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Abstract—Programming screencasts (e.g., video tutorials on
Youtube or live coding stream on Twitch) are important knowl-
edge source for developers to learn programming knowledge,
especially the workflow of completing a programming task.
Nonetheless, the image nature of programming screencasts limits
the accessibility of screencast content and the workflow embedded
in it, resulting in a gap to access and interact with the content
and workflow in programming screencasts. Existing non-intrusive
methods are limited to extract either primitive human-computer
interaction (HCI) actions or coarse-grained video fragments. In
this work, we leverage Computer Vision (CV) techniques to build
a programming screencast analysis tool which can automatically
extract code-line editing steps (enter text, delete text, edit
text and select text) from screencasts. Given a programming
screencast, our approach outputs a sequence of coding steps
and code snippets involved in each step, which we refer to as
programming workflow. The proposed method is evaluated on 41
hours of tutorial videos and live coding screencasts with diverse
programming environments. The results demonstrate our tool
can extract code-line editing steps accurately and the extracted
workflow steps can be intuitively understood by developers.

Index Terms—Screencast, Computer vision, Workflow extrac-
tion, Action recognition

I. INTRODUCTION

Computer programming involves two types of knowledge:
knowing-what (a.k.a declarative knowledge) and knowing-
how (a.k.a procedural knowledge). Fig. 1 illustrates an exam-
ple. Knowing-what involves facts or propositions of specific
programming concepts or entities. For example, Activity in
Fig. 1(a) is an Android class which takes care of creating a
window in which developers can place app UI, and Bundle in
Fig. 1(b) is a mapping from string keys to various parcelable
values. Knowing-how involves the workflow to complete a
programming task step by step. For example, the developer
first creates a class by entering the code line “public class
Splash extends Activity” (Fig. 1(a))1, and then enter the
code block “public void onCreate(...) {super.onCreate();}” to

1The video is available at http://seecollections.com/seehow/example

Fig. 1. An Example of Programming Workflow

override onCreate() and enter one line of API call “set-
ContentView(R.layout.Splash)” (Fig. 1(b)). Next, she creates
another activity class StartingPoint and declares several fields
(Fig. 1(c)) by entering several code lines. Finally, she sets the
proper bundling mapping by selecting the text “MAIN” in the
bundle mapping XML file, and then editing it to “STARTING-
POINT” (Fig. 1(d)). In this work, we refer to such code-line
editing as coding step (or workflow step interchangeably). The
editing of several code lines (a code block) at the same time
(e.g., delete or paste several code lines) is considered as one
code-line editing step.

Programming screencasts are screen recordings of the de-
velopers performing programming tasks. Typical examples
include programming videos on YouTube and live coding
streams on Twitch. Programming screencast is an important
medium for learning programming know-what and know-
how knowledge. For example, the top 1 Python tutorial on
Youtube has been watched for 28,802,076 times. The workflow
(coding steps, best practices, emergent errors and fixes) in pro-
gramming screencasts complement know-what programming
knowledge (e.g., API documentation, Stack Overflow discus-
sions) with know-hows [1], [2]. The know-how knowledge
is also important for task-oriented knowledge recommenda-
tion [3], [4]
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In spite of its importance, the workflow is implicitly em-
bedded in the screencasts, which greatly limits the access
and interaction with programming workflow in programming
screencasts. This makes it hard for developers to get a quick
overview of the workflow, or to navigate and search the
workflow steps [5], [2]. This also makes it impossible to sup-
port advanced workflow analysis. For example, by comparing
wrong and correct workflow, the developer may find that she
does not set activity bundle after creating a new activity class,
which cause the failure of starting the activity. To support
more effective use of programming screencasts in software
engineering tasks, several efforts have been made [1], [6], [7],
[5], [2]. These methods make the workflow in programming
screencasts explicit by software instrumentation or computer
vision techniques.

First, coding steps can be recorded by instrumenting soft-
ware tools or operating systems [2]. Such instrumentation-
based methods are intrusive and constrained by the availability
of accessibility APIs [8]. Second, computer vision techniques
have been used to extract or infer programming actions [1], [6],
[7]. Such techniques are non-intrusive, but they extract either
primitive HCI actions between two consecutive frames [7] or
coarse-grained activities involving similar contents [1], [6].
Primitive HCI actions are too fine-grained to correspond to the
intuitive understanding of coding steps, and content-similarity
based video fragments are too coarse-grained and one such
fragment will involve many code-line changes. In a compara-
tive study of 135 developers, Bao et al. [2] show that coding
steps at line granularity are more effective for learning know-
how knowledge than coarse-grained programming activities.
Unfortunately, coding steps at line granularity is currently
supported by only instrumentation-based method.

To fill the gap in between the existing primitive and coarse-
grained non-intrusive workflow extraction methods, we pro-
pose a novel action-aware workflow extraction approach that
extracts code-line editing steps from programming screencasts.
In particular, our approach extracts four types of coding steps:
enter text, delete text, edit text, and select text. Text can
be source code or other textual content (e.g., command-line
command, xml content, and text field input). We develop a
deep-learning based computer vision method to recognize and
aggregate primitive HCI actions and corresponding text edits
into coding steps at line granularity.

To evaluate our method, we build a dataset of programming
screencasts, including 260 programming videos from YouTube
and 10 live coding streams from Twitch (see Table I). These
screencasts involve multiple programming languages (e.g.,
Python and Java) and many different programming tasks (e.g.,
programming basics, Android app, web app, and game). They
were created by 8 different developers, using very different
development tools (e.g., Eclipse, Pycharm, Sublime). The total
duration of these screencasts is 41 hours. Two authors invest
significant manual efforts to label the coding steps in these
screencasts, including the start and end frame of each coding

Fig. 2. Main Steps of Our Approach

step and the text edited by the step2. We obtain 5,466 coding
steps with variant durations (7.62±10.82 seconds).

