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Abstract—Transformers have gained popularity in the software
engineering (SE) literature. These deep learning models are
usually pre-trained through a self-supervised objective, meant
to provide the model with basic knowledge about a language of
interest (e.g., Java). A classic pre-training objective is the masked
language model (MLLM), in which a percentage of tokens from the
input (e.g., a Java method) is masked, with the model in charge
of predicting them. Once pre-trained, the model is then fine-
tuned to support the specific downstream task of interest (e.g.,
code summarization). While there is evidence suggesting the boost
in performance provided by pre-training, little is known about
the impact of the specific pre-training objective(s) used. Indeed,
MLM is just one of the possible pre-training objectives and
recent work from the natural language processing field suggest
that pre-training objectives tailored for the specific downstream
task of interest may substantially boost the model’s performance.
For example, in the case of code summarization, a tailored pre-
training objective could be the identification of an appropriate
name for a given method, considering the method name to
generate as an extreme summary. In this study, we focus on the
impact of pre-training objectives on the performance of trans-
formers when automating code-related tasks. We start with a
systematic literature review aimed at identifying the pre-training
objectives used in SE. Then, we pre-train 32 transformers using
both (i) generic pre-training objectives usually adopted in SE;
and (ii) pre-training objectives tailored to specific code-related
tasks subject of our experimentation, namely bug-fixing, code
summarization, and code completion. We also compare the pre-
trained models with non pre-trained ones and show the advantage
brought by pre-training in different scenarios, in which more or
less fine-tuning data are available. Our results show that: (i)
pre-training helps in boosting performance only if the amount
of fine-tuning data available is small; (ii) the MLM objective
is usually sufficient to maximize the prediction performance of
the model, even when comparing it with pre-training objectives
specialized for the downstream task at hand.

Index Terms—Pre-training, Code Recommenders

I. INTRODUCTION

Transformers [1] are deep learning (DL) models built on the
idea of self-attention, a mechanism able to assign different
weights to different parts of the input data. Transformers
achieved state-of-the-art performance in several natural lan-
guage processing (NLP) tasks and, recently, have gained
popularity in the software engineering (SE) literature for the
automation of code-related tasks (see e.g., [2]-[13]).

Transformers are usually trained in a two-step process. First,
they are pre-trained using a self-supervised training objective
with the goal of providing the model with general knowledge
about a language relevant for the final task to automate. Then,
the model is fine-tuned to support the downstream task of
interest.

The most adopted pre-training objective is the Masked
Language Model (MLM), in which a percentage of tokens from
the input sentence is masked, with the model in charge of
predicting them. For example, given the final goal of building
a translator from English to German, a transformer can be
firstly pre-trained by feeding as input English and German
sentences with masked words. This task is self-supervised,
since random words can be automatically masked with the
model in charge of predicting them. Then, a labeled dataset
mapping English sentences to their corresponding German
translation can be used to fine-tune the model. Several works
applying DL to SE report boost of performance' provided by
pre-training in the automation of code-related tasks [11], [13],
[14]. However, little is known about (i) the circumstances in
which pre-training actually helps, and (ii) the impact of the
specific pre-training objective(s) adopted on the performance
of transformers when automating code-related tasks.

Concerning the first point, it is known that pre-training is
helpful when the fine-tuning dataset is small [15]. To make
a concrete example, per-training can be useful when fine-
tuning a model for automated bug-fixing. For this task, the
fine-tuning dataset is usually composed by pairs of (buggy,
fixed) functions, which are mined from bug-fixing commits.
The amount of training data that can be collected is thus
limited, in the order of tens of thousands instances [16], [17].
Pre-training datasets, instead, can be automatically built with
virtually “no limitations” in terms of size since the pre-training
objective is self-supervised. There are however SE tasks which
can leverage very large fine-tuning datasets, for which the
boost in performance provided by pre-training is not obvious.
For example, in the case of code completion, fine-tuning
instances are usually represented by pairs of (incomplete_code,
complete_code), with the model learning how to “finalize an
implementation task”. These pairs can be built automatically
from any piece of code by removing parts of it.

As for the second point (i.e., the impact of pre-training
objectives), the widely used MLM is just one of the possibilities
here: Any self-supervised task can be used as pre-training
objective. Also, in a recent work from NLP, Zhang et al.
hypothesized that “using a pre-training objective that more
closely resembles the downstream task leads to better fine-
tuning performance” [18].

'With “performance” we refer to the quality of the predictions generated
by the model (e.g., accuracy) rather than to attributes such as execution time.



We present a large-scale study aimed at (i) investigating
whether pre-training is actually useful in code-related tasks
for which the fine-tuning dataset can be built without any
obvious impediment in collecting large amount of data (e.g.,
code completion); and (ii) experimenting the impact on trans-
formers’ performance of both generic and task-specific pre-
training objectives when automating three code-related tasks,
namely bug-fixing, code summarization, and code completion.

We start by performing a systematic literature review (SLR)
to identify the pre-training objectives used in the SE literature.
We inspected a total of 936 papers published in SE venues
up to January 2022, ending up with 33 relevant papers,
namely those (i) automating a code-related task (i.e., a task
involving source code as input and/or output of the model),
and (ii) pre-training a transformer or exploiting an already pre-
trained transformer from previous work. The output of such a
SLR (Table IV) provided us with an overview of pre-training
objectives used in the literature.

