
Read It, Don’t Watch It: Captioning Bug
Recordings Automatically

Sidong Feng†, Mulong Xie‡, Yinxing Xue§, Chunyang Chen†∗
† Monash University

‡ Australian National University
§ University of Science and Technology of China

Email: †{sidong.feng,chunyang.chen}@monash.edu, ‡mulong.xie@anu.edu.au, §yxxue@ustc.edu.cn

Abstract—Screen recordings of mobile applications are easy
to capture and include a wealth of information, making them
a popular mechanism for users to inform developers of the
problems encountered in the bug reports. However, watching the
bug recordings and efficiently understanding the semantics of
user actions can be time-consuming and tedious for developers.
Inspired by the conception of the video subtitle in movie industry,
we present a lightweight approach CAPdroid to caption bug
recordings automatically. CAPdroid is a purely image-based
and non-intrusive approach by using image processing and
convolutional deep learning models to segment bug recordings,
infer user action attributes, and generate subtitle descriptions.
The automated experiments demonstrate the good performance
of CAPdroid in inferring user actions from the recordings,
and a user study confirms the usefulness of our generated step
descriptions in assisting developers with bug replay.

Index Terms—bug recording, video captioning, android app

I. INTRODUCTION

Software maintenance activities are known to be generally
expensive, and challenging [1] and one of the most important
maintenance tasks is to handle bug reports [2]. A good bug
report is detailed with clear information about what happened
and the steps to reproduce the bug. However, writing such
clear and concise bug reports takes time, especially for non-
developer or non-tester users who do not have that expertise
and are not willing to spend that much effort [3], [4]. The
emergence of screen recording significantly lowers the bar
for bug documenting. First, it is easy to record the screen
as there are many tools available, some of which are even
embedded in the operating system by default, like iOS [5] and
Android [6]. Second, video recording can include more detail
and context such as configurations, and parameters, bridging
the understanding gap between users and developers.

Unfortunately, in many cases, watching the bug recordings
and understanding the user behaviors can be time-consuming
and tedious for developers [7], [8]. First, the recording may
play too fast to watch, and the developers have to pause
the recording, or even replay it multiple times to recognize
the bug. Second, the watching experience can be further
deteriorated by blurred video resolution, poor video quality,
etc. Third, the recording usually contains a visual indicator (in
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Fig. 1) to help developers identify the user actions performed
on the screen. However, those indicators sometimes are too
small to be conspicuously realized, and developers have to
the recording back and forth to guess each action to repeat it
in their testing environment.

Besides bug recordings, those issues also apply to general
videos (e.g., movies, drama, etc). To address those issues
in normal video watching, captions or subtitles are provided
to add clarity of details, better engage users, maintain con-
centration for longer periods, and translate the different lan-
guages [9], [10]. Inspired by the conception of video subtitles
in the movie industry, we intend to generate the caption of an
app recording to add analogous benefits to developers. Given
a caption accompanying the recording, developers, especially
novices can more easily identify the user behaviors in the
recording and shift their focus toward bug fixing. Specifically,
we segment recordings into clips to characterize the “scenes”
in the movie and add action descriptions of each clip to guide
developers.

Existing work has investigated methods to generate a tex-
tual description for GUI screenshot [11], [12], [13], [14],
[15], which has been shown useful for various downstream
tasks such as GUI retrieval, accessibility enhancement, code
indexing, etc. Chen et al. [11] propose an image captioning
model to apply semantic labels to GUI elements to improve
the accessibility of mobile apps. Clarity [12] further consider
multi-modal GUI sources to generate high-level descriptions
for the entire GUI screen. However, none of them can generate
descriptions for video recording, which is a more challenging
task, translating spatial and temporal information into a se-
mantic natural language.

To create good video subtitles, there are several stan-
dards [16], including caption synchronization with the videos,
accurate content comprehension, compact and consistent word
usage, etc. Similarity, we propose an image-based approach
CAPdroid in this paper to non-intrusively caption each action
step for a bug recording, including three phases: 1) action
segmentation, 2) action attribute inference, and 3) description
generation. Inspired by the previous work GIFdroid [4], [17]
to localize keyframes in bug recording, we first develop a
heuristic method to segment the recording into a sequence of
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(a) Default (b) Cursor (c) Custom

Fig. 1: Examples of touch indicators.

action clips (i.e., TAP, SCROLL, INPUT). Then, we adopt
image-processing and deep-learning methods to model the
spatial and temporal features across frames in the clips to
infer action attributes, such as touch location, moving offset,
and input text. A simple description based on the action
attribute, e.g. tap on (x,y) coordinate, cannot express the action
intuitively. Therefore, we first utilize off-the-shelf GUI models
to non-intrusively gather the elements information in the GUI.
As the GUI elements of interest may not have enough context
to be uniquely identified, we propose a novel algorithm using
global information of GUI elements to generate high-level
semantic descriptions.

We first evaluate the performance of the CAPdroid in
obtaining user actions by action segmentation and action
attribute inference, through an automated method. We collect
439 Android apps from Google Play and leverage an auto-
mated app explore tool to simulate user actions on the screen,
meanwhile capturing a 10-min screen recording for each app.
Results show that our tool achieves the best performance
(0.84 Video F1-score and 0.93 accuracy) in action segmenta-
tion from the recordings compared with five commonly-used
baselines. CAPdroid also achieves on average 91.46% in
inferring action attributes, outperforming two state-of-the-art
baselines. We further carry out a user study to evaluate the use-
fulness of description generation of CAPdroid in assisting
bug replay, with 10 real-world bug recordings from GitHub.
Results show that participants save 59.8% time reproducing
the bug with the help of the steps we described, compared
with the steps written by users. Through questionnaires with
participants, they also confirm the clearness, conciseness, and
usefulness of our generated action descriptions.

The contributions of this paper are as follows:

• This is the first work to generate the caption of bug
recordings to support developers in reproducing bugs.

