
CoCoSoDa: Effective Contrastive Learning for
Code Search

Ensheng Shia,† Yanlin Wangb,§ Wenchao Guc,† Lun Dud

Hongyu Zhange Shi Hand Dongmei Zhangd Hongbin Suna,§

aXi’an Jiaotong University bSchool of Software Engineering, Sun Yat-sen University
cThe Chinese University of Hong Kong dMicrosoft Research eChongqing University

s1530129650@stu.xjtu.edu.cn, wangylin36@mail.sysu.edu.cn
wcgu@cse.cuhk.edu.hk, {lun.du, shihan, dongmeiz}@microsoft.com

hyzhang@cqu.edu.cn, hsun@mail.xjtu.edu.cn

Abstract—Code search aims to retrieve semantically relevant
code snippets for a given natural language query. Recently, many
approaches employing contrastive learning have shown promising
results on code representation learning and greatly improved the
performance of code search. However, there is still a lot of room
for improvement in using contrastive learning for code search. In
this paper, we propose CoCoSoDa to effectively utilize contrastive
learning for code search via two key factors in contrastive
learning: data augmentation and negative samples. Specifically,
soft data augmentation is to dynamically masking or replacing
some tokens with their types for input sequences to generate
positive samples. Momentum mechanism is used to generate large
and consistent representations of negative samples in a mini-
batch through maintaining a queue and a momentum encoder. In
addition, multimodal contrastive learning is used to pull together
representations of code-query pairs and push apart the unpaired
code snippets and queries. We conduct extensive experiments to
evaluate the effectiveness of our approach on a large-scale dataset
with six programming languages. Experimental results show that:
(1) CoCoSoDa outperforms 18 baselines and especially exceeds
CodeBERT, GraphCodeBERT, and UniXcoder by 13.3%, 10.5%,
and 5.9% on average MRR scores, respectively. (2) The ablation
studies show the effectiveness of each component of our approach.
(3) We adapt our techniques to several different pre-trained
models such as RoBERTa, CodeBERT, and GraphCodeBERT
and observe a significant boost in their performance in code
search. (4) Our model performs robustly under different hyper-
parameters. Furthermore, we perform qualitative and quantita-
tive analyses to explore reasons behind the good performance of
our model.

Index Terms—code search, contrastive learning, soft data
augmentation, momentum mechanism

I. INTRODUCTION

Code search plays an important role in software devel-
opment and maintenance [1], [2]. To implement a certain
functionality, developers often search and reuse previously-
written code from open source repositories such as GitHub
or from a large local codebase [3]–[5]. The key challenge in
this task is to find semantically relevant code snippets written
in programming languages based on input queries written in
natural languages [6].

§Yanlin Wang and Hongbin Sun are the corresponding authors.
†Work done during the author’s employment at Microsoft Research Asia

Early studies [3], [7]–[9] on code search mainly leverage
on the lexical information of the code snippets and use
information retrieval (IR) methods. Later on, deep learning-
based approaches [10]–[21] that employ neural networks to
embed code and queries into a shared embedding space and
measure their semantic similarity through vector distances are
explored. Recently, large pre-trained code models [22]–[26],
which are pre-trained on large multi-programming-language
data, improve the understanding of code semantics and achieve
better code search performance. Some studies [27], [28] ap-
ply contrastive learning to unsupervised code representation
learning and Corder [28] also achieves good performance in
code search. In detail, they first use semantic-preserving trans-
formations [28] to generate similar code snippets as positive
samples. These transformations are including Statements
Permutation [28] (swapping two statements that have no
data dependency on each other in a basic block), Loop
Exchange [28] (replacing for statements with while
statements or vice versa.), etc. Second, they treat other code
snippets in the same mini-batch as negative samples and then
optimize the model to pull together representations of positive
samples and push apart representations of negative samples.
These approaches have shown promising results in code
search. For example, Corder [28] outperforms all approaches
and achieve a MRR score of 0.727 on CodeSearchNet [29]
Java dataset. However, there is still a lot of room for improve-
ment in leveraging contrastive learning for code search, such
as using other effective data augmentation to generate positive
samples or enriching negative samples.

In this paper, we propose CoCoSoDa (stands for Code
search with multimodal momentum Contrastive learning and
Soft Data augmentation) to effectively utilize contrastive learn-
ing for code search via two key factors in contrastive learning:
data augmentation and negative samples. 1© To learn a better
overall semantic representation of the code snippet and query
instead of focusing on token-level semantic representation
learning according to the surrounding context, we propose
four SoDa (stands for Soft Data augmentation) methods
(Sec. III-C). They dynamically replace r (r is stable from
5% to 20%) of code tokens with their types or simply mask

ar
X

iv
:2

20
4.

03
29

3v
3

 [
cs

.S
E

]
 1

2
Fe

b
20

23

 Original Source Code c:
def save_file(dataframe, filename):
 df = dataframe
 df.to_csv(filename ,sep=',',
 encoding='utf-8', index=False)

 Augmented Source Code c*:
def save_file(dataframe, filename):
 df = dataframe
 df.to_csv(<Identifier> ,sep=',',
 encoding=<String>, index=False)

Replacing Tokens With Types

𝜙q𝑒𝜙𝑚q𝑒 𝜃𝑚𝑐𝑒 𝜃𝑐𝑒

Mini-batchCode

(q1, c1), (q2, c2),…,(q1000, c1000),…

q1, q2

q1 , q2q1,* q2*

Query

Encoder

Momentum

Query

Encoder

q3*,…, q4096*

Queue
Vq1*
Vq2*

Mini-batch

c1, c2

c1, c2c1*, c2*

Code

Encoder

Momentum

Code

Encoder

c3*,…,c4096*

MultiModal Contrastive Learning Loss

Mini-batch

Soft data augmentation Soft data augmentation

...

Vq4096*

Vq1

Vq2

Vc1*
Vc2*

...

Vc4096*

Vc1

Vc2

Soft data augmentation

 Augmented Query q*:

How to <MASK> to CSV Files in Python

Original Query q:

How to Write to CSV Files in Python

Dynamic Masking

Inter-modal lossIntra-modal loss

Fig. 1. The framework of CoCoSoDa.

them to generate similar code snippets. 2© To distinguish one
sample from more negative samples at each iteration, we adopt
the momentum mechanism [30] to enlarge negative samples
in a mini-batch. 3© We also employ multimodal contrastive
learning to minimize the distance between the representations
of code-query pair and maximize the distance between the
representations of the query (code snippet) and other many
unpaired code snippets (queries). The overall framework of
CoCoSoDa is shown in Fig. 1. On the left is an example of soft
data augmentation, and on the right is the main architecture
of our model. More details are given in Sec. III.

We evaluate the effectiveness of CoCoSoDa on a large-scale
dataset CodeSearchNet [29] with six programming language
(Ruby, JavaScript, Go, Python, Java, PHP) and compare Co-
CoSoDa with 18 state-of-the-art (SOTA) approaches. We also
conduct the ablation study to study the effectiveness of each
component of CoCoSoDa. Furthermore, we apply CoCoSoDa
to other three large-scale pre-trained models, including natural
language pre-trained model RoBERTa [31], code pre-trained
models CodeBERT [23] and GraphCodeBERT [22]. We also
assign different hyperparameters to check their impact on
code search. In addition, we discuss why CoCoSoDa perform
well through qualitative and quantative analyses. Experimental
results show that: (1) CoCoSoDa significantly outperforms
existing SOTA approaches on code search task (Sec. V-A).
(2) The multimodal momentum contrastive learning including
intra-modal and inter-modal contrastive learning and four
SoDa methods play important roles individually and can
improve the performance of the code search model (Sec. V-B).
(3) CoCoSoDa can be easily adapted to other pre-trained

models and obviously boost their performance (Sec. V-C). (4)
CoCoSoDa performs stably over a range of hyperparameters:
learning rate is from 5e−6 to 7e−5, momentum coefficient m
is between 0.910 and 0.999, masked ratio r is from 5% to
20%, and temperature hyperparameter τ varies from 0.03 to
0.07 (Sec. V-D).

We summarize the contributions of this paper as follows:

• We adapt Transform-based momentum contrastive learn-
ing algorithm to better leveraging contrastive learning
techniques for code search task. It enables the model
to learn effective code representations by learning bet-
ter representation of one sample against more negative
samples. We also propose a new approach incorporating
multimodal momentum contrastive learning. It can pull
together the representations of matched code-query pairs
and push apart the representations of unmatched code-
query pairs.

• We propose four simple yet effective soft data aug-
mentation methods that utilize dynamic masking and
replacement for data augmentation. More importantly,
SoDa can be easily applied to all programming languages.

• We conduct extensive experiments to evaluate the
superiority of our approach on a large-scale multi-
programming-language dataset. The results show that our
approach significantly outperforms baselines, our frame-
work can be easily adapted to other pre-trained models
and significantly boost their performance, and CoCoSoDa
performs stably over a range of hyperparameters.

