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Abstract—Java (de)serialization is prone to causing security-
critical vulnerabilities that attackers can invoke existing methods
(gadgets) on the application’s classpath to construct a gadget
chain to perform malicious behaviors. Several techniques have
been proposed to statically identify suspicious gadget chains
and dynamically generate injection objects for fuzzing. However,
due to their incomplete support for dynamic program features
(e.g., Java runtime polymorphism) and ineffective injection object
generation for fuzzing, the existing techniques are still far from
satisfactory.

In this paper, we first performed an empirical study to inves-
tigate the characteristics of Java deserialization vulnerabilities
based on our manually collected 86 publicly known gadget
chains. The empirical results show that 1) Java deserialization
gadgets are usually exploited by abusing runtime polymorphism,
which enables attackers to reuse serializable overridden methods;
and 2) attackers usually invoke exploitable overridden methods
(gadgets) via dynamic binding to generate injection objects for
gadget chain construction. Based on our empirical findings, we
propose a novel gadget chain mining approach, GCMiner, which
captures both explicit and implicit method calls to identify more
gadget chains, and adopts an overriding-guided object generation
approach to generate valid injection objects for fuzzing. The
evaluation results show that GCMiner significantly outperforms
the state-of-the-art techniques, and discovers 56 unique gadget
chains that cannot be identified by the baseline approaches.

Index Terms—Java deserialization vulnerability, gadget chain,
method overriding, exploit generation

I. INTRODUCTION

Java serialization [1] enables an application to convert an
object to a stream of bytes. By contrast, Java deserialization re-
constructs the original object from its serialized byte stream. In
spite of the convenience of Java serialization in cross-platform
data transmission and persistence storage [2], deserializing
data from untrusted provenance provides an entry point for
diverse attacks, including denial of service (DoS) attacks [3],
[4] and remote code execution (RCE) [5]. In such attacks, an
attacker reuses exploitable code fragments (so called gadgets)
on the application’s classpath and joins them together piece
by piece (so called gadget chains) to facilitate a malicious
injection object flowing into the security-sensitive call site
(e.g., Method.invoke()) [6]. A deserialization vulnerability
disclosed recently, namely Spring4Shell [7], allows attackers
to send queries to create web shells to servers running the

∗Work done during internship at Ant Group.
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Spring framework [8], leading to RCE. The impact of the
Spring4Shell vulnerability can be devastating because 60% of
developers use Spring for their Java applications development.
Due to its severity, OWASP (Open Web Application Security
Project) lists Insecure Deserialization as the top 10 most
critical web application security risks in 2017 [9].

The root cause of deserialization vulnerabilities is that the
control and data flow can be manipulated by attackers to
enable the malicious deserialized objects to reach (in terms of
control flow) and affect (in terms of data flow) the security-
sensitive sink [6]. Some techniques [10], [11] have been
proposed to automatically mine exploitable gadget chains.
Gadget Inspector [10] performs static taint analysis [12],
[13] to track inter-procedural data flows, and applies the
Breadth-First Search (BFS) to identify gadget chains from
deserialization entry points (sources) to security-sensitive call
sites (sinks). Considering that such a purely static solution may
suffer from precision issues and requires manual inspection of
the reports, SerHybrid [11] adopts a hybrid analysis solution,
which constructs the heap access paths to find source objects
that affect security-sensitive call sites and utilizes fuzzing [14],
[15] to generate actual injection objects, to verify whether the
sinks are reachable.

Nevertheless, SerHybrid has limited effectiveness due to
two reasons. First, SerHybrid performs points-to analysis [16]
to identify source-to-sink method execution paths. However,
due to the dynamic features (e.g., runtime polymorphism [17])
of Java language, any available overridden method (gadget)
on the application’s classpath may be exploited to construct
gadget chains, resulting in high false negatives. Second, Ser-
Hybrid generates injection objects based on heap access paths
for gadget chain verification. This heap access path reflects
the taint propagation flow from a source object to the security-
sensitive call site. However, due to the unawareness of hard
constraints (requiring dynamically modifying the properties
of an injection object to trigger the target gadget chain)
introduced by certain gadgets, such generated injection objects
may be semantically invalid. Hence, fuzzing solutions blind to
the structure of a given gadget chain will get stuck in the initial
fuzzing stage.

In this paper, we first performed an empirical study to inves-
tigate the characteristics of Java deserialization vulnerabilities.
In particular, we focused on answering the following two ques-
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tions: 1) how Java deserialization gadgets are exploited; and 2)
how gadget chains are constructed. We manually constructed a
real-world Java deserialization vulnerability benchmark, which
consists of the well-known ysoserial [18] repository and 18
popular Java applications. In total, 86 (52 out of which are
new) publicly exploitable gadget chains are included in our
benchmark. From the empirical results, we found that 1) Java
deserialization gadgets are usually exploited by abusing ad-
vanced language features (e.g., runtime polymorphism), which
enables attackers to reuse serializable overridden methods on
the application’s classpath; and 2) attackers usually invoke
exploitable overridden methods (gadgets) via dynamic binding
[19] to generate injection objects for gadget chain construction.

Based on our empirical findings, we propose a novel
Gadget Chain Miner, GCMiner, which considers dynamic
program features (Java runtime polymorphism) to identify
more exploitable gadget chains and generates valid injection
objects through dynamic binding for fuzzing. GCMiner per-
forms static analysis to construct the Deserialization-Aware
Call Graph (DA-CG) to model both explicit and implicit
(method overriding) method calls to identify more gadget
chains. To verify whether a statically identified gadget chain
is exploitable, GCMiner adopts an overriding-guided object
generation approach to generate exploitable injection objects
for fuzzing. Using the overriding relations between methods as
a guidance for injection object generation can effectively help
the fuzzer to be aware of the object structures that reflect the
target gadget chain. Gadget chains which receive an injection
object reachable to their security-sensitive call sites will be
outputted as exploitable chains.

To evaluate the effectiveness, we compared GCMiner with
two state-of-the-art gadget chain mining tools, Gadget Inspec-
tor [10] and Serhybrid [11]. Our experimental results demon-
strate that GCMiner significantly outperforms the baselines.

In summary, this paper makes the following contributions:

• An empirical study: We performed an empirical study on
86 exploitable gadget chains from several famous open-
source Java projects. Our findings show that dynamic fea-
tures of Java language are abused to construct gadget chains
by generating injection objects through dynamically binding
exploitable gadgets.

