trained
embedding layer, we use the tokenizer provided by the pre-
trained code model to tokenize each code line into a token
sequence. Such tokenizer is usually based on subwords, e.g.,
BPE [32], and needs to build a subword vocabulary from a
corpus before pre-training. It can split a text into subwords
and avoid the out-of-vocabulary problem [33]]. Besides, for
each token, we store the index [; of the line it belongs to.

Flattening. To prepare the flat token sequences that can
be processed by the pre-trained code model, for each of the
before-change and after-change code, we independently collect
its tokens from all hunks in the diff and concatenate the tokens
into a sequence. The token sequences of the before-change
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The overall framework of CCRep.

TABLE I
AN ILLUSTRATIVE EXAMPLE OF LINE ALIGNING

Line Pair Index | Before-Change Code Line After-Change Code Line Line Change Type li? g
1 if (cursor != null) { if (cursor != null && cursor.moveToFirst()) { Replace 1 1
2 cursor.moveToFirst(); - Delete 2 N/A
3 int idx = cursor.getColumnIndex(); | int idx = cursor.getColumnIndex(); Keep 0 0
4 - if (idx !=-1) Add N/A 4
5 result = cursor.getString(idx); } result = cursor.getString(idx); } Keep 0 0

“-” refers to an empty line.

and after-change code are denoted as T
and T = [t{,15, ..., {1 )], respectively.
Token Ahgnlng. We align 7% and T token by token using
Python difflib to identify the changed tokens. After aligning,
every token in 7% (T'%) will get a token change flag m? (m¢),
which is 1 for changed tokens and O for unchanged ones.

(2,45, ...,

thro]

B. Contextual Code Embedding

This part takes as input the token sequences of the before-
change and after-change code, i.e., T and T°, aiming to
independently encode them as two sequences of contex-
tual embeddings, ie.. H® = [A},h3, ..., h{p, | and H®
[h$, hg, ..., \T“\] H® and H° are expected to capture the
syntactic and semantic information of the code before and
after the change. CCRep leverages a pre-trained code model as
the code encoder. Because pre-trained code models are shown
to be able to produce high-quality code representations and
can be applied to datasets of different sizes [21f], [27], [29].
Specifically, our implementation of CCRep uses CodeBERT,
since it is widely used and has been shown to perform well
on multiple code-related tasks [3]], [12], [21]. Given T or
T, CodeBERT uses a multi-layer Transformer [22] to make
code tokens aggregate context information from each other
and outputs their contextual embeddings H” or H®. Please
note that CCRep is agnostic to pre-trained code models and
CodeBERT can be substituted with other pre-trained models
that can be used as a code encoder.

C. Query-Back Mechanism

This part aims to produce the final representation v of
the input code change 7. To help CCRep effectively capture
important information, we propose a novel mechanism named
query back for this part. Its main idea is to encode the
changed code fragments as a change-aware query ¢, use such

query to “retrieve” important information from the before-
change and after-change code (the “corpus”), and produce the
final code change representation v based on the “retrieved” in-
formation. It can be seen that this “retrieval” process makes the
changed code explicitly interact with the whole code change,
so that we can adaptively extract important information from
the “corpus”.

Specifically, this part takes as input the contextual embed-
dings H® and H® produced by the pre-trained code model
and the alignment information extracted during preprocessing,
and outputs the code change representation v. Considering that
different tasks may focus on the changed code fragments of
different granularity, we propose three variants of the query-
back mechanism, namely the token-level, the line-level, and
the hybrid query-back mechanisms. Figure [2] shows their
architectures.

1) Token-Level Query-Back Mechanism: This variant con-
structs the change-aware query ¢' based on the changed code
tokens, which is beneficial if the changed code is fine-grained,
e.g., only changes the name of a method or renames an
identifier. As shown in the upper part of Figure [2| it works
as follows:

Changed Token Selection. During preprocessing, each
token in T}, and T, is assigned a token change flag m? and
my. Based on these ﬂags we first construct a flag sequence
MP = [mb,m5, ... me ] (M = [mf,m3,...,m{p |]) for Ty
(T3). Then, the contextual embeddings of the changed code
tokens are picked out from H® and H® based on M" and M
, and are further concatenated as a new embedding sequence
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Fig. 2. The architectures of the token-level, the line-level, and the hybrid query-back mechanisms. The upper and lower parts depict the token-level and the
line-level query-back mechanisms, respectively. They both take as input the contextual embeddings of the before-change and after-change code (the “corpus”),
together with the alignment information, i.e., token change flags and line indices, extracted during preprocessing. Token-level query-back mechanism selects and
combines changed tokens based on token change flags, constructs a query ¢* using a Transformer and the average pooling, and adaptively retrieves important
information from the “corpus” to represent the code change as a feature vector v*. Line-level query-back follows a similar procedure, but it reconstructs the
structure of changed line pairs based on line indices, explicitly masks unchanged lines when constructing the query ¢*, and outputs a feature vector v' as the
code change representation. Hybrid query-back combines v* and v' to construct the code change representation v".