2

II. RELATED WORK

A. Code Search

Learning the representation of code is an emerging topic
and has been found to be useful in many software engineering
tasks, such as code summarization [32]–[36], code search [10],
[15], [18], [37], [38], code completion [39]–[43], commit mes-
sage generation [44]–[48]. Among them, code search plays an
important role in software development and maintenance [1],
[2]. Traditional approaches [3], [7]–[9] based on retrieval
information techniques mainly focus on the lexical information
of the source code and apply keywords matching methods to
search the relevant code snippets for the given query. In recent
years, deep learning-based approaches leverage the neural
network to learn the semantic representations of the source
code and natural language to improve the understanding of
code snippets and queries. Gu et al. [10] is the first to use the
deep neural network to embed the code and query into a shared
vector space and measure the similarity of them using vector
distance. Subsequently, various types of model structures are
applied to code search, including sequential models [16]–
[20], convolutional neural network [14], [15], [21], tree neural
network [20], graph models [13], [20], and transformers [11],
[15]. Recently, large-scale code pre-trained models [22]–[26],
[49], which are pre-trained on a massive source code dataset,
improve the understanding of code semantics and achieve
significant improvements in code search task. For example,
CodeBERT is pre-trained with masked language modelling
(MLM), which is to predict masked tokens, and replaced
token detection (RTD), which uses a discriminator to identify
replaced tokens. GraphCodeBERT takes source code, paired
summarization and the corresponding data flow as the input
and is pre-trained with MLM, data flow edge prediction,
and node alignment tasks. PLBART [26] is a sequence-to-
sequence code pre-trained models and is pre-trained with
denoising autoencoding, which destroys a span of tokens and
then recovers them. Our approach can be easily applied to
these pre-trained models and boost their performance.

B. Code Representation Learning with Contrastive Learning

Contrastive learning approaches [50], which pull close the
similar representations and push apart different representa-
tions, have been successfully used in self-supervised repre-
sentation learning on images [30], [51] and natural language
texts [52]–[54]. To generate individual augmentations, images
usually use spatial [55], [56] and appearance transforma-
tion [57], [58], and natural language texts mostly use back-
translation approach [53] and spans technique [54]. Then,
a model is pre-trained to identify whether the augmented
samples are from the same original sample.

Recently, some studies [24], [27], [28], [59], [60] try to
use contrastive learning approaches on unsupervised code
representation learning. For example, Jain et al. [27] and Bui
et al. [28] mainly use semantic-preserving program transfor-
mations to generate the functionally equivalent code snippets
and pre-train the model to recognize semantically equivalent

and non-equivalent code snippets through contrastive learning
techniques. These transformations including variable renaming
(rename a variable with a random token), unused statement
(insert an dead code snippet such as an unused declaration
statement), permute statement (swap two statements which
have no data dependency on each other), etc. Unlike the
above-mentioned pre-trained technique, our model is based
on multimodal contrastive learning with momentum encoders,
which allow the model to learn the good representation based
on samples in the current mini-batch and previous mini-
batches. Furthermore, previous data augmentations require
preserving the semantics of source code, whereas we use a
simple yet effective dynamic masking technique that allows
more flexible soft data augmentation.

III. PROPOSED APPROACH

In this section, we illustrate our model CoCoSoDa for code
search. The overall framework of CoCoSoDa is shown in
Fig. 1. It is comprised of the following components:
• Pre-trained code/query encoder captures the semantic

information of a code snippet or a natural language query
and maps it into a high-dimensional embedding space.

• Momentum code/query encoder encodes the samples
(code snippets or queries) of current and previous mini-
batches to enrich the negative samples.

• Soft data augmentation is to dynamically mask or
replace some tokens in a sample (code/query) to generate
a similar sample as a form of data augmentation.

• Multimodal contrastive learning is used as the op-
timization objective and consists of inter-modal and
intra-modal contrastive learning loss. They are used to
minimize the distance of the representations of similar
samples and maximize the distance of different samples
in the embedding space.

We first illustrate our model with a concrete example shown
in Fig. 1 and then introduce each component in details.

A. An Illustrative Example

In this section, we introduce our model by an illustrative
example shown in Fig. 1. On the left side is an example of
soft data augmentation performing on the code snippet and
query pair, and on the right side is the main architecture of
our model. Specifically, first, at each iteration, we randomly
perform one of four SoDa methods including dynamic mask-
ing (DM), dynamic replacement (DR), dynamic replacement
of specified type (DRST), and dynamic masking of specified
type (DMST), to generate the positive samples. DM and DR
randomly sample 15% of tokens of a code snippet and replace
each token with a [MASK] token or the type of the token.
DRST and DMST sample all tokens of the specified type (such
as operator, identifier) from a code snippet, and 15% of them
are randomly replaced with the specified type or [MASK]
token. For query, only DM is performed because other three
SoDa methods require the type information of source code.

Second, we adopt the framework of momentum contrastive
learning (MoCo) [30], and apply the multi-layer Transformer

3

encoder [61] as the backbone of the (momentum) encode
because Transformer can effectively model and represent
source code [22], [23]. We further extend MoCo for multi-
modal representation learning by doubling the encoder and
momentum encoder. Next, we use a large-scale code pre-
trained model UniXcoder [24] to initialize the code/query
encoder and momentum code/query encoder (Fig. 1), and then
feed the original and augmented samples (codes or queries)
to the encoders and momentum encoders, respectively, to
obtain representations of samples. The momentum encoder
can generate large and consistent representations of negative
samples compared to the common encoder updated by back-
propagation and the fixed encoder [30]. Therefore, at each
iteration, CoCoSoDa can be trained to distinguish one sample
from more other negative samples, so our approach can learn
better representations of code snippets and queries.

Third, the multimodal contrastive learning consists of an
intra-modal loss and an inter-modal loss is used to pull close
similar representations and push apart dissimilar representa-
tions. Specifically, the intra-modal loss is used to learn an
uniform distribution of representations of unimodal data by
pulling in similar samples (codes or queries) and pushing away
different samples. The inter-modal is use to learn the alignment
of the multimodal data by pull close representations of the
paired code snippet and query and push apart representations
of the unpaired code snippet and query.

Finally, the well-trained model is used for code search. In
detail, the code and query encoders map code snippets of
codebase and the given query into a high-dimensional space,
measure the similarity between them with cosine similarity,
and return the most relevant code snippet based on the
similarity.

B. Pre-trained Encoder and Momentum Encoder

In this section, we introduce the base architecture, input
samples, output representation and update mechanism of en-
coder and momentum encoder. The encoders and momen-
tum encoders are all built on the multi-layer bidirectional
Transformer Encoder [61]. As the pre-trained models such
as UniXcoder [24] have achieved substantial improvement
in code search, we initialize code and query encoder with
parameters of UniXcoder. Following previous study [24], we
average all the hidden states of the last layer as the whole
sequence-level representation of query/code.

In the MoCo [30] framework, there is a momentum encoder
encoding the samples of the current and previous mini-batches.
Specifically, the momentum encoder maintains a queue by
enqueuing the samples in the current mini-batch and de-
queuing the samples in the oldest mini-batch. Here, we also
use UniXcoder to initialize parameters of momentum code
and query encoder. The difference of the update mechanism
between the encoder and momentum encoder is that the
encoder is updated by the back-propagation algorithm while
the momentum encoder is updated by linear interpolation
of the encoder and the momentum encoder. Thus, compared
with the memory bank approach [62], which fixes and saves

the representations of all samples of the training dataset
in advance, the momentum encoder can generate consistent
representations and has been demonstrated to be effective [30].
For the end-to-end approach [19], [22], it has one encoder
and takes other samples in the current mini-batch as negative
samples. Thus, it requires a large mini-batch size in order to
expand the number of negative samples [30]. For example,
under the same computational resource such as A100-PCIE-
80GB [63], up to 199 negative samples can be used in
a mini-batch for end-to-end approaches, but our approach
can use over 4,000 negative samples. Therefore, to support
more negative samples, end-to-end approaches require larger
memory computational resources than our approach.

We denote the parameters of the code encoder as θce and
the momentum code encoder as θmce, with parameters being
the weights of UniXcoder. Therefore, θmce is updated by:

θmce = mθmce + (1−m)θce (1)

where m ∈ [0, 1) is a momentum coefficient. Similarly, we
denote the parameters of the query encoder and moment query
encoder as φqe and φmqe. Then φmqe is updated by:

φmqe = mφmqe + (1−m)φqe (2)

Both θce and φqe are learnable parameters and updated by the
back-propagation algorithm.

C. Soft Data Augmentation

In this section, we introduce soft data augmentation (SoDa)
methods, which are simple data augmentation approaches
without external constraints for source code or queries. We
first introduce how to obtain soft data augmentation and then
introduce how to use the augmented data.

The four SoDa methods are shown as follows.

• Dynamic Masking (DM): randomly sampling 15% of
tokens of a code snippet and replace each token with
a [MASK] token.

• Dynamic Replacement (DR): randomly sampling 15% of
tokens of a code snippet and replace each token with the
type of the token.

• Dynamic Replacement of Specified Type (DRST): sam-
pling all tokens of a specified type (such as operator,
identifier) from a code snippet, and 15% of them are
randomly replaced with the specified type.