• A novel gadget chain mining approach: We propose
a gadget chain mining approach that identifies more ex-
ploitable gadgets by considering deserialization-related dy-
namic features of Java language, and generates injection
objects through dynamically binding overridden methods to
verify statically reported gadget chains. We open-sourced
GCMiner and the benchmark to facilitate further research1.

• Technique evaluation: We performed comprehensive ex-
periments to evaluate the effectiveness of GCMiner. The ex-
perimental results reveal that GCMiner discovers 56 unique
gadget chains missed by state-of-the-art baselines.

1https://github.com/GCMiner/GCMiner

II. BACKGROUND AND MOTIVATION

A. Terminology

In this section, we introduce several basic concepts which
will be used in this paper.
Java deserialization vulnerability. A Java deserialization
vulnerability is a security bug that can be exploited when the
Java application deserializes untrusted data. Attackers could
inject crafted objects into deserialization-related methods (e.g.,
readObject()), which pass malicious commands to a security-
sensitive call site, resulting in diverse attacks like RCE.
Gadget and gadget chain. To facilitate an injection object
reaching the security-sensitive call site, attackers should reuse
a series of exploitable methods in memory to manipulate
the deserialization process to achieve their desired malicious
behaviors. Such a sequence of method calls is called a gadget
chain, and each method of this chain is called a gadget [6].
The presence of a gadget chain on the application’s classpath
is one of the necessary conditions to carry out deserialization
attacks.
Magic method and security-sensitive call site. The security-
risk of a gadget chain comes from its first gadget/method
(source) that can be invoked automatically during object
deserialization. Such a self-executing method is called a magic
method. These magic methods can be exploited by attackers
to bypass existing security defenses to deserialize their crafted
injection objects. Correspondingly, the last gadget/method
(sink) which performs the malicious command carried by the
injection object is called a security-sensitive call site.
Property-oriented programming. To exploit a Java deseri-
alization vulnerability, attackers have to instantiate an object
of attacker-controlled type and modify its properties to trigger
the execution of an exploitable gadget chain. Such a technique
used in constructing this injection object is called Property-
Oriented Programming (POP) [20]. POP allows an attacker to
manipulate the data- and control-flow of the victim applica-
tion, thereby exploiting existing gadgets on the application’s
classpath for deserialization attacks.

B. Motivating Example

To better clarify the above terminology and illustrate the
motivation of our approach, we take a real-world Java deseri-
alization vulnerability (CVE-2021-213462) in XStream [21] as
an example. XStream is a popular Java deserialization library
to serialize objects to XML and back again.

Figure 1a presents the simplified code snippet of the
target gadget chain in CVE-2021-21346. The serializable
class javax.naming.ldap.Rdn (line 1) invokes the magic
method compareTo() (line 3) automatically during object
deserialization. Such a magic method can be regarded as the
source or entry point that allows attackers to inject mali-
cious objects. If a program performs object deserialization
without additional security check, an arbitrary method (e.g.,
Runtime.exec(command) [22]) specified in a string className

2https://x-stream.github.io/CVE-2021-21346.html



(a) A simplified code snippet with deserialization vulnerability.

(b) The stack trace of the gadget chain in Figure 1a.

Fig. 1: An example Java deserialization vulnerability and the
gadget chain.

(line 26) carried by this malicious injection object will be
invoked (line 31), leading to RCE.

To exploit this vulnerability, an attacker chains existing
gadgets on the application’s classpath to enable the malicious
injection object to flow from the source to the sink. For
example, to invoke the second gadget equals() at line 6,
an attacker instantiates the class Xstring (line 5) and assigns
this instance to the injection object Rdn$RdnEntry’s property
value (line 2) by POP. This dynamic method call takes
advantage of Java polymorphism. Similarly, the third gadget
(toString() at line 9) and seventh gadget (createValue() at
line 24) should also be dynamically invoked to facilitate the
propagation of the injection object. Note that the fourth gadget
(get() at line 14) to sixth gadget (getFromHashtable at line
19) can be directly invoked during deserialization. Figure 1b
depicts the corresponding stack trace of the gadget chain. In
general, constructing such an exploitable gadget chain requires
1) modifying the injection object’s properties to trigger the

execution of an exploitable gadget chain, and 2) assigning
proper values to reach the security-sensitive call site.

[Observation-1] Dynamic program features (e.g., Java run-
time polymorphism) can be abused by attackers to imple-
ment insecure deserialization paths.

As shown in Figure 1a, since class XString to which
the gadget equals() (line 6) belongs inherits the superclass
Object, the tainted property value of an injection object
RdnEntry can continue to propagate through the call statement
value.equals() (line 4). Taking such a dynamic runtime be-
havior into account can effectively identify attacker-controlled
gadgets on the application’s classpath. A straightforward so-
lution is to build Call Graphs (CGs) [23] to perform inter-
procedural analysis, as existing gadget chain mining tools
[10], [11] do. However, these statically constructed CGs either
ignore these serialization-related dynamic features or handle
them partially [17], [24], resulting in unsound results.

Therefore, for gadget chain identification, the consideration
of dynamic program features may help avoid false negatives.

[Observation-2] Constructing an exploitable gadget chain
requires dynamically invoking a series of overridden meth-
ods to enable the tainted objects to pass into the dangerous
sink.

Due to the imprecision of static analysis [25], most statically
reported gadget chains cannot be exploited in practice, result-
ing in a high false-positive rate. To alleviate this problem, gen-
erating exploitable injection objects to verify the exploitability
of suspicious gadget chains is an effective solution [26]–
[28]. However, generating injection objects that follow the
execution trace of gadget chains to be verified is challenging
because of the nested class hierarchy, i.e., the properties of an
injection object need to be modified to reach the dangerous
sink. For instance, to construct the deserialization gadget
chain in Figure 1a, an attacker needs to invoke attacker-
controlled overridden methods (e.g., equals() at line 6) on
the application’s classpath multiple times to implement a cus-
tomized deserialization routine. This dynamic deserialization
behavior can be realized through POP, and is implemented by
determining the method to invoke at runtime (i.e., dynamic
binding). In this motivating example, the purpose of the first
two dynamic bindings is to invoke XString.equals() (line
6) and MultiUIDefaults.toString() (line 9) respectively to
facilitate the propagation of the tainted property value (line 2),
while the third is to ensure that the injection object can reach
the security-sensitive call site Method.invoke() (line 31) to
execute malicious commands. However, the heap access path
adopted by SerHybrid fails to infer these implicit control flows,
making it hard to reach dangerous sinks.