On this dataset, our workflow extraction method achieves
0.501 in F1-score at IoU = 1. IoU measures the intersection
over union between the video fragments of the identified
steps and the ground-truth steps. IoU = 1 means the perfect
match of the two fragments. For the not-perfectly-aligned
identified steps, 94.2% have only 0 or 1 frame offset at the
start or the end. Our evaluation also confirms the stability of
our method for different programming languages, developers,
and development tools. We invite 6 developers from software
industry to evaluate the quality of 2,605 not-perfectly-aligned
coding steps. They rate 83% of these coding steps as correct,
and their ratings have substantial agreements with Fleiss’
kappa of 0.83. This suggests that the small misalignments
of most of the not-perfectly-aligned steps do not affect the
correct understanding of the identified steps. At the end of the
user study, we discuss with the developers about the potential
scenarios to use our tool, such as software asset management
and workflow logging .

Our work makes the following contributions:

• We develop the first computer-vision based action-aware
method for extracting coding steps at the line granularity
from programming screencasts.

• We contribute a large dataset of programming screencasts
with 5,466 manually labeled coding steps for evaluating
computer-vision based workflow extraction methods.

• We conduct extensive experiments to evaluate the accu-
racy and generality of our method and the quality of the
extracted coding steps for human understanding.

2The tool and dataset are available at the GitHub repository
https://github.com/DehaiZhao/SeeHow

https://github.com/DehaiZhao/SeeHow


Fig. 3. Example: scroll-content in between coding actions

II. APPROACH

Fig. 2 presents the main steps of our approach. Our approach
takes as input a programming screencast (i.e., a sequence of
screenshots), and outputs a sequence of coding steps (Sec-
tion II-A). We adopt computer-vision based techniques for
action recognition and text extraction. By analyzing the con-
secutive frames, action recognition extracts screenshot regions
affected by primitive HCI actions and determines action cat-
egories (Section II-B), and text extraction extracts and aligns
text lines affected by HCI actions (Section II-C). The action
and text information are then aggregated to determine coding
steps and the corresponding video fragments (Section II-D).

A. Definition of Input and Output

An input programming screencast is a sequence of screen-
shots taken at a specific time interval (e.g., 1 second). Each
screenshot is a frame in the screencast. Recording a screencast
can be achieved by using operating-system level APIs, without
the need for application-specific support. Taking advantage of
this generality, our approach does not constrain the types of
programming tasks, nor the development tools and program-
ming languages used in the programming tasks. It also does
not make any assumption about computer settings (e.g., screen
resolution, window size and arrangement) and screenshot-
taking interval. Furthermore, our approach does not rely on any
HCI information recorded by instrumentation-based methods
(e.g., ActivitySpace [5]).

An output coding step consists of five pieces of information:
the start and end frame, the start and end time, the correspond-
ing video fragment, the type of coding step, and the text line
affected by the coding step. A sequence of identified coding
steps constitutes a trailer of the programming screencast,
illustrating its programming workflow. We consider four types
of coding steps: enter text, delete text, edit text and select text.
The text includes not only source code but also other software
text, such as command-line commands, console output, text
field input like file names or search keywords, XML file
content, and web page content. The granularity of text being
manipulated is one line of text. This line granularity represents
basic and coherent steps in programming tasks, which is the
granularity used for code versioning and patching. If a block
(several lines) of text is manipulated as an atomic unit we
consider this block of text as a line of text. Typical examples
include a block of text being cut, pasted or selected as a whole,
or a code block being added by code auto-completion or quick-
fix assistants.

Fig. 4. Example of text line detection

B. Action Recognition

When identifying coding steps, our approach is aware
of primitive HCI actions that constitute the coding steps.
This action awareness differentiates our approach from exist-
ing action-agnostic, content-based workflow extraction meth-
ods [9], [6], [10]. It allows our approach to filter out irrelevant
content changes on the computer screen, resulting from non-
coding actions such as switch windows, trigger or leave pop-
ups, which always confuse action-agnostic methods. It also
allows our approach to aggregate continual HCI actions on the
same text line into code-line editing steps (see Section II-D),
which has never been achieved by content-only analysis.

In this work, we adopt ActionNet [7] to recognize primitive
HCI actions in programming screencasts. ActionNet recog-
nizes three categories, nine types of frequent HCI actions in
programming work: move cursor/mouse (move cursor, move
mouse over editable text, and move mouse over non-editable
text), edit chars (enter chars and delete chars), interact with
app (select chars, scroll content, trigger or leave pop-ups, and
switch windows). All other HCI actions (e.g., move/resize
windows, zoom-in/out text, and click UI elements like menu
or list items) are recognized as an other-action type.

The consecutive frames capturing no actions, move-mouse
or move-cursor are discarded, because they have no content
changes. For coding step analysis, enter/delete/select-chars
are considered as coding-related actions. Select-chars is also
considered as coding related because the selected content
is often edited afterwards. Scroll-content, trigger/leave pop-
ups, switch-windows and other-action are considered as non-
coding-related actions, and the corresponding frames are dis-
carded.

C. Text Extraction

If the two frames capture a coding-related action, our
approach extracts and aligns text lines in the two frames. We
also extract and align text lines in the two frames capturing
a scroll-content action. Text-line alignment helps to aggregate
continual primitive coding-related actions on the same text
line, even they may be separated by small content scrolling in
between (see Fig. 3). Non-coding-related actions may change
the displayed content (usually significantly). But such screen
changes are due to the appearance of new content or the update
of the displayed content, rather than the actual content editing.
Our action-aware approach ignores such meaningless content
changes resulting from non-coding actions.

Extracting text from UI screenshots has two sub-tasks: text
line detection - locate the bounding box of text elements (e.g.,



Fig. 5. Illustration of three coding step identification methods. (a) ActionNet (primitive HCI actions). (b) SeeHow (code-line editing steps). (c) Output of
CodeTube (coarse-grained video fragments without action labels)

words) in the image, and text recognition - convert a text
image into text characters. As shown in Fig. 4(a), UIs are
usually composed of multiple windows. Different windows
use different text styles (e.g., font, size, alignment, color
and contrast). Even the content in the same window may
use different text styles, for example, programming language
keywords, constants or comments in code editor. UIs also
contain visual components such as menu, toolbar and tab
which also display text. All these UI text characteristics affect
the choice of appropriate text extraction techniques.