• The first systematic approach CAPdroid, to non-
intrusively segment recordings into clips, infer fine-
grained user actions, and create action descriptions as
subtitles, with examples in online appendix1.

• A comprehensive evaluation including automated exper-
iments and a user study to demonstrate the accuracy and
usefulness of our approach.

II. CAPDROID APPROACH

Given an input GUI recording, we propose an automated
approach to segment the recording into a sequence of clips

1https://github.com/sidongfeng/CAPdroid

based on user actions and subsequently localize the action po-
sitions to generate natural language descriptions. The overview
of our approach is shown in Fig. 2, which is divided into
three main phases: (i) the Action Segmentation phase, which
segments user actions from GUI recording into a sequence
of clips, (ii) the Action Attribute Inference phase that infers
touch location, moving offset, and input text from action clips,
and (iii) the Description Generation phase that utilizes the
off-the-shelf GUI understanding models to generate high-level
semantic descriptions. Before discussing each phase in detail,
we discuss some preliminary understanding of user actions in
GUI recording.

A. Preliminary Study

To understand the recordings from the end-users, we con-
ducted a small pilot study of the GUI recordings from
GitHub [18]. In detail, we built a crawler to automatically
crawl the bug reports from GitHub issue repositories that
contain GUI recordings with suffix names like .gif, .mp4, etc.
To study more recent GUI recordings, we obtained the record-
ings from 2021. Overall, we obtained 5,231 GUI recordings
from 1,274 apps. We randomly sampled 1,000 (11.5%) GUI
recordings, and we recruited two annotators online to manually
check the user actions from the recordings.

Two students were recruited by the university’s internal
slack channel and they were compensated with $12 USD per
hour. They have annotating experience on GUI-related (e.g.,
GUI element bounding box) and video-related (e.g., video
classification) datasets. To ensure accurate annotations, the
process started with initial training. First, we gave them an
introduction to our study and also an example set of annotated
screen recordings where the labels have been annotated by
the authors. Then, we asked them to pass an assessment test.
Two annotators were assigned the experimental set of screen
recordings to label the user actions independently without any
discussion. After the initial labeling, the annotators met and
sanity corrected the subtle discrepancies. Any disagreement
was handed over to the first author for the final decision.

We observed that 89% of the recordings included a touch
indicator, indicating it as a mechanism for the end-user to
depict their actions on the screen. We further classified those
touch indicators into three categories, following the Card
Sorting [19] method:
• default (68%). As shown in Fig. 1(a), the touch indicator

renders a small semi-transparent circle, that gives visual
feedback when the user presses his finger on the device
screen. This is the default touch indicator on Android.

• cursor (27%). As shown in Fig. 1(b), users/developers
may test the apps in the emulator and directly record
the desktop, so that the user actions are captured by the
desktop cursor.

• custom (5%). As shown in Fig. 1(c), the touch indicator
is customized by third-party screen recorders, such as DU
Recorder [20], etc.

Those findings motivated us to develop a tailored approach,
exploiting touch indicators to capture end-user intent, so to

https://github.com/sidongfeng/CAPdroid


Fig. 2: The overview of CAPdroid.

generate semantic captions for GUI recording. Considering the
diversity of touch indicators in the general GUI recordings, a
more advanced approach to detect and infer user actions is
required.

B. Phase 1: Action Segmentation

A video consists of a sequence of frames to deliver the
visual detail of the story for particular scenes. Different from
the recognition of discontinuities in the visual-content flow of
natural-scene videos, detecting clips in the GUI recording is to
infer scenes of user actions that generally display significant
changes in the GUIs. To that end, we leverage the similarity
of consecutive frames to segment user actions (i.e., TAP,
SCROLL, INPUT) from GUI recording.

1) Consecutive Frame Comparison: Inspired by signal pro-
cessing [4], [17], we leverage the image processing tech-
niques to build a perceptual similarity score for consecutive
frame comparisons based on Y-Difference (or Y-Diff). YUV
is a color space usually used in video encoding, enabling
transmission errors or compression artifacts to be more ef-
ficiently masked by the human perception than using a RGB-
representation [21], [22]. Y-Diff is the difference in Y (lumi-
nance) values of two images in the YUV color space, used as
a major input for the human perception of motion [23].

Consider a visual recording
{
f0, f1, .., fN−1, fN

}
, where

fN is the current frame and fN−1 is the previous frame.
To calculate the Y-Diff of the current frame fN with the
previous fN−1, we first obtain the luminance mask YN−1, YN
by splitting the YUV color space converted by the RGB
color space. Then, we apply the perceptual comparison metric,
SSIM (Structural Similarity Index) [24], to produce a per-
pixel similarity value related to the local difference in the
average value, the variance, and the correlation of luminances.
A SSIM score is a number between 0 and 1, and a higher value
indicates a strong level of similarity.

2) Action Classification: To identify the user actions in
the GUI recording, we look into the similarity scores of
consecutive frames as shown in Fig. 3. The first step is to group
frames belonging to the same atomic activity according to

Fig. 3: An illustration of consecutive frame similarity.

(a) English keyboard (detect “qw-
ert”)

(b) Numeric keypad (detect
“123”)

Fig. 4: Examples of keyboard detection.

tailored pattern analysis. This procedure is necessary because
discrete activities performed on the screen will persist across
several frames, and thus, need to be grouped and segmented
accordingly. Consequently, we observe three patterns of user
actions, i.e., TAP, SCROLL, and INPUT. Note that we focus
on the most commonly-used actions for brevity in this paper,
other actions could be extended by comparing the consecutive
frame similarity.

(a) TAP: As shown in Fig. 3A (user taps a button), the
similarity score starts to drop drastically which reveals an in-
stantaneous transition from one screen to another. In addition,
one common case is that the similarity score becomes steady
for a small period of time ts between two drastically droppings
as shown in Fig. 3C. The occurrence of this short steady
duration ts is because GUI has not finished loading. While the
GUI layout of GUI rendering is fast, resource loading may take
time. For example, rendering images from the web depends
on device bandwidth, image loading efficiency, etc.