Therefore, for gadget chain verification, generating injection
objects to trigger given gadget chains via dynamic binding may
improve the effectiveness of fuzzing.



TABLE I: Benchmark information.

Library Affected Application #Chain Type
- ysoserial 34 -

YAML

JBoss RESTEasy 1

RCEApache Camel 2
Apache Brooklyn 1
Apache XBean 1

JDK Shiro 3 JNDIi
Pippo 2 RCE

BlazeDS Adobe Coldfusion 2 RCE
VMWare VCenter 1

Red5 Red5 1 RCE
Hessian Hessian 5 RCE
XStream XStream 14 RCE SRA

Others

Commons Collections 3 RCE
Dubbo 2 RCE
WebLogic 5 RCE JNDIi
Emissary 3 SSRF
Jenkins 2 RCE
Apache OFBiz 3 RCE
Spring 1 JNDIi
Total 86 -

III. EMPIRICAL STUDY

A. Experiment Setup

Inspired by the above two observations, we performed
an empirical study to investigate the characteristics of Java
deserialization vulnerabilities. Particularly, we aim to answer
the following two research questions:
• RQ1: How are Java deserialization gadgets exploited?
• RQ2: How are gadget chains constructed?

The answers to these questions provide empirical founda-
tions on 1) whether dynamic program features are abused by
attackers to implement insecure deserialization; and 2) whether
dynamically invoking overridden methods on the application’s
classpath are widely exploited to construct gadget chains.
Data collection. We chose ysoserial [18] repository, a famous
project that provides 34 Java payloads with corresponding
gadget chains exploited in publicly known deserialization
attacks, as part of our dataset. Considering the scarcity of
gadget chains available for analysis, we manually collected
public Java deserialization gadget chains from well-known
vulnerability disclosure platforms such as National Vulner-
ability Database (NVD) [29], Common Vulnerabilities and
Exposures (CVE) [30], Exploit Database (Exploit-DB) [31],
etc. We selected target applications that satisfied the following
criteria. First, they are Java open-source projects since the
characteristics of deserialization vulnerabilities might vary
among different programming languages [32]. Second, they
support deserialization operations and have been reported to
have the risk of being exploited so that gadget chains we mined
are available. Third, they contain sufficient information (e.g.,
Proof-of-Concept (POC) and affected versions) to verify the
authenticity of gadget chains.

Table I shows the details of the benchmark. Columns
“Library” and “Affected Application” present the deserializa-
tion libraries that cause the vulnerabilities and corresponding

Fig. 2: Ways of exploiting available gadgets.

affected applications. Note that due to the re-implementation
of deserialization operations (i.e., not relying on any deseri-
alization library), column “Library” of some applications is
labeled as “Others”. Column “#Chain” represents the number
of collected gadget chains. Column “Type” presents different
vulnerability types in each application, including Remote Code
Execution (RCE), JDNI Injection (JNDIi), System Resource
Access (SRA), and Server-Side Request Forgery (SSRF). In
total, we collected 86 deserialization gadget chains covering 18
Java applications, 52 out of which are not included in ysoserial
repository.

B. Exploitation of Java Deserialization Gadgets (RQ1)

An exploitable gadget chain requires: 1) a magic method
(source or the first gadget) deserializing untrusted data that
can be injected by attackers; 2) a security-sensitive call site
(sink or the last gadget) that ultimately executes a dangerous
operation; and 3) a series of gadgets facilitating the propa-
gation of injection objects [33]. Hence, we first investigated
exploitable magic methods and security-sensitive call sites in
our benchmark. They are listed as follows.
• Magic methods: hashCode, compareTo, toString, get, put,
compare, readObject, readExternal, readResolve, final

ize, equals
• Security-Sensitive Call Sites.

- Remote Code Execution (RCE): getDeclaredMethod,
getConstructor, exec, getMethod, loadClass, start,
findClass, invoke, forName, newInstance, defineClass,
<init>, exit
- JDNI Injection (JNDIi): getConnection, connect,
lookup, getObjectInstance, do_lookup
- System Resource Access (SRA): newBufferedReader,
newBufferedWriter, delete, newInputStream, newOutput

Stream

- Server-Side Request Forgery (SSRF): openConnection,
openStream

In total, a set of 11 magic methods and 25 security-sensitive
call sites are found in our benchmark. It is worth noting that
only five magic methods and 11 security-sensitive call sites
(highlighted in gray) are included in previous works [10], [11].
The direct consequence of missing these exploitable magic
methods (e.g., compareTo() in Figure 1) and security-sensitive
call sites is that some exploitable gadget chains cannot be
identified.



Fig. 3: Ways of gadget chain construction.

In addition, we further investigated how these gadgets were
exploited. In particular, we focused on dynamic program
features of Java language that may be abused by attackers. As
shown in Figure 2, 75 out of 86 (87.2%) gadget chains exploit
available gadgets by abusing Java runtime polymorphism to
invoke overridden methods on the application’s classpath.
As described before, attackers can exploit these gadgets to
pass malicious injection objects. In the remaining cases, only
nine (10.5%) gadget chains rely on Java reflection to exploit
gadgets.

[Finding-1] Java deserialization gadgets are commonly
exploited by abusing advanced language features (e.g.,
runtime polymorphism), which enables attackers to reuse
serializable overridden methods on the application’s class-
path.

C. Construction of Gadget Chains (RQ2)

Figure 3 shows the distribution of different ways for gadget
chain construction. The results show that 79 out of 86 (91.9%)
known gadget chains leverage dynamic binding (at least once)
to modify the properties of injection objects to invoke overrid-
den methods. Besides, in some cases, diverse ways (e.g., re-
mote method invocation (RMI) [34] and dynamic proxy [35])
are mixed to trigger the execution of gadget chains3. For ex-
ample, to exploit a known gadget chain CommonsCollections1

[36] of ysoserial, attackers have to combine dynamic proxy
and dynamic binding to invoke exploitable gadgets to reach
the security-sensitive call site.

[Finding-2] To construct exploitable gadget chains, attack-
ers usually invoke exploitable overridden methods (gadgets)
via dynamic binding to generate injection objects, which
facilitate the malicious data flowing into dangerous sinks.

