2302.06914v1 [cs.SE] 14 Feb 2023

arxXiv

Heterogeneous Anomaly Detection for Software
Systems via Semi-supervised Cross-modal Attention

Cheryl Lee*, Tianyi Yang*, Zhuangbin Chen', Yuxin Suf, Yonggiang Yang®, and Michael R. Lyu*
*Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Email: cheryllee@link.cuhk.edu.hk, {tyyang, lyu, zbchen}@cse.cuhk.edu.hk
fSun Yat-sen University, Guangzhou, China. Email: suyx35@mail.sysu.edu.cn
iComputing and Networking Innovation Lab, Cloud BU, Huawei. Email: yangyongqiang @huawei.com

Abstract—Prompt and accurate detection of system anomalies
is essential to ensure the reliability of software systems. Unlike
manual efforts that exploit all available run-time information,
existing approaches usually leverage only a single type of mon-
itoring data (often logs or metrics) or fail to make effective
use of the joint information among different types of data.
Consequently, many false predictions occur. To better understand
the manifestations of system anomalies, we conduct a systematical
study on a large amount of heterogeneous data, i.e., logs and
metrics. Our study demonstrates that logs and metrics can
manifest system anomalies collaboratively and complementarily,
and neither of them only is sufficient. Thus, integrating hetero-
geneous data can help recover the complete picture of a system’s
health status. In this context, we propose Hades, the first end-
to-end semi-supervised approach to effectively identify system
anomalies based on heterogeneous data. Our approach employs
a hierarchical architecture to learn a global representation of the
system status by fusing log semantics and metric patterns. It cap-
tures discriminative features and meaningful interactions from
heterogeneous data via a cross-modal attention module, trained
in a semi-supervised manner. We evaluate Hades extensively on
large-scale simulated data and datasets from Huawei Cloud. The
experimental results present the effectiveness of our model in
detecting system anomalies. We also release the code and the
annotated dataset for replication and future research.

Index Terms—Software System, Anomaly Detection, Cross-
modal Learning

I. INTRODUCTION

Recent years have witnessed the scale and complexity of
software systems expand dramatically. However, anomalies are
inevitable in large-scale software systems, resulting in consid-
erable revenue and reputation loss [1]. The core competence
of service providers stems from guaranteeing the reliability
of software systems, where automated anomaly detection is
a primary step and has been picked up extensively within
the community. In real-world software systems, many types
of monitoring data, including metrics, logs, alerts, and traces,
play an essential role in software reliability engineering [2],
[3]. In particular, metrics and logs have been widely used for
anomaly detection. Metrics (e.g., response time, number of
threads, CPU usage) are real-valued time series measuring the
system status. Logs are semi-structured text messages printed
by logging statements to record the system’s run-time status.

Tremendous efforts have been devoted to detecting anoma-
lies automatically since manual troubleshooting is impractical

Yuxin Su is the corresponding author.

and error-prone. Some approaches rely on metrics [4]-[6],
while others rely on logs [7]-[9]. However, as a single source
of information is often insufficient to depict the status of a
software system precisely, existing methods could produce
many false predictions [10] The popularity of large-scale
distributed systems worsened the situation, where anomaly
patterns are more complex. Intuitively, combining different
sources of monitoring data can allow fuller utilization of run-
time information to analyze the system status holistically.

To verify our intuition, we study the characteristics of
system anomalies incurred by typical faults based on a large
amount of heterogeneous monitoring data. The data are gener-
ated via fault injection on Apache Spark, where we run various
workloads and inject 21 typical types of faults. Compared to
existing open-access datasets, e.g., [10]-[13], ours possesses
temporally aligned heterogeneous run-time information with
rich semantics and annotations (i.e., abnormal or not).

Based on the study, we obtain three interesting findings:

o Though the presence of critical logs often indicates prob-
lems, their absence does not necessarily imply a healthy
system status. An important reason is that sometimes
determining where and how to place an informative log
statement is difficult [14].

o In some cases, faults do not affect metrics, while in other
cases, metrics exhibit unusual patterns (e.g., jitters) even if
the system is experiencing minor performance fluctuations
instead of faults. Hence, simply identifying anomalous
metric patterns is insufficient.

« Faults can cause unexpected behaviors involving either logs
or metrics, or both of them. So the two data sources should
be analyzed comprehensively to reveal the actual anomalies.

These findings necessitate considering heterogeneous data for

anomaly detection, and high-level patterns (i.e., log semantics

and metric patterns) of the observed data deserve full attention.

However, we identify three challenges in extracting and
integrating essential information from heterogeneous data.
(1) Complex intra-modal information. Logs reflect system
anomalies mainly through their semantics (e.g., keywords)
and sequential dependencies across events. Besides, metrics
reflect diverse aspects of the system status, and metrics of
different aspects tend to develop distinct behavior patterns.
For example, when a system works normally, the disk usage
often moves steadily, while the CPU usage can fluctuate

dramatically. Such complex and diverse data patterns call for
a model to be highly competent in information processing and
feature extraction. (2) Significant inter-modal gap. Logs and
metrics are in different forms, i.e., textual and time series.
Such a discrepancy poses a huge challenge to effectively using
the joint information for downstream anomaly detection. To
this end, it is critical to align the log semantics and metric
patterns. (3) Trade-off between cost and accuracy. Supervised
approaches are effective but require high-quality labels. An-
notating massive logs and metrics is prohibitively difficult,
costly, and time-consuming, so the requirement of annotations
is usually the bottleneck of putting supervised approaches
into practice. Though unsupervised learning avoids labeling
by mining inherent trends of unlabeled data to discover
anomalies, it suffers inaccuracies with less human oversight
and ignorance of valuable domain expertise.

To tackle these challenges, we propose Hades, a
Heterogeneous Anomaly DEtector via Semi-supervised learn-
ing for large-scale software systems, equipped with a novel
cross-modal attention mechanism. The key idea is to learn
a discriminative representation of the system status based on
logs and metrics with limited labeled data for training. Hades
first captures intra-modal dependencies using a hierarchical
architecture. Then it generates a global representation of the
most discriminative latent information of logs and metrics via
a modal-wise attentive fusion module.

Specifically, Hades involves four components for data mod-
eling and engages semi-supervised training. The components
are: (1) For logs, we adopt the FastText algorithm [15]
and Transformer [16] to model lexical semantics and se-
quential dependencies of logs. (2) We employ a hierarchical
encoder to learn metric representations based on the causal
convolution network [17]. It jointly learns aspect-oriented
temporal dependencies, cross-metric relationships, and inter-
aspect correlations. (3) We design a novel modal-wise attention
mechanism to facilitate learning meaningful intra- and inter-
modal properties. (4) Finally, the framework infers the system
status and triggers an alarm upon detecting anomalies. The
semi-supervised training comprises two phases: First, we apply
a few labeled data to train the initial model and then pseudo-
label the remaining unlabeled data via the current training
model. Second, the model is updated using both labeled and
pseudo-labeled data with high confidence until convergence.

We evaluate Hades using one simulated and two datasets
from Huawei Cloud. The experimental results demonstrate
the superiority of Hades, which achieves an average FI1-
score of 0.933 and outperforms all state-of-the-art competitors,
including log-based and metric-based ones. Extensive ablation
experiments further confirm the effectiveness of our designs
(i.e., exploiting heterogeneous information, cross-modal learn-
ing, attentive fusion, and intra-modal feature extraction).

In summary, the main contributions of this paper are:

« We systematically study how heterogeneous data manifest
system anomalies. To our best knowledge, we are the first to
point out the collaborative and complementary relationship
of logs and metrics in manifesting anomalies.

« We propose the first end-to-end semi-supervised approach,
Hades, to effectively detect system anomalies based on
heterogeneous monitoring data via cross-modal attention.

« Extensive experiments on simulated data and datasets from
Huawei Cloud demonstrate the effectiveness of Hades, as
well as the contribution of each design to Hades.

e« We collect an annotated dataset containing complex log
semantics and metric patterns, which is released with our
code for this study [18] of this work to facilitate other
related practitioners and researchers.

II. PROBLEM STATEMENT

We first introduce essential terminologies. A log message is
a line of the standard output of logging statements, composed
of constant strings (written by the developers) and variable
values (determined by the system) [19]. Parsing a log message
is to remove all variables to obtain a log event, which describes
system run-time events [20]. Log messages chronologically
collected within a certain period constitute a log sequence.
Figure 1 shows an example of logs and obtained log events.
On the other hand, metrics are the numerical measurement of
system performance that are sampled uniformly. Consecutive
points within a certain period make up a metric segment. By
collecting both the logs and metrics in a given period of length
T, we obtain a chuck with time-aligned heterogeneous data.
The value of T is determined according to real-world require-
ments. Anomalies are abnormal system behaviors, events, or
observations that do not conform to the expected patterns in
the run-time information [20]. These anomalies often indicate
system issues and could evolve into errors or failures.