Based on this analysis, we selected three generic pre-
training objectives to experiment based on their popularity
and potential impact in SE: MLM, next sentence prediction,
and replaced tokens detection. Moreover, we defined three
pre-training objectives tailored for the specific downstream
tasks we aim at supporting. For bug-fixing, we pre-train the
model through the injected mutants fixing objective. The latter
simulates the bug-fixing downstream task (i) without using real
bug-fixing instances that can be kept to increase as much as
possible the size of the fine-tuning dataset; and (ii) while being
scalable in terms of size, since the objective is self-supervised
and the experimenter can create as many pre-training in-
stances as wished. Concerning the code summarization task,
we consider the Method Name Generation as a tailored self-
supervised pre-training objective: The model takes as input
a method and must guess an appropriate name for it. The
name is treated as an extreme summary [19], thus preparing
the model for the downstream task in which, given a method, it
is expected to generate a textual summary. Finally, concerning
code completion, we devise the code block selection objective,
which asks the model to guess which among two code blocks
is appropriate to complete a code snippet having a code block
masked. Such an objective prepares the model for the more
challenging downstream task, in which it is asked to generate
from scratch the missing block rather than just selecting it
among two choices.

We then trained 36 Text-To-Text Transfer Transformer (T5)
models [20], accounting for a total of 890 training hours,
using different pre-training objectives and fine-tuning datasets.
In particular, we study the impact of the fine-tuning dataset
size on the “boost in performance” (if any) provided by pre-
training. Also, we assess the impact on the achieved perfor-
mance of different combinations of pre-training objectives.
Our findings suggest that:

1) Pre-training is extremely useful when the pre-training
dataset is substantially larger than the fine-tuning one,
while it does not help when the fine-tuning dataset is of
comparable size.

2) The MLM pre-training objective represents a safe choice
for all tasks we investigated, being almost always the
best-in-class; (iii) specialized pre-training objectives only
help if they strictly resemble the fine-tuning task and
can provide the model with knowledge that cannot be
captured by generic objectives.

We release all code and data used in our study in a
comprehensive replication package [21].

II. A SLR ON PRE-TRAINING OBJECTIVES USED TO
AUTOMATE CODE-RELATED TASKS

Section II-A describes the design of our SLR following the
guidelines by Kitchenham and Charters [22]. The achieved
results are discussed in Section II-B.

A. Study Design

Our SLR aims at answering the following research question:
What are the pre-training objectives used in the SE literature
exploiting transformers to automate code-related tasks?

With “code-related tasks” we refer to any task involving
source code as input and/or output of the model. For example,
code summarization is considered a code-related task, since
it takes as input a code component to summarize in natural
language. Differently, using transformers to automate “senti-
ment analysis” on software-related artifacts (e.g., discussions
in issue trackers) is not considered relevant for our SLR. An-
swering this research question will inform the study presented
in Section III, in which we experiment with representative
pre-training objectives from the state-of-the-art.

1) Relevant Study Identification: We used the following
digital libraries to search for primary studies: ACM Digital
Library [23], IEEE Xplore Digital Library [24], Springer
Link Online Library [25], Wiley Online Library [26], Elsevier
ScienceDirect [27], and Scopus [28]. Google Scholar was not
considered as an option due to the lack of quality control, clear
indexing guidelines, and missing support for data download
[29]. The following search query has been run on the search
engines integrated in each of these online databases:

full text CONTAINS
(“pretrain” OR “pretrained” OR “pretraining” OR
“pre-train” OR “pre-trained” OR “pre-training” OR
“transfer learning”) AND
publication date IS FROM 017.01.2007 TO 02.02.2022 AND
publication venue CONTAINS
(“software” OR “program” OR “code’)

The composition of the query is the result of a trial-and-
error procedure performed by the three authors. The query
searches for the listed terms (e.g., pretrain, pretrained) in
the full text of the articles (i.e., title, keywords, abstract,
main text, references). The date interval has been defined by
conservatively collecting papers starting from 2007, year in
which we found a first mention to the notion of “transfer
learning” in a SE-related article [30], and using the date in
which the search has been performed as the end of the interval
(02.02.2022).



Finally, based on the authors’ knowledge of the existing SE
publication venues, we only searched for articles published in
venues containing at least one of three keywords: software,
program, and code. We acknowledge that there might be
relevant articles published in related fields (e.g., artificial
intelligence) that our query would exclude. However, our focus
was indeed on the SE research community and these keywords
should capture most of the relevant venues.

Some of the search engines (i.e., Springer, Wiley, Elsevier,
and Scopus) allow to specify a discipline of interest. Such a
feature is useful to limit the retrieved false positive instances.

In all online libraries we selected “Computer Science”
as discipline. In addition, Springer also allows to specify
sub-disciplines, for which we selected “Software Engineer-
ing/Programming” and “Operating Systems”. While the latter
might not be fully relevant, we decided to include it to be
more conservative. Links with the exact queries we have run
are publicly available [21].

TABLE 1
ARTICLES RETURNED BY THE QUERIED DIGITAL LIBRARIES

Source Returned Articles
ACM Digital Library 623
IEEE Xplore Digital Library 850
Springer Link Online Library 1,167
Wiley Online Library 57
Elsevier ScienceDirect 288
Scopus 1,139
Total (including duplicates) 4,124
Total (excluding duplicates) 2,343

Table I reports the number of articles returned from each
digital library (complete list in [21]). Overall, 4,124 articles
were returned, which were reduced to 2,343 by excluding
duplicates. Given the very high number of articles, we decided
to perform a further cleaning step before starting looking into
the papers. We extracted the set of 302 venues in which the
articles have been published and two of the authors indepen-
dently validated them deciding whether to include or exclude
them. We excluded venues unrelated to SE or not being
international conferences/journals. An open discussion was
performed to reach an agreement on the 53 cases of conflict
(17%). As output of this process we kept 163 publication
venues as valid, excluding 1,407 papers published in the
excluded venues. Examples of excluded publication venues
are “Computer Methods and Programs in Biomedicine” and
the “Brazilian Symposium on Programming Languages”. As
output we obtained 936 candidate primary studies.