IV. METHODOLOGY

Based on our empirical findings, we propose GCMiner, a
novel gadget chain mining approach which takes dynamic
program features (Java runtime polymorphism) into account
to mine implicit method calls for gadget chain identification,
and generates valid injection objects through dynamic binding
for fuzzing.

3Note that a gadget chain constructed by multiple techniques will be
repeatedly counted in Figure 3.

Fig. 4: Framework of GCMiner.

Figure 4 shows the framework of GCMiner, which con-
tains three modules: Graph Construction, Chain Identification,
and Chain Verification. More specifically, GCMiner takes
a target Java application as the input, and constructs the
Deserialization-Aware Call Graph (DA-CG) through static
analysis to model both explicit and implicit method calls (Sec-
tion IV-A). Then, GCMiner stores the DA-CG into the graph
database and searches for suspicious gadget chains through
graph traversal (Section IV-B). Finally, to verify whether
a statically identified gadget chain is exploitable, GCMiner
adopts an overriding-guided object generation approach to
generate exploitable injection objects for fuzzing (Section
IV-C). The gadget chain which receives an injection object
reachable to a security-sensitive call site will be confirmed as
exploitable.

A. Graph Construction

GCMiner first performs static analysis to generate the Call
Graph (CG) [23] to capture explicit method calls. Considering
that statically constructed CGs may miss some exploitable
methods due to their incomplete support for dynamic program
features (as discussed in Section III-B), we add additional
overriding relations through Class Hierarchy Analysis (CHA)
[37] to construct a Deserialization-Aware Call Graph (DA-
CG) to identify implicit method calls. The DA-CG is repre-
sented as a directed graph, where methods in each class are
graph nodes, and two types of directed relations (i.e., method
call and method overriding) between methods are recorded as
edges. The introduction of overriding relations contributes to
model dynamic behaviors of programs and thereby capturing
more exploitable gadgets missed by pure CGs.

It is noteworthy that blindly considering all possible over-
ridden methods on the application’s classpath will introduce
a large number of false positives. A typical example is
toString(), one of the common magic methods. For a large
Java application, a great number of classes re-implement
toString() to transform the reference to an object to a user-
readable form. To this end, for applications/libraries (e.g.,
Apache Commons Collections) which do not re-implement



Fig. 5: Partial DA-CG for our motivating example.

their own deserialization operations, we ignore methods whose
classes that do not support deserialization operations (i.e., not
implementing serialization interfaces like Serializable) to
focus on deserialization-related method calls because these
methods cannot be invoked during object deserialization. For
those applications/libraries (e.g., XStream) which re-implement
their own deserialization operations, we still consider all
possible methods.
Example. Figure 5 shows a part of our constructed DA-CG
for the motivating example in Figure 1. We can observe that
the DA-CG consists of several method nodes (highlighted
in green and red) and two types of edges (method call and
method overriding). The complete call path (orange shaded)
of the gadget chain in the motivating example is clear, which
starts from the magic method CompareTo() to the security-
sensitive call site Createvalue(). We can observe that, owing
to our additional overriding relations, exploitable gadgets (e.g.,
XString.equals() at line 6 and MultiUIDefaults.toString()

at line 9 in Figure 1a) can also be identified.

B. Chain Identification

After graph construction, we store the DA-CG into the graph
database and search for suspicious gadget chains through
customized query scripts.

Specifically, we adopt Cypher [38], a declarative language
for graph data retrieval [39], to design query scripts for
suspicious gadget chain identification. The script mainly in-
cludes three components, i.e., start nodes (sources), end nodes
(sinks), and path constraints. We use 11 magic methods and
25 security-sensitive call sites found in our empirical study
as sources and sinks to limit the retrieval scope. For path
constraints, we consider two types of edges (i.e., method call
and method overriding) in our DA-CG. Note that, although
the overriding relation does not indicate the actual method
call, it provides a hint that these overridden methods can be
exploited as gadgets to propagate malicious injection objects.
Thus, to avoid missing any suspicious gadget chain, we search
for all gadget chains between sources and sinks as candidates
for verification.
Example. Figure 6 presents an example of our query scripts
for suspicious gadget chain identification. We first select

Fig. 6: A simple query script example.

Fig. 7: Overview of gadget chain verification.

the magic methods and security-sensitive call sites we are
interested in (line 1-2). For example, we adopt readObject()
and invoke() as the source and sink respectively, and use the
built-in method allSimplePaths()4 (line 3) to search for all
suspicious gadget chains (i.e., reachable paths from the target
source to the sink). A set of paths, which satisfy the following
three conditions: 1) its start node is a source method; 2) its
end node is a sink method; and 3) the type of connected edges
is CALL or Overriding, is returned as our retrieval results (line
4), i.e., suspicious gadget chains.

C. Chain Verification

Given a set of suspicious gadget chains, GCMiner leverages
an overriding-guided object generation approach to produce
valid injection objects and performs coverage-guided fuzzing
for verification. Figure 7 shows the overview of our chain
verification, which contains two modules: 1) Object Gen-
eration; and 2) Dynamic Execution. For object generation,
GCMiner first selects a gadget chain from candidates and
instantiates the class to which the given chain’s first gadget
(i.e., deserialization entry point, or magic method) belongs
to construct an initial injection object. Then, to enable the
generated injection object to follow the execution flow of the
target gadget chain, GCMiner modifies the property values
of the injection object by dynamic binding. For dynamic
execution, GCMiner feeds these generated injection objects
into the target program for fuzzing. Once an injection object
reaches the target security-sensitive call site, this gadget chain
under testing will be confirmed as exploitable. The procedure
of chain verification will not terminate until all statically
identified candidate chains have been checked.
Object Generation. Generating an injection object for a given
gadget chain requires dynamically modifying its property
values to enable the injection object to follow the execution

4https://neo4j.com/developer/neo4j-apoc/



flow of the identified gadget chain to reach security-sensitive
call site. To achieve this, we leverage overriding relations
between methods to guide injection object generation.

Specifically, GCMiner first generates an initial injection
object by instantiating the class to which the entry point (i.e.,
magic method) of the target chain belongs. Then, according
to the relation information provided by DA-CG, GCMiner
modifies the property values of the initial injection object
through dynamic binding to ensure that the injection object
can reach the dangerous sink. Such a dynamic property value
assignment requires 1) selecting a property, which receives a
serializable class object as its value, from the property list of
the injection object (i.e., property selection); and 2) assign-
ing an instantiated object as the value to the corresponding
property (i.e., value assignment).