• Dynamic Masking of Specified Type (DMST): sampling
all tokens of a specified type (such as operator, identifier)
from a code snippet, and 15% of them are randomly
masked.

Here, dynamic means that in data processing, the masking
or replacement operation is performed at each iteration rather
than only performed once [31]. It is worth noting that we
randomly perform one of four SoDa methods for code snippets
at each iteration. In addition, only DM is performed for queries
because other three SoDa methods require the type information
of source code.

4

We denote the SoDa module as Gsoda which performs data
transformation operations for the given input sequence to oba-
tion the augmented data. Specifically, we first perform one of
the four SoDa methods for the code snippets C = (c1, ..., cbs)
and queries Q = (q1, ..., qbs) in a mini-batch by:

c∗i = Gsoda(ci), q∗i = Gsoda(qi) (i = 1, ..., bs) (3)

where c∗i and q∗i are the augmented samples of the code snippet
ci and query qi , respectively. bs is mini-batch size. Then code
snippet ci and query qi are fed into the code/query encoder
and augmented samples c∗k and q∗k (k = 1, ...,K and K is
the queue size) in the current and previous mini-batches are
fed to the momentum code/query encoder by:

vci = fθce(ci), vc∗
k
= fθmce(c

∗
k)

vqi = fθqe(qi), vq∗
k
= fθmqe(q

∗
k)

(4)

where, vci
,vqi

,vc∗
k
, and vq∗

k
are the final overall representa-

tions of the code snippet ci, query qi, augmented code snippet
c∗k, and augmented query q∗k, respectively.

D. Multimodal Contrastive Learning

Multimodal contrastive learning consists of inter-modal and
intra-modal loss function, and is used to optimize the parame-
ters of the model. Specifically, given a query qi, we denote the
paired ci or c∗i as c+i and unpaired c∗k as c−k (i = 1, ..., bs and
k = 1, ...,K). For the query qi, with similarity measured by
cosine similarity (sim(x,y) = x·y

‖x‖‖y‖), we define the inter-
modal and intra-modal contrastive learning loss [20], [64] as:

Linterqi = − log
e
(sim(vqi

,v+
ci

)/τ)

e(sim(vqi
,v+

ci
)/τ) +

K∑
k=1

e(sim(vqi
·v−

ck
)/τ)

Lintraqi = − log
e
(sim(vqi

,v+
qi

)/τ)

e(sim(vqi
,v+

qi
)/τ) +

K∑
k=1

e(sim(vqi
·v−

qk
)/τ)

(5)

where τ is the temperature hyperparameter [30], [62] and is
set to 0.07 following previous works [27], [30]. Intuitively,
the optimization objective of inter-modal loss function is to
maximize the semantic similarity of the query and its paired
code snippet and minimize the semantic similarity of the query
and its unpaired code snippets. The intra-modal loss function
is to learn the better representations of queries, where similar
queries have closed representations and different queries have
distinguishing representations. In the same way, for a code
snippet ci, we define the corresponding multimodal contrastive
learning loss as:

Linterci = − log
e
(sim(vci

,v+
qi

)/τ)

e(sim(vci
,v+

qi
)/τ) +

K∑
k=1

e(sim(vci
·v−

qk
)/τ)

Lintraci = − log
e
(sim(vci

,v+
ci

)/τ)

e(sim(vci
,v+

ci
)/τ) +

K∑
k=1

e(sim(vci
·v−

ck
)/τ)

(6)

where qi+ is the paired query of input code snippet ci, and
qk
− denotes the unpaired query.

TABLE I
DATASET STATISTICS.

Language Training Validation Test Candidate Code

Ruby 24,927 1,400 1,261 4,360
JavaScript 58,025 3,885 3,291 13,981
Java 164,923 5,183 10,955 40,347
Go 167,288 7,325 8,122 28,120
PHP 241,241 12,982 14,014 52,660
Python 251,820 13,914 14,918 43,827

The inter-modal and intra-modal loss function in a mini-
batch can be obtained by:

Linter =

bs∑
i=1

(Linterqi + Linterci), Lintra =

bs∑
i=1

(Lintraqi + Lintraci)

(7)
To this end, the overall multimodal contrastive learning loss

function for a mini-batch is:

L =
bs∑
i=1

(Linter + Lintra) (8)

We apply AdamW [65] to optimize the overall model.

E. Fine-tuning on Code Search

After being optimized by multimodal contrastive learning,
the model can learn better representations of samples, where
similar samples (code or queries) have similar representations
and different samples have different representations. To further
improve the performance of model on code search, following
the most previous studies [22]–[26], [49], [59], we fine-tune
it on the related training dataset by:

Lf = −
bs∑
i=1

[log
e(sim(vci

,vqi
)/τ)∑bs

j=1 e
(sim(vci

·vqj
)/τ)

] (9)

where vci
and vqi

are the overall semantic representations
of the code snippet ci and query qi, respectively. They are
obtained by code and query encoder, respectively. τ is the tem-
perature hyperparameter. Then we use the validation dataset
to select the best model based on the MRR value (details in
Sec. IV-D) and report scores on the test set in this paper.

IV. EXPERIMENTAL DESIGN

A. Datasets

We conduct experiments on a large-scale benchmark dataset
CodeSearchNet [29] as used in Guo et al. [22]. It contains
six programming languages, namely Ruby, JavaScript, Go,
Python, Java, and PHP. This dataset is widely used in previous
studies [11], [22]–[25], [29], [49], [66], [67]. The statistics
of the dataset are shown in Table I. Following previous
studies [10], [22], [68], the model is to retrieve the correct
code snippets from the Candidate Code (the last column in
Table I) for the given queries when performing the evaluation.

5

B. Baselines

To evaluate the effectiveness of our approach, we compare
CoCoSoDa with three IR-based methods [69]–[71], four deep
end-to-end approaches [29] and ten pre-training-based ap-
proaches including three contrastive learning-related models.

• IR-based methods include BOW [69], TF-IDF [70] and
Jaccard [71]. BOW and TF-IDF use bag-of-word and term
frequency-inverse document frequency techniques, respec-
tively, to extract the features from the input code snippets
and queries and convert them into vectors. Then, they mea-
sure semantic similarities between code snippets and queries
by cosine similarities between their corresponding vectors.
Jaccard retrieves the similar code snippet for the given query
according to the Jaccard similarity coefficient [71] between
the code and query.

• NBow, CNN, BiRNN and SelfAtnn [29] use various encod-
ing models such as neural bag-of-words [72], 1D convolul-
tional neural network [73] , bi-directional GRU [74], and
multi-head attention [61] to obtain the representations of
code snippets and queries. And they measure the semantic
similarity of representations using inner product.

• RoBERTa [31], RoBERTa (code) [23] are built on a multi-
layer Transformer encoder [61] and pre-trained with MLM,
which is to predict the masked tokens. The pre-trained
datasets are natural language corpus [31] and source code
corpus [29], respectively.

• CodeBERT [23] and GraphCodeBERT [22] are pre-
trained on a large code corpus. The formal is pre-trained
with MLM and RTD, which uses a discriminator to identify
replaced tokens. The latter considers the code structure
information and is pre-trained tasks with MLM, data flow
edge prediction, and node alignment.

• Corder [28] firstly uses a unimodal contrastive learning
approach (only the code modality) to pre-train the model
to recognize the semantically equivalent code snippets and
then fine-tune it on the downstream tasks. As Corder does
not release the implementation of semantic-preserving trans-
formations and it is costly to implement these transforma-
tions for six programming languages, we only implemented
for Java language because Java is the most studied language
for code search [75]. To make a fair comparison, we use
the unimodal contrastive learning technique to continually
pre-train the UniXcoder and then fine-tune it on the code
search task as the implementation of Corder.

• ContraCode [27] also applies contrastive learning to unsu-
pervised code representation learning and conducts exper-
iments on code summarization and type inference. Specif-
ically, they first adopt some semantic-preserving program
transformations to generate functional equivalence code
snippets. Next, they pre-train a neural network model to
identify functionally equivalent code snippets among many
distractors. Finally, they fine-tune the pre-trained model to
perform downstream tasks. We use the pre-trained Contra-
Code as the code/query encoder and optimize it using Eq. 9
for code search.

• CodeT5 [25], PLBART [26], SPT-Code [49] are sequence-
to-sequence code pre-trained models. The first is pre-trained
with three identifier-aware pre-training tasks to enable the
model to identify identifiers in source code or recover
masked identifiers. The second is pre-trained with denoising
autoencoding, which is to reconstruct the corrupted input
code sequence. The third takes source code, corresponding
AST and paired summarization as input and is pre-trained
with three code-specific tasks.