Study Filtering. The 936 papers were equally distributed
among the three authors. Each author was in charge of
inspecting the paper and decide whether to include or exclude
it. Inclusion and exclusion criteria are listed in Table II. As a
guideline, the authors agreed on including the paper in case of
doubt, since a double-check was foreseen in the study filtering
process. Indeed, despite the availability of the selection criteria
as reference, such a process still remains highly subjective.

A total of 77 papers survived this first analysis. Then, to at
least partially address the subjectivity issue, we applied the
following procedure. First, we randomly selected 30 papers
excluded by each author, asking one of the other two authors to
double check whether the papers were actually to be excluded.
For all 90 randomly selected papers (30 x 3 authors), no
conflicts arisen, showing consistency in the exclusion criteria
applied by the authors. The papers included by each author
were also all double-checked by one of the other two authors.
Out of the 77 papers included in the first round, 30 made it
into the final list of papers, including a SLR that we kept as
secondary study for the subsequent snowballing step.

Cases of disagreement have been discussed among all
authors to reach consensus. Note that the decrease brought
by the double-check we performed (77 — 30) was expected,
considering that in the first pass on the papers we decided to
be inclusive in case of doubts.

Backward Snowballing. The included papers were split
among the authors, with each of them in charge of reading
the reference list and identify possible relevant papers. At
this stage we relaxed one of our inclusion criteria (IC1): We
agreed to include papers published in venues outside of SE as
long as they were presenting pre-trained models that have then
been exploited to automate code-related tasks in publications
appeared in SE venues. Eight papers were added through
snowballing. Also in this case, a second author double-checked
each of them and, through open discussion among all authors,
we finally agreed to include four of them as relevant. This
led to the final list of 33 primary studies included (30 - 1
secondary study + 4 output of the snowballing).

2) Data Extraction and Analysis: The data extraction was
performed following the questionnaire in Table III. While
most of the questions are self-explanatory, it is worthwhile to
clarify 3 and 4. Our focus is only on papers using pre-trained
transformers to automate code-related tasks. However, the pre-
training could have been done by the authors of the papers
or being the result of a pre-trained model made available in
previous work (question 3). If the authors reused an already
pre-trained model, then by answering question 4 we expect to
know from which reference the pre-trained model has been
taken. Question 5 is the ultimate goal of our SLR, which will
inform our subsequent experiments.

B. Results Discussion

Table IV lists the pre-training objectives we identified. Each
pre-training objective is identified by an acronym we will use
to refer to it in the text. If the acronym has a </> icon close to
it, this indicates that the pre-training task is specific for code,
otherwise the pre-training objective is “generic” and can be
applied to any sort of data that can be fed to the model as a
stream of tokens. For each pre-training objective Table IV also
reports a short description and references to primary studies
in the SLR having a pre-trained model using it.



TABLE II
INCLUSION AND EXCLUSION CRITERIA

Inclusion Criteria

IC1

IC2
IC3
IC4

The paper must be peer-reviewed, published at SE conferences, workshops, or journals. Such a criterion is particularly important in the snowballing
phase described later, in which we ignore all referenced preprints (e.g., those published on arXiv.org).

The PDF of the paper must be available online. If the PDF was not available in the online library of interest, we tried to search it on Google.
The paper must present and/or evaluate technique(s) to automate a code-related task.

The proposed/experimented technique(s) must be built on top of a pre-trained transformers model. The pre-training of the model can either have
been done directly in the paper or the authors may have used an already existing pre-trained model.

Exclusion Criteria

ECl1
EC2
EC3

The paper is not written in English.

The paper has been published in a conference/workshop and later on extended to a journal. We only keep the journal paper to avoid redundancy.

The paper is not a full research publication (e.g., doctoral symposium articles, posters, ERA track). We exclude all papers having less than six pages.
The rationale for such a filter is to remove papers that may not have been subject to the same peer-review process typical of full research papers.

EC4

It is unclear from the paper what the adopted pre-training objective is. Such information is instrumental for the goal of our SLR.

TABLE III
DATA EXTRACTION QUESTIONNAIRE

Question

Which code-related task has been automated?

Which specific transformer-based model has been used?
Has the model been pre-training in the paper?

If “no” to question 3: Which already pre-trained model has
been exploited by the authors?

5 Which pre-training objectives have been used?

AW N =

Without surprise, the most used pre-training objectives
are those that the SE community inherited from the NLP
community, such as the classic MLM, randomly masking X %
of tokens in an instance that, in the case of SE research, could
be for example a code function. MLM is used in 21 of the
papers included in our SLR. Variations of this pre-training
objective are TI, ULM, TD, and RTD (see Table IV for their
description) that are, however, less popular in SE. Among
them, the Replaced Token Detection (RTD) objective has been
proposed in the paper introducing the pre-trained CodeBERT
model [56]. CodeBERT is gaining substantial popularity in the
SE literature especially when it comes to papers published in
2022 that, due to the time in which we run the search query,
are not included in our SLR.