For property selection, we dynamically obtain each property
type of the injection object by Java reflection [40]–[42], which
allows a software system to inspect and change the behavior of
its classes, interfaces, methods, and fields at runtime. When
a property type is a class object, this property is listed as
a candidate for value assignment. These candidate properties
may be exploited by attackers to implement insecure deserial-
ization paths. For value assignment, we adopt the overriding
edge provided by our constructed DA-CG as guidance to
select an overridden method that can be invoked by dynamic
binding to enable the injection object to reach the dangerous
sink of the given gadget chain. GCMiner instantiates the
class to which the overridden method belongs, and analyzes
whether the class object can be assigned as the property
value to a candidate property of the injection object. If the
class to which the overridden method belongs is a subclass
of the property type of the injection object, GCMiner will
assign the instance containing the overridden method to the
corresponding property of the injection object.

Considering that the properties of a given gadget chain
may need multiple modification to facilitate the execution of
the gadget chain, we repeat the above process (i.e., property
selection and value assignment) for dynamic property value
assignment to enable the injection object to reach the security-
sensitive call site. Once the property values of the injection
object are configured, GCMiner will feed it into the target
application for fuzzing.
Dynamic Execution. As discussed before, an exploitable
gadget chain should enable the malicious deserialized object
to reach (in terms of control flow) and affect (in terms of
data flow) the security-sensitive sink, while our overriding-
guided object generation strategy just assure the reachability
of these statically reported gadget chains (i.e., attackers can
dynamically invoke these gadgets to inject malicious objects).
Hence, to verify whether the dangerous sink of the given
gadget chain can be affected by the generated injection object,
GCMiner adopts a generation-based coverage-guided Java
fuzzing framework JQF [43], which provides an extensible
interface for users to easily integrate their own input generation
mechanism for testing.

Specifically, GCMiner first executes the injection object

on the instrumented program and collects the code coverage
as feedback to guide the fuzzing procedure. The injection
object which covers more branches in the gadgets is more
likely to reach the target sink. Unlike traditional coverage-
guided fuzzing which blindly increases the code coverage to
accidentally trigger potential vulnerabilities, GCMiner only
instruments classes to which gadgets belong on the applica-
tion’s classpath, which makes the fuzzer pay more attention to
those seeds (i.e., generated or mutated injection objects) that
trigger more code snippets within gadgets. These seeds are
more likely to reach dangerous sinks. For mutation, GCMiner
leverages the JQF-Zest algorithm [44] to produce new inputs
that get deeper into the target gadget chain by mutating the
interesting seeds at the bit-level. These bit-level mutations
correspond to property-level mutations on structured injection
objects [45]. For primitive data types (e.g., boolean, int),
the fuzzer uses multiple pseudo-random methods built in
JQF to convert untyped bit parameters into random typed
values. For the reference data types, the fuzzer tailors targeted
templates for specific types. When the property type is class,
the fuzzer will randomly select a class from the candidate
classes (i.e., sub-classes) of this property via the method
random.choose(). For an array property, the fuzzer uses the
method random.nextInt() to randomly set up the array size
and assigns random values based on the type of elements (i.e.,
instances that inherit the class type of the array) to the array.

Once a generated injection object reaches the target
security-sensitive call site, the suspicious chain under testing
will be confirmed as a gadget chain. The procedure of chain
verification will not terminate until all the statically reported
gadget chains have been checked.

V. EXPERIMENT

A. Research Questions

RQ3: Effectiveness of GCMiner. How effective is GCMiner
in mining Java deserialization gadget chains?

By investigating this RQ, we aim to answer how well
does GCMiner perform in comparison with the state-of-the-art
automatic Java deserialization gadget chain mining techniques.
RQ4: Ablation study.
- RQ4a: Impact of additional sources and sinks. Whether
these newly added sources and sinks contribute to mining more
exploitable gadget chains?

Our approach includes some new magic methods and
security-sensitive call sites, which aims to search for more
suspicious gadget chains. This question aims to show whether
these additional sources and sinks can help find more ex-
ploitable gadget chains?
- RQ4b: Impact of introducing method overriding. Does the
introduction of overriding relations contribute to identifying
more exploitable gadgets?

One of our key insights is to introduce additional overriding
relations to capture dynamic program features abused by
attackers for gadget chain construction. By investigating this
RQ, we aim to show whether the introduction of overriding
relations helps identify more exploitable gadget chains.



- RQ4c: Impact of overriding-guided object generation.
Can our overriding-guided object generation approach produce
valid injection objects for fuzzing?

Another key insight of our approach is that generating
exploitable injection objects through binding exploitable gad-
get dynamically to enable them to reach dangerous sinks.
By answering this RQ, we aim to show whether leveraging
overriding relations to guide dynamic binding can generate
valid injection objects for gadget chain verification.

B. Experiment Setup

1) Benchmark: To evaluate the effectiveness of GCMiner,
we adopted our manually constructed Java deserialization
vulnerability benchmark in Table I, which consists of a widely-
used gadget chain collection ysoserial [18] repository and 18
famous Java applications with 86 known gadget chains.

2) Baseline methods: We compared GCMiner with a well-
known open-source tool, Gadget Inspector [10], and a previous
study, Serhybrid [11].

3) Implementation: We used Tabby [46], a Java code
analysis tool based on Soot [47], to extract both call and
overriding relations between methods for DA-CG construction.
For chain identification, we used a popular graph database
Neo4j [48] to perform our customized query scripts. To
verify statically identified gadget chains, we implemented
our overriding-guided object generation strategy based on
JQF [43], a coverage-guided Java fuzzing framework. JQF
was selected for its extensibility in implementing structured
seed generation templates. All experiments were conducted
on a Linux workstation with an Intel(R) Core(TM) i9-12900k
@3.90GHz and 128 GB of RAM, running Ubuntu 18.04.4
LTS with JDK 1.8.0 152.