• SyncoBERT [59] and UniXcoder [24] are multi-modal
contrastive pre-training for code representation. SyncoBERT
takes source code, AST and summarization as input and pre-
trained with identifier prediction and AST edge prediction
to learn the lexical and syntactic knowledge of source code.
UniXcoder takes two-modality data, the summarization and
simplified AST of source code, as input and is pre-trained
with MLM, unidirectional language modeling, denoising
autoencoder, and two contrastive learning-related tasks.
More details about baselines can be found in Appendix of

the replication package [76]. In our experiments, we train the
four deep end-to-end approaches from scratch, and for the ten
pre-trained approaches, we initialize them with the pre-trained
models and fine-tune (or continually pre-train and fine-tune)
them according to the descriptions in their original papers or
their released source code.

C. Experimental Settings

Following UniXcoder [24], we use Transformer with 12
layers, 768 dimensional hidden states, and 12 attention heads.
The vocabulary sizes of code and queries are set to 51,451.
Max sequence lengths of code snippets and queries are 128
and 256, respectively. For optimizer, we use AdamW with the
learning rate 2e-5. Following previous studies [22], [23], [68],
the code encoder and query encoder share parameters to reduce
the number of total parameters. Following MoCo [30], the
temperature hyperparameter τ is set as 0.07 and momentum
coefficient m is 0.999. The queue size and batch size are set
to 4096 and 128, respectively. The training step of multimodal
contrastive learning stage is 100K and the maximum epochs
of fine-tune stage is 5. In addition, we run the experiments 3
times with random seeds 0,1,2 and display the mean value in
the paper. All experiments are conducted on a machine with
220 GB main memory and Tesla A100 80GB GPU.

D. Evaluation Metrics

We measure the performance of our approach using four
metrics: mean reciprocal rank (MRR) and top-k recall (R@k,
k=1,5,10), which are widely used in previous studies [10],
[11], [13]–[20], [20], [20]–[23], [29]. MRR is the average of
reciprocal ranks of the correct code snippets for given queries
Q. R@k measures the percentage of queries that the paired
code snippets exist in the top-k returned ranked lists. They are
calculated as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

Ranki
, R@k =

1

|Q|

|Q|∑
i=1

δ (Ranki ≤ k) (10)

6

TABLE II
PERFORMANCE OF DIFFERENT APPROACHES. JS IS SHORT FOR

JAVASCRIPT. STATISTICAL SIGNIFICANCE OF EXPERIMENTS: p < 0.01.

Model Ruby JS Go Python Java PHP Avg.

IR-Based
models

BOW 0.230 0.184 0.350 0.222 0.245 0.193 0.237
TF-IDF 0.239 0.204 0.363 0.240 0.262 0.215 0.254
Jaccard 0.220 0.191 0.345 0.243 0.235 0.182 0.236

Deep
end-to-end

models

NBow 0.162 0.157 0.330 0.161 0.171 0.152 0.189
CNN 0.276 0.224 0.680 0.242 0.263 0.260 0.324
BiRNN 0.213 0.193 0.688 0.290 0.304 0.338 0.338
SelfAtt 0.275 0.287 0.723 0.398 0.404 0.426 0.419

Pre-trained
models

RoBERTa 0.587 0.523 0.855 0.590 0.605 0.561 0.620
RoBERTa (code) 0.631 0.57 0.864 0.621 0.636 0.581 0.650
CodeBERT 0.679 0.621 0.885 0.672 0.677 0.626 0.693
GraphCodeBERT 0.703 0.644 0.897 0.692 0.691 0.649 0.713
Corder - - - - 0.727 - -
ContraCode - 0.688 - - - - -
PLBART 0.675 0.616 0.887 0.663 0.663 0.611 0.685
CodeT5 0.719 0.655 0.888 0.698 0.686 0.645 0.715
SyncoBERT 0.722 0.677 0.913 0.724 0.723 0.678 0.740
UniXcoder 0.740 0.684 0.915 0.720 0.726 0.676 0.744
SPT-Code 0.701 0.641 0.895 0.699 0.700 0.651 0.715

Our CoCoSoDa 0.818 0.764 0.921 0.757 0.763 0.703 0.788
↑10.54% ↑11.7% ↑0.66% ↑5.14% ↑5.10% ↑3.99% ↑5.91%

where Ranki is the rank of the paired code snippet related
to the i-th query. δ is an indicator function that returns 1 if
Ranki ≤ k otherwise returns 0.

V. EXPERIMENTAL RESULTS

A. RQ1: What Is the Effectiveness of CoCoSoDa?

1) Overall results: We evaluate the effectiveness of our
model CoCoSoDa by comparing it to three IR-based models,
four recent deep end-to-end code search models and ten pre-
trained models introduced in Sec. IV-B on the CodeSearchNet
dataset with six programming languages. As there is no
released source code for Corder and it is costly to reproduce
this approach for six programming languages, we reproduce
Corder on Java language for comparison. The experimental
results are shown in Table II. We present the results under
MRR metric only due to space limitation. We put results under
other metrics in Appendix of the replication package [76].
Conclusions that hold on MRR also hold for other metrics.

We can see that deep end-to-end models outperform IR-
based models because they can learn better semantic relations
between codes and queries [10], [14], [20]. The ten pre-trained
models (the third row of Table II) perform better than the
four deep end-to-end models (the second row of Table II)
trained from scratch, which shows the effectiveness of the
pre-training technique. Since GraphCodeBERT considers the
data flow information of source code, it performs better than
RoBERTa, RoBERTa (code) and CodeBERT. UniXcoder and
SyncoBERT consider the structure information of source code
and perform better than other approaches on average. Corder
and ContraCode perform best among baselines because they
pre-train the model to recognize the functionally equivalent
code snippets from many distractors and can learn a better
code representation. CoCoSoDa takes UniXcoder as the base
code/query encoder, continually optimizes it with multimodal

Listing 1. The top-1 result returned by CoCoSoDa.

public static byte[] hexStringToByte(String hexString) {
try {

return Hex.decodeHex(hexString.toCharArray());}
catch (DecoderException e) {

throw new UnexpectedException(e);}}

Listing 2. The top-1 result returned by GraphCodeBERT.

public static String toHexString(final byte[] bytes) {
char[] chars = new char[bytes.length * 2];
int i = 0;
for (byte b : bytes) {

chars[i++] = CharUtil.int2hex((b & 0xF0) >> 4);
chars[i++] = CharUtil.int2hex(b & 0x0F);}

return new String(chars);}

Fig. 2. The top-1 code returned by CoCoSoDa and GraphCodeBERT for the
query “Transform a hexadecimal String to a byte array.” on Java language.

Listing 3. The top-1 result returned by CoCoSoDa.

def get_items(self):
reader = csv.reader(self.source)
headers = reader.next()
for row in reader:

if not row:
continue

yield dict(zip(headers, row))

Listing 4. The top-1 result returned by UniXcoder.

def iterrows(lines_or_file, namedtuples=False, dicts=False,
encoding=’utf-8’, **kw):

if namedtuples and dicts:
raise ValueError(’either namedtuples or dicts can

be chosen as output format’)
elif namedtuples:

_reader = NamedTupleReader
elif dicts:

_reader = UnicodeDictReader
else:

_reader = UnicodeReader
with _reader(lines_or_file, encoding=encoding, **fix_kw

(kw)) as r:
for item in r:

yield item

Fig. 3. The top-1 code returned by CoCoSoDa and UniXcoder for the query
“Iterator to read the rows of the CSV file.” on Python language.

contrastive learning and soft data augmentation and performs
best among all approaches.

2) Case study: Next, we show some cases to demonstrate
the effectiveness of our model CoCoSoDa. For each case, we
only show the result of our approach and the best baseline,
which is GraphCodeBERT for the 1st case and UniXcoder for
the 2nd case.

Fig. 2 shows the results returned by CoCoSoDa and Graph-
CodeBERT for the query “Transform a hexadecimal String to
a byte array.” from the Java dataset. The query includes two
operation objects: “hexadecimal String” and “byte array” and
one action “Transform”. To implement the functionality of the
query, we usually take the “hexadecimal String” as an input
parameter and use “toXXX(...)” to perform the “Transform”
action. Our model CoCoSoDa can successfully understand the
semantics of the whole query and code snippet and return the
correct result, while GraphCodeBERT cannot. This is because
the code representation obtained by GraphCodeBERT is af-
fected by token-level semantics such as String and byte,
thereby, returning the code snippet which has many similar
tokens with the query but a completely opposite semantic:
“Converts bytes to hex string.”.

In Fig. 3, we compare the results returned by CoCoSoDa
and UniXcoder for the query “Iterator to read the rows of

7

TABLE III
ABLATION STUDY OF COCOSODA ON MRR.

Model Ruby JS Go Python Java PHP Avg.

CoCoSoDa 0.818 0.764 0.921 0.757 0.763 0.703 0.788
w/o DR 0.794 0.714 0.905 0.730 0.743 0.688 0.762
w/o DM 0.801 0.754 0.906 0.744 0.756 0.69 0.775
w/o DRST 0.797 0.714 0.905 0.730 0.743 0.685 0.762
w/o DMST 0.788 0.715 0.902 0.731 0.746 0.686 0.761
w/o all SoDas 0.775 0.711 0.907 0.736 0.738 0.683 0.758
w/o inter-modal loss 0.776 0.703 0.906 0.729 0.739 0.674 0.755
w/o intra-modal loss 0.780 0.705 0.903 0.727 0.744 0.680 0.756

the CSV file.” in the Python dataset. CoCoSoDa returns the
correct code snippet, while UniXcoder returns the code snippet
with another semantics “Yield a generator over the rows.”. Our
model can accurately understand the intent of the query and
return the relevant code snippet, which first reads a CSV file
and yields an iterator to read the rows of it. UniXcoder returns
a partially relevant code snippet which only yields an iterator
to read the rows of files, missing reading a CSV file.