(b) SCROLL: As shown in Fig. 3D (user scrolls up/down
the screen), the similarity score starts with a drastic drop and
then continues to increase slightly over a period of time, which
implicates a continuous transition from one GUI to another.

(c) INPUT: As shown in Fig. 3B (user inputs text), the
similarity score starts to drop and rise multiple times, revealing
typing characters and digits. However, the similarity score
cannot reliably detect INPUT actions, as it may coincide
with the TAP actions. To address this, we further supplement
with Optical Character Recognition (OCR) technique [25] (a
detailed description is demonstrated in Section II-C3) to detect
whether there is a virtual keyboard in the GUI. Note that we
focus on English apps, and it may take additional efforts to



extend our approach to other languages. In detail, we first
extract the characters from the frames, and concatenate them
into text-based (ocrtext) and number-based (ocrnum) string.
As the OCR may not infer the text perfectly, we discern the
keyboard frame by keyboard-specific substrings. For example,
Fig. 4(a) is a frame of English keyboard that contains “qwert”
in ocrtext, and Fig. 4(b) is a frame of numeric keypad that
contains “123” in ocrnum. Therefore, the frame of a keyboard
is discriminated by

frame =

{
∃{qwert, asdfg, zxcvb} ∈ lowercase(ocrtext)
∃{123, 456, 789} ∈ ocrnum

(1)
where lowercase is to convert the uppercase characters into
lowercase, in order to detect capital English keyboard. Note
that we do not adopt keyboard template matching, as key-
boards vary in appearance, such as customized background,
different device layouts, etc.

C. Phase 2: Action Attribute Inference

Given a recording clip of user action segmented by the
previous phase, we then infer its detailed attributes, including
touch location of TAP action, its moving offset of SCROLL
action, and its input text of INPUT action, to reveal where the
user interacts with on the screen. The overview of our methods
is shown in Fig. 5. The prediction of TAP location requires
a semantic understanding of the GUI transition captured in
the clip, such as touch indicators (in Section II-A), transition
animation, GUI semantic relation, etc. Therefore, we propose
a deep-learning-based method that models the spatial and
temporal features across frames to infer the TAP location.
To infer the moving offset of SCROLL, we adopt an off-
the-shelf image-processing method to detect the continuous
motion trajectory of GUIs, thus, measuring the user’s scrolling
direction and distance. To infer the input text of INPUT, we
leverage the OCR technique to identify the text difference
between the frames of keyboard opening (i.e., where the user
starts entering text) and keyboard closing (i.e., where the user
ends entering).

1) Inferring TAP location: Convolutional Neural Networks
of 2D (Conv2ds) [26], [27] have demonstrated remarkable
success in efficiently capturing the hypothesis of spatial lo-
cality in two-dimensional images. A video that is encoded
by a sequence of 2d images, aggregates another dimen-
sion: spacetime. To predict the touch location from a GUI
recording clip, we adopt a Conv3d-based model X3D [28],
that simultaneously models spatial features of single-frame
GUIs and temporal features of multi-frames optical flow. The
architecture of our X3D model is shown in Fig. 5(a).

Given a video clip V T×H×W×C where T is the time length
of the clip, W , H , and C are the width, height, and channel
of the frame, usually C = 3 for RGB frame. We first apply
3d convolution layers, consisting of a set of learnable filters to
extract the spatio-temporal features of the video. Specifically,
the convolution is to use a 3d kernel, i.e. t × d × d where
t and d denote the temporal and spatial kernel size, to slide

around the video and calculate kernel-wise features by matrix
dot multiply. After the convolutional layers, the video V will
be abstracted as a 3d feature map, preserving features along
both the spatial and the temporal information. We then apply a
3d pooling layer to eliminate unimportant features and enhance
spatial variance of rotation and distortion. After blocks of
convolutional and pooling layers, we flatten the feature map
and apply a fully connected layer to infer the logits of TAP
location.

For the detailed implementation, we adopt the convolutional
layers from ResNet-50 [29] and borrow the idea of residual
connection to improve the model performance and stability
between layers. We use MaxPooling [30] as the pooling
layer, where the highest value from the kernel is taken, for
noise suppressant during abstraction. The output of the fully
connected layer is 2 neurons, representing (x, y) coordinates.
To accelerate the training process [31], we standardize the co-
ordinate relative to the width and height of the frame. Although
the frames are densely recorded (i.e. 30fps), the GUI renders
slowly. To extract discriminative features from the recording,
we uniformly sample 16 frames at 5 frame intervals (T = 16)
as suggested in [28]. Note that if the length of the recording
clip is smaller than the sample rate 16×5, we will sample the
frames based on nearest neighbor interpolation. To make our
training more stable, we adopt Adam as the optimizer [32] and
MSELoss as the loss function [33]. Moreover, to optimize the
model, we apply an adaptive learning scheduler, with an initial
rate of 0.01 and decay to half after 10 iterations. The hyper-
parameter settings are determined empirically by a small-scale
experiment.

2) Inferring SCROLL offset: To infer the scrolling direction
(i.e., upward, downward) and distance (i.e., amount of move-
ment) from the GUI recording clip, we measure the motion
trajectory of GUI elements. Since the elements may scroll off-
screen [34], we adopt the K-folds template matching method
as shown in Fig. 5(b).

Given a GUI recording clip
{
f0, f1, .., fN−1, fN

}
, where

fN is the current frame and fN−1 is the previous frame. We
first divide the previous GUI fN−1 into K pieces vertically.
We set K to 10 by a small pilot study to mitigate the
off-screen issue and preserve sufficient features for template
matching. And then, we match the template of each fold in
the current frame fN to compute the scrolling offset between
consecutive frames. At the end, we derive the scrolling dis-
tance by summing the offsets (

∑N
n=0 offsetn−1n ), and infer the

scrolling direction by the sign of the distance, e.g., positive
for downward, otherwise upward.