4) Experimental configurations: For RQ3, we ran GCMiner
and baselines on vulnerability-specific versions of applications
in our benchmark. Unfortunately, despite our best efforts,
Serhybrid was not reproducible. We made unsuccessful at-
tempts to contact the authors for suggestions. We could only
compare GCMiner with Serhybrid on the results of several
applications reported in the original paper. To ensure the
fairness of the comparison, we conducted the experiments
under the same conditions and evaluated the performance with
the same metrics. We repeated each experiment 10 times and
reported their average performance [49]. According to the
assessment of our employed security experts (each of them had
two to five years of vulnerability mining-related experience
gained in industry), we empirically set the threshold for the
length of each chain to 15 gadgets to avoid the path explosion
problem during graph traversal. For each statically identified
gadget chain, we limit the fuzzing campaign of GCMiner to
120 seconds. For RQ4a, we only used statically constructed
CGs for gadget chain identification to evaluate the contribution
of overriding relations to capturing exploitable gadgets. In
RQ4b, to investigate the contribution of our overriding-guided
object generation, we randomly built injection objects based
on DA-CG for comparison.

TABLE II: Comparison results between GCMiner and Gadget
Inspector.

Application #KGC
GCMiner Gadget Inspector

#TP/#Rep P* R #TP/#Rep P R

ysoserial 34 21 / 29 1 0.618 3 / 116 0.026 0.088

JBoss RESTEasy 1 1 / 3 1 1 0 / 2 0 0

Apache Camel 2 2 / 2 1 1 0/ 2 0 0

Apache Brooklyn 1 1 / 1 1 1 0 / 2 0 0

Apache XBean 1 0 / 2 1 0 0 / 2 0 0

Shiro 3 1 / 2 1 0.333 0 / 2 0 0

Pippo 2 2 / 5 1 1 0 / 2 0 0

Adobe Coldfusion 2 2 / 3 1 1 1/ 2 0.500 0.500

VMWare VCenter 1 1 / 1 1 1 0 / 2 0 0

Red5 1 1 / 2 1 1 0/2 0 0

Hessian 5 4 / 7 1 0.800 0 / 2 0 0

XStream 14 12 / 19 1 0.857 1 / 2 0.500 0.071

Commons Collections 3 3 / 7 1 1 0 / 12 0 0

Dubbo 2 1 / 2 1 0.500 0 / 3 0 0

WebLogic 5 4 / 11 1 0.800 0 / 6 0 0

Emissary 3 2 / 4 1 0.667 0 / 3 0 0

Jenkins 2 1 / 9 1 0.500 0 / 2 0 0

Apache OFBiz 3 1 / 4 1 0.333 0 / 2 0 0

Spring 1 1 / 5 1 1 0 / 6 0 0

Total 86 61 / 118 1 0.709 5 / 172 0.029 0.058

* Since GCMiner adopted fuzzing to verify exploitable gadget chains, we
used dynamically confirmed gadget chains as Rep to compute the precision.

C. Evaluation Metrics

To evaluate our approach, we used the following metrics.
Known Gadget Chains (KGC) is the number of the publicly

known gadget chains in a target application.
Reported Gadget Chains (Rep) computes the total number

of gadget chains statically reported by each approach.
True Positives (TP) is the number of truly exploitable

gadget chains reported by each approach. In our experimental
evaluation, TP counts how many known gadget chains in the
benchmark are mined.

Precision (P) is the fraction of truly exploitable gadget
chains among the reported ones. It is calculated as: P = TP

Rep .
Recall (R) is the fraction of known gadget chains that are

identified by each approach. It is calculated as: R = TP
KGC .

D. Effectiveness of GCMiner (RQ3)

Table II shows the overall results of GCMiner. In total,
GCMiner identifies 61 out of 86 known gadget chains with a
recall of 61/86 = 70.9% without false positives. The reasons
for these false negatives mainly come from two aspects. In the
static identification stage, due to the limited support for certain
dynamic features of Java language such as reflective calls [40]
and dynamic proxy [35], certain exploitable gadgets on the
classpath of the application are not captured by our DA-CG.
For example, in Groovy1 [50], the attacker could exploit the
class ConvertedClosure, whose constructor receives a proxy
MethodClosure as its parameters, to pass tainted arguments to
the gadget MethodClosure.call() to execute the malicious
commands. Due to the unawareness of which classes can
be proxied, gadget chains involving dynamic proxy during
their construction are difficult to be identified by GCMiner,



Fig. 8: A gadget chain identified by GCMiner but missed by
Gadget Inspector.

resulting in false negatives. In the dynamic verification stage,
due to certain specific constraints, some statically identified
gadget chains cannot be dynamically validated by GCMiner.
For example, GCMiner fails to construct sink-reachable injec-
tion objects for AspectJWeaver [51] in ysoserial because its
sink method writeToPath() receives a file as an input, which
is not supported by our injection object generation strategy.

GCMiner vs. Gadget Inspector. As shown in Table II,
GCMiner identifies a total of 118 suspicious gadget chains,
of which 61 are known gadget chains. By contrast, Gadget
Inspector can only identify five exploitable gadget chains with
a recall of 5/86 = 5.8%, and a precision of 5/172 = 2.9%.
In addition, all gadget chains identified by Gadget Inspector
are covered by GCMiner. Such a significant performance gap
may result from two aspects. On the one hand, constrained by
a limited number of exploitable magic methods and security-
sensitive call sites, a large number of suspicious gadget chains
on the classpath of the application are missed by Gadget
Inspector. Figure 8 presents a typical example which can be
identified by GCMiner but missed by Gadget Inspector. It
is a widely exploited gadget chain which can be triggered
to perform JNDIi attack. During the process of object de-
serialization, the method getDatabaseMetaData() (line 2) in
class JdbcRowSetImpl will invoke the method connect() (line
3) by default. To get the context of the object transferred
by users, the method connect() will invoke the method
lookup() (line 8), which is a security-sensitive call site that
can be exploited by remote attackers to inject malicious code.
However, since the method lookup() is not considered by
Gadget Inspector, this gadget chains is missed. On the other
hand, due to the limited precision of static analysis, Gadget
Inspector cannot guarantee that identified gadget chains are
truly exploitable, resulting in many false positives. Owing
to our overriding-guided object generation approach which
produces valid injection objects for verification, the gadget
chains which cannot be exploited will be filtered out.

GCMiner vs. Serhybrid. We also compared GCMiner with
Serhybrid on the selected applications from ysoserial reposi-
tory. Table III presents the comparative results of GCMiner
and Serhybrid. Column “#Object” presents the number of
injection objects generated by each approach. Column “#Ex-
ploit” is the number of injection objects that can trigger known
gadget chains.