Summary. Our approach significantly outperforms base-
lines on six programming languages in terms of four
metrics. Case studies further demonstrate the advantages
of CoCoSoDa in code search.

B. RQ2: How Much Do Different Components Contribute?

In this section, we study the contribution of each component
of our approach CoCoSoDa. It includes multimodal contrastive
learning such as intra-modal loss and inter-model loss and four
SoDa approaches (DR, DM, DRST and DMST) introduced in
Sec. III-C. Specifically, we remove one component (such as
DM) of CoCoSoDa each time and then study the performance
of the ablated model. The experimental results are shown
in Table III. “w/o one component” means to remove this
component. For example, CoCoSoDa w/o DR and inter-modal
loss means to drop the SoDa method DR and inter-modal loss
function Lintra (Eq. 7), respectively.

From the Table III, we can see that the performance of the
model drops after removing any one component. It demon-
strates that each component plays an important role in the code
search model. Especially, the performance of CoCoSoDa w/o
all SoDas, intra-modal and inter-modal contrastive learning
loss drops obviously. This is because data augmentation can
increase data diversity. The inter-modal contrastive learning,
which aims to learn the alignment of code snippets and
queries, can pull together the paired code and query and push
apart the unpaired code and query. Intra-modal contrastive
learning aims to learn a uniform distribution of representation
of unimodal samples (code snippets or queries) and can
improve the generalization performance of code search model.

Summary. The ablation study shows the effectiveness of
multimodal contrastive learning including intra-modal loss
and inter-model loss and four SoDa approaches including
DR, DM, DRST and DMST.

C. RQ3: What Is the Performance of Our Approach on Other
Pre-trained Models?

We further study the performance of our approach on other
three pre-trained models introduced in Sec. IV-B, including a
natural language pre-trained model RoBERTa and two source
code pre-trained models CodeBERT and GraphCodeBERT.
Specifically, we use these pre-trained models as the code/query
encoders and momentum code/query encoders in Fig. 1. For
the input code snippet and query sequence, we average hidden
states of the last layer as the overall representations of the
code snippet or query. The similarities of representations are
measured by the cosine similarity. Other experimental settings
are same as in Sec. IV-C.

The results are shown in Table IV. CoCoSoDa RoBERTa
means using RoBERTa as the code/query encoders and mo-
mentum code/query encoders in our framework. Overall,
we can see that CoCoSoDa RoBERTa, CoCoSoDa CodeBERT
and CoCoSoDa GraphCodeBERT obviously outperform RoBERTa,
CodeBERT and GraphCodeBERT, respectively on all six pro-
gramming languages in terms of four metrics. These results
demonstrate that our approach can be generalized to other
pre-trained models and boost their performance. Besides, Co-
CoSoDa RoBERTa, which is pre-trained on the natural language
corpus and fine-tuned with our method, achieves compara-
ble performance with CodeBERT on Go dataset. CoCoSoDa
GraphCodeBERT achieves comparable performance with UniX-
coder on JavaScript, Java and Python. CoCoSoDa GraphCodeBERT
also slightly outperforms UniXcoder on Ruby dataset.

Summary. Our approach is orthogonal to the pre-trained
technique on the performance improvement for code
search tasks and can obviously boost the performance of
existing pre-trained models.

D. RQ4: What Is the Impact of Different Hyperparameters?

In this section, we study the impact of different hyper-
parameters: learning rate, momentum coefficient m, masking
ratio r, and temperature hyperparameter τ . We study different
hyperparameters in the typical range, which covers all experi-
mental settings of previous studies [22]–[25], [28], [31], [49],
[59] and the experimental results are shown in Fig. 4. From
the results of varying learning rate (the top left of Fig. 4),
we can see that performance is generally stable for small
learning rate [77] (from 5e−6 to 7e−5). The learning rates
that are larger than 7e−5 have obvious impacts on the model
performance. The results of different momentum coefficient
m are shown in the top right of Fig. 4. We can see that
performance increases when the momentum coefficient m
becomes larger. This is because a large momentum coefficient
is beneficial to obtain the consistent representation for the
queue [30]. The momentum coefficient that is smaller than
0.910 has a significant impact on performance. These findings
are consistent with the previous work [30]. From the results
of varying masked ratio r (the bottom left of Fig. 4), we can
see that the performance is insensitive to the masked ratio r
when the masked ratio r is between 5% and 20%. A larger

8

TABLE IV
RESULTS ON OTHER PRE-TRAINED MODELS. COCOSODA GRAPH IS SHORT FOR COCOSODA GRAPHCODEBERT . THE IMPROVED PERCENTAGES ARE SHOWN

IN PARENTHESES.

PL Metric RoBERTa CoCoSoDa RoBERTa CodeBERT CoCoSoDa CodeBERT GraphCodeBERT CoCoSoDa Graph

Ruby

MRR 0.587 0.640 (↑9.03%) 0.679 0.723 (↑6.48%) 0.703 0.752 (↑6.97%)
R@1 0.469 0.533 (↑13.65%) 0.583 0.618 (↑6.00%) 0.607 0.655 (↑7.91%)
R@5 0.717 0.764 (↑6.56%) 0.800 0.852 (↑6.50%) 0.824 0.875 (↑6.19%)
R@10 0.785 0.825 (↑5.10%) 0.853 0.904 (↑5.98%) 0.872 0.916 (↑5.05%)

JavaScript

MRR 0.523 0.559 (↑6.88%) 0.621 0.648 (↑4.35%) 0.644 0.682 (↑5.90%)
R@1 0.413 0.460 (↑11.38%) 0.514 0.545 (↑6.03%) 0.538 0.582 (↑8.18%)
R@5 0.652 0.673 (↑3.22%) 0.752 0.772 (↑2.66%) 0.774 0.806 (↑4.13%)
R@10 0.730 0.744 (↑1.92%) 0.814 0.839 (↑3.07%) 0.834 0.866 (↑3.84%)

Go

MRR 0.855 0.881 (↑3.04%) 0.885 0.905 (↑2.26%) 0.897 0.907 (↑1.11%)
R@1 0.800 0.829 (↑3.62%) 0.837 0.859 (↑2.63%) 0.858 0.861 (↑0.35%)
R@5 0.926 0.945 (↑2.05%) 0.944 0.962 (↑1.91%) 0.954 0.962 (↑0.84%)
R@10 0.949 0.965 (↑1.69%) 0.962 0.975 (↑1.35%) 0.972 0.978 (↑0.62%)

Python

MRR 0.590 0.629 (↑6.61%) 0.672 0.690 (↑2.68%) 0.692 0.714 (↑3.18%)
R@1 0.480 0.523 (↑8.96%) 0.574 0.589 (↑2.61%) 0.594 0.614 (↑3.37%)
R@5 0.727 0.756 (↑3.99%) 0.792 0.809 (↑2.15%) 0.813 0.834 (↑2.58%)
R@10 0.793 0.818 (↑3.15%) 0.850 0.867 (↑2.00%) 0.866 0.888 (↑2.54%)

Java

MRR 0.605 0.635 (↑4.96%) 0.677 0.705 (↑4.14%) 0.691 0.721 (↑4.34%)
R@1 0.499 0.531 (↑6.41%) 0.580 0.606 (↑4.48%) 0.592 0.624 (↑5.41%)
R@5 0.737 0.762 (↑3.39%) 0.796 0.826 (↑3.77%) 0.817 0.843 (↑3.18%)
R@10 0.796 0.820 (↑3.02%) 0.852 0.878 (↑3.05%) 0.865 0.890 (↑2.89%)

PHP

MRR 0.561 0.598 (↑6.60%) 0.626 0.647 (↑3.35%) 0.649 0.668 (↑2.93%)
R@1 0.450 0.490 (↑8.89%) 0.520 0.538 (↑3.46%) 0.545 0.561 (↑2.94%)
R@5 0.694 0.730 (↑5.19%) 0.753 0.779 (↑3.45%) 0.785 0.798 (↑1.66%)
R@10 0.764 0.797 (↑4.32%) 0.814 0.844 (↑3.69%) 0.832 0.863 (↑3.73%)

5e 6 1e 5 3e 5 5e 5 7e 5 1e 4

Learning rate

0.6

0.7

0.8

0.9

1.0 MRR R@1 R@5 R@10

0.800 0.910 0.930 0.950 0.970 0.990 0.999
Momentum coefficient m

0.6

0.7

0.8

0.9

0% 5% 10% 15% 20% 25% 30% 50%
Masking ratio r

0.6

0.7

0.8

0.9

0.01 0.03 0.05 0.07 0.09 0.1
Temperature hyperparameter

0.6

0.7

0.8

0.9

Fig. 4. The impact of different hyperparameters.

masked ratio such as 50% brings considerable performance
degradation. It is reasonable because the larger masked ratio
causes the code snippet to lose too much information. The
results of different temperature hyperparameter τ are shown
in the bottom right of Fig. 4. We can see that performance
is stable when the temperature hyperparameter τ varies from
0.03 to 0.07.