Optical Character Recognition (OCR) tools (e.g., Tesser-
act [11]) are commonly used for extracting text from UI
screenshots [9], [6], [10]. OCR tools are ideal for processing
document images, but their performance degrades for UI
screenshots [10] due to complex view layouts and text styles.
Fig. 4(a) shows some inaccurate text lines on an IDE screen-
shot detected by Tesseract. A recent large-scale empirical
study on GUI widget detection [12] shows that UI text should
be treated as scene text (usually in low resolution and with
messy text layouts and styles) rather than document text.
Therefore, we adopt the state-of-the-art scene text detection
tool EAST [13] to detect text lines in UI screenshots.

EAST detects text at the word level, for example, the
red word boxes in Fig. 4(b). Word-level detection helps to
distinguish component labels (e.g., menu text) from regular
text (e.g., code). Our approach scans the detected word text
boxes from left to right and top to bottom, and merges the
horizontally adjacent boxes iteratively. Let B1(x1, y1, x2, y2)
and B2(x1, y1, x2, y2) be the two adjacent text boxes, where
(x1, y1) is the top-left coordinate and (x2, y2) is the bottom-
right coordinate, and B2 is right to B1 (i.e., B2.x1 > B1.x2).
B1 and B2 will be merged into one text box if they satisfy
the two conditions: 1) The vertical coordinate of the horizontal
middle line of B2 (i.e., (B2.y1 +B2.y2)/2) is within the top
and bottom line of B1 (i.e., [B1.y1, B1.y2]; 2) The minimum
horizontal distance between B1 and B2 is less than the
average width of the characters in the two boxes. The average
character width is computed as ((B2.x2−B2.x1)+ (B1.x2−
B1.x1))/numc where numc is the total number of characters
in B1 and B2 recognized by CRNN [14]. If B2 cannot be
merged with B1, B2 is used as the new starting box to merge
the word boxes to the right of B2. This merging process

continues until no more word boxes are left to merge. It
outputs text lines such as those in green boxes in Fig. 4(b).

Given a detected text line, our approach crops the image
region by the text-line bounding box and uses the CRNN
tool [14] to convert the cropped text image into text characters.
CRNN stands for Convolutional Recurrent Neural Network,
which is the state-of-the-art model for text recognition. CRNN
uses convolutional neural network to extract image features,
which makes it robust to text images with various fonts, colors
and backgrounds.

D. Coding Step Identification

A code-line editing step may consist of some primitive HCI
actions. For example, entering a line of code may consist of
a sequence of enter-chars actions, some delete-chars actions
to correct typing errors, and also non-coding-related actions,
such as move cursor, scroll content and pop-up interactions.
Based on the recognized primitive actions and the extracted
text lines, our approach aggregates continual coding-related
actions into code-line editing steps.

Fig. 5 (b) illustrates the examples of coding step identi-
fication by our method. Our approach scans the sequence
of N screenshots from beginning to end. Recall that the
frames capturing no actions or move-mouse/cursor actions
have already been discarded. Let fi be the current frame
pointer (1 ≤ i ≤ N − 1). Let acti be the i− th action in the
sequence, captured in fi and fi+1. If acti is a non-coding-
related action (e.g, the 3rd frame in Fig. 5), the approach
increments the frame pointer by 1. If acti is a coding-related
action (e.g., the 5th frame in Fig. 5), it records fi as the
start frame of the coding step to be identified, and analyzes
the action and text-line information of fi and the subsequent
frames to identify the coding step. After outputting a coding
step, the approach continues to process the next frame.

As the coding step to be identified is enter-text, delete-text,
edit text or select-text, our approach first locates the text line(s)
Li in fi and Li+1 in fi+1 affected by the coding-related
action acti. This is determined by overlapping the change
regions of acti with the text-line boxes in fi (or fi+1). As
shown in Fig. 6, the area of an action change region and the
affected text line(s) may differ greatly, for example, only a few
characters are added in a long code line. However, the action



Fig. 6. An example of locating active text line(s)

change region and the affected text line(s) should vertically
overlap, no matter how different their areas are. Therefore,
our approach identifies a set of vertically continuous text
lines (denoted as L) with the maximum vertical overlap with
the action change region (denoted as R). Multiple text lines
are possible as some coding actions may affect a block of
text as a whole. The vertical overlap vo of L and R is
[R.y1, R.y2] ∩ [L.y1, L.y2]/[R.y1, R.y2] ∪ [L.y1, L.y2], where
y1 and y2 are the vertical coordinates of the top and bottom
line of L or R. If vo > 0.75, L is identified as active text
line(s) for acti. The threshold 0.75 is determined by examining
the correct and wrong overlaps in our dataset.

If Li+1 for enter/select-chars includes multiple text lines
(e.g., the fourth frame in Fig. 5), our approach outputs fi and
fi+1 as a coding step. The step type is the corresponding action
type. If Li+1 for enter/select-content is empty, acti is regarded
as an invalid action (usually an erroneously recognized coding
action). That is, active text-line analysis helps to filter out
erroneous coding actions by ActionNet. If acti is delete-chars
and Li includes multiple text lines, our approach outputs fi
and fi+1 as a delete-text step.

If Li+1 for a coding action includes only one text line, our
approach attempts to aggregate continual coding actions on
the same text line (e.g., the 1st and 3rd step in Fig. 5). If the
action acti+1 of fi+1 and fi+2 is a coding action, the approach
identifies active text line(s) Li+1 for acti+1. If Li+1 contains
one text line, the approach determines if Li and Li+1 is a pair
of matched text lines between fi+1 and fi+2. If that is the case,
acti+1 and acti are continual coding actions on the same text
line. Otherwise, the approach computes the vertical overlap of
Li and Li+1. If the vertical overlap is greater than 0.75, Li

and Li+1 are also considered as matched text lines. This helps
to deal with large text edits on the same text line, resulting
from text paste or the use of code completion assistant.