H’, as follows:

[hY, RS, ..., thTb\] ® [mb,m5, ..., mf’Tb‘],

’ ’
a a a1 _ a pa a a a a
[ 15 7...7h,na] = [ 15 27"'7h"Ta‘] ® [ml,mQ, ...,m‘Tal],
! _ b v v a’ a’ a’
H =B BY o BY b R e,

(1
where n, and n, refer to the numbers of the changed tokens
in T, and T, ® denotes the masked-select operation which
selects elements from the left operand based on the flags
provided by the right operand. This step localizes the fine-
grained token changes and can help the model concentrate on
them during feature extraction.

Query Construction. In this step, we make the changed
tokens aware of each other and encode them as a single
vector, namely the change-aware query ¢°. In detail, we first
use a multi-layer Transformer to extract change-aware features
H' = [hf, b, ...k}, o, ] from H'. Then, average pooling is

applied to H! to squash it into the query ¢*, as follows:

H' = Transformer(H’) )
q" = Pooling(h}, hi, ..., hflb+na) 3)

q* is expected to encode the information of token changes.
Query Back. The extracted change-aware query ¢! is used
to “retrieve” relevant information from the before-change and
after-change code (the “corpus™) through attention. Since ¢*
is also learned from the “corpus”, we call this attention

query-back attention. Specifically, we adopt the multi-head
attention [22]] to implement the “retrieval” process, where both
the keys and the values are set to the contextual embeddings
H® or H® and ¢' is used as the query, as follows:

v} = MultiHead(q', H, H®) (4)

(&)

v; and v}, refer to the attended feature vectors retrieved from

the before-changed and after-change code, respectively.
Merging. Eventually, we merge v} and v}, by element-wise

addition to get the final code change representation v*:

vt = MultiHead(¢*, H*, H*)

’Ut

(6)

2) Line-Level Query-Back Mechanism: This variant con-
structs the change-aware query ¢! based on the changed code
lines, which captures line-level code change features and can
be useful if one or more code lines are completely added or
deleted. As shown in the lower part of Figure [2] it works as
follows:

Changed Line Selection. In this step, based on the line
index [; of each token generated during preprocessing, we first
select out the tokens in the changed lines and reconstruct the
line structures of the before-change and after-change code 7%
and T, respectively. The reconstruction process is identical
for T® and T°, and we leverage the example in Figure
to illustrate it: (1) First, we use the line indexes of all the

t t
=vy+ v,



tokens in T (T'*) to form a line index sequence [If, 13, ..., I{7, |
(15,15, ., i, |- In our example, such sequence is [0,2,2, 3]
([0,2,3,3]). (2) Then, we initialize an empty matrix of shape
L x W x d for reconstructing line structures, where L, W and
d refer to the maximum lines of the code (line-dimension),
the maximum tokens in a code line and the dimension of
a contextual embedding. In our example, L=3 and W=3.
We refer to this matrix as line matrix. (3) After that, the
contextual embedding of each token in T? (T%) is filled into
the corresponding row of the line matrix according to its line
index. In our example, h$ and R} are filled into the 2-nd row,
while hﬁ is filled into the 3-rd row. (4) Finally, we order the
contextual embeddings in each row by their token indices in
T (T*). In this way, line structures are reconstructed and
stored in the line matrix, of which each row stores one line,
as shown by the “Before-Change Line Matrix” and the “After-
Change Line Matrix” in Figure 2} We refer to the process
mentioned above as the scattering-reshaping operation, and
briefly formulate it as:

Ls" = [h§, 08, . Wi )@ (13,88, 10y, ), Ls® € REXW 4

Ls® = [h$,h, s i, J © 14,18, ., Uy ], Ls® € REXWX

(N
where © refers to the scattering-reshaping operation, Ls® and
Ls® refer to the line matrices of T° and T, respectively.
Note that the tokens from the unchanged lines (with line index
0) are filled into the O-th row of the line matrix. Since we
only care the changed lines, we simply drop out the O-th row.
The line matrices Ls® and Ls® are concatenated along the
second dimension (the token dimension) to pair aligned lines
and form longer lines, and two special tokens CLS and SEP are
respectively inserted into the head and the tail of the before-
change line in each pair, as follows:

Ls = [CLS,Ls", SEP, Ls%], Lse RF*@EW+2)xd (g

We refer to such longer line as paired line.