Summary. In general, our model is stable over a range
of hyperparameter values (learning rate is from 5e−6 to
7e−5, momentum coefficient is between 0.910 and 0.999,
masked ratio r is from 5% to 20%, and temperature
hyperparameter τ varies from 0.03 to 0.07).

E. RQ5: Why Does Our Model CoCoSoDa Work?

The advantages of CoCoSoDa mainly come from soft data
augmentation and multimodal momentum contrastive learning.
The soft data augmentation transforms the input sequence
with the masking or replacement mechanism and generates a

similar sample as the “positive” example. It can help the model
learn a representation of the code snippet and query from
a global (sequence-level) view rather than simply aggregate
the token-level semantic. Thus, our model tends to return
code snippets related to the sequence-level functionality rather
than the token-level similarities. The momentum mechanism
enlarges negative samples, allowing to distinguish one sample
from more negative samples at each iteration. For multimodal
contrastive learning, the inter-modal contrastive learning can
pull together the representations of the code-query pair and
push apart the representations of queries and many unpaired
code snippets, while intra-modal contrastive learning can learn
a uniform distribution of representations in terms of unimodal
data (code snippets or queries). Therefore, CoCoSoDa can
learn better representations of code and queries and perform
well on code search. We further explore why CoCoSoDa
works through quantitive and qualitative analysis.

1) Quantitive analysis: We explore to understand reasons
behind good performance of our approach through `align and
`uniform [78], which are usually used as indicators to reflect
the quality of representation learned by contrastive learning
techniques [52], [78]–[80]. Mathematically, they are defined
as:

`align = E
(x,y)∼Dpaired

‖f(x)− f(y)‖22

`uniform = log E
(x,y)

i.i.d∼D
[e−2‖f(x)−f(y)‖22]

(11)

where (x, y) ∼ Dpaired means the x and y are paired samples,
while (x, y)

i.i.d∼ D mean that x and y are independent identi-
cally distributed. f(x) and f(y) are learned representations
and ‖f(x) − f(y)‖22 represent the 2-norm of the distance
between them. From the Eq. 11, we can know that `align
always is a non-negative number, while `uniform is a non-

9

6 4 2 0 2
uniform

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
al

ig
n

CodeBERT (0.001)

CodeBERT (0.677)

GraphCodeBERT (0.123)
GraphCodeBERT (0.691)

UniXcoder(0.466)

UniXcoder(0.726)

CoCoSoDa (0.717)

CoCoSoDa (0.763)

Pre-trained
Fine-tuned

Fig. 5. `align-`uniform plot of different models. Circles and squares represent
pre-trained and fine-tuned models, respectively. Identical models are marked
with the same color. MRR scores are shown in parentheses.

positive number. In terms of our task, `align reflects the degree
of alignment of representations of code-query pairs. The closer
distances of the paired code snippets and queries are, the
smaller the value (close to zero) of `align is. `uniform reflects
the uniformity of the distribution of representations of all code
snippets or queries. The more uniform the distribution is, the
smaller the value (close to negative infinity) of `align is. In the
extreme case where all representations of code snippets and
queries are the same, both values of `align and `uniform are zero.
That is to say, learned representations have perfect alignment
but extremely poor uniformity. In fact, a model which can
learn representations with both better alignment (lower `align
) and uniformity (lower `uniform) can generally achieve better
performance [52], [78].

We show `align-`uniform plot in Fig. 5. We can find that
(1) pre-trained CodeBERT and GraphCodeBERT have better
alignment but poor uniformity, and perform not well. This
is because representations learned by them are very similar
and cannot generalize well. UniXcoder has better unifor-
mity and performs better than them. Pre-trained CoCoSoDa
has both better alignment and uniformity than CodeBERT
and GraphCodeBERT and performs best among four pre-
trained models. (2) After being fine-tuned, UniXcoder, Code-
BERT and GraphCodeBERT all have lower `uniform and `align
and significantly outperform pre-trained ones individually. Our
fine-tuned CoCoSoDa generally preserves the alignment and
has a better uniform. Therefore, fine-tuned CoCoSoDa further
improves the performance of pre-trained it.

2) Qualitative analysis: We also visualize learned represen-
tations to help intuitively understand why CoCoSoDa works
well. Specifically, first, we randomly sample X (X=100, 200,
300, or 400) code-query pairs from Java dataset with ten
different random seeds from 0 to 9. We show the result
with X=300 with a random seed of 3 in the paper, and
other visualized results are put in Appendix of replication
package [76] due to space limitation. The following findings
and conclusions hold for different X and random seeds.
Second, we feed sampled pairs including code snippets and
queries to well-trained CoCoSoDa and UniXcoder individually
and obtain their representations. Third, we apply T-SNE [81] to

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
code
query

(a) UniXcoder

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
code
query

(b) CoCoSoDa

Fig. 6. T-SNE visualization of representations of code snippets and queries.
(a) and (b) are the representations learned by UniXcoder and CoCoSoDa,
respectively. Code is in orange and query is in blue. The distance of paired
code and query is indicated by a green line.

TABLE V
THE PERFORMANCE OF DIFFERENT APPROACHES UNDER THE

ZERO-SHORT EXPERIMENTAL SETTING EVALUATED BY MRR SCORES.

Model Ruby JS Go Python Java PHP Avg.

CodeBERT 0.002 0.001 0.002 0.001 0.001 0.001 0.001
CodeT5 0.006 0.003 0.009 0.001 0.001 0.001 0.004
GraphCodeBERT 0.238 0.111 0.209 0.137 0.123 0.120 0.156
UniXcoder 0.576 0.442 0.648 0.447 0.466 0.373 0.492

CoCoSoDa 0.786 0.709 0.881 0.696 0.717 0.640 0.738
↑36.5% ↑60.4% ↑36.0% ↑55.7% ↑53.9% ↑71.6% ↑50.0%

reduce the dimensionality of obtained representations into 2D
and visualize dimensionality-reduced representations in Fig. 6.
In detail, Fig. 6(a) and Fig. 6(b) show representations learned
by UniXcoder and CoCoSoDa, respectively. The code snippet
and query are marked in orange and blue, respectively. The
distance between the paired code and query is indicated by
a green line. From the Fig. 6, we can see that (1) there are
many very short green lines in Fig. 6 (a) and (b), which means
that both CoCoSoDa and UniXcoder can map most paired
code snippets and queries into close embeddings. (2) Fig. 6(a)
have more long green lines than Fig. 6(b). It indicates that
UniXcoder has more cases than CoCoSoDa, where pairwise
representations of queries and code snippets are far away from
each other. In the future, we will conduct error analysis to
study the paired samples with long green lines. In summary,
the visualization results intuitively show that CoCoSoDa can
learn better representations than UniXcoder.

Summary. Our model can learn a more uniform distribu-
tion of the representations of unimodal data (code snippets
or queries), and the learned representations of paired code
snippets and queries can be well aligned.

VI. DISCUSSION

A. The Performance of CoCoSoDa Without Being Fine-Tuned

To further study the effectiveness of CoCoSoDa, we eval-
uate different pre-trained models under the zero-short experi-
mental setting, where models are directly used for evaluation

10

without fine-tuning them. The experimental results are shown
in Table V. We can see that pre-trained CodeBERT, CodeT5,
and GraphCodeBERT without fine-tuning performs poorly due
to the representation degeneration problem [82], [83]. That
is, the high-frequent tokens dominate the sequence repre-
sentation [82], resulting in the poor sequence-level semantic
representation of the code snippet and query. UniXcoder and
our models adopt the contrastive learning related technique
to obtain better representations of code snippets and queries,
and perform better than the other two models. Especially, our
approach can help the model to learn a uniform distribution of
representation of unimodal data, and learn a good alignment
for multimodal data. Therefore, our model outperforms other
pre-trained models by about 50% on average MRR scores even
more than 70% on PHP language. Furthermore, the perfor-
mance of CoCoSoDa under zero-short setting even exceeds
many fine-tuned models such as CodeBERT, CodeT5 and
GraphCodeBERT (Table II) on average MRR. In summary,
our pre-trained model performs better than other pre-trained
models when all of them are not fine-tuned. Furthermore, the
performance of CoCoSoDa without being fine-tuned is even
better than many fine-tuned models on average MRR.

B. Limitations & Threats to Validity

Although CoCoSoDa has an overall advantage, our model
could still return inaccurate results, especially for the code
snippets that use the third-library API or self-defined methods.
This is because CoCoSoDa only considers the information of
the code snippet itself rather than other contexts such as other
methods in the enclosing class or project [66], [84]. In our
future work, more contextual information (such as enclosing
class/project and called API/methods) could be considered in
our model to further improve the performance of CoCoSoDa.