The action aggregation stops when a non-coding-related
action (except scroll-content) is encountered or Li and Li+1

cannot be matched in neither way. If a scroll-content action
is encountered, our approach examines if Li has a matched
text line Li+1 on fi+1. If so, the algorithm continues with
Li+1 as the active text line for aggregating subsequent coding
actions as illustrated in Fig. 3. When the aggregation stops,
the approach records the latter frame of the last aggregated
coding action as the end frame of the coding step. If active
text line in the start frame is empty, the code step is marked
as enter-text (the 2nd step in Fig. 5), otherwise as edit text
(the 3rd step in Fig. 5). If Li+1 is empty (i.e., the entire line

TABLE I
DETAILS OF OUR PROGRAMMING SCREENCAST DATASET

Programming videos from YouTube
Language ID video Dur.(h) Tool Task

Python
P1 52 4.98 Terminal &

Notepad
Programming

basics

P2 43 3.95 Pycharm Programming
basics

P3 17 3.22 Terminal &
Notepad

Programming
basics

Java
P4 99 10.08 Eclipse Android

development

P5 11 2.99 Android
studio

Android
development

P6 38 5.83 Eclipse Web app
development

Live coding streams from Twitch

Multiple L1 5 5.00 Online
IDE

Web app
development

L2 5 5.00 Sublime &
Shell

Game
development

Total 8 270 41.05 - -

is deleted like the 2nd frame in Fig. 5), the coding step is
marked as delete-text. The algorithm uses the active text line
of the last coding action as the text line affected by the coding
step.

III. EXPERIMENT SETUP

This section describes our experimental dataset and evalua-
tion metrics for evaluating our workflow-extraction approach.

A. Coding-Step Dataset

We manually label 41 hours of programming screencasts
created by eight different developers, and identify 5,466 line-
granularity code-line editing steps with variant durations.
This process costs us about 2 weeks including labeling and
checking. To the best of our knowledge, our dataset is the first
of its kind for evaluating the extraction of code-line editing
steps from programming screencasts.

1) Data Collection: We collect programming screencasts
from two sources: YouTube and Twitch. We search YouTube
for the programming tutorials on Python and Java (the two
most popular programming languages). We select the returned
playlists that demonstrate programming tasks using software
development tools, rather than those explaining programming
concepts and knowledge on black board or slides. To test the
capability boundary of our approach, we select the playlists
using different software development tools (e.g., Eclipse,
PyCharm, Notepad and Terminal), recorded with different
computer settings (e.g., screen resolution, window theme and
text style), and demonstrating diverse development tasks (e.g.,
programming basics, mobile, web or game development). In
addition, text content on screen has different types of font,
size and background. Finally, we select six playlists (three for
Python and three for Java) by six developers, which contain
260 videos with over 31 hours total duration (see Table I). The
duration of the videos ranges from 4 to 15 minutes (median
8 minutes).

We collect 10 live coding sessions on Twitch by the two
developers and each session is 1 hour. The two developers



use very different computer settings and tools. Different from
YouTube tutorials which demonstrate a specific task in a video,
live coding sessions record the actual, continual development
work by developers. In our collected streams, the two devel-
opers use Python, Java and/or Javascript, and occasionally use
some shell scripts (e.g., PowerShell). Live coding developers
may switch between programming languages and development
tools for different development tasks during a living coding
session.

2) Manual Labeling: We decode the collected 270 pro-
gramming screencasts into 270 sequences of screenshots at the
rate of 1 frame per second (fps) by the ffmpeg tool [15]. We
manually label the resulting 41,591 non-identical frames into
coding steps, in terms of the start and end frame and the type
of each coding step. The labeling uses the same coding-step
identification criteria as described in Section II-D. That is, we
use human annotators as the most accurate “computer-vision”
technique to identify ground-truth coding steps for evaluating
our computer-vision based approach. The two authors label
the coding steps independently. We use the Fleiss’ kappa [16]
measure to examine the agreement between them. The overall
kappa value is 0.93, which indicates almost perfect agreement
between the labelers. After completing the labeling process,
the two labelers discuss the disagreements to obtain the final
labels.

We obtain 5,466 coding steps, with the duration of 7.62
(mean) ± 10.82 (standard deviation) frames (i.e., seconds at 1
fps). There are 5,457 non-coding video fragments, with the
duration of 16.17±17.88 frames. Among the 5,466 coding
steps, enter-text, delete-text, edit-text and select-text account
for 36.5%, 0.5%, 20.9%, and 42.1%, respectively. Delete-text
is much less than the other three types because developers
either create new programs or modify existing code. Select text
occurs relatively frequently because developers often select
code to explain in YouTube video tutorials.

Fig. 7(a) shows the distribution of coding-step length. The
shortest coding step contains two frames. Coding steps with 5
or less frames account for about 61.7% of the 5,466 ground-
truth coding steps. There are many short coding steps because
developers often make small modifications to existing lines
of text, or make atomic text-block modifications. However,
as shown in Fig. 7(b), the accumulated duration of different
lengths of coding steps does not differ as much as the
frequency of different code-step lengths. The accumulated
duration of coding steps with 5 or less frames account for
only 18.6% of the total duration of the 5,466 coding steps.

B. Evaluation Metrics

We compute Precision, Recall and F1-score of the identified
coding steps in a programming screencast against the ground-
truth coding steps. Precision is the portion of coding steps that
are correctly recognized among all the identified coding steps.
Recall is the portion of the ground-truth coding steps that are
correctly recognized. F1-score conveys the balance between
Precision and Recall which is computed by 2× (Precision×
Recall)/(Precision+Recall).