17/06/09 20:10:48 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 2703 bytes result sent to driver
17/06/09 20:10:52 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 42
17/06/09 20:10:52 INFO executor.Executor: Running task 0.0 in stage 1.0 (TID 42)

17/06/09 20:10:52 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 56
17/06/09 20:10:52 INFO executor.Executor: Running task 1.0 in stage 1.0 (TID 56) \

* Parsing
Component Log Event

Log Sequence

Log Message

‘ Timestamp Level

17/06/09 20:10:48 INFO executor.Executor Finisned task L stage * (TID). " bytes
17/06/09 20:10:52 INFO executor.CoarseGrainedExecutorBackend Got assigned task *

17/06/09 20:10:53 INFO executor.Executor Running task * in stage * (TID *)
17/06/09 20:10:54 INFO executor.CoarseGrainedExecutorBackend Got assigned task *

17/06/09 20:10:55 INFO executor.Executor Running task * in stage * (TID *)

Fig. 1: Examples of logs and parsed logs.

We formalize the heterogeneous anomaly detection task and
present this learning problem with inputs and outputs. Given
a data chunk, we aim to determine the current system status
as abnormal or normal, denoted as 1 and O, respectively. Let
(X8, Yin) = {(X1,41), (X2,92),- -+, (XN, yn)} be the
training data chunks with corresponding status labels, where
X; = (XL, X™),(i=1,2,...,N) is the i-th data chunk, and
yi € {0,1} denotes the status. In the i-th chunk, X}, =
[}, @} ,, ..., 2}] denotes the log sequence, where L is the
number of log events generated during the period of length
T'; the metric segment is denoted by X7.p = [x]], x5,
s wZ"T] € RT*M where M and T are the number and length
of monitoring metrics, respectively. The goal is to model the
relations behind (X.n,Y1.n), and then for each incoming
unseen instance X4, we can predict the status yn 1.

III. DATA COLLECTION

In practice, engineers usually analyze different sources of
system run-time information for troubleshooting. However,
manual inspection is tedious and fallible, especially when
facing massive data. To explore the opportunity to automate
this process, we systematically study how system anoma-
lies affect the different types of monitoring data. Moreover,
most industrial datasets are access-restricted, and the publicly
accessible data are often too small or single-source due to
security and privacy concerns. To alleviate this problem, we
have released our collected dataset on [18]. It contains large-
scale logs and metrics generated from a distributed computing
system, which underpins our study and will facilitate the
advancement and openness of the community.

Our data collection comprises four steps: 1) deploy the
infrastructure, 2) conduct workloads to generate monitoring
data, 3) inject typical faults to simulate industrial production
anomalies, and 4) collect heterogeneous monitoring data si-
multaneously. We describe them in detail as follows.

A. Data Generation

Apache Spark is a widely-used framework for big data
processing [21]. We deploy Spark 3.0.3 on a distributed sys-
tems cluster containing a master node and five worker nodes
(virtual nodes supported by Docker [22]) in our laboratory
environment. To conduct workloads, we employ a big data
benchmark suite, HiBench [23]. Unlike existing collections
(e.g., [13], [24], [25]) running only word counting, we perform
19 kinds of workloads covering diverse service application
scenarios. The workloads fall into five categories and are
diverse in terms of resource usage, including CPU, /O,
memory, and network. For example, the workload random
forest performs complex computation, and the workload word
counting requires transaction-intensive file inputting. Details
about the settings of data collection are introduced in A.

We first repeat each workload without faults seven times,
where the run-time data are named as standard data when
no fault is injected during the entire workload. We mainly
collect two types of run-time data, i.e., logs and metrics.
Logs are aggregated by Spark automatically, and metrics
are sampled (per second) and collected via an open-source
monitoring tool [26]. In the following analysis, we focus on
11 monitoring metrics reflecting four critical aspects of the
system status (i.e., CPU, I/O, memory, and network), such
as CPU system usage, device read speed (“rkb/s”), memory
usage, and network throughput rate.

B. Fault Injection

After gathering standard data, we inject 21 typical types of
faults that are selected based on previous research [12], [24],
[25] and our investigation of the typical service failures at
Huawei Cloud. They fall into four categories:

o Process suspension: suspend a process for one minute,
including the Application Worker, Master, Node Manager,

Datanode, Resource Manager, and Namenode.

« Process killing: kill each process once, including the Ap-
plication Worker, Master, Node Manager, and Datanode.
Killing these processes does not terminate the running
workload immediately.

« Resource stress: load the system by injecting CPU, memory,
and other resource hogs, supported by [27].

o Network faults: inject Linux traffic faults such as losing
packets, high latency, and flashing disconnections.

Each fault lasts for one minute, and the time from fault

injection to fault clearance is called fault duration. The data

collected for the rest of the time are regarded as fault-free.

C. Data Annotation

We invite two Ph.D. students experienced in software re-
liability as annotators. They are unaware of when the faults
are injected or cleaned, so the labeling is completely based on
the data without off-site information. The principle to label
an anomaly is that the in-process data manifest discrepancies
from the standard data, e.g., error logs and unusual metric
jitters. Meanwhile, the abnormal manifestations should align
with the expected impact of the injected fault, which is
manually checked by annotators. We do not simply regard
all data generated during the fault duration as abnormal
because many faults can be immediately tolerated by the
system’s fault-tolerant mechanisms, incurring no anomalies to
the system. In this case, we treat the corresponding data as
normal. The label is accepted if the two students give the
same label for one chunk independently. Otherwise, they will
discuss with a post-doc until reaching a consensus. The inter-
annotator agreement [28] (i.e., a measure of the reliability of
an annotation process) achieves 0.876 before adjudication.

IV. MOTIVATION

This section elaborates on our motivation by answering the
following three questions:
« How do logs manifest system anomalies?
« How do metrics manifest system anomalies?
« How do monitoring data (including logs and metrics) reflect
the system status?

A. How do logs manifest system anomalies?

Logs may not be susceptible enough to some system faults.
Only 3.62% of positively labeled chunks are anomalous from
the log’s perspective. A typical example provides a closer
look. If the network drops some packets, the service response
becomes slow but may not hit the pre-defined timeout thresh-
old, and thereby no anomalous log event will be reported.
The main reason lies in the inherent deficiency of logs.
Logging [20], [29]-[31] is a human activity heavily relying on
developers’ knowledge. While it is relatively easy to write logs
describing severe failures, subtle performance issues, e.g., gray
failures [32], are often hard to identify. Thus, logs capturing
such anomalies could be missing.

Digging into logs, we observe that the lexical semantics are
noteworthy. Specifically, the appearance of some log tokens
indicates anomalies. These tokens only occur in abnormal

sequences, and their semantics describe unusual system events,
e.g., “uncaught” and “exception” in the event “Uncaught
exception in thread”. This observation is in line with the pro-
gramming habits of developers, as well as previous studies [7],
[33], [34]. It also validates that log semantics can reflect the
current system status to some extent.

Moreover, the contexts of logs are crucial for detecting
anomalies since logs carry the information of program control
flows [35]. For example, a normal sequence of log events is an
event reporting the “final application” state followed by the log
event “Shutdown hook called”. When anomalies happen, the
event “Shutdown hook called” may occur before reporting the
“final application” state. In this case, the application state will
be regarded as undefined or failed because the master has not
received the message informing the application state. Hence,
the contextual semantics of logs also contain information that
indicates whether the system is healthy.

Finding 1: Logs sometimes cannot record fine-grained
information and therefore, cannot manifest all system
anomalies. Moreover, both lexical and contextual semantics
are important with respect to reflecting the system status.

B. How do metrics manifest system anomalies?

Metrics are responsive to anomalies by continuously record-
ing system status. However, there are still some anomalous
periods ignored by many existing metric-based detectors.

M Abnormal

N M Normal
Inject

fault
AW

1K
o | \
0 20
Time/s

Fig. 2: Suspending the Datanode incurs anomalies manifested
in the metric “rkb/s”, but no novel pattern exists.