We also identify the following threats to our approach:
Programming Languages. Due to the heavy effort to eval-

uate the model on all programming languages, we conduct
our experiment with as many programming languages as
possible on the existing build datasets. Our model on different
programming languages would have different results. In the
future, we will evaluate the effectiveness of our approach with
more other programming languages.

Pre-trained models. To demonstrate that our approach is
orthogonal to the pre-trained technique on the performance
improvements for code search, we have adopted and evaluated
our approach on four pre-trained models including a natural
language pre-trained model RoBERTa and three source code
pre-trained models CodeBERT, GraphCodeBERT and UniX-
coder. It remains to be verified whether or not the proposed
approach is applicable to other pre-trained models such as
GPT [85] and T5 [25].

Evaluated benchmark. The paired code snippet is usually
used as the correct result for the given query. In fact, some
unpaired code snippets also answer the given query. In the
future, we will invite some developers to manually score the
semantical correlation between the arbitrary code snippet and
query and build a high-quality code search benchmark.

VII. CONCLUSION

In this paper, we present CoCoSoDa, which leverages
multimodal momentum contrastive learning and soft data
augmentation for code search. It can help the model learn
effective representations by pulling together representations of
code-query pairs and pushing apart the unpaired code snippets
and queries. We conduct extensive experiments on a large-
scale benchmark dataset with six programming languages
and the results confirm its superiority. In our future work,
more contextual information (such as enclosing class/project)
could be considered in our model to further improve the
performance of CoCoSoDa. Replication package including
datasets, source code, and Appendix is available at https:
//github.com/DeepSoftwareAnalytics/CoCoSoDa.

ACKNOWLEDGEMENT

We thank reviewers for their valuable comments on this
work. This research was supported by National Key R&D
Program of China (No. 2017YFA0700800) and Fundamental
Research Funds for the Central Universities under Grant
xtr072022001. We would like to thank Jiaqi Guo for their
valuable suggestions and feedback during the work discussion
process.

REFERENCES

[1] J. Singer, T. C. Lethbridge, N. G. Vinson, and N. Anquetil, “An
examination of software engineering work practices,” in CASCON.
IBM, 1997, p. 21.

[2] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based on
crowd knowledge for code search,” IEEE Trans. Serv. Comput., vol. 9,
no. 5, pp. 771–783, 2016.

[3] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in ICSE. ACM,
2011, pp. 111–120.

[4] S. P. Reiss, “Semantics-based code search,” in ICSE. IEEE, 2009, pp.
243–253.

[5] F. Zhang, H. Niu, I. Keivanloo, and Y. Zou, “Expanding queries for
code search using semantically related API class-names,” IEEE Trans.
Software Eng., vol. 44, no. 11, pp. 1070–1082, 2018.

[6] M. Allamanis, E. T. Barr, P. T. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Comput. Surv.,
vol. 51, no. 4, pp. 81:1–81:37, 2018.

[7] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V. Lopes,
and P. Baldi, “Sourcerer: mining and searching internet-scale software
repositories,” Data Min. Knowl. Discov., vol. 18, no. 2, pp. 300–336,
2009.

[8] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion via
wordnet for effective code search,” in SANER. IEEE Computer Society,
2015, pp. 545–549.

[9] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on API understanding and extended boolean
model (E),” in ASE. IEEE Computer Society, 2015, pp. 260–270.

[10] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in ICSE. ACM,
2018, pp. 933–944.

[11] L. Du, X. Shi, Y. Wang, E. Shi, S. Han, and D. Zhang, “Is a single
model enough? mucos: A multi-model ensemble learning approach for
semantic code search,” in CIKM. ACM, 2021, pp. 2994–2998.

[12] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel,
and A. Russo, Eds. ACM, 2019, pp. 964–974. [Online]. Available:
https://doi.org/10.1145/3338906.3340458

11

https://github.com/DeepSoftwareAnalytics/CoCoSoDa
https://github.com/DeepSoftwareAnalytics/CoCoSoDa
https://doi.org/10.1145/3338906.3340458

[13] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, and
S. Ji, “Deep graph matching and searching for semantic code retrieval,”
ACM Trans. Knowl. Discov. Data, vol. 15, no. 5, pp. 88:1–88:21, 2021.
[Online]. Available: https://doi.org/10.1145/3447571

[14] W. Li, H. Qin, S. Yan, B. Shen, and Y. Chen, “Learning code-query
interaction for enhancing code searches,” in ICSME. IEEE, 2020, pp.
115–126.

[15] Q. Zhu, Z. Sun, X. Liang, Y. Xiong, and L. Zhang, “Ocor: An
overlapping-aware code retriever,” in ASE, 2020.

[16] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in ICPC ’20: 28th
International Conference on Program Comprehension, Seoul, Republic
of Korea, July 13-15, 2020. ACM, 2020, pp. 196–207. [Online].
Available: https://doi.org/10.1145/3387904.3389269

[17] W. Ye, R. Xie, J. Zhang, T. Hu, X. Wang, and S. Zhang, “Leveraging
code generation to improve code retrieval and summarization via dual
learning,” in WWW ’20: The Web Conference 2020, Taipei, Taiwan,
April 20-24, 2020, Y. Huang, I. King, T. Liu, and M. van Steen,
Eds. ACM / IW3C2, 2020, pp. 2309–2319. [Online]. Available:
https://doi.org/10.1145/3366423.3380295

[18] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective
architecture for semantic code search,” in ACL, 2020.

[19] J. Gu, Z. Chen, and M. Monperrus, “Multimodal representation for
neural code search,” in IEEE International Conference on Software
Maintenance and Evolution, ICSME 2021, Luxembourg, September 27
- October 1, 2021. IEEE, 2021, pp. 483–494. [Online]. Available:
https://doi.org/10.1109/ICSME52107.2021.00049

[20] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. S. Yu, “Multi-
modal attention network learning for semantic source code retrieval,” in
ASE. IEEE, 2019, pp. 13–25.

[21] C. Ling, Z. Lin, Y. Zou, and B. Xie, “Adaptive deep code search,” in
ICPC ’20: 28th International Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020. ACM, 2020, pp. 48–59.
[Online]. Available: https://doi.org/10.1145/3387904.3389278

[22] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B.
Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou,
“Graphcodebert: Pre-training code representations with data flow,”
in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
[Online]. Available: https://openreview.net/forum?id=jLoC4ez43PZ

[23] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, ser. Findings of ACL, T. Cohn,
Y. He, and Y. Liu, Eds., vol. EMNLP 2020. Association for
Computational Linguistics, 2020, pp. 1536–1547. [Online]. Available:
https://doi.org/10.18653/v1/2020.findings-emnlp.139

[24] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in ACL (1).
Association for Computational Linguistics, 2022, pp. 7212–7225.

[25] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation,” in EMNLP (1). Association for Computational
Linguistics, 2021, pp. 8696–8708.

[26] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Unified pre-
training for program understanding and generation,” in NAACL-HLT.
Association for Computational Linguistics, 2021, pp. 2655–2668.

[27] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. Gonzalez, and I. Stoica,
“Contrastive code representation learning,” in EMNLP (1). Association
for Computational Linguistics, 2021, pp. 5954–5971.

[28] N. D. Q. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning
for code retrieval and summarization via semantic-preserving transfor-
mations,” in SIGIR. ACM, 2021, pp. 511–521.

[29] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” CoRR, vol. abs/1909.09436, 2019. [Online]. Available:
http://arxiv.org/abs/1909.09436

[30] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum
contrast for unsupervised visual representation learning,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer

Vision Foundation / IEEE, 2020, pp. 9726–9735. [Online]. Available:
https://doi.org/10.1109/CVPR42600.2020.00975

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019.

[32] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in ACL, vol. 1. The Association
for Computer Linguistics, 2016.

[33] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in ICSE. IEEE / ACM, 2020.

[34] A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating
natural language summaries of program subroutines,” in ICSE, 2019, pp.
795–806.

[35] E. Shi, Y. Wang, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun,
“Cast: Enhancing code summarization with hierarchical splitting and
reconstruction of abstract syntax trees,” in EMNLP, 2021.

[36] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang, and
H. Sun, “On the evaluation of neural code summarization,” in ICSE,
2022.

[37] L. Du, X. Shi, Y. Wang, E. Shi, S. Han, and D. Zhang, “Is a single
model enough? mucos: A multi-model ensemble learning approach for
semantic code search,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 2994–
2998.

[38] W. Gu, Y. Wang, L. Du, H. Zhang, S. Han, D. Zhang, and M. R. Lyu,
“Accelerating code search with deep hashing and code classification,”
in ACL, 2022.

[39] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. Franco, and
M. Allamanis, “Fast and memory-efficient neural code completion,”
Arxiv Preprint, 2020. [Online]. Available: https://arxiv.org/abs/1611.
08307

[40] S. Proksch, J. Lerch, and M. Mezini, “Intelligent code completion with
bayesian networks,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 1,
pp. 3:1–3:31, 2015.