Fig. 7. Distribution of coding-step length and duration

To determine the correctness of an identified coding step,
we need to first determine the accuracy of the boundary (i.e.,
start and end frame) of the identified coding step against the
ground-truth coding step. To that end, we compute Intersection
over Union (IoU) of the two video fragments. Let r be the
coding-step fragment identified by our method, and gt be the
ground-truth fragment. IoU is computed by r∩ gt/r∪ gt, i.e.,
the number of common frames between the two fragments
over the total number of frames in the set of two fragments.
If r and gt have no overlapping, their IoU is 0.

Given the sequence of identified coding-step fragments R =
{r1, r2, · · · , rm} and the sequence of ground-truth fragments
G = {gt1, gt2, · · · , gtn} of a programming screencast, we
compute the longest common subsequence between R and G,
with the goal of maximizing the IoU of the matched ri and
gtj . When a ri overlaps multiple ground-truth fragments, we
select the gtj with the highest IoU with ri. When a ri is
matched with a gtj , the matching continues from the frame
next to the end frame of ri. We allow multiple ri to be matched
to different fragments of one gtj . This could happen when
a long ground-truth fragment has been recognized as several
consecutive short fragments (i.e., over-segmentation).

Given a pair of matched coding-step fragments ri and gtj ,
if their IoU is above a threshold, we consider ri as a correctly
identified coding-step fragment. The higher the IoU threshold
is, the more accurate the boundary of the identified coding-step
fragment is, but the less number of fragments can be qualified
as correct. If the step type of a correctly identified ri matches
the step type of gtj , the coding step of ri is regarded as a
correctly identified coding step.

IoU has been widely used for object detection in computer
vision. As described in [17], [18], even the best matching
anchor box of a small object has a low IoU value typi-
cally. Similarly, IoU is sensitive to short fragment length.
For example, assume gt has 4 frames and r has 3 frames.



TABLE II
PERFORMANCE AT DIFFERENT MATCHING THRESHOLDS

IOU thresholds Time-offset thresholds
IoU Prec Reca F1 TO Prec Reca F1
>0 0.891 0.942 0.909 =0 0.838 0.824 0.820
>0.3 0.772 0.738 0.744 ≤1 0.869 0.864 0.856
>0.5 0.703 0.671 0.677 ≤3 0.882 0.891 0.876
>0.7 0.612 0.586 0.590 ≤5 0.890 0.911 0.891
>0.9 0.548 0.525 0.529 ≤7 0.892 0.926 0.900
=1.0 0.520 0.498 0.501 ≤9 0.894 0.937 0.907

The highest IoU is only 0.75, when all three frames in r
overlap gt. When IoU threshold is above 0.75, the identified
fragment r, albeit high quality, will be regarded as incorrect.
Therefore, we compute time offset as a complementary metric
to understand the mismatch between the two overlapping
fragments. When IoU > 0, the time offset is computed by
min(|Fr.start−Fgt.start|, |Fr.end−Fgt.start|, |Fr.start−
Fgt.end|, |Fr.end−Fgt.end|). Time offset represents the least
effort required to navigate from the start or end frame of
the identified coding step to the start or end frame of the
overlapping ground-truth step. As shown in Fig. 7, the majority
of coding steps are short. Therefore, it would not be difficult to
identify the complete coding step after locating its start or end
frame. Given a pair of matched ri and gtj , if their time offset
is below a threshold, we consider ri as a correctly identified
coding-step fragment.

IV. EXPERIMENT RESULTS AND FINDINGS

We conduct extensive experiments on our coding-step
dataset to investigate the following four research questions:

• RQ1. How do the coding-step trailers extracted by our
approach compare with the ground truth trailers?

• RQ2. How well does our approach perform under differ-
ent IoU and time-offset threshold settings?

• RQ3. How well does our approach perform for differ-
ent developers, development environments, programming
languages, and programming tasks?

• RQ4. How well do developers rate the quality of the
identified coding steps?

A. Comparison of Extracted and Ground-Truth Trailers (RQ1)

1) Motivation: A coding-step trailer provides a concise
overview of coding steps in a programming screencast. Each
screencast has an extracted trailer and a ground-truth trailer.
We want to investigate how the identified coding steps com-
pare with the ground-truth coding steps at the trailer level.

2) Method: We make three types of comparisons between
the extracted trailers Ti and the ground-truth trailers Tgt.
First, we compare the distribution of coding-step length and
total duration in Ti versus Tgt. Second, we compare the
frame coverage of a set of trailers (Ti or Tgt) over the
original programming screencasts. Third, we compute three
percentages: the overall IoU of Ti and Tgt, the percentage of
the frames only in Ti (false positive), and the percentage of
the frames only in Tgt (false negative).

3) Results: Our approach identifies 4,648 coding steps in
the 270 programming screencasts. Fig. 7(c) and Fig. 7(d)
show the frequency and total duration of different lengths of
the identified coding steps, respectively. Compared with those
of the ground-truth coding steps in Fig. 7(a) and Fig. 7(b),
we observe similar overall distribution. About 66.0% of the
identified coding steps have 5 or less frames. This percentage
is relatively higher than the percentage of the ground-truth
counter part (61.7%). Furthermore, the ground-truth trailers
have longer coding steps than the extracted trailers, and
relatively longer total duration. This is because our approach
may identify several shorter coding steps for a long coding
step. However, the overall frame coverage does not differ
significantly, with 26.9% for the extracted trailers and 28.1%
for the ground-truth trailers. The overall IoU of the extract
trailers and the ground-truth trailers is 0.661, only 22.4% of
the frames in the extracted trailers are not in the ground-truth
trailers, and only 21.3% of the frames in the ground-truth
trailers are not covered in the extracted trailers.
The coding steps identified by our approach have similar
length and duration distributions to the ground-truth steps.
They also have similar overall coverage of the program-
ming screencasts and low false-positive and false-negative
frames.