Remove
fault

rkb/s

40 60 100 120 140

Existing anomaly detectors usually try to identify novel
metric patterns through a comparison with normal system
behaviors, i.e., novelty detection [36]. They mainly focus on
local patterns (e.g., spikes, level shifts) rather than global
patterns spanning the entire workload. However, system faults
are not necessarily manifested by local novel patterns. Figure 2
displays an example that the metric “rkb/s” during the fault
“Datanode suspension”, as shown by the red line. The metric
“rkb/s” is abnormal as a whole, but its local patterns are hard
to identify as anomalies. Specifically, the red line remains zero
after fault injection, which is unexpected as there should have
been I/O activities going on. The blue line depicts the normal
(standard) status as a comparison. However, the blue line also
remains zero after the 90-th second because the system does
not exchange data near the end of the workload. So “rkb/s”
in either the normal or abnormal status can stay at zero for a
while. This indicates that a metric can behave very similarly
when the system is in the opposite status. Such patterns (which
may reflect the opposite system statuses) will confuse most
existing methods relying on novel pattern mining, leading to

performance degradation. The inherent reason is that system
metrics cannot completely reflect the software’s inner execu-
tion logic. Fortunately, such anomalies can be detected by
referring to the logs, where suspicious events like Exception
in createBlockOutputStream are reported.

M Abnormal
40 38.74 Outlier M Normal
- 30
< Inject
2
S 20 fault Remove ‘
S fault
z
© 10 l / \‘
0 A M A A A
0 50 100 150 200 250 300 350

Time/s

Fig. 3: An acceptable outlier of “CPU iowait” in a fault-free
period may trigger a false alarm by most automated tools.

On the flip side, unusual metric fluctuations may trigger
alarms even when no anomaly exists currently. Among all
metric segments manually labeled as positive, 8.87% of them
are collected in fault-free periods, indicating that relying solely
on metrics may cause false alarms due to the overreactions of
metrics. Figure 3 displays an example that the metric “CPU
iowait” generates a rare heartbeat spike even in the fault-free
period. Such sporadic and transient fluctuation is acceptable
without affecting the service, thereby no alarm should be
triggered. This case suggests that other information should be
involved to mitigate the issues caused by the over-sensitivity
of metrics to avoid unnecessary engineering resource waste.

- . Abnormal
S Normal
® 15] u
N
g Inject
- fault
g 10 Remove fault
[} /
=
0 50 100 150 200 250 300 350 400

Time/s

Fig. 4: The irregular metric jitters cannot be detected by single

point-based detectors.)
In addition, we find that metric patterns presented at the

segment level (i.e., a series of continuous metric points) sketch
issues much better than single-point outliers. For example, the
metric “memory usage” performs noticeably abnormal jitters
when injecting a “virtual memory hog” (Figure 4). However,
these jittering points are not outliers because their values are
not extraordinarily high or low. Clearly, the outlier perspective
ignores high-order data variations, such as the scope and
denseness, resulting in missing alarm issues.

Finding 2: Metrics are responsive to system status changes
but still insufficient in many cases. Their over-sensitivity
may cause false alarms on uncommon yet acceptable
fluctuations. Besides, segment-level metric patterns can be
more useful in anomaly detection than single-point outliers.

C. How do monitoring data reflect the system status?

We summarize representative faults and their effects on logs
and metrics in Table I, showing that faults can affect logs

TABLE I: Typical faults and the corresponding anomalous manifestations of logs and metrics
Faults Anomalies in logs Anomalies in metrics
Memory hog Warnings (reaches the memory limit) Memory-related metrics rise steeply
Virtual memory hog Errors (reporter thread fails) CPU and memory-related metrics jitter
I/0 hog Warnings (slow ReadProcessor) [/O-related metrics rise steeply

Network delay

Warnings (executor heartbeat timeout)

Network-related metrics suddenly drop

Connection flash Nothing (silent)

Network-related metrics suddenly drop and quickly restore

Datanode killed Errors (excluding datanode)

Related metrics plummet to zero (silent)

Secondary namenode killed

Errors (failed to connect to <IP>)

Related metrics plummet to zero (silent)

and metrics simultaneously. For example, one resource hog
can incur both sudden spikes in metrics and warning logs
for limited resources. Moreover, some cases see an evident
complementary relationship between logs and metrics. When
the Datanode or Secondary Namenode is killed, related metrics
plummet to zero but cannot be detected (i.e., silent) since these
metrics also plummet to zero if the application ends normally.
Metric-based anomaly detectors cannot distinguish such abnor-
mal drops from normal ones. In this case, logs play the role
of additional information to help determine the system status.
On the contrary, when the connection between nodes flashes,
no warnings or errors are generated in logs since the network
disconnection time is too short to affect program operation.
Nevertheless, network-related metrics faithfully reflect such
transient anomalies, e.g., the network throughout that drops
rapidly during flashes. Such observations align with intuition.
Basically, logs record the software’s internal execution logic,
while metrics provide an external view by measuring software
services’ performances, resource usage, etc. Thus, combining
the two can better portray the system status due to their
collaborative and complementary relationships.

Furthermore, a fault can affect logs and metrics to varying
degrees. For example, killing the Datanode during the Latent
Dirichlet Allocation (LDA) application causes 29 abnormal
metric segments while only one log sequence reports anoma-
lies. Another example is that when suspending the Namenode
in word counting, the related metrics experience a sharp drop
and remain unchanged since most of the computation has been
done. Yet tens of logs reporting a failed state are generated
because the worker nodes keep sending warnings while the
master node cannot receive messages. Hence, simply regarding
all types of data equally important is unreasonable since the
more severely affected part may deserve more attention. In
brief, we should combine and assign appropriate weights to
metrics and logs to promote effective anomaly detection.

Finding 3: Metrics and logs can both respond to anomalies,
but neither is sufficiently informative. They have collabo-
rative and complementary relationships in providing clues
for the system’s health. Also, the degree to which they are
affected by the same anomaly can vary greatly.

These findings support our motivation to develop an auto-
mated anomaly detector based on heterogeneous monitoring
data, i.e., logs and metrics. This results in HADES, our
solution to attack the previously mentioned challenges.

V. METHODOLOGY

Figure 5 presents the overview of Hades, a heterogeneous
anomaly detector for software systems via cross-modal atten-
tive learning. It consists of four components: Log Modeling,
Metric Modeling, Heterogeneous Representation Fusion, and
Detection. It is trained by both labeled and pseudo-labeled
data in a Semi-supervised Training manner. Hades aims to
infer the system status from current heterogeneous monitoring
data based on historically extracted patterns. We incorporate
domain knowledge and the insights obtained from our previous
study to design a practical model architecture. Specifically, for
logs, Hades captures lexical and contextual log semantics and
maps each raw log sequence into a low-dimensional represen-
tation. For metrics, Hades preserves aspect-aware information
at the segment level along the timeline and learns cross-
aspect correlations. Our framework also employs an attention-
based fusion module with cross-modal learning to acquire a
global representation, which is fed into a successive detection
component. Consequently, it will trigger an alarm to operations
engineers when a noteworthy anomaly occurs.

A. Log Modeling

Log modeling contains three steps: log parsing, log vector-
ization, and log representation learning. It extracts meaningful
log features including lexical and contextual semantics.

1) Log Parsing: In this step, we transform unstructured
log messages into structured log events. As aforementioned,
raw log messages are unstructured and contain variables that
can hinder log analysis [19]. Therefore, we first employ a
widely-used parser Drain [37] to extract log events since it has
shown effectiveness and efficiency in the previous evaluation
study [38]. Next, we conduct a stable sorting based on the log
timestamps. As a result, all valid log messages are transferred
into chronologically arranged log events.

2) Log Vectorization: This phase turns textual log events
into semantics-aware numerical vectors. We utilize Fast-
Text [15] to capture the intrinsic relationships of log vocab-
ulary and preserve the important log semantics. FastText is
a popular, lightweight, and efficient technique for producing
word embeddings that can represent semantic similarities
between words. After training, FastText maps every token
into a E-dimension vector, so a log event x! is transformed
into a token embedding list V' = {v;}¥_; € R“*F where
w is the token number of an event. Subsequently, we aver-
age all elements inside V' to acquire a sentence embedding

Multivariate Metrics
: l Intra-aspect Encoder

Lt A s wh‘ﬂﬁ&kﬂ\: il | Groupin o il ceee
L -
o SERYYYY

(i

' Pooling

Metric Modeling

Inter-aspect Encoder

Max

-

\
J
v

] y
B Conv e Conv pg
' v

Heterogeneous Fusion

Detection
Yes

Abnormal? <—
° No

@S

Details

JD<-

-

4— Attn a

o Fused Rl Aftn

0=R'
Q:Rm =
K=V-R'

Log Modeling

INFO util.SignalUtils: Registered signal

i WARN netlib.BLAS: Failed to load implementation

i INFO storage.BlockManager: Removing RDD 36
INFO util.Utils: Successfully started service

i INFO storage BlockManager: Removing RDD 18 |

. Parsing
—
| FastText

Toi<en Embeddings

- Av |
- Pooling | | ‘ [

i t t
IR 7205 gy Trans g Trans o
_— t t t

Event Embeddings Sequence Encoder

Fig. 5: Overview of Hades.