TABLE III: Comparison results between GCMiner and Serhy-
brid.

Application #KGC GCMiner Serhybrid
#Object #Exploit #Object #Exploit

bsh-2.0b5 1 1 0 0 0
clojure-1.8.0 1 2 1 N/A 0
commons-beanutils-1.9.2 1 2 1 0 0
commons-collections-3.1 5 12 3 1 1
commons-collections4-4.0 2 4 2 1 1
groovy-2.3.9 1 2 0 0 0
hibernate 2 3 2 0 0
jython-standalone-2.5.2 1 1 0 N/A 0
rome-1.0 1 2 1 0 0
Total 15 29 10 2 2

The results show that, from the nine applications which con-
tain 15 known gadget chains, GCMiner successfully generates
29 injection objects, 10 of which are valid injection objects that
can be leveraged by attackers to perform deserialization attack.
By contrast, Serhybrid generates two valid injection objects.
Both two gadget chains reported by Serhybrid are covered by
GCMiner. Although Serhybrid achieves higher precision due
to its points-to analysis, many gadget chains are missed. The
reason may be that the heavy use of Java dynamic program
features makes Serhybrid hard to compute reachable paths to
dangerous sinks. As a result, only a small number of objects
can be successfully generated for verification. By contrast,
owing to our constructed DA-CG, GCMiner can better model
complex dynamic behaviors of programs and contribute to cap-
turing more exploitable gadgets. Besides, from the results, we
can observe that Serhybrid is hard to generate valid injection
objects (timeout even occurred when analyzing Clojure [52]
and Jython [53]) for verification. Such situation occurs due to
the strict object generation strategy of Serhybrid that relies on
the analysis results of heap access paths. Therefore, once the
precise execution paths which perform malicious objects to the
target sink cannot be identified by static analysis, Serhybrid is
difficult to produce valid injection objects.

Answer to RQ3: GCMiner significantly outperforms the
state-of-the-art Java deserialization gadget chain mining
tools, identifying 56 unique gadget chains that cannot be
identified by baselines.

E. Ablation study (RQ4)

1) RQ4a: Impact of additional sources and sinks: Table
IV summarizes the number of known gadget chains discovered
by GCMiner and other variants. Overall, with these additional
sources and sinks newly collected in our previous empirical
study, GCMiner identifies 27 more probably exploitable gadget
chains, 12 of which are the known gadget chains. Besides, we
also notice that the improvement of Gadget InspectorV ar is
not significant. Despite of additional sources and sinks, Gadget
InspectorV ar only mines two more exploitable gadget chains
but reports 808 more false positives. The reason may be that
the introduction of new exploitable sources and gadgets can
improve the search scope about suspicious gadget chains to
a certain extent. Meanwhile, it also amplifies the deficiencies



TABLE IV: Impact of additional sources and sinks on gadget
chain mining.

Application #KGC
GCMiner GCMinerV ar Gadget InspectorV ar

#Rep #TP #Rep #TP #Rep #TP

ysoserial 34 29 21 24 15 637 4

JBoss RESTEasy 1 3 1 2 1 14 0

Apache Camel 2 2 2 2 2 14 0

Apache Brooklyn 1 1 1 1 1 16 0

Apache XBean 1 2 0 1 0 14 0

Shiro 3 2 1 1 0 14 0

Pippo 2 5 2 3 1 14 0

Adobe Coldfusion 2 3 2 3 2 14 1

VMWare VCenter 1 1 1 1 1 12 0

Red5 1 2 1 1 1 14 0

Hessian 5 7 4 5 3 14 0

XStream 14 19 12 15 10 14 2

Commons Collections 3 7 3 7 3 69 0

Dubbo 2 2 1 2 1 16 0

WebLogic 5 11 4 8 3 21 0

Emissary 3 4 2 3 2 11 0

Jenkins 2 9 1 6 1 14 0

Apache OFBiz 3 4 1 2 1 14 0

Spring 1 5 1 4 1 46 0

Total 86 118 61 91 49 982 7

in imprecision of static analysis in gadget chain mining. By
contrast, our reflection-guided exploit generation approach can
effectively filter out invalid gadget chains.

Answer to RQ4a: Additional exploitable magic methods
and security-sensitive call sites are useful to identify more
potential gadget chains.

2) RQ4b: Impact of introducing method overriding:
Table V shows the number of gadget chains identified by
GCMiner in different configurations. Columns “With Overrid-
ing” and “W/O Overriding” represent GCMiner enabling/dis-
abling method overriding in DA-CG, respectively. The results
demonstrate that the introduction of method overriding posi-
tively contributes to improving the effectiveness of GCMiner.
In particular, by taking method overriding into consideration,
GCMiner can identify 118 suspicious gadget chains, of which
61 are true positives. By contrast, GCMiner based on statically
constructed CGs can only identify 3 out 9 exploitable gadget
chains. Hence, overriding relations can effectively capture im-
plicit method invocations and is helpful for mining exploitable
gadget chains.

Answer to RQ4b: The introduction of overriding relations
significantly enhances the capability of existing static anal-
ysis in capturing potential exploitable gadgets, enabling our
approach to identify more exploitable gadget chains.

3) RQ4c: Impact of overriding-guided object generation:
Table VI presents the results of GCMiner and its correspond-
ing variant (GCMinerNG) which generates injection objects
with no guidance during fuzzing. The results show that our
overriding-guided object generation can effectively generate
injection objects, 61 of which are valid exploits. By contrast,
GCMinerNG can only generate seven objects, none of which
can reach the dangerous sink. This performance gap may be
due to that constrained by the highly structured characteristic
(i.e., the property values of an exploitable object need to

TABLE V: Impact of introducing overriding relations on
gadget chain identification.

Application #KGC With Overriding W/O Overriding
#Rep #TP #Rep #TP

ysoserial 34 29 21 6 2

JBoss RESTEasy 1 3 1 0 0
Apache Camel 2 2 2 1 0
Apache Brooklyn 1 1 1 0 0
Apache XBean 1 2 0 0 0
Shiro 3 2 1 0 0
Pippo 2 5 2 1 0
Adobe Coldfusion 2 3 2 0 0
VMWare VCenter 1 1 1 0 0
Red5 1 2 1 0 0
Hessian 5 7 4 0 0
XStream 14 19 12 3 0
Commons Collections 3 7 3 2 1
Dubbo 2 2 1 0 0
WebLogic 5 11 4 1 0
Emissary 3 4 2 0 0
Jenkins 2 9 1 1 0
Apache OFBiz 3 4 1 0 0
Spring 1 5 1 0 0
Total 86 118 61 9 3

TABLE VI: Impact of overriding-guided object generation on
gadget chain verification.