B. Performance Under Different Matching Thresholds (RQ2)

1) Motivation: The correctness of coding steps depends
on the IoU (or time-offset) threshold. The strictness of the
threshold affects the boundary accuracy and the number of
coding-step fragments that can be treated as correct, which
in turn affects the performance of coding step extraction. In
this RQ, we investigate the impact of the IoU and time-offset
threshold on the extraction of coding steps.

2) Method: We experiment six IoU thresholds {0, 0.3, 0.5,
0.7, 0.9, 1.0}. IoU > 0 means the identified coding step and
the ground-truth step have at least one overlapping frame, and
IoU = 1.0 means the identified step and the ground-truth step
have identical frames from start to end. We experiment six
time-offset thresholds {0, 1, 3, 5, 7, 9} (frame). time-offset =
0 means the identified coding step and the ground-truth step
have at least one matched boundary, and time-offset ≤ 9 means
the closest boundaries of the identified step and the ground-
truth step have at most 9 frames gap. At each threshold, we
obtain a set of correctly identified coding steps. We compute
precision, recall and F1-score of these identified steps.

3) Results: Table II shows the overall evaluation metrics of
all 4,648 identified coding steps at different IoU thresholds. At
the strictest threshold IoU = 1.0, our approach still achieves 0.5
F1-score, which means about half of the identified coding steps
match perfectly with the corresponding ground-truth steps. As
the IoU threshold decreases, the boundary accuracy criteria is
loosen, and more and more identified coding steps are qualified
as correct. Consequently, the F1 increases gradually from 0.5
for IoU = 1.0 to 0.74 for IoU > 0.3. At the lowest threshold
IoU > 0, the F1-score reaches the upper bound 0.9. That is,



Fig. 8. Coding-step distribution at IoU and time-offset thresholds

about 90% of the identified coding steps have at least one
overlapping frame with the ground-truth steps.

Fig. 8(a) is the distribution of different lengths of identified
coding steps at different IoU threshold ranges. About 71.0%
of coding steps with 5 or less frames (red bar) have IoU∈
(0.7, 1.0] with the ground-truth steps. Only a small number
of coding steps with 5 or less frames have IoU∈ (0.7, 0.9],
but about 13.2% of coding steps with 5 or less frames have
IoU∈ (0, 0.3]. This is because it is hard for short coding steps
to achieve high IoU when they do not completely match the
ground-truth steps. In contrast, about 60.4% of coding steps
with more than 5 frames have IoU∈ (0.7, 1.0], and the rest
of such long coding steps are roughly evenly distributed in
different IoU ranges. This is because IoU metric is more robust
when the length of coding steps increases.

For time-offset based performance metrics, as shown in
Table II, we can see that the upper bound of time-offset based
metrics at time-offset ≤ 9 is almost the same as those at IoU >
0. However, when the time-offset threshold becomes stricter,
the metrics decreases much slower, compared with the metric
decrease as IoU increases. At the strictest time-offset = 0, the
F1 is 0.82, which means about 82% of the identified coding
steps have at least one boundary matching the boundary of the
corresponding ground-truth steps.

Furthermore, time-offset threshold at 5 or above improves
the performance very marginally. This suggests that the bound-
ary of correctly identified coding steps is usually very close (1-
4 frame gap) to that of the ground-truth steps. Fig. 8(b) shows
the time-offset distribution of the identified coding steps with
5 or less frames and having IoU∈ (0, 0.7] with the ground-
truth steps. 94.2% of these coding steps have time-offset = 0
or 1. In fact, this is the main reason why time-offset based
performance is much better than IoU based.

Our approach can accurately extract coding steps, even
at the strictest matching criteria. A large portion of short
coding steps have low IoU with the ground-truth steps, but
they have only 0-1 frame time offset.

C. Performance On Diverse Programming Screencasts (RQ3)

1) Motivation: Developers use different programming lan-
guages and tools in their work, and their computer settings
(e.g., screen resolution, window theme and text style) also
vary. There are also many different types of programming
tasks. This RQ aims to investigate the generality of our
approach in such diverse settings.

TABLE III
PERFORMANCE ON DIFFERENT PLAYLISTS

Programming videos from YouTube
IoU > 0.7 Time-offset ≤ 3

Language Idx Prec Reca F1 Prec Reca F1

Python

P1 0.703 0.696 0.691 0.936 0.932 0.923
P2 0.645 0.553 0.585 0.917 0.838 0.863
P3 0.705 0.644 0.670 0.905 0.902 0.901

Ave. 0.684 0.631 0.648 0.919 0.891 0.896

Java

P4 0.535 0.526 0.522 0.883 0.905 0.880
P5 0.505 0.512 0.495 0.811 0.859 0.820
P6 0.578 0.588 0.579 0.842 0.910 0.871

Ave. 0.539 0.542 0.532 0.882 0.891 0.876
Live coding streams from Twitch

Multiple
L1 0.601 0.649 0.615 0.938 0.833 0.882
L2 0.625 0.526 0.571 0.923 0.800 0.857

Ave. 0.613 0.587 0.593 0.930 0.816 0.869

2) Method: Our coding-step dataset consists of 8 sets of
programming screencasts, created by 8 different developers
with diverse computers, tools, programming languages and
task settings (see Table I). We first analyze the performance
variations across 270 programming screencasts at different
IoU and time-offset thresholds. Then, we zoom into the
performance of each set of programming screencasts at the
IoU > 0.7 or time-offset ≤ 3.

3) Results: Fig. 9(a) and Fig. 9(b) show the distribution
of the F1-score of 270 programming screencasts at different
IoU and time-offset thresholds. The interquartile range of
the box plots is mostly 0.1 between the 25th percentile and
the 75th percentile for IoU-based evaluation, and less than
0.05 for time-offset based evaluation. Some screencasts are
more challenging than others, which results in about 0.2
difference between the best and the worst F1-score for IoU,
and about 0.1 F1-score difference for time-offset. Time-offset
based evaluation is more stable than IoU based evaluation, due
to the time-offset’s tolerance of small mismatches.