While the above-described objectives work at token-level
granularity, Next Sentence Prediction (NSP) and Sentence
Ordering (SO) aim at providing the model with knowledge
related to sentence-level relationships. In SE, both can be
used for example to “teach” the model the correct order of
code statements in a given function. NSP is the second most-
popular pre-training objective in our set of papers, with 9
articles exploiting it. The popularity of NSP is mostly due to
the adoption of the BERT pre-trained model [57] in SE.

The bottom of Table IV lists the objectives specifically
designed for code. Despite being pre-training objectives, some
of them are targeting a specific task, like for example Code
Summarization (CS). The latter has been instantiated in [6] as
a task in which the model was asked, given a Java method, to
generate its textual summary (i.e., first Javadoc sentence).

The final code-related task that the authors wanted to
automate after the fine-tuning phase was a natural language
description of smart contract. Thus, the CS objective started
providing the model with knowledge about the code-to-NL
translation task. This is a concrete example of pre-training
objective already tailored for the specific downstream task of
interest. Overall, as it can be seen from Table IV, code-specific
pre-training objectives have been usually adopted only in the
paper proposing them.

Section III describes how we use the findings of our SLR
to select the pre-training objectives for our experiments.

III. STUDYING THE IMPACT OF PRE-TRAINING

We aim at answering the following research questions:

RQ;: To what extent is the effectiveness of pre-training
influenced by the size of the fine-tuning dataset? RQ; investi-
gates if pre-training is still useful when abundant fine-tuning
instances are available (e.g., can be automatically generated).

We assess the impact of pre-training when the model is
fine-tuned on a dataset (i) being substantially smaller and (ii)
having a size comparable to the pre-training dataset.

RQs: To what extent does the choice of the pre-training
objective impact the performance of transformer models? Our
second research question focuses on the impact on the model’s
performance of the used pre-training objectives, with a partic-
ular focus on comparing general vs task-specific objectives,
also investigating combinations of multiple objectives.

The context of our experiments are three code-related tasks
for which DL-based solutions have been proposed in the
past. For reasons we will explain later, RQ; focuses on
code summarization and code completion, while RQs also
includes bug-fixing. All our experiments are run on Java
datasets defined at method-level granularity (i.e., fixing a bug
in a method, summarizing a method in natural language, and
complete missing code statements in a method).

A. Transformer Model

As representative of transformers [1], we adopt the TS5
proposed by Raffel et al. [20], that has been already used in
SE to automate code-related tasks [9], [13], [14], [58], [59].



TABLE IV
PRE-TRAINING OBJECTIVES IDENTIFIED IN THE SLR

Acronym  Name Description References
MLM Masked Language Model Masks X % of tokens (usually 15%) in the instance (e.g., a function) and asks the model to guess [4], [12], [31]-[48]
the masked tokens based on their bidirectional context. The model knows how many tokens have
been masked, since each of them is replaced with a special token (e.g., <MASK>).
NSP Next Sentence Prediction Given two sentences (or two statements) asks the model to guess whether they follow each other. [32], [37]-[39], [42],
[44], [45], [49]
ULM Unidirectional Language Model A left-to-right language modeling task, asking the model to guess one masked token in an instance [50]-[52]
by only considering the leftward tokens (i.e., the tokens preceding the masked one).
TI Token Infilling Masks a random number of contiguous tokens and asks the model to predict them. Differently from [33]
MLM, TI does not suggest to the model how many tokens have been masked, since the sequence
of masked tokens is replaced with a single special token (e.g., <MASK>).
D Token Deletion Deletes random tokens from the instance expecting the model to reintroduce them where needed. [33]
TD is similar to MLM, but without suggesting the model where tokens have been masked.
RTD Replaced Tokens Detection Replaces random tokens in the instance with other tokens. The model must guess which are the [34]
non-original tokens (i.e., those that have been replaced).
Ne} Sentence Ordering Given two sentences (or two statements) asks the model to guess whether they order. [53]
™ <> Identifiers Masking Masks the identifiers in the code instance and asks the model to guess the masked identifiers. [50]
PLC </> Prog. Language Classification Given a sequence of code tokens asks the model to identify its programming language. [12]
GSM </> Generative State Modeling Given assembly code and a small subset of its execution states (e.g., register values), asks the model [54]
to reconstruct the complete set of its execution states.
EP </> Edge Prediction Masks edges in data-flow graph belonging to 20% of nodes randomly selected and asks the model [47]
to predict them.
NA <> Node Alignment Similar to data flow EP. Instead of predicting edges between nodes, the model is asked to predict [47]
edges between code tokens and nodes. Such a task is performed to align the source code-data flow
representations.
cs <> Code Summarization Provides as input to the model a function and asks to summarize it in natural language. [55]

Raffel er al. proposed several variants of T5, differing in
number of trainable parameters. We use the small variant,
featuring a total of ~60M parameters resulting from 6 layers in
both the encoder and the decoder each having a dimensionality
of 512, 8-headed attention, and an output dimensionality of
2,048. While larger T5 versions are likely to achieve better
performance, the training cost increases with the number of
parameters. Considering the number of models that we need to
train in our study (i.e., 36 different models), we opted for the
smaller TS5 version. Indeed, our goal is not to achieve state-
of-the-art performance in the automated code-related tasks,
but rather to study the impact of pre-training on the model’s
performance in different circumstances.