V = L x> | v;. Consequently, a log sequence X! ; can be
denoted by a sentence embedding list V = {V;}L | € RL*E,
3) Log Representation Learning: This step models the log
contextual semantics and generates log representations with
learned information. In particular, the sentence embeddings
of a sequence obtained from the previous phase are fed into
a sequence encoder, which is composed of two Transformer
encoder layers [16]. This encoder captures contextual depen-
dencies across the events. Afterward, a fully-connected (FC)
layer maps the output into a D-dimensional feature space.
Hence, we obtain the log representation of a chunk, denoted
by R' € RE*P | If the log sequence is too long, we partition it
into non-overlapping fixed-size sub-sequences and conduct the
above steps. For a too-short sequence, we pad it with zeros.

B. Metric Modeling

Metrics are modeled hierarchically in this section with
respect to segment-level patterns motivated by the second
finding in § IV-B. The module comprises an intra-aspect
encoder and an inter-aspect encoder (also shown in Figure 5).

The rationale behind the design is three-fold: (1) Metrics
sketching the same aspect of the system should be modeled
together. Monitoring metrics can reflect various aspects of
system performance, e.g., CPU utilization, memory utilization,
etc. Generally, metric patterns of the same aspect share certain
similarities (e.g., CPU user usage and CPU system usage both
characterize CPU usage). Such metrics should be grouped and
regarded as multi-variate time series (MTS) to be analyzed
together. (2) Metrics depicting different aspects should be
modeled separately. If two metrics belong to different aspects,
their patterns can be very different. For example, the disk
usage tends to be stable while the I/O throughput may fluctuate
violently even under the normal status. So metrics of different

aspects should be fed into separate models to capture fine-
grained information. (3) While metrics of different aspects
tend to develop distinct patterns, they still exhibit some inter-
aspect correlations when anomalies occur. For instance, if a
worker node loses connection with the master node, many
metrics such as the CPU utilization and route cost will
drop precipitously and stay at zero since data exchange or
computation is interrupted.

Based on (1) and (2), we propose an intra-aspect encoder to
capture the aspect-oriented temporal dependencies and cross-
metric relationships. (3) inspire us to design an inter-aspect
encoder to learn correlations across aspects integrally. The two
encoders learn the aspect-aware representations hierarchically.

1) Intra-Aspect Encoder: As metrics should be modeled
in an aspect-aware manner, that is, modeling metrics of the
same aspect together while modeling metrics of different
aspects separately, the internal model must be computationally
efficient. Thus, we adopt 1D causal convolution [17]. Conven-
tional convolution networks face the problem of information
leakage (i.e., the output depends on future inputs) and the
inability of sequential dependency modeling. Causal convolu-
tion is designed to mitigate these limitations, which meets our
needs by being parallelizable, lightweight, and accurate [39].
This phase decomposes the metrics into groups according to
their corresponding aspects based on our domain knowledge.
After that, metrics of the same aspect are taken as an MTS and
fed into a separate intra-aspect encoder composed of a multi-
layer causal convolution network. After appropriate padding
and chomping, the v intra-aspect encoders output ~ feature
vectors h™ . Finally, we conduct a max-pooling operation on
the feature dimension and stack the outputs to form a latent
feature vector H™ € RT*7,

2) Inter-Aspect Encoder: This module also leverages causal
convolution to learn the inter-aspect features. Such structure
helps model complex patterns by capturing multi-level infor-
mation. We take H™ outputted by the intra-aspect encoder
as an MTS with T" x + series and feed it into the inter-aspect
encoder to model the correlations between metric aspects. In
this way, the metrics X {7, inside a chunk are embedded into
a D-dimensional representation, denoted by R™ € RT*P|
Note that data of all modalities should be embedded into the
same D-dimensional feature space for alignment.

C. Heterogeneous Representation Fusion

We design a novel cross-modal attention mechanism to fuse
heterogeneous representations and bridge the gap between logs
and metrics. Previous phases embed logs and metrics into a
D-dimensional feature space. These representations are fed
together into this fusion module, defined by two attention
layers [16]. The first one (Attn-«) takes the log representation
R! as the Query while the metric representation R™ as the
Key and Value. It matches the log events explaining the metric
changes. Symmetrically, in the second attention layer (Attn-3),
R™ plays the role of the Query, and R! serves as the Key and
Value. It helps to find the performance variations aligned with
log contents to enhance log expressiveness. Mathematically,
given the Query, Key, and Value, we calculate:

Fuse(Q, K, V) = tanh ([softmax(QW,K")V; Q] W,) (1)

where W, and W are learnable parameters; [-;-] denotes
concatenation. Afterward, outputs from Attn-« and Attn-3 are
concatenated inside the D-dimensional space to constitute a
global representation R9 € R(T+1)*D | defined as:

RY = [Fuse(R', R™, R™); Fuse(R™, R, RY)] (2

Above all, switching the roles of the two modalities allows
devoting more attention to the features of different modalities
that convey similar information, which is more likely to
be responsive to changes in the system status. Also, it can
retain meaningful intra-modal patterns explicitly by directly
concatenating the Query with the attended Value. In this
way, the global representation reserves not only the shared
information and cross-modal interactions but also the salient
intra-modal dependencies and the inferred features due to the
complementary relationship between logs and metrics.

D. Detection

Finally, we feed the representation RY into stacked FC
layers followed by a softmax layer. The output § € {0,1}
represents the status being normal or abnormal, computed by:

¢ = argmax[softmax(Uc(V - R9 + b) + ¢)] 3)

where U and V are learnable weight matrices; b and c are
bias terms; o(-) is the ReLU activation function [40]. This
module generates an alarm upon detecting an anomaly. To
facilitate further analysis by engineers, we also provide a
visual interface that enables a convenient review of logs and
metrics of the suspicious chunk, as shown in Figure 6.

HABES Overview Details Settings Auto Fresh@o

Workload Chunk Info Log File
D c0d17d481f47bdd9 ime 22/03/01T09:28:00~22/03/01T09:38:00 Path hitp://127.0.0.1
root/work.
Status Running Status @ Abnormal
Startat 22/03/01T07:00.00 Source Log, Metric 1 B
Key Metrics 7 Log Preview 7
Aspect N Metri INFO storage BlockManager: Found block rdd_2_3 locally
Spec ame etrics INFO storage Blo + Found block rdd_2_4 locally
INFO util Sig s: Registered signal
. WARN netlib.BLAS: Failed to load implementation
CPU Youser INFO storage BlockManager: Removing RDD 36
INFO util. Utils: Successfully started service
110 tx/b INFO storage BlockManager: Removing RDD 18
INFO python.PythonRunner: Times: total = 42, boot =
110 rx/b 4131, init = 4172, finish = 1

Fig. 6: A demo for reviewing the detected chunk, where the
light red rectangle represents the currently focused window.

E. Semi-supervised Training

To reduce the cost of manual labeling and leverage human
expertise simultaneously, we apply semi-supervised learning
to train our model. Semi-supervised learning leverages a small
amount of labeled data and unlabeled data for training, based
on the smoothness assumption: a normal sample should be
closer to another normal sample rather than an abnormal
sample in the feature space, and vice versa. Previous studies
adopt the assumptions that logs with similar semantics should
share the same detection indicator [8], and metrics with similar
patterns lead to the same existence indicator of performance
issues [4]. Intuitively, heterogeneous data with similar log
semantics, metric patterns, and cross-modal interactions are
likely to share the same label. With this intuition, we devise a
two-fold semi-supervised training strategy, shown in Figure 7.

A few
‘labeled :
i data

samples

- Many
' pseudo-.

labeled - o ;
; data o Many unlabeled data
R CICITI I Training Phase (2] ---ooomeoeee ’

Fig. 7: The semi-supervised training of Hades.

We first label data generated during frequent faults by
representative workloads (accounting for about 10% of the
whole data). The labeled data are used to train Hades in a
supervised manner in the first phase by minimizing the binary
cross-entropy loss (denoted as L) for several epochs. Next,
we generate predictions of the remaining unlabeled data and
filter in predictions with high confidence as pseudo labels. As
the model is a probabilistic classifier in nature and thereby
provides confidence scores directly, we take the maximum of
the outputted classification probabilities as the corresponding
prediction’s confidence. The second phase blends pseudo-
labeled and labeled data to train the framework, attempting to

minimize the following loss function:£ = (1—X)- Ly +AL_,
where L£_ is the binary cross-entropy loss of the pseudo-
labeled data, and A is a hyper-parameter ranging [0, 1].