3) Inferring INPUT text: Detecting input text based on
user actions on the keyboard can be error-prone, as the
user may edit text from the middle of the text, switch to
capital, delete text, etc. Therefore, we leverage a practical
OCR technique PP-OCRv2 [25] to detect the text difference
between the first frame (opening keyboard) and the last frame
(closing keyboard) from the INPUT recording clip, as shown
in Fig. 5(c). Given a GUI frame, PP-OCRv2 detects the text
areas in the GUI by using an image segmentation network and



(a) TAP (b) SCROLL (c) INPUT

Fig. 5: Approaches of Action Attribute Inference.

Fig. 6: Subtitle and textual steps in the GUI recording.

then applies a sequence and classification model to recognize
the text. As the GUI text is similar to scene text [35], we
directly use the pre-trained PP-OCRv2 without any fine-tuning
on GUI text, that the overall performance reaches 84.3% state-
of-the-art accuracy.

After deriving the text from the frames of keyboard opening
and keyboard closing, we first remove all the text on the
keyboard to keep the text concise. Then, we detect the text
difference between the frames using SequenceMatcher [36].
Albeit good performance of PP-OCRv2, it may still make
wrong text recognition, e.g., missing space. To address this,
SequenceMatcher measures text similarity by computing the
longest contiguous matching subsequence (LCS). Finally, we
extract the text that appears only in the frame where the
keyboard is closed, as input text.

D. Phase 3: Description Generation

Once the attributes of the action are derived from the
previous phases, we proceed by generating in-depth and easy-
to-understand natural language descriptions. To accomplish
this, we first leverage mature GUI understanding models to
obtain GUI information non-intrusively. Then, we propose a
novel algorithm to phrase actions into descriptions and embed
them as subtitles in the recording as shown in Fig. 6.

1) GUI understanding: To understand the GUI, we adopt
non-intrusive approaches to obtain GUI information, to avoid
the complexity of app instrumentation or handling of the
diverse software stack, especially for closed-source systems
where no underlying instrumentation support is accessi-
ble [37]. An example of GUI understanding is shown in Fig. 7.

Specifically, we first implement the state-of-the-art object
detection model Faster-RCNN with ResNet-101 [29] and
Feature Pyramid Networks [38] to detect 11 GUI element
classes on the screen: button, checkbox, icon, imageview,
textview, radio button, spinner, switch, toggle button, edittext,
and chronometer. We train the model on the Rico dataset [39]
contains 66k GUIs from 9.7k apps. Following the previous
work [40], we split the GUIs in the training:validation:testing
dataset by apps in the ratio of 8:1:1. As a result, the model
achieves an overall Mean Average Precision (MAP) of 51.45%
on the test set. For each GUI element, we adopt the OCR
technique (the detailed implementation is elaborated in Sec-
tion II-C3) to detect the text (if any). For the icon, annotation
based on common human understanding can enhance the GUI
understanding. For example, in Fig. 7, the icon of a group of
people informs the semantic of “Friend”. To achieve this, we
adopt a transformer-based model from the existing work [11]
to caption the icon image. We follow the implementation in
their original paper to train the model and achieve 60.7%
accuracy on the test set.

Besides from understanding the information of GUI ele-
ments, we also attempt to obtain their global information
relative to the GUI, including absolute positioning and element
relationship. Absolute positioning describes the element as a
spatial position in the GUI, which is particularly useful to
represent an element in an image [41]. To accomplish this,
we uniformly segment the GUI into 3 × 3 grids, delineating
horizontal position (i.e, left, right), vertical position (i.e, top,
bottom), and center position. For example, in Fig. 7, the
“100m” spinner is at the top right corner. GUI element rela-
tionship aims to transform the “flat” structure of GUI elements
into connected relationships. A natural way of representing
the relationship is using a graph structure, where elements
are linked to the nearest elements. To accomplish this, we
first compute the horizontal and vertical distance between
GUI elements by euclidean pixel measurement. And then,
we construct the graph of the GUI elements by finding the
nearest elements (neighbors) in four directions, including left,
right, top, and bottom. Note that we set up a threshold to
prevent the neighbors from being too far apart. Ultimately, it
will generate a graph representing the relationships between
the elements in the GUI. For example, in Fig. 7, the “100”
spinner has two neighbors: the “Advanced” element at the top,



Action Id Condition Template Example

TAP

1 (objtext/caption 6= NULL) ∧ (objconfid > α) Tap [objtext] [objclass] Tap “OK” button

2 (objtext/caption 6= NULL) ∧ (β < objconfid < α) Tap [objtext] [objclass] at [objposition] Tap “menu” icon at top left
corner

3 (objtext/caption == NULL) ∨ (objconfid < β) Tap the [objclass] [nbrrelation] [nbrtext]
Tap the checkbox next to “Dark
Mode”

SCROLL
4 objtext 6= NULL Scroll [direction] [offset] of the screen to [objtext]

Scroll down half of the screen
to “Advanced Setting”

5 objtext == NULL Scroll [direction] [offset] of the screen Scroll up a quarter of the screen

INPUT
6 (objtext/caption 6= NULL) ∧ (objconfid > α) Input [text] in the [objtext] edittext Input “100” in the “Amount”

edittext

7 (objtext == NULL) ∨ (objconfid < α) Input [text] in the edittext [nbrrelation] [nbrtext]
Input “John” in the edittext be-
low “Name”

TABLE I: Description template, where “obj” and “nbr” denote the GUI element and its neighbor, α and β denote high- and
low-confidence element.

Fig. 7: Example of GUI understanding.

and the “None” element at the bottom. Note that the “Audio
cue settings” element is omitted due to large spacing, which
is consistent with human viewing.

2) Subtitle Creation: The main instruction of interest is
to create a clear and concise subtitle description based on{
action, object

}
. The global GUI information is further used

to complement the description by
{
position, relationship

}
.

Based on the action obtained in Section II-B, the attribute of
object inferred in Section II-C, and the corresponding GUI
element information retrieved in Section II-D1, we propose
description templates for TAP, SCROLL, INPUT, respectively.
A summary of description templates can be seen in Table I.