Query Construction. We also use a multi-layer Trans-
former to model each paired line and make its tokens interact
with each other. Since the tokens in each paired line are in
order, we further adopt the positional encoding [22f]. For each
paired line, we use the hidden state of its first token, i.e. CL.S,
as its feature vector. The feature vectors of all paired lines are
denoted as H! = [h}, kL, ..., h} ]. Then, we mask the vectors of
the unchanged lines and apply average pooling to the masked
H' for obtaining the change-aware query ¢'.

¢ = MaskPooling( H b maskl) 9)

where mask' indicates the changed lines. ¢’ is expected to
capture the information of the changed lines.

Query Back & Merging. These two steps are similar to
those of the token-level query-back mechanism. We use ¢!
as the query to “retrieve” information from H b and H®, and
produce the final code change representation v'.

3) Hybrid Query-Back Mechanism: For some tasks con-
cerning both token changes and line additions/deletions, both

the token-level and the line-level change information can be
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Fig. 3. The usage of CCRep in code-change-related classification and
generation tasks.

beneficial. Considering this, we further propose the hybrid
query-back mechanism, which fuses the token-level and the
line-level query-back mechanisms. Specifically, we first obtain
the code change representations produced by the token-level
and the line-level query-back mechanisms, i.e., vt and o'
Then, we linearly project them into the same feature space,
normalize them with layer normalization [34], and finally
merge them through element-wise addition to produce the final
code change representation v":

v" = LayerNorm (W v*) + LayerNorm (W,  v') (10)

where W; and W, are learnable parameters of this module.

D. The Usage of CCRep

CCRep takes as input a code change and outputs a single
numerical vector as the representation of the code change.
It acts as a general encoder and can be used to replace or
enhance existing code change encoders in both classification
and generation tasks, as shown in Figure 3] To use CCRep
for classification, the most straightforward way is to combine
CCRep and task-specific components (e.g. a commit message
encoder), connect them to a classifier, such as a Multi-Layer
Perceptron (MLP), and jointly train CCRep, task-specific
components and the classifier on the target classification task.
Please note that some tasks only take code changes as input,
so there may be no task-specific component. For generation
tasks, CCRep can be plugged into a neural generation model to
enhance its representations of code changes. Specifically, given
a code change, neural generation models usually leverage a
neural component named encoder to encode it into a sequence
of feature vectors, and fed such vectors into another neural
component named decoder for generation. We can concatenate
the single vector produced by CCRep and each feature vector
produced by the encoder of a neural generation model, re-
spectively, to enhance the representations of code changes, and
feed those enhanced representations into the decoder for better
generation. Also, CCRep and the original encoder and decoder
are jointly trained on the target generation task, instead of
using a two-stage training scheme as CC2Vec.



IV. EXPERIMENTS

To evaluate the effectiveness of CCRep and demonstrate its
applicability to diverse downstream tasks, we apply CCRep to
three different tasks related to code changes: commit message
generation [13]], automated patch correctness assessment [[14]],
and just-in-time defect prediction [10]. For each task, we aim
to answer two research questions:

RQ1: How effective is CCRep compared to the state-of-
the-art approaches? We evaluate the three variants of CCRep,
which use the token-level, the line-level and the hybrid query-
back mechanisms and are referred to as CCRep'°", CCRep'™
and CCRep™®"¢, respectively, on the target task, and compare
them against the state-of-the-art approaches.

RQ2: How effective is each component in CCRep? There
are two main components in CCRep, i.e., the pre-trained code
model and the query-back mechanism. We conduct ablation
studies on each task to investigate their contributions to
CCRep’s effectiveness.

A. Commit Message Generation

1) Background: When committing a change into a software
repository, developers are encouraged to write a textual mes-
sage to describe the content and intent of this change, namely,
commit message. Although commit messages are valuable for
program comprehension and software maintenance, developers
usually neglect writing high-quality commit messages due to
time pressure and lack of direct motivation [19]. To alleviate
this problem, researchers propose the Commit Message Gener-
ation (CMG) task, which takes as input a commit and outputs
a concise description summarizing this commit.

2) Baselines: The most recent state-of-the-art CMG ap-
proach is FIRA proposed by Dong et.al. [35], which em-
ploys Graph Convolution Network (GCN) [36] as the encoder
and a Transformer as the decoder. FIRA further proposes a
dual copy mechanism to copy both tokens and sub-tokens
from the input code change during generation. According
to the evaluation results presented in the FIRA paper, we
additionally choose the best-performing retrieval-based CMG
approach, i.e., NNGen [20]], the best-performing learning-
based approach, i.e., CODISUM [37]], and CoReC [/13]], which
combines retrieval-based and learning-based methods, as the
baselines. We also use LogGen [8]] as a baseline, since it is
proposed in the CC2Vec paper and is the adaption of CC2Vec
to CMG.