VI. EVALUATION

We evaluate Hades by answering the following research
questions (RQs):
« RQ1: How effective is Hades in anomaly detection?
« RQ2: What is the contribution of each design of Hades?
« RQ3: How sensitive is Hades to the length of a chunk?

A. Experiment Setup

1) Datasets: Besides the in-lab Dataset A (§ III), we also
evaluate Hades on other two datasets (3 and C) containing
heterogeneous monitoring data from two different industrial
cloud services of Huawei Cloud. Dataset 53 and C contain eight
types of faults respectively: CPU stress, memory stress, high
disk I/O latency, disk partition full, network flashing, long
network latency, high packet loss rate, and zombie process.
Metrics are sampled once per minute. Drain [37] extracts 72
and 104 log events from Dataset 5 and C, respectively.

Chunks are obtained via a timestamp-based sliding parti-
tioning strategy [33]. For all three datasets, we split the first
70% generated data as the training set and the last 30% as
the test set, meaning that data in different sets are produced
in different periods (also different workloads for Dataset .A).
Inside the training set, we choose five representative workloads
out of 19 in A (choose one in each category according
to [23]) and seven faults out of 21 for labeled training data,
that is, only annotations of the chosen workloads during the
standard status or the selected faults’ duration are adapted for
training. The rest of the training set is taken as unlabeled
training data. For Dataset B and C, we invite three experienced
reliability engineers to annotate the test set, and training data
with two selected faults (memory stress and disk partition
full), following a similar procedure described in § III-C. Few
disagreements occurred as anomalies are well-defined by the
engineers who are familiar with their system.

In this way, chunks belonging to the same faulty or non-
faulty period will exist either in the training/test set so as to
avoid possible data leakage caused by random split. Besides,
the test set contains unseen anomalies incurred by non-selected
faults, so we can evaluate the model’s ability to infer new ab-
normal patterns, considering knowing all the anomaly patterns
in advance is usually impossible. Table II shows the statistics
of our datasets.

TABLE II: Dataset statistics

Dataset Log Messages Metric Length Manually Labeling
A 1,435,139 64,422 10.87%
B 76,724 7473 13.70%
C 1,148,563 15,945 11.24%

2) Baselines: We compare Hades with ten baselines in
different training manners, including unsupervised, semi-
supervised, and supervised ones. In particular, despite
being specially designed for bad software identification,

SCWarn [41] (unsupervised) is the only multi-source approach
for binary classification in the software engineering literature,
as far as we know. Six state-of-the-art single-source base-
lines are adopted: Deeplog [9] (unsupervised), PLELog [8]
(semi-supervised), and LogRobust [7] (supervised) are log-
based. Omninomaly [6] (unsupervised), Adsketch [4] (semi-
supervised), SRCNN (unsupervised) and its supervised variant
SRCNN-s [5] are metric-based. We also adopt supervised log-
based SVM (SVM-£L) and metric-based SVM (SVM-M) [42]
as the representation of traditional techniques.

3) Evaluation Measurements: As we tackle anomaly detec-
tion in a binary classification manner, we adopt the widely-
used measurements to gauge models’ performances: Rec=
TPTf}N, Pre= TPT+PFP, Fl= %, where TP is the
number of successfully detected abnormal chunks; FP is the
number of normal chunks incorrectly triggering alarms; FN is
the number of undetected abnormal chunks.

4) Implementations: Our code for implementing Hades is
publicly available at [18]. The log encoder adopts a hidden
size of 1024 for four layers. We use Gensim [43] to train
32-dimensional word embeddings. The intra-aspect metric
encoder comprises two layers, and the inter-aspect encoder has
three layers with a hidden size of 256. The decoder consists
of four layers with a hidden size of 512. We use the Adam
optimizer [44] with an initial learning rate of 0.001. The batch
size is 128, and the epoch for each training phase is 50.

As for baselines, we adopt the public implementations
of [4]-[6], [8], [41], and an open-source toolkit [33] to
implement [7], [9], whose original paper did not provide code.
We determine the hyper-parameter combination achieving the
highest test F1 for each baseline. All experiments are con-
ducted on a single NVIDIA GeForce GTX 1080 GPU.

B. RQI: Overall Performance of Hades

Table III presents the overall performance comparison. Each
result of Hades is averaged over three independent runs with
three random seeds and the values of evaluation measurements
vary in very small decimal cases. Hades outperforms all base-
lines by a significant margin, achieving the best result on every
evaluation measurement. Specifically, its F/ scores are 0.864,
0.975, and 0.960, 9.12%~174.41% higher than competitors on
average. The high Rec and Pre scores of Hades illustrate that
there are very few missed anomalies or false alarms. Thus, we
can argue that Hades is considerably effective to detect system
anomalies, redounding to economizing engineering resources.

Compared with SCWarn, the success of Hades boils down
to three aspects: (1) Hades adopts semi-supervised learning
to balance annotation cost and human oversight. SCWarn is
unsupervised and detects anomalies based on the next times-
tamp prediction, yet accurately predicting is really difficult in
a large-scale system with complex behavior patterns. Some-
times software behaviors are inherently unpredictable [45].
(2) Hades extracts multi-level log semantics and represents
log events via succinct and low-dimensional embeddings. In
comparison, SCWarn transforms logs into event occurrence
sequences, generating an over-large sparse feature matrix for

TABLE III: Overall Performance Comparison.

Dataset A Dataset B Dataset C

Models
Fli Rec Pre Rec Pre Fi Rec Pre
SCWarn 0.321 0389 0.273 0497 0.643 0.405 0491 0585 0423
 SVM-£ 0289 0707 0.181 0541 0.756 0.421 0481 0.742 0.356
DeepLog 0.259 0386 0.194 0.386 0.526 0.305 0.375 0524 0.292
PLELog 0.314 0.602 0213 0463 0.618 0.371 0434 0597 0.341
LogRobust 0.404 0.684 0287 0.524 0.718 0.413 0495 0.698 0.383
 SVM-M 0536 0.833 0395 0.608 0.839 0477 0.556 0.801 0.426
OmniAnomaly 0.681 0.788 0.601 0.827 0.863 0.794 0.812 0.896 0.743
Adsketch 0.404 0476 0351 0543 0.644 0470 0.538 0.649 0.459
SRCNN 0.342 0.614 0237 0467 0.701 0.350 0.472 0.586 0.394
SRCNN-s 0.784 0.826 0.745 0.898 0.938 0.861 0.883 0.926 0.844
Hades 0.864 0.870 0.859 0975 0.984 0.966 0.960 0969 0.951

log events and discarding log semantics. The sparse matrix
poses barriers to extracting meaningful features, especially
when hundreds of events exist. (3) Hades devises an attentive
fusion to capture significant cross-modal interactions and
bridge temporal and textual representations. SCWarn simply
concatenates the representations and ignores the vast gap
between metrics and logs, i.e., the information form and the
input size discrepancies.

The superiority of Hades over single-modal baselines stems
from the effective use of logs and metrics. Compared with the
best single-modal model (SRCNN-s, a supervised approach),
Hades increases FI, Rec and Pre by 9.12%, 4.91%, 13.22%
on average, respectively. Such improvement is exciting and
reasonable. Our previous study reveals that metrics and logs
can both reflect anomalies, and neither of them is sufficient
(§ IV-C). However, these baselines only review one data source
and omit important information hidden in the other source,
so they suffer performance degradation, especially for those
without knowledge of historical anomalies.

In addition, training an epoch takes Hades two minutes on
average while baselines take 0.37~9.01 minutes per epoch.
The prediction delay is negligible as the prediction of all men-
tioned approaches is less than 0.1s for a chunk. The efficiency
of Hades with nearly real-time detection and acceptable offline
training time engages its industrial prospect.

In brief, Hades effectively detects system anomalies on all
datasets. It significantly improves the effectiveness compared
to all baselines concerning every evaluation measurement.

C. RQ2: Individual Contribution of Modules

1) Derived Models: We conduct an extensive ablation study
on Hades. Particularly, we derive seven models based on the
original Hades to investigate the contribution of the intro-
duction of heterogeneous information, representation fusion,
cross-modal attention, and intra-modal feature extraction.