For TAP action, the goal of the description should be clear
and concise, e.g., tap “OK” button. However, we find that this
simple description may not articulate all TAP actions due to
two reasons. First, the text and caption of object are prone to
errors or undetected, as the OCR-obtained text and the caption-
obtained annotation are not 100% accurate. Second, there may
be multiple objects with the same text on the GUI. To resolve

this, we set up an object confidence value objconfid as:

objconfid =

{
OCRconfid if objtext is unique in GUI
0 otherwise

(2)

where OCRconfid denotes the confidence predicted by OCR.
Note that the confidence value of icon object is calculated
likewise by captioning. The smaller the confidence value, the
less intuitive the object is. Therefore, only the object with the
highest confidence value (objconfid > α) will apply the simplest
and most straightforward description (Template 1), otherwise,
we add the context of absolute position to help locate the
object (Template 2). For the object whose text is not detected
or recognized with low confidence, we leverage the context of
its neighbor to help locate the target object (Template 3), e.g.,
tap the checkbox next to “Dark Mode”.

It is easy to describe a SCROLL action by its scrolling
direction and offset (Template 5), e.g., scroll up a quarter of the
screen. However, such an offset description is not precise and
intuitive. To address this, if a new element with text appears
by scrolling, we add this context to help describe where to
scroll to (Template 4), e.g., scroll down half of the screen to
“Advanced Setting”.

The description of INPUT is similar to TAP. For the
high-confidence object with text (Template 6), it generates:
Input [text] in the [objtext] edittext. Different from the TAP
descriptions, we do not apply the context of absolute position
to help locate the low-confidence object. This is because the
objects are gathering at the top when the keyboard pops up,
so the absolute positioning may not help. Instead, we use the
relative position of neighbor to describe the input object of
which text is not detected or recognized with low confidence
(Template 7), e.g., Input “John” in the edittext below “Name”.

After generating the natural language description for each
action clip, we embed the description into the recording as
subtitles as shown in Fig. 6. In detail, we create the subtitles by
using the Wand image annotation library [42] and synchronize
the subtitle display at the beginning of each action clip.



III. AUTOMATED EVALUATION

In this section, we described the procedure we used to
evaluate CAPdroid in terms of its performance automati-
cally. Since our approach consists of two main automated
steps to obtain the actions from the recordings, we evalu-
ate these phases accordingly, including Action Segmentation
(Section II-B), and Action Attribute Inference (Section II-C).
Consequently, we formulated the following two research ques-
tions:
• RQ1: How accurate is our approach in segmenting action

clips from GUI recordings?
• RQ2: How accurate is our approach in inferring action

attributes from clips?
To perform the evaluation automatically, we leveraged the

existing automated app exploration tool Droidbot [43] to
collect GUI recordings with ground-truth actions. In detail, we
first collected 439 top-rated Android apps from Google Play
covering 14 app categories (e.g., news, tools, finance, etc.).
Each app was run for 10 minutes by Droidbot to automatically
explore app functionalities by simulating user actions on the
GUI. The simulated actions, including operation time, types,
locations, etc, were dumped as metadata, representing the
ground truth. Meanwhile, we captured a screen recording to
record the actions for each app at 30 fps. As discussed in
Section II-A, users may use different indicators to depict
their touches. To make our recordings as similar to real-world
recordings as possible, we adopted different touch indicators
to record actions, including 181 default, 152 cursor, and 106
custom. In total, we obtained 439 10-min screen recordings as
the experimental dataset for the evaluation.

A. RQ1: Accuracy of Action Segmentation

Experimental Setup. To answer RQ1, we evaluated the
ability of our CAPdroid to precisely segment the recordings
into action clips and accurately classify the actions. To accom-
plish this, we utilized the metadata of action operation time as
the ground-truth. During preliminary observation with many
recordings, we found that, due to the delay between commands
and operations on the device, it may have small time-frame
differences between the ground-truth and the recorded actions.
To avoid these small differences, we broadened the ground-
truth of the actions by 5 frames. In total, we obtained 12k TAP,
4k SCROLL, and 1k INPUT clips from 439 screen recordings.

Metrics. We employed two widely-used evaluation metrics,
e.g., video segmentation F1-score, and accuracy. To evaluate
the precision of segmenting the action clips from recordings,
we adopted video segmentation F1-score [44], which is a
standard video segmentation metric to measure the difference
between two sequences of clips that properly accounts for
the relative amount of overlap between corresponding clips.
Consider the clips segmented by our method (cour) and ground
truth (cgt), vs-score is computed as 2|cour∩cgt|

|cour|+|cgt| , where |c|
denotes the duration of the clip. The higher the score value,
the more precise the method can segment the video. We
further adopted accuracy to evaluate the performance of our

Method TAP SCROLL INPUT Overall
VS Acc VS Acc VS Acc VS Acc

ABS 0.56 0.69 0.59 0.69 0.67 0.73 0.61 0.71
HIST 0.71 0.80 0.62 0.71 0.75 0.84 0.70 0.79
SIFT 0.61 0.71 0.60 0.73 0.63 0.79 0.62 0.75
SURF 0.55 0.71 0.59 0.72 0.60 0.77 0.58 0.74
EDGE 0.61 0.75 0.55 0.70 0.66 0.78 0.61 0.75
Ours 0.81 0.89 0.83 0.92 0.90 0.97 0.84 0.93

TABLE II: Performance comparison of action segmentation.
“VS” denotes the video segmentation F1-score, and “Acc”
denotes the accuracy of action classification.

approach to discriminate action types from clips. The higher
the accuracy score, the better the approach can classify the
actions.

Baselines. To demonstrate the advantage of using SSIM
as the image similarity metric to segment actions from GUI
recordings, we compared it with 5 image-processing baselines,
including pixel level (e.g, absolute differences ABS [45],
color histogram HIST [46]), structural level (e.g., SIFT [47],
SURF [48]), and motion-estimation level (e.g., edge detection
EDGE [49]). Due to the page limit, we omitted the details of
these well-known methods.