Table III shows the metrics on the eight sets of programming
screencasts. The performance rankings of these eight sets are
consistent across IoU>0.7 and time-offset≤3 threshold. This
indicates the consistency between the two thresholds, even
though they represent different criteria for determining the
correctness of the identified coding steps. P1 has the best
performance, and P5 has the worst performance. Compared
with the overall average F1-score (0.59 for IoU>0.7 and 0.876
for time-offset≤3), only P1 and P5 have larger variation (±0.1
in F1-score for IoU>0.7 and ±0.05 in F1-score for time-
offset≤3). The 3 Python playlists have better performance,
the 3 Java playlists have worse performance, and the 2 live
coding sets are in between.

Fig. 10 shows the percentage of videos in each set of
programming screencasts whose F1-scores fall into different
ranges. We show percentage because different sets have dif-
ferent numbers of screencasts. For 6 sets of programming
screencasts, more than half of the videos have F1-score >
0.6 (light green and green bars) for IoU-based evaluation. For
all 8 sets of programming screencasts, more than 81.3% of the
videos have F1-score > 0.8 (green bars) for time-offset based
evaluation. The videos with low F1-scores ((0.0,0.2] in red or



Fig. 9. Per-video F1 distribution at different IoU and time-offset thresholds

Fig. 10. Coding-step distribution at different IoU and time-offset thresholds

(0.2,0.4] in orange) usually account for a small portion of a
set of programming screencasts. This is especially the case for
time-offset based performance.

We examine the videos with low F1-scores to understand
what causes the low accuracy. We find that the challenging
screencasts usually involve complex human computer interac-
tions. For example, P6 demonstrates Web app development,
in which the developer frequently switch between web design
tool, command-line terminal and web browser to edit, deploy
and view the web page back and forth. Sometimes, different
windows may even overlap. As another example, Java IDEs
(e.g., Eclipse) often provide sophisticated pop-ups. These pop-
ups blur the coding steps with very dynamically changed pop-
up contents. In contrast, Python developers often use text
editors (e.g., Notepad) where coding steps are clear to iden-
tify. Complex human computer interaction poses a significant
challenge for ActionNet to accurately recognize primitive HCI
actions of interests. Some meaningless HCI actions may also
confuse our approach. For example, some developers like to
randomly select some code fragments, switch windows or
scroll content while thinking about code features or errors,
which result in many meaningless actions. The erroneously
recognized or meaningless HCI actions negatively affect the
downstream inference of coding steps.

Our approach performs stably across diverse programming
screencasts. It can accurately identify coding steps in over
81% of the programming screencasts in our dataset by
time-offset based evaluation. Improving the ActionNet’s
recognition capability for complex human computer inter-
action could further improve the performance.

D. Coding Step Quality by Human Evaluation (RQ4)

1) Motivation: The identified coding steps may not per-
fectly match the ground-truth coding steps at both bound-

Fig. 11. Correctness ratings by human evaluation

aries. The evaluation against these ground-truth coding steps,
no matter IoU or time-offset based, mechanically judge the
correctness of the identified coding steps by an overlapping
threshold. This RQ aims to investigate how developers judge
and understand the correctness of not-perfectly-aligned coding
steps.

2) Method: We exclude the identified coding steps with IoU
= 1.0 as they perfectly match the ground-truth coding steps
labeled by the two authors. For the 270 programming screen-
casts in our dataset, we keep the 2,605 not-perfectly-aligned
coding steps (i.e., IoU∈ (0, 1.0)). We recruit 6 developers who
have at least 3 years programming experience on Python and
Java from a top technology company. The way SeeHow works
is kept confidential before all of them finish the experiment.
We ask them to watch a programming screencast in our
dataset and then review the non-perfectly-aligned coding steps
for this screencast. The developers can contrast these coding
steps against the original programming screencast and/or the
ground-truth coding steps. They give a binary rating for
each non-perfectly-aligned coding steps: correct or incorrect.
Correct rating means the developers believe the inaccurate
boundaries of the identified coding steps do not affect their
correct understanding of the identified steps. The 6 developers
examine all 270 programming screencasts in our dataset, and
perform the correctness annotation independently. We compute
Fleiss’s Kappa [16] to evaluate the inter-rater agreement, and
use the majority of three ratings for a step as the final rating.

3) Results: The 6 developers have substantial agreement
(Fleiss’ kappa = 0.83) for marking the correctness of the not-
perfectly-aligned coding steps. Fig. 11(a) shows the distribu-
tion of the percentage of correct-rated coding steps per video
in the 8 sets of programming screencasts. The overall average
correctness percentage is 83.6%. This correctness percentage
is for not-perfectly-aligned coding steps, but it is close to the
overall F1-score 79.3% at Io>0.2 and the overall F1 85.6% at
time-offset≤1. The correctness percentage has small variations
within and across the 8 sets of programming screencasts.
The correctness percentage of Python programming tutorials
and live coding streams are slightly higher than that of Java
programming tutorials. These correctness rating results are
consistent with those by IoU and time-offset based evaluation.

Fig. 11(b) shows the distribution of the correct-rated coding
steps in different IoU ranges with the ground-truth coding
steps. We see that correct-rated coding steps are scattered in all
IoU ranges. About 700 correct-rated coding steps have ≤ 0.3
IoU with the ground-truth coding steps. Those coding steps



are regarded as incorrect steps at IoU>0.3. But they are rated
as correct when reviewed by the 6 developers. As discussed
in Section IV-B, a large portion of identified coding steps
with low IoU have a small boundary gap (0-3 frames) from
the ground-truth steps. When watching a coding step in the
programming screencast, such a small gap does not affect the
understanding of the identified coding steps.

The developers’ correctness ratings of the identified coding
steps are similar to time-offset base evaluation. They can
understand the identified steps in face of small boundary
inaccuracy or over-segmentation.