« Heterogeneous Information: Hades w/o M removes metrics,
containing a log encoder (duplicated from § V-A) and a
decoder. Similarly, Hades w/oL removes logs, containing
a metric modeling module (duplicated from § V-B) and a
decoder. That is, representations of logs and metrics are
directly fed into the respective decoder separately.

« Representation fusion: Hades w/oF performs a Boolean OR
operation on the results from Hades w/o.M and Hades w/oL.
It is built on the motivation that it is natural to process each
type of data individually and then aggregate results instead
of fusing representations as Hades does.

o Cross-modal attention: Hades w/oA removes the cross-
modal attention and simply concatenates the representations
of metrics and logs as the global representation. Hades w/oC
operates conventional self-attention on the two represen-
tations separately and then concatenates them, rather than
using cross-modal attention. Other modules except for the
fusion module (§ V-C) are the same as Hades.

o Intra-modal feature extraction: Hades w/oH is designed for
validating the contribution of the hierarchical aspect-aware
metric encoder (§ V-B), which models metrics in an aspect-
agnostic manner based on causal convolutions by encoding
all metrics simultaneously. Hades w/0S aims to present the
usefulness of log lexical semantics by replacing the word
embedding with one-hot encoding.

o Semi-supervised training: Hades-Anno are trained by an-
notated data rather than leveraging the semi-supervised
training approach, which is used to evaluate the effectiveness
gap between our proposed semi-supervised training and
supervised training.

2) Experimental Results: Table IV shows the experimental
results, underpinning four key conclusions: (1) Introducing
heterogeneous information contributes incredibly to enhancing
anomaly detection in view of two observations. Hades outper-
forms Hades w/oM and Hades w/oL considerably, especially
in Pre, indicating that Hades can reduce a large number of
false alarms, thereby increasing F1 by 136.80% and 17.06% on
average, respectively. Also, all heterogeneous data-based de-
rived models outperform homogeneous variants (Hades w/o M
and Hades w/oL), further confirming that heterogeneous data
goes far toward fully characterizing the system health. (2)
Two shreds of evidence highlight the benefits of representation
fusion: 1) Hades performs better than Hades w/oF (6.63%
higher in FI on average); 2) the variants using representation
fusion (Hades w/o.A and Hades w/oC) outperform Hades
w/oF. It is not surprising since Hades w/oF cannot fully mine
cross-modal interactions. For example, the over-sensitivity of

TABLE IV: Experimental Results of the Ablation Study.

Dataset A Dataset B Dataset C

Models
Fl Rec Pre Fli Rec Pre Fi Rec Pre
Hades w/ooM 0.296 0.737 0.185 0.468 0.660 0.363 0.418 0.597 0.318
Hades w/oL 0.719 0.718 0.720 0.840 0.886 0.799 0.832 0.888 0.782
‘Hades w/oF 0.817 0.761 0.881 0.910 0.931 0.890 0.898 0.886 0911
‘Hades w/o.A 0.829 0.831 0.828 0.943 0966 0.921 0.928 0.931 0.926
Hades w/oC 0.841 0.829 0.853 0.953 0947 0959 0938 0.934 0.943
‘Hades w/oH ~ 0.852° 0.882 0.824 0.967 0.980 0955 0952 0.970 0935
Hades w/oS 0.830 0.814 0.847 0938 0916 0.962 0.927 0909 0.945
‘Hades-Anno ~ 0.866 0.878 0.855 0.979 0972 0986 0961 0953 0.970
Hades 0.864 0870 0.859 0975 0.984 0.966 0.960 0969 0.951

metrics (stated in § IV-B) may cause false alarms, and Hades
w/oF fails to overcome such inaccuracy, while Hades allevi-
ates this issue by utilizing logs as supplementary information
to make more reasonable inferences. (3) Our cross-modal
attention shows extraordinary value as Hades achieves better
results than Hades w/o.A and Hades w/oC because Hades
can filter more informative features and exploit higher-order
cross-modal interactions, thereby probing a stronger ability to
characterize the system status. (4) The devised encoders make
contributions via fuller- and finer-grained feature extraction,
supported by the two observations: Hades w/oH generates
more false alarms with mixing patterns of diverse aspects,
resulting in overall worse performance (lower F/); Hades
w/oS is relatively ineffective as it ignores crucial lexical
semantics of logs. (5) The applied semi-supervised training is
comparatively effective as supervised training while requiring
only 10% labels. Hades is only 0.10%~0.41% lower in FI
than its supervised version. The success can be attributed to
two reasons. First, only a small part of labeled data can cover
various patterns, encouraging accurate inferences of Hades on
similar unlabeled data samples. Second, we adopt a two-phase
training strategy so the second semi-supervised training phase
only considers pseudo labels with high confidence, thereby
avoiding error accumulation during the two phases.

The results not only conform to the findings of our previous
study in § IV, but also reveal the significance of heterogeneous
data and the competence of our designs for intra- and inter-
modal representation learning.

D. RQ3: Sensitivity to Chunk Length

The pre-determined chunk length T (e.g., the length of a
chunk) may affect the framework’s performance by affecting
the dataset distribution. We herein evaluate the sensitivity
of Hades to this hyper-parameter. We change the value of
T while keeping all other hyper-parameters unchanged and
conduct experiments as in RQ4. In detail, for Dataset A4, the
default value of T is 10 (sec), ranging from 5 to 20; for Dataset
B and C, T is 5 (min) by default and ranges from 3 to 10,
as the sampling frequencies of different datasets are different.
Figure 8 presents the experimental results. Overall, Hades is
fairly stable under different settings of 7, further confirming
its robustness. This makes Hades easy to deploy and launch in
practice. We observe that more missing anomalies are rendered

when the value of T deviates from the default configuration.
This may be because the default granularity of chunks fe-
licitously fits the anomalous patterns. Note that a larger T
cannot guarantee an easier catch of anomalies. The influence
of chunk length depends on multiple factors including model
characteristics and system behaviors. In practice, we do not
have to find the ideal T. It can be selected according to the
validation result or the engineering expertise and requirements.

F1. Rec. Pre.
Dataset A Dataset B Dataset C
0.92 00 | 0.98 |
0.88 | 098 0.96
|
0.85 | 0.95 p 054 |
0.81 093 | 0.92
0.78 | 090 4 0.90 | |
074 L 0.88 | 0.88 I
5 10 15 20 3 5 7 10 3 5 7 10
Chunk Length T

Fig. 8: The sensitivity to chunk length

VII. DISCUSSION
A. Lessons Learned

We argue to be beware of the semantic gap between natural
language and logs. Recent studies [7], [46], [47] have gradu-
ally adopted models pre-trained in natural language corpus to
encode log texts. However, the semantics of natural language
and logs are not exactly identical. For example, the word
“successfully” usually expresses positive emotions in natural
languages, yet it indicates an anomaly in the event “Suc-
cessfully connected to<IP>:<NUM> for BP-*-<*>" which
occurs when the Application Worker tries to reconnect with
Datanode after losing the connection, and the re-connection
succeeds. However, such a re-connection is not expected as
connection loss should not happen. To mitigate this problem,
Hades uses self-trained word embeddings and integrates multi-
level semantics including word-level semantics, event-level
semantics, and cross-event sequential dependencies.

B. Threats to Validity

A potential internal threat lies in the acquisition of log event
embeddings. We use the average token embeddings as an event
embedding, ignoring the sequential information inside a single
event, as it is too time-consuming to extract the sequential
dependencies event by event. Nevertheless, based on our study

and engineering experience, it is almost impossible for two log
events to have identical tokens but in different orders, let alone
to represent opposite system statuses. Thus, omitting the intra-
event lexical order will not cause apparent adverse effects.
The external threat mainly comes from our datasets. Though
Hades is evaluated on three datasets, it is yet unknown whether
the effectiveness of Hades can be generalized across other
datasets. To mitigate this threat, we use different datasets
with representative workloads and typical faults to evaluate
Hades, and the experimental results also demonstrate that
Hades can work well even on unseen anomalies. We will also
evaluate our approach based on more datasets in the future. In
addition, the annotation process may introduce noise. Label-
ing principles vary depending on the system/person/purpose,
sometimes causing inconsistency, especially when it comes to
non-extreme anomalies or rare patterns, such as the slightly
steep ups and downs in metrics, metric variations between
normal fluctuations and abnormal jitters, log statements that
rarely occur, etc. To alleviate this concern, we invite expert
annotators that are familiar with the monitoring data. Semi-
supervised training is also noise-resistant by only adopting
a part of the labels. In practice, a company will share the
definition of anomalies and develop standard labeling rules in-
ternally. It will also invite multiple professional practitioners to
perform labeling to get labeling results with good consistency.