3) Our Approach: Following the description in Sec-
tion we plug CCRep into a neural generation model
by concatenating the feature vector produced by CCRep with
the sequence features of code diff produced by the pre-trained
code model (i.e., CodeBERT), as illustrated in the lower part
of Figure [3]

4) Experimental Setting: We evaluate our approach on
CMG with the datasets used in the CoReC paper [13] and
the FIRA paper [35]. Both datasets are widely-used for this
task. The dataset used by CoReC was initially collected by
Jiang et al. [2] and further cleansed by Liu et al. [20],
containing 22.0K commits. Since CCRep focuses on code

TABLE III
CMG: EVALUATION RESULTS ON THE COREC DATASET

Model BLEU METEOR ROUGE-L
LogGen [8] 9.41 5.31 12.13
NNGen [20] 23.29 14.26 28.68

CoDISUM [37]  13.15 735 16.49
CoReC [13] 25.27 15.34 29.73
CCReptoken 28.24 16.99 34.23
CCRepline 26.65 15.74 32.01
CCRephybrid 27.25 16.58 33.30

TABLE 1V

CMG: EVALUATION RESULTS ON THE FIRA DATASET

Model BLEU METEOR ROUGE-L
LogGen (3] 8.95 8.34 10.50
NNGen [20] 9.16 9.53 11.24

CoDiSuM [37]  16.55 12.83 19.73
CoReC [13] 13.03 12.04 15.47
FIRA [35] 17.67 14.93 21.58
CCRep'°ken 19.93 16.27 23.81
CCRep'in 19.79 16.06 23.60
CCRephybrid 19.70 15.84 23.41

changes, we filter out the commits with non-code changes,
such as binary file changes, file creation or file deletion,
resulting in 20.5K commits left. We re-train and re-evaluate the
baselines on our filtered dataset (hereon, the CoReC dataset)
using the replication packages provided by their authors [38]-
[41]. FIRA is not evaluated on this dataset since it needs
to parse each code change into two ASTs, but the code diff
fragments provided by this dataset are not parsable. Following
CoReC, our approach uses an LSTM as the decoder on this
dataset.

The dataset used by FIRA (hereon, the FIRA dataset) was
published by Xu et.al. [37], which contains 75K, 8K and
7.6K commit-message pairs in the training, validation and
test sets, respectively. Following FIRA, our approach adopts
a Transformer as the decoder and also equips with a copy
mechanism and the identifier abstraction used by FIRA. Since
Dong et al [35] have evaluated FIRA and other baseline
approaches on this dataset, the evaluation results of all the
baselines shown in Table [[V]are directly copied from the FIRA
paper.

Following prior work [13]], [35]], the Adam optimizer [42]]
is used to minimize the average cross-entropy loss during
training, and BLEU [43]], METEOR [44] and ROUGE-L [45]
are used as evaluation metrics. However, Tao et al. [40]
reported that a variant of the original BLEU called B-Norm
BLEU is more correlated with human judgment on the quality
of generated commit messages. Thus, we use the B-Norm
BLEU as the substitution of the original BLEU-4 in our
experiments (denoted as BLEU as well).

5) Results for RQI: Experimental results on CMG are
shown in Table [[II| and Table [IV] CCRep'*", CCRep'™ and
CCRep"®d stand for the three variants of our approach. It is



TABLE V
CMG: ABLATION RESULTS ON THE COREC DATASET

Model BLEU METEOR ROUGE-L
CCRep — CodeBERT  27.90 16.56 33.36
CCRep — QueryBack 26.23 15.72 31.78

CCRep 28.24 16.99 34.23

TABLE VI

CMG: ABLATION RESULTS ON THE FIRA DATASET

Model BLEU METEOR ROUGE-L
CCRep — CodeBERT 18.77 15.54 22.37
CCRep — QueryBack 17.88 14.78 21.33

CCRep 19.93 16.27 23.81

shown that our approach outperforms all the baselines in terms
of all metrics, indicating the effectiveness of CCRep on CMG.
Specifically, on the CoReC dataset, our best-performing vari-
ant, i.e., CCRep“’ke“, outperforms the best-performing baseline,
i.e., CoReC, by 11.8%, 10.8% and 15.1% in terms of BLEU,
METEOR and ROUGE-L, respectively. As for the FIRA
dataset, CCRep'*" outperforms FIRA by 12.8%, 9.0% and
10.3% in terms of the three metrics. We conduct statistical
significance tests using paired bootstrap resampling with 1000
resamples following Koehn [47]]. All the p-values are less than
0.001, indicating that the performance differences between our
approach and the baselines are significant.