B. Pre-training Objectives

We describe the pre-training objectives used in our RQs.
We anticipate that they have been applied on a pre-training
dataset (detailed in Section III-C) which is composed by 1M
pairs of Java (method, javadoc).

Concerning RQq, we only use the Masked Language Model
(MLM) objective, the one mostly used in the literature. Indeed,
the focus of RQ; is not on the impact of different pre-training
objectives (RQ2), but rather on the boost provided by pre-
training when the fine-tuning dataset is substantially smaller
than the pre-training one or, instead, has a comparable size.

For RQ,, based on the findings of our SLR, we selected
three generic pre-training objectives to experiment with.

First, we picked the two currently being the most popular
in SE, namely the MLM (with 15% of masked tokens) and the
Next Sentence Prediction (NSP). As third “generic” objective,
we selected the Replaced Tokens Detection (RTD) that, as
previously explained, is gaining popularity since used in
CodeBERT [56], adopted in several recent studies (see e.g.,
[5], [60], [61]). While MLM and NSP are straightforward to
understand, a clarification is needed on RTD. The latter starts
by randomly selecting 15% of tokens to be replaced. However,
the replacements for these tokens are not randomly selected
from a vocabulary, but picked based on the recommendation of
an n-gram model (n = 3) trained on the pre-training dataset.
An n-gram model can predict a single token likely to follow
the n — 1 tokens preceding it. As suggested in [56], we used it
to identify suitable alternatives for the tokens to be replaced,
thus making the pre-training task (i.e., identify which tokens
in an instance have been replaced) more challenging. Given a
token to replace T;, we run the n-gram model by providing
it as input with the two tokens preceding it (T;_o, T;—1) and
collect the ranked list of candidate tokens that, accordingly to
the n-gram model, is likely to follow T, 5 and T;_;.

The ranked list features on top the most likely token 7: If
T, is different from the token to replace T;, we use 1, for the
replacement. Otherwise, we take the token in second position.

On top of the three generic objectives, we also experiment
with three pre-training objectives tailored for the downstream
tasks at hand. For bug-fixing, we pre-train the model through
the Injected-Mutants Fixing (IMF) objective.



The idea is to mutate each method M in the pre-training
dataset by injecting artificial bugs in it, creating a mutant
M,,. During pre-training the IMF objective provides TS5 with
M, as input and asks it to generate M (i.e., to fix the bug).
One challenge we faced was the selection of the mutation
testing framework to use. We considered tools such as pJava
[62], PIT [63], javaLanche [64], and Jester [65]. PIT was the
only one supporting recent versions of Java. However, since
it works at Byte code level, PIT requires the input code to
mutate to be compilable. This is problematic in our context
since the 1M methods in our pre-training dataset come from
thousands of software projects, several of which are likely to
be unbuildable [66]. For this reason, we built a source code-
level mutation tool using Javaparser [67]. Our tool implements
the 11 mutation operators belonging to the “default group”
in PIT [68] (i.e., invert negatives, empty returns, etc.). Given
a Java method M, our tool builds its AST and, using it,
identifies the set of mutation operators that can be applied
on M. For example, the empty returns operator replaces
return values with “empty” values (e.g., "" if M returns a
String, Collections.emnptyList () if M returns a
Collection, etc.), and can only be applied to methods
returning a value.

Finally, assuming that n operators can be applied to M,
n mutants (i.e.,, n versions of M) are generated, each imple-
menting one of the applicable operators.

Concerning the code summarization task, we consider the
Method Name Generation (MNG) as a tailored pre-training
objective. During pre-training, T5 takes as input a Java method
and it is required to synthesize an appropriate name for it,
based on the idea that the method name represents an extreme
summary of the method [19].

Finally, concerning code completion, we focus on the
challenging task of predicting entire code blocks, as recently
attempted by Ciniselli e al. [13]. A code block is defined as
the code enclosed between two curly brackets (e.g., the code
executed when an if/else/else if condition is satisfied).
To prepare the model for such a downstream task, we de-
vised Code Block Selection (CBS) as a tailored pre-training
objective. Given a Java method in the pre-training dataset,
we randomly mask a code block in it, and ask the model
to decide which of two candidate code blocks is the correct
one to complete the method. This pre-training is expected to
prepare the model for the more challenging downstream task
of generating masked code blocks from scratch.

C. Pre-training Dataset

The same pre-training dataset is used across both RQs. To
build it, we used the GitHub search tool by Dabi¢ et al. [69] to
identify GitHub Java projects having at least 5 contributors, 50
commits, 10 stars and not being forks of other projects. These
selection criteria aimed at removing personal projects from our
selection. We ended up with 14,645 valid repositories, that we
parsed to extract 64,546,432 Java methods.

Since among the downstream tasks we experiment with
there is code summarization, we wanted to make sure that
each pre-training instance was composed by both source code
(instrumental for all three tasks) and natural language (useful
for code summarization). Also, recent studies [70] showed that
pre-training models on both natural language and code (as
opposed to code only) is beneficial when dealing with code-
related tasks. For these reasons, methods without Javadoc have
been excluded, leading to 17,758,579 (method, javadoc) pairs.