C. Limitations

We identify two limitations. First, Hades is complex and
suitable for large-scale systems, such as cloud systems con-
taining plenty of components rather than small systems with
simple data patterns. Smaller systems may require only naive
methods to obtain sufficiently accurate results, so applying
Hades is not cost-effective. To improve its efficiency in small
systems, we can distill the parameters of Hades to form a
lightweight version. Second, Hades requires simultaneously
collected logs and metrics. However, we find that in some
large companies, metrics and logs are collected separately by
different departments, and the sampling/logging frequency of
different data sources varies dramatically. Sometimes a certain
data source is even absent for a while. Thus, we add an extra
mode to allow alternate use of homogeneous or heterogeneous
anomaly detection. With either logs or metrics, practitioners
can still take advantage of the superior feature extraction
capability of Hades in the absence of a particular data source,
thus extending the applicability of our approach.

VIII. RELATED WORK

Many efforts have been devoted to automated anomaly
detection for large-scale system reliability insurance based
on logs and metrics [46]-[53]. Many advanced log-based
anomaly detectors adopt deep learning to model log sequences.
For example, [9] and [8] used recurrent neural networks to
model normal logs and regard logs deviating from the model
as abnormal. [7] tackled log instability by introducing the
attention mechanism, as well as employing word embedding
and TF-IDF. Metric-based methods usually attempt to model

metrics by capturing the temporal dependencies [50], [54],
mining representative patterns [4], and learning inter-series
relationships [6], [S1]. [5] borrowed the spectral residual idea
from visual saliency detection, making it easy to use in practice
no matter whether labeled data exist. Recently, Chen et al.
[4] achieved state-of-the-art by discovering anomalous metric
patterns that sketch particular performance issues. Different
from Hades, these methods only leverage single-source data,
ignoring rich information from diverse sources of data and
their interactions.

Some approaches employ multi-source data to identify
software rollouts or operations that incur failures [41], [55]-
[58]. [55]-[57] explored the correlations between logs and
metrics to identify bad rolling upgrade operations. They re-
gard logs as operation records and metric variations as the
consequences of operations, instead of detecting anomalies
via neck-and-neck fused information. [41], [58] leveraged
logs and key performance indicators to alarm bad software
changes, whereas [58] used each source separately rather
than analyzing all sources generically, and [41] transformed
logs into event occurrence series, and modeled series together
with homogeneous indicators. However, these identifiers either
regard metrics as a posteriori information rather than combing
logs and metrics at the same level, or convert heterogeneous
data into a homogeneous form ignoring the gap and high-order
interactions among different data types. Hades outperforms
these works by learning meaningful cross-modal heteroge-
neous representations while narrowing the log-metric gap.

IX. CONCLUSION

We study the manifestations of typical system anomalies
on heterogeneous monitoring data and point out for the
first time that logs and metrics have collaborative and com-
plementary relationships in reflecting system anomalies, but
neither of them only is sufficient. Motivated by the findings,
we propose the first end-to-end semi-supervised approach,
Hades, to detect anomalies effectively by exploiting hetero-
geneous information. Hades adopts semi-supervised learning
to incorporate human oversight while reducing the annotation
cost. It leverages multi-level log semantics and aspect-aware
dependencies of metrics, all the while learning meaningful
log-metric interactions via cross-modal attention. We evaluate
Hades with comprehensive experiments on three datasets, and
the results demonstrate that Hades outperforms all competi-
tive approaches. Furthermore, the data, code, and experiment
results in this study are released for replication.

ACKNOWLEDGEMENT

The work described in this paper was supported by the Na-
tional Natural Science Foundation of China (No. 62202511),
and the Research Grants Council of the Hong Kong Special
Administrative Region, China (No. CUHK 14206921 of the
General Research Fund).

[1]

[4]

[5]

[6]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

T. Maynard, “Cloud down impacts on the us economy,” Lloyd’s and
AIR Worldwide, London, Technical Report, 2018. [Online]. Available:
https://assets.lloyds.com/assets/pdf-air-cyber-1loyds- public-2018-final/
1/pdf-air-cyber-1loyds-public-2018-final.pdf

Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu, Y. Dang, F. Gao, P. Zhao, B. Qiao, Q. Lin, D. Zhang,
and M. R. Lyu, “Towards intelligent incident management: why we need
it and how we make it,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 2020, pp. 1487-1497.

J. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie, “Software analytics
for incident management of online services: An experience report,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013.
IEEE, 2013, pp. 475-4385.

Z. Chen, J. Liu, Y. Su, H. Zhang, X. Ling, Y. Yang, and M. R. Lyu,
“Adaptive performance anomaly detection for online service systems
via pattern sketching,” CoRR, vol. abs/2201.02944, 2022. [Online].
Available: https://arxiv.org/abs/2201.02944

H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019. ACM, 2019, pp. 3009-3017.
Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019. ACM, 2019, pp. 2828-2837.
X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J. Lou, M. Chintalapati, F. Shen,
and D. Zhang, “Robust log-based anomaly detection on unstable log
data,” in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019. ACM, 2019, pp. 807-817.

L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Plelog: Semi-supervised log-based anomaly detection via probabilistic
label estimation,” in 43rd IEEE/ACM International Conference on
Software Engineering: Companion Proceedings, ICSE Companion 2021,
Madrid, Spain, May 25-28, 2021. 1EEE, 2021, pp. 230-231.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. ACM, 2017, pp. 1285-1298.

S. Nedelkoski, J. Bogatinovski, A. K. Mandapati, S. Becker, J. Cardoso,
and O. Kao, “Multi-source distributed system data for ai-powered
analytics,” in Service-Oriented and Cloud Computing. Cham: Springer
International Publishing, 2020, pp. 161-176.

N. L. of Tsinghua University. (2021) 2021 international aiops challenge.
[Online]. Available: http://iops.ai/competition_detail/?competition_id=
17&flag=1

F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. H. Campbell,
and W. H. Sanders, “Failure scenario as a service (fsaas) for hadoop
clusters,” in Proceedings of the Workshop on Secure and Dependable
Middleware for Cloud Monitoring and Management, ser. SDMCMM
’12. New York, NY, USA: Association for Computing Machinery,
2012. [Online]. Available: https://doi.org/10.1145/2405186.2405191

S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collection
of system log datasets towards automated log analytics,” CoRR, vol.
abs/2008.06448, 2020. [Online]. Available: https://arxiv.org/abs/2008.
06448

B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-patterns
in the logging code,” in Proceedings of the 39th International Confer-
ence on Software Engineering, ICSE 2017, Buenos Aires, Argentina,
May 20-28, 2017. 1EEE / ACM, 2017, pp. 71-81.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” arXiv preprint arXiv:1607.04606,
2016.

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]
[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, 2017, pp.
5998-6008. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/hash/3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

C. Lea, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks: A unified approach to action segmentation,” in Computer
Vision - ECCV 2016 Workshops - Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III, ser. Lecture Notes in
Computer Science, vol. 9915, 2016, pp. 47-54.

B. Li, T. Yang, Z. Chen, Y. Su, Y. Yang, and M. R. Lyu. Hades.
[Online]. Available: https://github.com/BEbillionaireUSD/Hades/

P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log
parsing for large-scale log data analysis,” IEEE Trans. Dependable
Secur. Comput., vol. 15, no. 6, pp. 931-944, 2018.

S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey on
automated log analysis for reliability engineering,” ACM Comput. Surv.,
vol. 54, no. 6, pp. 130:1-130:37, 2021.

A. S. Foundation. (2018) Apache spark. [Online]. Available: https:
//spark.apache.org/

D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.
I. Inc. (2004) Hibench. [Online]. Available: https://github.com/
Intel-bigdata/HiBench

M. Saadoon, S. h. Ab hamid, H. Sofian, H. Altarturi, N. Daud, Z. Az-
izul Hasan, A. Sani, and A. Asemi, “Experimental analysis in hadoop
mapreduce: A closer look at fault detection and recovery techniques,”
Sensors, vol. 21, p. 3799, 05 2021.

Yahoo. (2011) Anarchyape. [Online]. Available: https://github.com/
david78k/anarchyape

O. Denloy, Y. L. Lu, E. Kaczmarek, and A. Gruza. (2015) Pat.
[Online]. Available: https://github.com/asonje/PAT

C. I. King. (2020) Stress-ng. [Online]. Available: https://github.com/
ColinlanKing/stress-ng

J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, pp. 37-46, 1960. [Online].
Available: https://w3.ric.edu/faculty/organic/coge/cohen1960.pdf

P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 178-189.

D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 1, pp. 1-28, 2012.