Results. Table II shows the overall performance of all
baselines. The performance of our method is much better
than that of other baselines, i.e., 20%, 17% boost in video
segmentation F1-score and accuracy compared with the best
baseline (HIST). Although HIST achieves the best perfor-
mance in the baselines, it does not perform well as it is
sensitive to the pixel value. This is because the recordings
can often have image noise due to fluctuations of color or
luminance. The image similarity metrics based on structural
level (i.e., SIFT, SURF) are not sensitive to image pixel,
however, they are not robust to compare GUIs. This is because,
unlike images of natural scenes, features in the GUIs may
not distinct. For example, a GUI contains multiple identical
checkboxes, and the duplicate features of checkboxes can
significantly affect similarity computation. Besides, motion-
estimation baseline (EDGE) cannot work well in segmenting
actions from GUI recordings, as GUI recordings are artificial
artifacts with different rendering processes. In contrast, our
method using SSIM achieves better performance as it takes
similarity measurements in many aspects from spatial and
pixel, which allows for a more robust comparison.

Our method also makes mistakes in action segmentation due
to two reasons. First, we wrongly segment one action clip into
multiple ones due to the unexpected slow resource loading,
e.g., one clip for the GUI transition of a user action, and the
other clip for the GUI’s resource loading. Second, some GUIs
may contain animated app elements such as advertisements
or movie playing, which will change dynamically, resulting in
mistake action segmentation and classification.

B. RQ2: Accuracy of Action Attribute Inference

Experimental Setup. To answer RQ2, we evaluated the
ability of our CAPdroid to accurately infer the action at-
tributes from the segmented clips. To accomplish this, we



Methods TAP SCROLL INPUT Overalldefault cursor custom default cursor custom default cursor custom
V2S [8] 84.19% 69.66% 36.10% 85.19% 63.31% 29.00% - - - 61.24%
GIFdroid [4] 85.78% 88.01% 87.16% 72.84% 71.01% 69.77% 35.13% 32.11% 28.39% 63.35%
CAPdroid 91.06% 90.28% 92.67% 94.87% 94.63% 95.12% 87.86% 88.62% 88.11% 91.46%

TABLE III: Performance comparison of action attribute inference.

Fig. 8: Examples of bad cases in action localization.

leveraged the metadata of action attributes as the ground-truth.
Since our approach employs a deep-learning-based model
(Section II-C1) to infer TAP location, we trained and tested
our model based on the metadata of TAP actions. Note that
a simple random split cannot evaluate the model’s generaliz-
ability, as tapping on the screens in the same app may have
very similar visual appearances. To avoid this data leakage
problem [50], we split the TAP actions in the dataset by
apps, with the 8:1:1 app split for the training, validation, and
testing sets, respectively. We also ensure a similar number of
three types of touch indicators (i.e. default, cursor, custom)
in the split dataset. The resulting split has 9k actions in the
training dataset, 1.5k in the validation dataset, and 1.5k in the
testing dataset. The model was trained in an NVIDIA GeForce
RTX 2080Ti GPU (16G memory) with 30 epochs. In total,
we obtained 1.5k TAP locations, 4k SCROLL offsets, and 1k
INPUT text as the attributes of testing data.

Metrics. We employed accuracy as the evaluation metric to
measure the performance of our approach in inferring TAP,
SCROLL, and INPUT action attributes, respectively. As one
element occupies a certain area, tapping any specific point
within that area can successfully trigger the action. So, we
measured whether our predictions are within the ground-
truth element. For SCROLL actions, we measured whether
our inferred scroll offset is the same as the ground-truth. For
INPUT actions, we measured whether our approach can infer
the correct input text. The higher the accuracy score, the better
the approach to infer action attributes.

Baselines. We set up 2 state-of-the-art methods as our
baselines to compare with our CAPdroid. V2S [8] proposed
the first GUI video analysis technique, that utilizes deep-
learning models to detect the touch indicator for each frame
in a video and then classify them to user actions. As V2S
only detects the default touch indicator, we followed their
procedure to train corresponding deep-learning models to
detect cursor and custom indicators. GIFdroid [4] developed
a novel lightweight tool to detect the user actions by first
extracting the keyframes from the GUI recording and then
mapping it to the GUI transition graph (UTG) to extract the
execution actions. We also followed the details in their paper
to obtain the UTG graph.

Results. Table III shows the overall performance of all

methods. Our method outperforms in all actions, e.g., on
average 91.33%, 94.87%, 88.19% for TAP, SCROLL, and
INPUT, respectively. Our method is on average 30.2% more
accurate compared with V2S in action attribute inference, due
to three main reasons. First, our method models the features
from both the spatial (i.e., touch indicator) and temporal (i.e.,
GUI animation) across the frames to enhance the performance
of the model in inferring TAP actions, i.e., on average 91.33%
vs 63.32% for CAPdroid and V2S respectively. Second,
our method achieves better performance in inferring action
attributes even for the recordings with different touch indi-
cators. This is because, CAPdroid proposes a novel touch
indicator-independent method by leveraging the similarity of
consecutive frames to identify actions, while V2S leverages
the opacity of the indicator, e.g., a fully solid touch indicator
represents the user first touches the screen, and it fades to less
opaque when a finger is lifted off the screen. The opacity of the
indicator works well for the default touch indicator (on average
84.69%), but not for the others (on average 66.48%, 32.55%
for cursor and custom). Third, CAPdroid can accurately (on
average 88.19%) infer the input text from the clips, while V2S
cannot detect semantic actions.
CAPdroid is on average 28% (91.46% vs 63.35%) more

accurate even compared with the best baseline (GIFdroid).
This is because, the content in GUIs of some apps (e.g., finan-
cial, social, music apps) are dynamic, causing the keyframes
wrongly map to the states in the UTG. This issue further
exacerbates input text inference, as the input text from the
recording is specific but the input text in UTG is randomly
generated.