[41] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion with
statistical language models,” in PLDI, 2014, pp. 419–428.

[42] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in ESEC/FSE, 2009, pp. 213–222.

[43] Y. Wang and H. Li, “Code completion by modeling flattened abstract
syntax trees as graphs,” in AAAI, 2021.

[44] W. Tao, Y. Wang, E. Shi, L. Du, S. Han, H. Zhang, D. Zhang, and
W. Zhang, “A large-scale empirical study of commit message genera-
tion: models, datasets and evaluation,” Empirical Software Engineering,
vol. 27, no. 7, p. 198, 2022.

[45] M. L. Vásquez, L. F. Cortes-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in ICSE (2). IEEE Computer Society, 2015, pp. 709–712.

[46] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in IJCAI. ijcai.org, 2019, pp.
3975–3981.

[47] W. Tao, Y. Wang, E. Shi, L. Du, S. Han, H. Zhang, D. Zhang, and
W. Zhang, “On the evaluation of commit message generation models: An
experimental study,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 126–136.

[48] E. Shi, Y. Wang, W. Tao, L. Du, H. Zhang, S. Han, D. Zhang, and
H. Sun, “RACE: Retrieval-augmented commit message generation,” in
Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022, pp. 5520–5530. [Online].
Available: https://aclanthology.org/2022.emnlp-main.372

[49] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “Spt-code: Sequence-
to-sequence pre-training for learning source code representations,” in
ICSE. ACM, 2022, pp. 1–13.

[50] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), 17-22 June 2006, New York, NY, USA. IEEE
Computer Society, 2006, pp. 1735–1742. [Online]. Available: https:
//doi.org/10.1109/CVPR.2006.100

[51] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” in ICML,
ser. Proceedings of Machine Learning Research, vol. 119. PMLR, 2020,
pp. 1597–1607.

12

https://doi.org/10.1145/3447571
https://doi.org/10.1145/3387904.3389269
https://doi.org/10.1145/3366423.3380295
https://doi.org/10.1109/ICSME52107.2021.00049
https://doi.org/10.1145/3387904.3389278
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://arxiv.org/abs/1909.09436
https://doi.org/10.1109/CVPR42600.2020.00975
https://arxiv.org/abs/1611.08307
https://arxiv.org/abs/1611.08307
https://aclanthology.org/2022.emnlp-main.372
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100

[52] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of
sentence embeddings,” in EMNLP (1). Association for Computational
Linguistics, 2021, pp. 6894–6910.

[53] H. Fang and P. Xie, “CERT: contrastive self-supervised learning for
language understanding,” CoRR, vol. abs/2005.12766, 2020.

[54] J. M. Giorgi, O. Nitski, B. Wang, and G. D. Bader, “Declutr: Deep
contrastive learning for unsupervised textual representations,” in ACL/I-
JCNLP (1). Association for Computational Linguistics, 2021, pp. 879–
895.

[55] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in ICLR (Poster). OpenRe-
view.net, 2018.

[56] T. Devries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” CoRR, vol. abs/1708.04552, 2017.

[57] A. G. Howard, “Some improvements on deep convolutional neural
network based image classification,” in ICLR (Poster), 2014.

[58] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, ser.
JMLR Workshop and Conference Proceedings, vol. 37. JMLR.org,
2015, pp. 448–456.

[59] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu,
J. Liu, and X. Jiang, “Syncobert: Syntax-guided multi-modal contrastive
pre-training for code representation,” arXiv preprint arXiv:2108.04556,
2021.

[60] Y. Ding, L. Buratti, S. Pujar, A. Morari, B. Ray, and S. Chakraborty,
“Contrastive learning for source code with structural and functional
properties,” CoRR, vol. abs/2110.03868, 2021.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[62] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in CVPR. Computer Vision
Foundation / IEEE Computer Society, 2018, pp. 3733–3742.

[63] Nvidia, “Nvidia a100 80gb pcie gpu,” Product Brief, 2022. [Online].
Available: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/a100/pdf/PB-10577-001 v02.pdf

[64] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” 2018.

[65] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in ICLR, 2019.

[66] Y. Wang, L. Du, E. Shi, Y. Hu, S. Han, and D. Zhang,
“Cocogum: Contextual code summarization with multi-relational
gnn on umls,” Microsoft, MSR-TR-2020-16. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/cocogum-
contextual-code-summarization-with-multi-relational-gnn-on-umls,
Tech. Rep., 2020.

[67] W. Gu, Z. Li, C. Gao, C. Wang, H. Zhang, Z. Xu, and M. R. Lyu,
“Cradle: Deep code retrieval based on semantic dependency learning,”
Neural Networks, vol. 141, pp. 385–394, 2021.

[68] J. Huang, D. Tang, L. Shou, M. Gong, K. Xu, D. Jiang, M. Zhou, and
N. Duan, “Cosqa: 20, 000+ web queries for code search and question
answering,” in ACL, 2021.

[69] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to informa-
tion retrieval. Cambridge University Press Cambridge, 2008, vol. 39.

[70] S. E. Robertson and K. S. Jones, “Relevance weighting of search terms,”
Journal of the American Society for Information science, pp. 129–146,
1976.

[71] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bull Soc Vaudoise Sci Nat, pp. 547–579, 1901.

[72] M. Iyyer, V. Manjunatha, J. L. Boyd-Graber, and H. D. III, “Deep
unordered composition rivals syntactic methods for text classification,”
in ACL (1). The Association for Computer Linguistics, 2015, pp. 1681–
1691.

[73] Y. Kim, “Convolutional neural networks for sentence classification,” in
EMNLP. ACL, 2014, pp. 1746–1751.

[74] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in EMNLP.
ACL, 2014, pp. 1724–1734.

[75] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, and J. C. Grundy, “Opportunities
and challenges in code search tools,” ACM Comput. Surv., vol. 54, no. 9,
pp. 196:1–196:40, 2022.

[76] CoCoSoDa, “Replication package,” ICSE, 2023. [Online]. Available:
https://github.com/DeepSoftwareAnalytics/CoCoSoDa

[77] M. Mosbach, M. Andriushchenko, and D. Klakow, “On the stability of
fine-tuning BERT: misconceptions, explanations, and strong baselines,”
in ICLR. OpenReview.net, 2021.

[78] T. Wang and P. Isola, “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in ICML, ser.
Proceedings of Machine Learning Research, vol. 119. PMLR, 2020,
pp. 9929–9939.

[79] F. Wang and H. Liu, “Understanding the behaviour of contrastive loss,”
in CVPR. Computer Vision Foundation / IEEE, 2021, pp. 2495–2504.

[80] Y. Meng, C. Xiong, P. Bajaj, S. Tiwary, P. Bennett, J. Han, and X. Song,
“COCO-LM: correcting and contrasting text sequences for language
model pretraining,” in NeurIPS, 2021, pp. 23 102–23 114.

[81] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[82] B. Li, H. Zhou, J. He, M. Wang, Y. Yang, and L. Li, “On the
sentence embeddings from pre-trained language models,” in EMNLP
(1). Association for Computational Linguistics, 2020, pp. 9119–9130.

[83] J. Gao, D. He, X. Tan, T. Qin, L. Wang, and T. Liu, “Representation
degeneration problem in training natural language generation models,”
in ICLR (Poster). OpenReview.net, 2019.

[84] A. Bansal, S. Haque, and C. McMillan, “Project-level encoding for
neural source code summarization of subroutines,” in ICPC. IEEE,
2021, pp. 253–264.

[85] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in NeurIPS,
2020.

13

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/PB-10577-001_v02.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/PB-10577-001_v02.pdf
https://www.microsoft.com/en-us/research/publication/cocogum-contextual-code-summarization-with-multi-relational-gnn-on-umls
https://www.microsoft.com/en-us/research/publication/cocogum-contextual-code-summarization-with-multi-relational-gnn-on-umls
https://github.com/DeepSoftwareAnalytics/CoCoSoDa

	I Introduction
	II Related Work
	II-A Code Search
	II-B Code Representation Learning with Contrastive Learning

	III Proposed Approach
	III-A An Illustrative Example
	III-B Pre-trained Encoder and Momentum Encoder
	III-C Soft Data Augmentation
	III-D Multimodal Contrastive Learning
	III-E Fine-tuning on Code Search

	IV Experimental Design
	IV-A Datasets
	IV-B Baselines
	IV-C Experimental Settings
	IV-D Evaluation Metrics

	V Experimental Results
	V-A RQ1: What Is the Effectiveness of CoCoSoDa?
	V-A1 Overall results
	V-A2 Case study

	V-B RQ2: How Much Do Different Components Contribute?
	V-C RQ3: What Is the Performance of Our Approach on Other Pre-trained Models?
	V-D RQ4: What Is the Impact of Different Hyperparameters?
	V-E RQ5: Why Does Our Model CoCoSoDa Work?
	V-E1 Quantitive analysis
	V-E2 Qualitative analysis

	VI Discussion
	VI-A The Performance of CoCoSoDa Without Being Fine-Tuned
	VI-B Limitations & Threats to Validity

	VII Conclusion
	References