D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging,” in 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), 2012, pp. 293-306.

P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
2017, pp. 150-155.

Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience
report: Deep learning-based system log analysis for anomaly
detection,” CoRR, vol. abs/2107.05908, 2021. [Online]. Available:
https://arxiv.org/abs/2107.05908

Y. Huo, Y. Su, B. Li, and M. R. Lyu, “Semparser: A semantic
parser for log analysis,” CoRR, vol. abs/2112.12636, 2021. [Online].
Available: https://arxiv.org/abs/2112.12636

X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow monitoring of cloud infrastructures via interleaved logs,” in
Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016. ACM, 2016, pp.
489-502.

X. Ding, Y. Li, A. Belatreche, and L. P. Maguire, “An experimental
evaluation of novelty detection methods,” Neurocomputing, vol. 135,
pp. 313-327, 2014.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017.
IEEE, 2017, pp. 33-40.

https://assets.lloyds.com/assets/pdf-air-cyber-lloyds-public-2018-final/1/pdf-air-cyber-lloyds-public-2018-final.pdf
https://assets.lloyds.com/assets/pdf-air-cyber-lloyds-public-2018-final/1/pdf-air-cyber-lloyds-public-2018-final.pdf
https://arxiv.org/abs/2201.02944
http://iops.ai/competition_detail/?competition_id=17&flag=1
http://iops.ai/competition_detail/?competition_id=17&flag=1
https://doi.org/10.1145/2405186.2405191
https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/2008.06448
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://github.com/BEbillionaireUSD/Hades/
https://spark.apache.org/
https://spark.apache.org/
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench
https://github.com/david78k/anarchyape
https://github.com/david78k/anarchyape
https://github.com/asonje/PAT
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://w3.ric.edu/faculty/organic/coge/cohen1960.pdf
https://arxiv.org/abs/2107.05908
https://arxiv.org/abs/2112.12636

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019. 1EEE / ACM, 2019, pp. 121-130.

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling,” CoRR, vol. abs/1803.01271, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01271

A. F. Agarap, “Deep learning using rectified linear units (relu),” CoRR,
vol. abs/1803.08375, 2018. [Online]. Available: http://arxiv.org/abs/
1803.08375

N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang,
K. Sui, and D. Pei, “Identifying bad software changes via multimodal
anomaly detection for online service systems,” in ESEC/FSE ’21: 29th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Athens, Greece, August
23-28, 2021. ACM, 2021, pp. 527-539.

I. Graf, U. Kressel, and J. Franke, “Polynominal classifiers and sup-
port vector machines,” in Artificial Neural Networks - ICANN 97,
7th International Conference, Lausanne, Switzerland, October §8-10,
1997, Proceedings, ser. Lecture Notes in Computer Science, vol. 1327.
Springer, 1997, pp. 397-402.

R. Rehiifek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45-50.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980
J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning for
automatic classification of software behavior,” in Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA *04. New York, NY, USA: Association for
Computing Machinery, 2004, p. 195-205.

V. Le and H. Zhang, “Log-based anomaly detection without log
parsing,” CoRR, vol. abs/2108.01955, 2021. [Online]. Available:
https://arxiv.org/abs/2108.01955

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. ijcai.org,
2019, pp. 4739-4745.

X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and
unified deep learning based log anomaly detection for diverse faults,” in
31st IEEE International Symposium on Software Reliability Engineering,
ISSRE 2020, Coimbra, Portugal, October 12-15, 2020. IEEE, 2020,
pp. 92-103.

W. Meng, Y. Liu, Y. Huang, S. Zhang, F. Zaiter, B. Chen, and D. Pei,
“A semantic-aware representation framework for online log analysis,”
in 29th International Conference on Computer Communications and
Networks, ICCCN 2020, Honolulu, HI, USA, August 3-6, 2020. 1EEE,
2020, pp. 1-7.

N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015. ACM, 2015,
pp. 1939-1947.

7. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and D. Pei, “Multivariate
time series anomaly detection and interpretation using hierarchical inter-
metric and temporal embedding,” in KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021. ACM, 2021, pp. 3220-3230.

J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: unsupervised anomaly detection on multivariate time series,” in
KDD °20: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August 23-27, 2020. ACM,
2020, pp. 3395-3404.

S. Tuli, G. Casale, and N. R. Jennings, “Tranad: Deep transformer
networks for anomaly detection in multivariate time series data,” Proc.
VLDB Endow., vol. 15, no. 6, p. 1201-1214, feb 2022.

[54] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Soderstrom, “Detecting spacecraft anomalies using lstms and non-
parametric dynamic thresholding,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018. ACM, 2018,
pp. 387-395.

[55] M. Farshchi, J. Schneider, I. Weber, and J. C. Grundy, “Experience
report: Anomaly detection of cloud application operations using log and
cloud metric correlation analysis,” in 26th IEEE International Sympo-
sium on Software Reliability Engineering, ISSRE 2015, Gaithersbury,
MD, USA, November 2-5, 2015. 1EEE Computer Society, 2015, pp.
24-34.

[56] C. Luo, J. Lou, Q. Lin, Q. Fu, R. Ding, D. Zhang, and Z. Wang,
“Correlating events with time series for incident diagnosis,” in The 20th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014.
ACM, 2014, pp. 1583-1592.

[57] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. ACM, 2018, pp. 60-70. [Online]. Available:
https://doi.org/10.1145/3236024.3236083

[58] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh,
X. Yang, Q. Lin, Y. Wu, S. Levy, and M. Chintalapati, “Gandalf:
An intelligent, end-to-end analytics service for safe deployment in
large-scale cloud infrastructure,” in 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2020, Santa
Clara, CA, USA, February 25-27, 2020. USENIX Association, 2020,
pp. 389—402. [Online]. Available: https://www.usenix.org/conference/
nsdi20/presentation/li

APPENDIX
A. Workloads

We conduct 16 workloads on our established cluster based
on HiBench [23], falling into categories:

o Graph-based: Graph-X-based PageRank and NWeight cal-
culation (an iterative graph-parallel algorithm).

o SQL-related operations: Join, Aggregation, and Scan.

« Websearch: PageRank.

« Basic: Sort (text inputs generated by RandomTextWriter),
WordCount, TeraSort, Sleep, and Repartition (benchmark-
ing shuffle performance).

« Machine learning: Naive Bayesian Classification, Alternat-
ing Least Squares, Latent Dirichlet Allocation, Random
Forest, and Singular Value Decomposition

The above workloads cover a large range of general application

scenarios to enhance the respectiveness of the collected data.

B. Data

We collect log files of 37.64MB in total. After cleaning and
parsing these raw log messages with Drain [37], we obtain
1,048,576 log events with 151 log templates, covering 95.87
hours. The anomaly ratio of log events is 0.055%.

The dataset contains 11 metrics with a length of 64,422.
Each metric is sampled per second. The metrics include: CPU
usage of User, System, IOwait, and Idle; I/O related metrics
including rkB/s, wkB/s, and util; used memory and Commit
memory; communication metrics via a network including
rxkB/s and txkB/s. The anomaly ratio of metrics is 24.47%.

http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2108.01955
https://doi.org/10.1145/3236024.3236083
https://www.usenix.org/conference/nsdi20/presentation/li
https://www.usenix.org/conference/nsdi20/presentation/li

	I Introduction
	II Problem Statement
	III Data Collection
	III-A Data Generation
	III-B Fault Injection
	III-C Data Annotation

	IV Motivation
	IV-A How do logs manifest system anomalies?
	IV-B How do metrics manifest system anomalies?
	IV-C How do monitoring data reflect the system status?

	V Methodology
	V-A Log Modeling
	V-A1 Log Parsing
	V-A2 Log Vectorization
	V-A3 Log Representation Learning

	V-B Metric Modeling
	V-B1 Intra-Aspect Encoder
	V-B2 Inter-Aspect Encoder

	V-C Heterogeneous Representation Fusion
	V-D Detection
	V-E Semi-supervised Training

	VI Evaluation
	VI-A Experiment Setup
	VI-A1 Datasets
	VI-A2 Baselines
	VI-A3 Evaluation Measurements
	VI-A4 Implementations

	VI-B RQ1: Overall Performance of Hades
	VI-C RQ2: Individual Contribution of Modules
	VI-C1 Derived Models
	VI-C2 Experimental Results

	VI-D RQ3: Sensitivity to Chunk Length

	VII Discussion
	VII-A Lessons Learned
	VII-B Threats to Validity
	VII-C Limitations

	VIII Related Work
	IX Conclusion
	References
	Appendix
	A Workloads
	B Data