We then started processing our dataset to clean it and
remove problematic instances. We excluded all pairs meeting
one of the following conditions: (i) the Javadoc, while present,
is an empty string; (ii) the method has an empty body; (iii)
the method is annotated with @Test; (iv) the method does
not end with a } (this may happen in case of parsing errors
when we extract the methods). We excluded test methods since
none of our tasks is test-related, and we preferred to create
a more cohesive pre-training dataset featuring only methods
from production code. We only consider in our dataset the first
part of the Javadoc comment (i.e., the one summarizing the
method in natural language) excluding the Javadoc tags (e.g.,
@param, @author). Once done with this basic filtering, the
first author manually inspected hundreds of instances in the
dataset to identify other sources of noise.

Four main issues were identified: (i) non-English Javadoc
comments; (ii) instances containing non-ASCII characters; (iii)
comments containing special symbols/tags which may not help
with learning textual patterns in Javadoc; and (iv) comments
not representing code summaries, but rather notes written
by developers (e.g., TODOs). We removed all non-English
Javadocs using two Python libraries: langid [71] and cld3 [72].
We keep an instance in the dataset only if both libraries clas-
sified the Javadoc as English text. We replaced all non-ASCII
math characters with their corresponding ASCII representation
(e.g., we replaced “+”, with “+-”) and removed all instances
featuring non-Latin characters. Additional cleaning aimed at
removing from the Javadoc sequences of characters used for
formatting (e.g., “————- ”) or special markdown tags (e.g.,
we replace {@class ClassName} with ClassName). We
also replace any embedded link in the Java method and/or in
the Javadoc with a special tag “<LINK_1i>", with ¢ being an
integer ranging from 0 to n — 1, where n is the number of
links in the instance. If the same link is found both in the
method and in its Javadoc, they are replaced with the same
special tag with the same index. Finally, since the collected
methods came from different projects possibly using different
coding styles, we formatted all instances using the Javaparser
[67] library. We also performed additional (minor) cleaning
steps that we do not document here due to lack of space.
However, we publicly release our cleaning script as part of
our replication package [21].

After this process, we removed all instances longer than 512
tokens (i.e., the number of tokens used to represent both the
method and its Javadoc was higher than 512), as also done by
previous work using DL to automate code-related tasks (see
e.g., [70], [73], [74]): 4,821,922 instances were left.



As a last step, we excluded instances that are not suitable for
one or more of our pre-training objectives. The two objectives
which are not applicable to all possible instances are the
Injected Mutants Fixing (IMF) and the Code Block Selection
(cBS): We removed (i) 219,863 instances for which none of
the 11 mutation operators we support can be applied; and (ii)
2,994,723 which did not have any code block to mask.

From the set of remaining instances, we randomly pick 1M
of them to create our pre-training dataset. While, in theory,
all ~1.6M remaining instances were valid, we capped the size
of the pre-training dataset to limit the time needed to perform
several training epochs.

D. Fine-tuning Datasets

A different fine-tuning dataset has been built for each of
the three subject downstream tasks. Due to its limited size,
the bug-fixing dataset has only be used in the context of RQa,
since it was not possible to create a version of it large enough
(i.e., having a size comparable to our pre-training dataset) to
answer RQq as well.

1) Bug-fixing: We exploit the dataset used by Chen et al.
[17] when presenting SequenceR, a sequence-to-sequence
model trained on 35,578 one-line Java bug fixes (i.e., commits
fixing a bug by only changing a single line of code).

The training set consists of pairs featuring the buggy code
and the corresponding fixed code, and it is accompanied by a
validation and a testing set featuring additional 4,711 one-line
bug fixes each. The buggy code includes a “buggy line” explic-
itly marked with two special tokens (i.e., (START_BUG) and
(END_BUG)) and being part of a “buggy method”. In addition
to that, the buggy code also includes contextual information
extracted from the “buggy class” (e.g., its constructor). The
fixed code the model is expected to generate includes, instead,
only the “fixed line” (i.e., revised version of the “buggy line”).

Before using this dataset, we pre-processed it to make it
more “aligned” to our pre-training dataset, and in particular to
the tailored pre-training objective we devised for the bug-fixing
task (i.e., Injected-Mutants Fixing). First, our pre-training
dataset only features Java methods with its related Javadoc,
excluding any class-related information. Similarly, the IMF
objective provides as input to the model a mutated Java method
without any additional contextual information nor special tag
signaling the injected bug. Thus, we processed the buggy code
of the dataset by Chen ef al. [17] to only include the buggy
method without the special tokens marking the buggy line.
Second, as done for the pre-training instances, we formatted
the code using Javaparser [67], to have a coherent code
representation. Finally, we removed any duplicated method
already present in our pre-training dataset. This process left
us with 25,901 instances that we split into training (80%),
validation (10%) and test (10%) set.

2) Code summarization: We use the FunCom dataset [73],
[75], featuring 2,149,120 instances, with each of them be-
ing composed by a Java method and its associated Javadoc
comment. FunCom has been curated to only include English
comments and exclude auto-generated files.

We start from the “Filtered dataset” version [75] consisting
of not processed instances. We perform on them the same
cleaning process used for the pre-training dataset (e.g., remov-
ing instances containing non-Latin characters) and remove any
duplicate with between FunCom and our pre-training dataset.
From the 1,898,437 instances left, we create two fine-tuning
datasets needed to answer RQ;. For the first (large-ft), we
randomly select 1M instances, splitting them into training
(80%), validation (10%), and test (10%). This fine-tuning
dataset will be used in RQ; as representative of a fine-tuning
dataset having a size of the same order of magnitude of the
pre-training dataset. For the second (small-ft), we randomly
select 25,901 instances, the same number of instances in our
bug-fixing fine-tuning dataset. The idea is indeed to create
a second fine-tuning dataset being substantially smaller than
the pre-training one, as it usually happens when working on
tasks characterized by a scarcity of training data. Also small-
ft followed the usual training (80%), validation (10%), and
test (10%) split. Both datasets are used to answer RQq, while
only small-ft is used in RQ2. Indeed, as our RQ;’s findings
will show, pre-training is mostly useful when a small fine-
tuning dataset is available. Thus, we experiment the impact
on performance of the pre-training objectives (i.e., RQs) when
using the small-ft dataset.