6) Results for RQ2: To answer RQ2, we compare the
best-performing variant of our approach, i.e., CCRep'°*",
with two special models, namely CCRep—CodeBERT and
CCRep—QueryBack. The former replaces CodeBERT in
CCRep"*" with a RoBERTa-base model [48], which is
widely used as a baseline encoder in the NLP community.
CCRep—QueryBack removes the query-back mechanism from
CCRep™*" and directly feeds the diff’s feature vectors pro-
duced by the CodeBERT encoder to the decoder for genera-
tion.

Experimental results in Table [V] and Table [VI] show that
our approach outperforms the two special models in terms of
all metrics, indicating the effectiveness of the pre-trained code
model and the query-back mechanism. We conduct statistical
significance tests like RQ1. The p-values of CCRep compared
to CCRep—QueryBack are all less than 0.001, which means
that the query-back mechanism brings statistically significant
performance improvements. The p-values of CCRep compared
to CCRep—CodeBERT are all less than 0.05 except the one
calculated on the CoReC dataset in terms of BLEU. This
indicates that CodeBERT are also significantly beneficial in
most cases.

B. Automated Patch Correctness Assessment

1) Background: Automated Program Repair (APR) [49]
aims to automatically generate bug-fixing patches. Many
APR approaches follow a generate-and-validate methodol-
ogy, which examines the generated patches with developer-

provided test suits. Because test suits may be inadequate to
cover all possible cases, a generated patch that passes all
test cases (i.e., plausible patch) may still be incorrect (i.e.,
overfitting patch). This is known as the overfitting problem of
APR [50]], [51]. To alleviate this problem, many techniques
have been proposed to automatically identify correct patches
among plausible patches, namely Automated Patch Correct-
ness Assessment (APCA), which is a binary classification task
of code changes.

2) Baselines: We consider existing APCA approaches that
take patches as input as baselines. CACHE, recently proposed
by Lin et al. [[14], is the state-of-the-art APCA approach. Given
a patch, CACHE uses AST paths [52] to extract the features
of its deleted code, its added code and their context, and
integrates such features as the patch feature for prediction.
Another recent work from Tian et al. [6] leverages pre-
trained representation learning models, such as BERT [23]]
and CC2Vec [8], with some feature comparison functions [§]]
to extract patch features and uses classifiers like Logistic
Regression (LR) and Decision Tree (DT) for prediction.

3) Our Approach: As illustrated in Section and the
upper part of Figure [3] to apply CCRep to APCA, we simply
connect CCRep to a two-layer Multi-Layer Perceptron (MLP)
classifier for prediction.

4) Experimental Setting: We use the two datasets con-
structed by Lin et al. [14] for evaluation and refer to
them as CACHE-Small and CACHE-Large. CACHE-Small
was constructed by merging and deduplicating the plausible
patches collected by Wang et al. [53] and Tian et al. [6],
containing 1,183 patches from the Defects4] benchmark.
CACHE-Large has 49.7K patches and was built by merging
and deduplicating the patches from RepairThemAll [54] and
ManySStuBs4J [55]. Both datasets are roughly balanced. Five
widely-used classification metrics, including Accuracy, Preci-
sion, Recall, F1 and AUC, are used for evaluation. Following
Lin et al. [14], we perform 5-fold cross-validation on both
datasets, use the Adam optimizer to minimize the binary cross-
entropy loss during training, and employ Dropout [56] in the
classifier.

Because we use the same datasets and experimental settings
as Lin et al. [14], the evaluation results of the baselines are
directly borrowed from their paper. For space constraints, we
only present the variants of Tian et al.’s approach that: 1)
achieve the best F1 or the best AUC, or 2) use CC2Vec and
achieve the best F1 or AUC among all the variants using
CC2Vec.

5) Results for RQI1: The evaluation results are shown in
Table and Table It can be seen that on CACHE-
Small, our approach outperforms CACHE in terms of all
metrics except precision. Our best variant, i.e., CCRep™?d,
substantially outperforms CACHE in terms of recall by 12.3
points and improves CACHE in terms of F1 and AUC by 3.9
points and 8.2 points, respectively. For Tian et al.’s approach,
our approach outperforms all of its variants, including the
CC2Vec-based variants, in terms of F1 and AUC by large
margins.