Application #KGC GCMiner GCMinerNG

#Object #Exploit #Object #Exploit
ysoserial 34 86 21 5 0

JBoss RESTEasy 1 3 1 0 0
Apache Camel 2 7 2 0 0
Apache Brooklyn 1 3 1 0 0
Apache XBean 1 2 0 0 0
Shiro 3 6 1 0 0
Pippo 2 5 2 0 0
Adobe Coldfusion 2 7 2 0 0
VMWare VCenter 1 3 1 0 0
Red5 1 2 1 0 0
Hessian 5 11 4 0 0
XStream 14 48 12 1 0
Commons Collections 3 8 3 1 0
Dubbo 2 4 1 0 0
WebLogic 5 13 4 0 0
Emissary 3 9 2 0 0
Jenkins 2 3 1 0 0
Apache OFBiz 3 5 1 0 0
Spring 1 4 1 0 0
Total 86 229 61 7 0

be modified many times to reach the dangerous sink) of
the injection object, existing object generation techniques can
hardly produce valid injection objects for verification.

Answer to RQ4c: With our overriding-guided object gen-
eration, GCMiner can effectively generate sink-reachable
injection objects for fuzzing.

VI. THREATS TO VALIDITY

A. External validity

A main external threat comes from the generalization of
our empirical results. Similar to existing works [6], [10],
[11], [54], the effectiveness (recall) of our static gadget chain
identification also relies heavily on the prior expert knowledge



of available sources and sinks. Considering that there are a few
orthogonal tools/approaches [55], [56] have been proposed to
automatically identify untrusted deserialization entry points,
and our knowledge base is configurable, i.e., newly disclosed
sources and sinks can be dynamically added, the capability
to detect unknown Java deserialization vulnerabilities in the
wild can be improved. Furthermore, since we only focus on
Java deserialization vulnerabilities, all findings and evaluation
results may not be applicable to other programming languages
(e.g., PHP [54] and .NET [32]) which also suffer from the risk
of deserialization vulnerabilities. We leave it as a future work
to extend our approach to other languages.

B. Internal validity

Internal validity in our experiment comes from two aspects.
On the one hand, since our approach aims to identify ex-
ploitable gadget chains instead of detecting Java deserializa-
tion vulnerabilities, gadget chains which cannot be exploited
in practice may be wrongly reported. To avoid the bias in our
conclusions, we tried our best to manually reproduce each
vulnerability in our benchmark to make sure the practical
exploitability of gadget chains. On the other hand, due to
the non-reproducibility of Serhybrid, we directly compared
our approach with Serhybrid on its reported applications and
results under the same experimental situations.

VII. RELATED WORK

Java Deserialization Vulnerability Detection. Many stud-
ies have been proposed for analyzing, defensing, and detecting
Java deserialization vulnerabilities [57]–[61]. Muñoz et al.
[33] conducted a comprehensive analysis on JSON deseri-
alization libraries and presented several mitigation measures
as takeaways. Carettoni [62] presented a configurable Java
deserialization library, which supports multiple optional set-
tings such as blacklist and whitelist, to secure application
from untrusted input. Koutroumpouchos et al. [56] proposed
an extendable tool ObjectMap, which generates a series of
requests to validate whether the payload can be directly passed
to the target application. Cristalli et al. [63] proposed a
dynamic approach, which collects the behavior information
of benign deserialization process and constructs the precise
execution path to prevent untrusted data input. Sayar et al.
[22] conducted a large-scale empirical study on publicly
known Java deserialization RCE exploits and investigated how
deserialization vulnerabilities manifest in real code bases and
libraries.

In order to automatically mine suspicious gadget chains,
Haken [10] presented Gadget Inspector, which leverages static
taint analysis and simple symbolic execution to mine the
propagation paths of parameters within/between methods of
a target application, and then performs a Breadth-first search
(BFS) to search for exploitable gadget chains. Rasheed et al.
[11] proposed Serhybrid, a hybrid analysis-based approach
which constructs a heap abstraction to produce actual input
objects to automatically verify exploitable gadget chains. In
this paper, GCMiner constructs DA-CG to identify more

exploitable gadget chains, and leverages an overriding-guided
object generation approach to produce valid injection objects.

Automatic Exploit Generation. Automatic Exploit Gener-
ation (AEG) is proposed to automatically construct exploits to
evaluate the exploitability of vulnerabilities [27], [28], [64],
[65]. Avgerinos et al. [26] proposed an automatic vulnera-
bility mining and exploitation approach, which uses program
verification to find the input that can be used and make the
program enter an unsafe state (such as Out-of-bounds write
and malicious format string). Padaryan et al. [66] presented
a framework, which does not require debug information and
could be applied to binary programs, based on program dy-
namic analysis and symbol execution to construct exploits for
stack buffer overflow vulnerabilities. Wu et al. [67] proposed
an automated exploitation framework for kernel Use-After-
Free (UAF) vulnerabilities. They leveraged fuzzing to provide
more kernel crashes on contextual environments as a basis for
vulnerability exploitation, and then used symbolic execution
to exploit the target vulnerability in different contextual en-
vironments. In this paper, based on our constructed DA-CG,
GCMiner dynamically binds exploitable overridden methods
to generate valid injection objects for automatic verification.

VIII. CONCLUSION

Java deserialization vulnerability receives little attention in
the academic community despite its severe impact in practice.
In this paper, we call for attention to this problem and performs
an empirical study to investigate the characteristics of Java
deserialization vulnerabilities from the perspective of gadget
chain exploitation. Based on our empirical findings, we pro-
pose GCMiner, a novel gadget chain mining approach which
analyzes both explicit and implicit methods calls to identify
more exploitable gadget chains and generates valid injection
objects through dynamic binding for fuzzing. The evaluation
results show that GCMiner significantly outperforms state-of-
the-art solutions, and discovers 56 unique gadget chains that
cannot be identified by baselines.

In the future, we plan to apply GCMiner to the industrial
scenario to perform a large-scale case study for evaluation.
In addition, we also plan to investigate automatic exploit
generation techniques for vulnerability reproduction and con-
firmation.
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