3) Block-level code completion: Following Ciniselli et al.
[13], we aim at building a fine-tuning dataset in which Java
methods having a masked block of up to three statements are
provided as input to TS, which is in charge of generating the
masked block. We start from the 1,569,889 Java methods in
the CodeSearchNet dataset [76]. We applied a cleaning process
similar to the one described for the pre-training dataset (e.g.,
checking that the method body is not empty, that the method
is not a test method, etc.), removed methods not containing
at least one code block composed by at most three code
statements (2,847). Then, we followed the training procedure
by Ciniselli et al. [13]: Given k the number of blocks identified
in a method M, we create k versions of M, each one having
a specific code block masked. As previously said, only blocks
composed by at most three statements are masked. We then
remove instances longer than 512 tokens (333,955). Such a
process resulted in a dataset composed by 1,823,977 instances.
Finally, similarly to what explained for code summarization,
we create two versions of the code completion fine-tuning
dataset: large-ft featuring a total of 1M randomly selected
instances, and small-ft featuring 25,901 instances.

Table V summarizes the pre-training/fine-tuning datasets,
also indicating which dataset has been used in each RQ.

E. Experimental Procedure

The training of the models has been performed using a 2x2
TPU topology (8 cores) from Google Colab with a batch size
of 128 and the Inverse Square Root learning rate.

1) Answering RQ:: . We start by fine-tuning (without pre-
training) four models, two for the code summarization and two
for the code completion task.



TABLE V
PRE-TRAINING AND FINE-TUNING DATASETS USED IN OUR STUDY

Dataset Training Evaluation Test RQ; RQ:
Pre-training 1,000,000 - - v
Fine-tuning
Bug-fixing 22,321 2,790 2,790 X v
Code summarization
large-ft 800,000 100,000 100,000 v X
small-ft 22,321 2,790 2,790 v v
Code completion
large-ft 800,000 100,000 100,000 v X
small-ft 22,321 2,790 2,790 v v

The models trained within each task differ for the fine-
tuning dataset used, being either the large-ft (800k training
instances) or the small-ft (~22.3k). The fine-tuning has been
performed using an early-stopping training strategy by exploit-
ing the evaluation set. In particular, we saved a checkpoint of
the model every epoch computing its performance in terms
of correct predictions on the evaluation set and stopped the
training if the performance of the model did not increase
for three consecutive checkpoints (to avoid overfitting). With
“correct predictions” we refer to cases in which the generated
prediction is identical to the target. For code summarization, a
correct prediction implies that the summary generated by the
model is equal to the one written by developers. In the case
code completion, the predicted code block matches the one
we masked.

Then, we pre-train a TS model for 40 epochs on the 1M
instances featured in the pre-training dataset using the MLM
objective. We fine-tune four versions of it, again two for each
task (i.e., code summarization and code completion) differing
for the used fine-tuning dataset (large-ft or small-ft). We used
the same early-stopping procedure described above.

This process resulted in an overall of eight models, four
being pre-trained and four not being pre-trained. These eight
models have been run on the corresponding test sets collecting
their predictions. This allows to compare the pre-trained and
the not pre-trained models both when using a fine-tuning
dataset having a size comparable to that of the pre-training
(large-ft) or being substantially smaller than it (small-ft).

2) Answering RQ>: . We experiment with four possible pre-
training objectives (and their combinations) for each of the
three tasks subject of our study: three “generic” pre-training
objectives (i.e., MLM, NSP, and RTD) that can be applied to
any task and the pre-training objective specifically tailored
for the given task (e.g., Method Name Generation for code
summarization). Thus, for each task, we start by pre-training
and fine-tuning four TS5 models, each one using a specific pre-
training objective. To avoid confounding factors, we made sure
that all pre-trainings (i) exploit exactly the same pre-training
instances (i.e., the 1M instances in Table V), and (ii) are run
for 40 training epochs. Concerning the fine-tuning, we adopt
the same early-stopping training strategy described for RQ;.

The above-described process results in 12 different models
being pre-trained and fine-tuned (4 x 3 tasks).

For each task, we evaluate the four fine-tuned models on
the corresponding test set (see Table V) in terms of cor-
rect predictions, identifying the best performing pre-training
objective pt,. The latter has then been combined in pairs
with the remaining three objectives. For example, assuming
that Method Name Generation (MNG) results the best pre-
training objective among the four experimented for the code
summarization task, we create three pairs of pre-training ob-
jectives including <MNG, MLM>, <MNG, NSP>, and <MNG,
RTD>. This provides us with additional three models pre-
trained and fine-tuned for each task (9 models overall —
3 x 3 tasks). Again, each of these models has then be
evaluated on the corresponding test set, identifying the best
performing “pair” of pre-training objectives for each task. The
latter has been used to generate two triplets of pre-training
objectives by combining it with the remaining two objectives.
For example, assuming <MNG, NSP> to be the best pair
for code summarization, we create <MNG, NSP, MLM>, and
<MNG, NSP, RTD>. This results in the training and testing of
two additional models for each task (6 overall). Finally, we test
for each task the full combination of the four corresponding
pre-training objectives, thus training one additional model for
each task (3 overall). In total, we pre-trained and fine-tuned
1249+6+3=30 TS5 models in RQs.