TABLE VII
APCA: EVALUATION RESULTS ON CACHE-SMALL

Model Acc. Pre. Rec. F1 AUC
LR + CC2Vec [6] 649 624 901 737 686
LR + code2vec 6] 66.8 68.6 729 70.6 70.2
CACHE [14] 754 795 765 780 803
CCRep'oken 80.5 73.8 89.0 806 88.1
CCRep'i"® 812 759 864 80.6 883
CCRepMyPrid 822 763 888 819 885
TABLE VIII

APCA: EVALUATION RESULTS ON CACHE-LARGE

Model Acc. Pre. Rec. F1 AUC
DT + BERT [6] 957 939 974 956 959
LR + Doc2Vec [6] 904 919 88.0 89.9 96.1
DT + CC2Vec [6] 956 954 957 955 957
CACHE [14] 98.6 989 982 986 989
CCRep'oken 994  99.6 992 994 99.97
CCRep'i™ 997 998 99.6 99.7 99.98
CCRephybrid 99.6 999 993 99.6 99.99
TABLE IX

APCA: EVALUATION RESULTS OF THE ABLATION STUDIES

Dataset Model Acc. Pre. Rec. F1 AUC
CACHE CCRep — CodeBERT 77.5 72,6 816 76.6 86.1
Small " CCRep — QueryBack 793 744 832 784 87.0
CCRep 822 763 888 819 885

CACHE CCRep — CodeBERT  99.6 99.7 99.6 99.6 99.99
Laroe " CCRep — QueryBack 99.7 998 99.7 99.7 99.99
g CCRep 99.6 999 993 99.6 99.99

On CACHE-Large, our approach also outperforms Tian et
al’s approach and CACHE in terms of all metrics. Our best
variant, i.e., CCRep™™ ¢, achieves an F1 of 99.6% and an
AUC of 99.99%. One possible reason behind the impres-
sive performance of both CACHE and our approach is that
CACHE-Large is way larger than CACHE-Small, which may
ease the learning. Another possible reason is that CACHE-
Large is synthetic to some extent. Specifically, according to
Lin et al. [14], in CACHE-Large, almost all correct patches
are human-written patches, while all overfitting patches are
generated by APR tools. Therefore, an approach can perform
well if it is able to tell from human-written patches and APR-
generated patches.

Another thing worth mentioning is that CCRep outper-
forms the other two variants on the two datasets in terms of
AUC, which highlights that both the token-level and the line-
level change information is useful for APCA.

6) Results for RQ2: We compare the best-performing
variant, ie., CCRep™"¢, with CCRep—CodeBERT and
CCRep—QueryBack. CCRep—CodeBERT replaces Code-
BERT in CCRephybrid with the RoBERTa-base model [48],
which is a widely-used baseline encoder. CCRep—QueryBack
directly uses CodeBERT to encode a patch’s diff and uses
the contextual embedding of a special token CLS inserted at

hybrid

the beginning of the diff as the code change representation.
Table presents the results, which indicate that both the pre-
trained code model and the query back mechanism positively
affect the effectiveness of CCRep on CACHE-Small. However,
there are no significant performance differences between the
two special models and CCRep on CACHE-Large. A pos-
sible explanation for this is that distinguishing correct and
overfitting patches in CACHE-Large is not very hard and less
powerful models can also fit the data.

C. Just-in-Time Defect Prediction

1) Background: Software defects are inevitable and may
substantially affect businesses and even people’s lives [[11].
On the other hand, the size and complexity of modern soft-
ware systems grow significantly, making it hard and costly
to find defects from them. To this end, just-in-time defect
prediction (JIT-DP) has been proposed to identify defective
code changes and provide in-time feedback when developers
commit changes to the code base [4]], [5], [10], [11f]. Given
a commit, JIT-DP targets at predicting whether it is defective
and is a binary classification task just like APCA. However,
different from APCA, JIT-DP targets real-world defective
commits and can take as input both the code change and the
commit message in a commit.

2) Baselines: We use three state-of-the-art JIT-DP ap-
proaches, i.e., DeepJIT [[11]], CC2Vec [8] and LAPredict [10]
as baselines. Given a commit, DeepJIT leverages CNNs to
extract feature vectors from the code change and the commit
message, respectively, and concatenates such vectors as the
commit vector for prediction. Hoang et al. [8] use CC2Vec
to encode a code change into a feature vector and appends
such vector to the commit feature extracted by DeepJIT for
prediction. We also refer to this approach as CC2Vec for
convenience. LAPredict, proposed by Zeng et al. [10], uses
the number of added code lines as the commit feature and
adopts an LR classifier to perform JIT-DP.

3) Our Approach: We follow Section and the upper
part of Figure to apply CCRep in JIT-DP, similar to
APCA. The only difference is that we concatenate the output
of CCRep with the commit message feature produced by a
CNN (i.e., the task-specific features in Figure [3) for prediction,
following DeeplIT [11].