Albeit the good performance of our approach, we still make
wrong inferences about some actions. We manually check
those wrong cases and find two common causes. First, as
shown in Fig. 8, the overlap of similar colors between the
touch indicators and icons leads to less distinct features of the
indicators, causing false-positive action localization. Second,
although the good performance of our OCR method, it still
makes wrong text recognition, especially missing spaces. We
believe the emergence of advanced OCR methods can further
improve the accuracy of our approach.

IV. USEFULNESS EVALUATION

In this section, we conducted a user study to evaluate
the usefulness of our generated descriptions (reproduction
steps) for replaying bug recordings in real-world development
environments.

Procedure: We recruited another 8 participants including 6
graduate students (4 Master, 2 Ph.D) and 2 software developers



Fig. 9: Bug replay time.

to participate in the experiment. All students have at least
one-year experience in developing Android apps and have
worked on at least one Android apps project as interns in
the company. Two software developers are more professional
and have two-year working experience in a large company in
Android development. Given that they all have experience in
Android app development and bug replay, they are recognized
as substitutes for developers in software engineering research
experiments [51].

To mitigate the threat of user distraction, we conducted
the experiment in a quiet room individually without mutual
discussion. We first gave them an introduction to our study and
also a real example to try. Each participant was then asked to
reproduce the same set of 10 randomly selected bug recordings
from real-world issue reports in GitHub, on average, 3.6 TAP,
1.2 SCROLL, and 1.0 INPUT per recording. The experimental
bug recordings can be seen in our online appendix2. The study
involved two groups of four participants: the control group P1,
P2, P3, P4 who gets help with the reproduction steps written
by reporters from GitHub, and the experimental group P5, P6,
P7, P8 who gets help with the natural language description
generated by our tool. Each pair of participants 〈Px, Px+4〉
has comparable development experience, so the experimental
group has similar capability to the control group in total. Note
that we did not ask participants to finish half of the tasks with
our tool while the other half without assisting tool to avoid
potential tool bias. We recorded the time used to reproduce the
bug recordings in Android. Participants had up to 10 minutes
for each bug replay. To minimize the impact of stress, we
gave a few minutes break between each bug replay. At the
end of the tasks, we provided 5-point Likert-scale questions
to collect their feedback, in terms of clearness, conciseness,
and usefulness. We further collected participants’ feedback
through a few open-ended questions, which can help us bring
more insight into our tool, including how could the subtitles be
improved, are there any software engineering tasks that would
benefit from subtitles, etc.

Results: Overall, participants appreciate the usefulness of
our approach for providing them with clear and concise step
descriptions to describe the actions performed on the bug
recordings, so that they can easily replay them. Box plot in
Fig. 9 shows that, given our generated reproduction steps,
the experimental group reproduces the bug recording much

2https://github.com/sidongfeng/CAPdroid

Measures Control Experiment
Clearness 2.50 4.25∗

Conciseness 1.75 4.50∗

Usefulness - 4.75

TABLE IV: Performance comparison between the experimen-
tal and control group. ∗ denotes p < 0.01.

faster than that of the control group (with an average of
3.46min versus 5.53min, saving 59.8% of the time). This
brings a preliminary insight of the usefulness of our generated
reproduction steps to help participants locate and replay the
actions.

Table IV shows the overall results received from partici-
pants. All participants admit that our approach can provide
more easy-to-understand step descriptions for them, in terms
of 4.25 vs 2.50 in clearness, and 4.50 vs 1.75 in conciseness,
compared with the control group. In addition, they demonstrate
several advantages of our reproduction steps, such as complete
steps, region/text of interest, technical language, etc. Since the
steps we generate are matched with each action one-to-one,
participants can easily track each step, while the missing steps
in the control group may confound participants: whether the
step description corresponds to the current GUI. P5 also finds
the absolute positioning and element relationship description
particularly useful to him, because such description can narrow
down the spatial regions in GUI and easily locate the GUI
element in which a bug occurs. P3 reports that some users
may use inconsistent words to describe the steps. For example,
users may use “play the film” to describe the button with
the text “movie”, making the developers hard to reproduce in
practice. In contrast, the descriptions we generate are entirely
based on GUI content, so it is easy to find the GUI elements.

The participants strongly agree (4.75) with the usefulness
of our approach due to two reasons. One is the potential of
our structured text to benefit short- and long-term downstream
tasks, such as bug triaging, test migration, etc. The potential
downstream is discussed in Section V. The other is the
usefulness of the subtitle in the recording, revealing the action
segmentation of our approach. P2 in the control group finds
the touch indicator to be inconspicuous and sometimes GUI
transitions are too abrupt to realize. In contrast, with the help
of our approach, P6 praises the subtitle in the recording as it
informs the timing of each action.

To understand the significance of the differences, we fur-
ther carry out the Mann-Whitney U test [52] (specifically
designed for small samples) on the replaying time, clearness,
conciseness, and usefulness between the experimental and the
control group respectively. The test results suggest that our
approach does significantly help the participants reproduce
bug recordings more efficiently (p < 0.01). There is also some
valuable feedback provided by the participants to help improve
the CAPdroid. For example, participants want higher-level
semantic step descriptions, e.g., tap the first item in the list
group, which can lead to more insights into the bugs. We will

https://github.com/sidongfeng/CAPdroid


investigate the possible solution as our future work.

V. DISCUSSION

We have discussed the limitations of our approach at the
end of each subsection of the evaluation in Section III,
such as errors due to slow rendering in action segmentation
(Section III-A), low contrast between touch indicators and
icons in action attribute inference (Section III-B), etc. In this
section, we discuss the implication of our approach and future
work.

Downstream tasks supported by video captioning. There
are many downstream tasks based on the textual bug reports,
such as automated bug replay [53], [54], test migration [55],
[56], duplicate bug detection [57], [58], [59], etc. Few of them
can be applied to visual bug recordings. Our approach to au-
tomatically caption bug recording provides a semantic bridge
between textual and visual bug reports. In detail, CAPdroid
complement the existing methods, as the first process of
these downstream tasks is usually to employ natural language
processing (NLP) techniques to extract the representations of
bug steps into a structural grammar, such as action, object, and
position, which can be automatically extracted by our approach
in visual bug recording.