E. Use case scenarios

In order to explore the potential scenarios to use our tool
in practical environment, an interview is conducted with the 6
developers. We focus on one question that how can SeeHow
help their daily work. The answers are summarized as two
points: software asset management and workflow logging.

1) Software asset management: Programming screencasts
are taken as a kind of software asset [19] because of the code-
intensive characteristic of such media. However, programming
screencasts on video platforms (e.g., YouTube) are analogous
to GitHub repository without version control, which is hard to
maintain. Our tool plays the role of software asset management
and enables a lot of downstream tasks such as video summary
and video search. For example, it will save developers about
70% of time if we only keep the workflow-related fragments of
programming screencast in our dataset. In addition, developers
can jump to a specific workflow step via keyword search.

2) Workflow logging: IDEs can record developers’ pro-
gramming behaviours such as typing and deleting text. How-
ever, the recorded logs are limited to single application and
cross-application logging is a big challenge. For example, the
developer copy a code line from website and paste it to IDE.
Our tool is computer vision based and non-intrusive, which
means it works on various text editing applications. It can log
the text editing behaviours and make developers’ workflow
traceable.

SeeHow is the first attempt to these promising applications
and further efforts are required to realize the value from it.

V. RELATED WORK

VT-Revolution [2] develops a novel way for making inter-
active programming screencasts. During screen recording, it
relies on software instrumentation to record code-line editing
steps. The recorded coding steps allows developers to scan,
search and navigate programming screencast just like dealing
with textual tutorials. Although the enhanced interaction with
programing screencasts is intriguing, its reliance on software
instrumentation is a major barrier for the wide adoption of
VT-Revolution. The authors of VT-Revolution envision to
make regularly-recorded programming screencasts interactive
through computer-vision based workflow extraction. Our work
is a step towards this vision, and our output coding steps can
be seamlessly integrated into VT-Revolution.

CodeTube [9], [1] and CodeMotion [6] also support this
vision. CodeTube extracts code-like content from screenshots
and splits a long video into fragments based on the content
similarity of adjacent screenshots. The fragments correspond
to coarse-grained programming activities (e.g., all changes in a
file) and do not have explicit notion of coding steps. CodeMo-
tion extracts code content in a similar way to CodeTube, but it
attempts to infer more fine-grained coding steps from content
changes only. As CodeMotion is action agnostic, its action
inference is unreliable in face of complex window interactions,
such as pop-up assisted code editing and content scrolling.
In contrast, our approach is action aware and infers code-
line editing steps based on both coding-related actions and
text edits. Our approach can be integrated into CodeTube to
enhance coding step search, such as finding when an API call
is first introduced or when a parameter of this API call is
changed. Such fine-grained video search is impossible with
the current CodeTube’s coarse-grained video fragments.

Our method is related to action detection in natural
scene [20], [21], [22], [23], [24], which aims to detect the start
and end time of action instances in untrimmed videos. Bergh
et.al [25] creates a dataset comprised of 111,229 screenshots
from Java and Python tutorials. Their goal is to classify four
categories of code images: Visible Typeset Code, Partially
Visible Typeset Code, Handwritten Code, and No Code. This
is different from our work in two aspects: our tool processes
screencasts (i.e., a sequence of screenshots), and our goal is
to segment video frames into coding steps. ActionNet [7] is a
neural model for recognizing primitive HCI actions between
two consecutive frames in screencasts, and it does not extract
action-related content. Our approach entends the ActionNet’s
output and exploits both primitive HCI actions and coding-
action-related text edits to infer coding-step fragments, types
and affected contents.

Computer-vision techniques have been applied to GUI data,
such as GUI widget detection [12], GUI testing [26], [27],
[28], [29], GUI code generation [30], GUI visual defect
detection [31], [32], [33], [34], GUI evolution analysis [35]
and GUI content prediction [36], [37]. Our work adds to this
picture a new way to extract coding steps from screencasts. In
terms of information granularity, SeeHow fills the gap between
ActionNet [7] and CodeTube [9], [1].

VI. THREATS TO VALIDITY

One threat to internal validity is the labeling errors of
our screencast dataset. To minimize the labeling errors, two
authors label the data independently and reach the almost-
perfect agreement. This high agreement benefits from the clear
definition of code-line editing steps the developers are famil-
iar with. Disagreements mainly come from judging whether
some actions (e.g., typing a class name to search code) are
coding related. Another internal threat is the human bias for
evaluating non-perfectly aligned coding steps in RQ4. None
of the annotators are involved in our work and they have no
knowledge about our goal and approach design. Furthermore,
the ratings by the 6 annotators have high agreements. Threats



to external validity include the representativeness of our
screencast data and the choice of text recognition tools. Our
experiments intentionally include very diverse screencasts in
terms of developers, programming languages, tasks and tools,
and computer settings. We carefully chose text recognition
tools which are appropriate for GUI texts [12]. These tools
may have errors at char level which will not affect the coding
step identification at line level.

VII. CONCLUSION AND FUTURE WORK

This paper presents the first non-intrusive, computer-vision
based approach for extracting code-line editing steps from
programming screencasts, without the need of software in-
strumentation. The innovation lies in action-aware text ex-
traction and coding step identification. The evaluation on 41
hours diverse programming screencasts shows that half of
the coding steps identified by our approach match perfectly
with the ground-truth steps, and most of the not-perfectly-
matched steps have small (0-3) frame offset at the start
or the end. The 6 developers judge 83% of the identified
coding steps as correct, with substantial inter-rater agreement.
The output coding steps by our approach lower the bar to
make interactive programming screencasts which currently has
to rely on software instrumentation, and can also be inte-
grated into programming video search engine which currently
supports only action-agnostic, coarse-grained content search.
We will investigate advanced workflow analysis enabled by
non-intrusive workflow extraction from screencasts, such as
workflow pattern mining and workflow error identification, to
support best programming practices.
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