4) Experimental Setting: We compare CCRep with the
baselines on the dataset constructed by Zeng et al. [[10]. The
dataset contains six large-scale projects, i.e., OpenStack, QT,
Go, Gerrit, Platform and JDT, covering different programming
languages. Considering that CodeBERT is not pre-trained on
C++ code [57], we exclude QT for evaluation. We conduct
our experiments following the within-project setting used by
Zeng et al. [10] and directly borrow the evaluation results of
the baselines from the LAPredict paper. Since the dataset is
highly unbalanced, we follow prior work [8]], [[10], [[11] and
also use AUC as the evaluation metric. Also following prior
work [11]], we use the Adam optimizer to minimize the binary
cross-entropy loss and employ Dropout in the classifier.



TABLE X
JIT-DP: EVALUATION RESULTS IN TERMS OF AUC

Model OpenStack  JDT Go Platform  Gerrit Mean
DeepJIT [11] 71.32 67.01 68.91 77.12 70.25 70.92
CC2Vec [8] 72.27 66.53  69.17 76.13 69.86 70.79

LAPredict [10] 7491 67.57 68.31 74.61 74.95 72.07
CCRep“’_ke" 75.37 68.11 75.63 81.91 76.89 75.58
CCReph“e_ 76.45 68.96 75.60 82.08 77.35 76.09
CCRep"ybrid 75.63 66.63  75.48 82.18 7701 7539

TABLE XI
JIT-DP: ABLATION RESULTS IN TERMS OF AUC
Model OpenStack JDT Go Platform  Gerrit Mean
CCRep — CodeBERT 75.78 6821  75.04 81.15 74.89  75.01
CCRep — QueryBack 75.70 66.69 7630 82.28 74.82  75.16
CCRep 76.45 68.96 75.63 82.18 7735  76.09

5) Results for RQI: Experimental results on JIT-DP are
summarized in Table [X] We can see that CCRep'™ is the
best-performing variant on average, but the performance differ-
ences among the three variants are small. CCRep'™™ improves
LAPredict, CC2Vec and DeepJIT by 5.6%, 7.4% and 7.3% on
average, indicating the effectiveness of CCRep in representing
code changes for JIT-DP. We also notice that different projects
prefer different query-back mechanisms, which may indicate
the different defect characteristics of different projects.

6) Results for RQ2: We also conduct ablation studies
on JIT-DP to answer RQ2. Similar to what we do in
APCA, we build and evaluate two special approaches, i.e.,
CCRep—CodeBERT and CCRep—QueryBack. As shown in
Table the average performance of our approach degrades
without CodeBERT or QueryBack, highlighting the effective-
ness of the two components in CCRep. We also notice that
on Go and Platform, our approach is slightly worse than
CCRep—QueryBack. After manual inspection, we speculate
that this is because a significant number of commits in Go
and Platform contain almost only deleted or added code with
little context, where the query-back mechanism may bring no
benefit. However, since the performance of our approach and
CCRep—QueryBack is very close, we argue the query-back
mechanism can be viewed as harmless on Go and Platform.
In summary, both the pre-trained code model and the query-
back mechanism contribute to the effectiveness of CCRep.

V. DISCUSSION
A. The Variants of CCRep

We propose three variants of CCRep, i.e., CCRep‘*e",
CCRep'™ and CCRep™®¢, We can see from Section [IV/ that
different tasks prefer different variants. On CMG, CCRep'°<"
performs best, which is probably because that a commit
message is generated token by token and the key words in it
can often be found from the changed code tokens. For APCA,
the best-performing variant is CCRep™®d. After inspecting
the dataset and the results, we think this is reasonable because
a generated patch can either change a few tokens (e.g., replace
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==" with “!="), or insert/delete several lines (e.g., insert
a NullPointer check). As for JIT-DP, CCRep'™ is the
best. Based on our inspection, a possible reason is that a
defective commit often adds, deletes or modifies multiple lines
instead of only a few tokens. Based on these findings, before
applying CCRep to other tasks, we encourage the user to
analyze the characteristics of the target task and her dataset
first and choose the most suitable variant. On the other hand,
on each task, the three variants all outperform the state-of-the-
art baselines. This indicates our approach’s effectiveness and
makes us believe that any of the variants can serve as a strong
baseline for code-change-related tasks.

B. Limitations

As discussed in Section if a code change contains
little context code, the query-back mechanism may bring no
benefit. Because in such situation, the changed code and the
whole code change contain the same information. Another
limitation of CCRep is that the lengths of the code changes
that can be processed by CCRep are limited by the pre-trained
code model. In detail, the length of the before-change or the
after-change code should not exceed the length limit of the
used pre-trained model, which is usually 512. Fortunately,
committing small and coherent code changes has become a
widely-recognized good practice, and many techniques have
been proposed to decompose tangled code changes [S8]-
[62]. Such practice and techniques can help reduce long code
changes and alleviate this limitation.