Generality across platforms. Results in the usefulness
evaluation in Section IV have demonstrated the usefulness
of our approach in generating high-quality descriptions for
Android bug recordings to help developers with bug replay
in real-world practice. Supporting bug recordings of different
platforms (e.g., iOS, Web) can bring analogous benefits to
developers [60]. As the actions from different platforms exert
almost no difference, and our approach is purely image-
based and non-intrusive, it can be generalized to caption bug
recordings for other platforms with reasonable customization
efforts to our approach. In the future, we will conduct thorough
experiments to evaluate the performance of CAPdroid in
supporting those platforms.

Accessibility of GUI recording. Tutorial videos (e.g., app
usage recordings) are widely used to guide users to access
unfamiliar functionalities in mobile apps. However, it is hard
for people with vision impairments (e.g., the aged or blind)
to understand those videos unless asking for caregivers to
describe the action steps from the tutorial videos to help them
access the video content [61]. Our approach might be applied
to enhance the accessibility of tutorial videos by generating
clear and concise subtitles for reproduction steps, enabling
people with vision impairments to easily access information
and service of the mobile apps for convenience.

VI. RELATED WORK

Vision to Language semantically bridges the gap between
visual information and textual information. The most well-
known task is image captioning, describing the content of
an image in words. Many of the studies proposed novel
methods to generate a textual description for GUI image,
in order to enhance app accessibility [11], [62], [14], [15],
screen navigation [63], [64], GUI design search [65], [66],

[67], automate testing [68], [69], [70], [71], [72], [73], etc.
Chen et al. [13] designed an approach that uses a machine
translator to translate a GUI screenshot into a GUI skeleton,
a functional natural language description of GUI structure.
Moran et al. [12] proposed image captioning methods Clarity
to describe the GUI functionalities in varying granularity. In
contrast, we focused on a more difficult task - video cap-
tioning, generating natural language to describe the semantic
content of a sequence of images. To the best of our knowledge,
this is the first work translating the GUI recording into textual
descriptions.

Earlier works [74], [75] proposed sequence-to-sequence
video captioning models that extract a sequence of image
features to generate a sequence of text. These models showed
their advantage in video summarization, but it was hard to
achieve the goal of generating multiple concrete captions
with their temporal locations from the video (a.k.a dense
video captioning). Intuitively, dense video captioning can be
decomposed into two phases: event segmentation and event
description. Existing methods tackled these two sub-problems
using event proposal and captioning modules, and exploited
two ways to combine them for dense video captioning. We
borrowed the two-phase idea to generate a natural language
description for GUI recording, denoting events as user actions.

To segment the events from the videos, Krishna et al. [76]
proposed the first segmentation method by using a multi-scale
proposal module. Some of the following works [77], [78]
aimed to enrich the event representations by context model-
ing, event-level relationships, or multi-modal feature fusion,
enabling more accurate event segmentation. However, these
methods were designed for general videos which contain more
natural scenes like human, plants, animals, etc. Different from
those videos, our GUI recordings belonged to artificial artifacts
with different image motions (i.e., GUI rendering). While
some previous studies worked on domain-specific GUI record-
ings, they focused on high-level GUI understanding, such as
duplicate bug detection [60], GUI animation linting [79], [80],
etc. In contrast, we focused on the fine-grained user actions in
the GUI recording. To analyse and segment actions from the
GUI recording, many record-and-replay tools were developed
based on different types of information, including the runtime
information [81] and app artifacts [82], [4], [17]. Nurmuradov
et al. [83] introduced an advanced lightweight tool to record
user interactions by displaying the device screen in a web
browser. Feng et al. [4], [17] proposed an image processing
method to extract the keyframes from the recording and
mapped them to states in the GUI transitions graph to replay
the execution trace. However, they required the installation of
underlying frameworks, or instrumenting apps which is too
heavy and time-consuming. Bernal et al. [8] implemented a
deep learning-based tool named V2S to detect and classify user
actions from specific recordings, a high-resolution recording
with a default Android touch indicator. But more than 32%
of end-users cannot meet that requirement in real-world bug
reports according to our analysis in Section II-A. In contrast,
considering the diversity of touch indicators in the general



GUI recordings from end-users, we propose a more advanced
approach to capture the spatial features of touch indicators
and the temporal features of touch effects, to achieve better
performance on user action identification.

To generate video captions, many works [78], [84] started
using one single unified deep-learning model (one-fit-all).
Recent works infused knowledge about objects in the video
by using object detectors to generate more informative cap-
tions. For example, Zhang et al. [85] adopted an object
detector to augment the object feature to yield object-specific
video captioning. Different from the natural scenes, generating
action-centric descriptions for GUI recording requires a more
complex GUI understanding, as there are many aspects to
consider, such as the elements in the GUI, their relationships,
the semantics of icons, etc. Therefore, we modeled GUI-
specific features by using mature methods, and then proposed
a tailored algorithm to automatically generate natural language
descriptions for GUI recordings.

VII. CONCLUSION

The bug recording is trending in bug reports due to its
easy creation and rich information. However, watching the bug
recordings and understanding the user actions can be time-
consuming. In this paper, we present a lightweight approach
CAPdroid to automatically generate semantic descriptions of
user actions in the recordings, without requiring additional app
instructions, recording tools, or restrictive video requirements.
Our approach proposes image-processing and deep-learning
models to segment bug recordings, infer user actions, and gen-
erate natural language descriptions. The automated evaluation
and user study demonstrate the accuracy and usefulness of
CAPdroid in boosting developers’ productivity.

In the future, we will keep improving our method for
better performance in terms of action segmentation and action
attribute inference. According to user feedback, we will also
improve the understanding of GUI to achieve higher-level
semantic descriptions.
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