C. Threats to Validity

Threats to internal validity refer to the errors and bias in
our experiments. To mitigate such threats, for each task, we
try our best to follow the settings used by the state-of-the-
art baselines, re-use the evaluation results reported by prior
work when possible and use the existing implementations of
the baselines to conduct experiments. We have double checked
our code and data and made them publicly available. Threats
to external validity concern the generalization of CCRep.
Although we have applied CCRep to three different tasks
and achieved superior performance, we cannot claim that
CCRep can be applied to or perform well on all code-change-
related tasks. However, the three tasks have either different
inputs or different outputs, care about diverse characteristics
of code changes, and cover synthetic and manually-written
patches, various projects and multiple programming languages.
Therefore, we believe this threat is limited. In addition, based
on our evaluation results, we argue that CCRep can at least
serve as a strong baseline to help better solve code-change-
related problems. To minimize threats to construct validity, we
choose evaluation metrics following previous studies.

VI. RELATED WORK

The majority of the studies related to code change repre-
sentation target a specific downstream task and learn code
change representations through a task-specific architecture.
Some of them flatten code or code changes as token sequences



for representation learning [2]], [13], [15], [37], [63]-[65]. For
example, for commit message generation, applying RNN like
LSTM [66] on diffs is a widely-used approach to extract
code change features [2], [13]], [37]. To automate comment
updates with code changes, Liu et al. [63] aligned the tokens
of the before-change and after-change code to form an edit
sequence and fed such sequence into an LSTM-based encoder
to obtain code change representations. To identify security
patches, Zhou et al. [15] utilized two LSTMs to respectively
learn the statement-level features of the added and deleted
code in a patch and merged their features with a multi-layer
convolutional neural network.

Some studies leverage the syntactic structure of code, e.g.,
AST, to enhance code change representation learning [14],
[16], [18]], [67]], [68]. For example, to assess patch correctness,
Lin et al. [[14] proposed to extract and encode the changed AST
paths and the unchanged AST paths, respectively, and merge
their feature vectors as the code change representation. Yin et
al. [16]], Panthaplackel et al. [18]] and Dong et al. [35] proposed
to converted the two ASTs of a code change into a graph and
use graph neural networks, e.g., GGNN [69] and GCN [36],
to learn code change representations from the graph.

Recently, several studies adopted pre-trained code models
to represent code changes for specific downstream tasks [J3]],
[6], [12], [[70]. For instance, to identify silent vulnerability
fixes, Zhou et al. [3|] leveraged CodeBERT [21] to encode
each changed file in a commit and merged the feature vectors
of all changed files as the code change representation. Lin et
al. [[12]] leveraged pre-trained code models to encode commits
for recovering links between issues and commits. Zhou et
al. [70] also investigated the generalizability of CodeBERT
on JIT-DP. However, they only considered one classification
task and only used the data from two projects for evaluation.

Only a few studies aim at learning general-purpose code
change representations [8[], [16]. Yin et al. [16] proposed
to learn distributed representations of code edits by training
an auto-encoder to reconstruct code edits. Hoang et al. [§]
proposed CC2Vec, which leverages a hierarchical attention
network and multiple comparison functions to learn code
change representations. As discussed in Section Yin et
al.’s approach only focuses on small code edits (i.e., a single
hunk with no more than 3 changed lines), while CCRep
targets commit-level changes. Also, it lacks explicit interaction
between the changed code and the whole code change. We
have tried to compare the performance of Yin et al.’s approach
with that of CCRep. However, neither Yin et al. evaluated
their approach on the three tasks used in this work, nor they
made their implementation publicly available. CC2Vec only
considers the changed code and ignores the context, and it
requires commit messages as labels, which are not always
available. Besides, our evaluation results show that CCRep
outperforms CC2Vec on the three tasks by substantial margins.

In summary, our work differs from prior work in several
folds: First, our approach acts as a general code change
encoder and can be used in diverse code-change-related tasks.
Second, our approach is equipped with a pre-trained code

model and the query-back mechanism, and is technically
different. Third, our evaluation results show that our approach
outperforms the state-of-the-art techniques on three tasks. In
addition, this work also investigates the generalizability of pre-
trained code models on diverse code-change-related tasks.

VII. CONCLUSION

We propose a novel approach named CCRep to learn code
change representations. It acts as a code change encoder and
can be jointly trained with and used in diverse code-change-
related tasks. CCRep leverages a pre-trained code model to
obtain high-quality contextual embeddings and better handle
datasets of different sizes, and a novel mechanism named
query back to highlight the changed code and adaptively
capture related context information. We evaluate CCRep on
one generation task and two classification tasks. Experimen-
tal results show that CCRep outperforms the state-of-the-art
approaches on each task and both the pre-trained code model
and the query-back mechanism contribute to its effectiveness.
In the future, we plan to apply our approach to more code-
change-related tasks and improve it to encode long and struc-
tured code changes.
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