The output of such a process is, for each task, the set of
predictions generated by the 10 models trained for it (4 using
a single pre-training objective, 3 using pairs of objectives, 2
using triplets, and 1 using all four objectives).

F. Data Analysis

Using the generated predictions, in both our RQs we assess
the performance of the models by computing the percentage of
correct predictions generated (i.e., predicted output identical
to the expected one). We statistically compare the results
achieved by the different models for each task using the
McNemar’s test [77], which is a proportion test suitable
to pairwise compare dichotomous results of two different
treatments. To account for running multiple test instances (e.g.,
in RQy comparing the results of the model pre-trained with
MLM with those pre-trained using RTD, NSP, etc.), we adjust
p-values using the Holm’s correction [78]. We complement the
McNemar’s test with the Odds Ratio (OR) effect size.

TABLE VI
RQ1: IMPACT OF PRE-TRAINING WHEN THE FINE-TUNING DATASET SIZE
(JFT]) 1S << OR ~ TO THE PRE-TRAINING DATASET SIZE (|PT|)

|FT| vs |PT|  Task Non Pre-trained  Pre-trained (MLM)
<< Code Summarization 1.94% 4.73%
Code Completion 2.37% 5.05%
o Code Summarization 16.60% 15.98%
Code Completion 30.41% 29.11%

IV. RESULTS DISCUSSION

We discuss the achieved results by research question. We
highlight the main take-aways of our study using the  icon.



A. RQ: Effectiveness of pre-training when dealing with fine-
tuning datasets of different sizes

Table VI reports the percentage of correct predictions
achieved by the non pre-trained TS5 and the TS5 pre-trained
using the MLM objective. Results are reported for the two
tasks involved in RQq (i.e., code summarization and code
completion) in the scenario in which the fine-tuning dataset is
(i) substantially smaller (22.3k << 1M) than the pre-training
dataset (i.e., the small-ft dataset has been used — top part
of Table VI), and (ii) of a size similar (800k ~ 1M) to the
pre-training dataset (i.e., the large-ft dataset has been used —
bottom part of Table VI).

@ When the fine-tuning dataset is small, the pre-training,
as expected, helps the learning of the model. For code sum-
marization, the boost in terms of perfect predictions goes
from 1.94% up to 4.73%, resulting in a statistically significant
difference (p-value < 0.001) with an OR=10.3, indicating ten
times higher odds of obtaining a correct prediction from the
pre-trained model as compared to the non pre-trained one.
Similar findings hold for the code completion task, with correct
predictions growing from 2.37% to 5.05% thanks to the pre-
training (p-value < 0.001, OR=11.7).

Moving to the bottom part of Table VI, two observations
can be made. First, with the fine-tuning dataset being 36 times
larger (22.3k vs 800k) the performance of the model improves
dramatically both for the pre-trained and for the non pre-
trained model. This is kind of expected considering the larger
amount of data from which the model can learn useful patterns.

Second, @ when the fine-tuning dataset size is similar to
that of the pre-training dataset, we do not observe any boost
provided by pre-training, with performance slightly in favor
of the non pre-trained model in both tasks (p-value < 0.001,
OR=1.2 for code summarization, and p-value < 0.001, OR=1.3
for code completion). While such a result may look surprising,
it might be partially explained by the well-known “catastrophic
forgetting” phenomenon affecting neural networks [79]: DL
models tend to forget previously learned information once new
information is provided. Having a large fine-tuning dataset
may lead to “override” what the model learned during pre-
training, making the latter basically useless.

B. RQ-: Impact of pre-training objectives on performance

Fig. 1 summarizes the results in terms of correct predictions
achieved by the 30 models pre-trained using different objec-
tives (10 for each task). These experiments have been run in
the scenario in which pre-training helps the most (i.e., when
using small fine-tuning datasets). From the left to the right of
Fig. 1 we move from pre-trainings performed with a single
objective (e.g., MLM) to those involving all objectives relevant
for a given task (e.g., IMF + MLM + NSP + RTD). Within each
task and each pre-training group (i.e., those involving only one
objective, those involving two objectives, etc.), the objectives
are sorted from the top to the bottom based on the performance
they ensured.

IMF
8.82% Il |mF + MLM
o 8.92% IMF + MLM + NSP
£ .71%
RSN MF+RTD 2 IMF + MLM + NSP + RTD
1 10y
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2]
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ED 7.99%
717%
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S lL425% |l mLMm + RTD
E MNG 4.95% MLM + RTD + MNG
é 3.76% Wl wmim + NSP 4.91% MLM + RTD + MNG + NSP
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)
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Fig. 1. RQ2: Results with different combinations of pre-training objectives

For example, for bug-fixing, when experimenting with a
single pre-training objective, the task-specific objective we
devised (i.e., Injected-Mutants Fixing — IMF) is the best one,
followed by MLM, RTD, and NSP. The overall best performing
combination of objectives for each task is highlighted with
yellow text (e.g., IMF + MLM for bug-fixing). Given the high
number of statistical tests performed (i.e., each combination of
pre-training objectives has been contrasted against all others,
resulting in 45 tests per task), we provide full tables with the
adjusted p-values and ORs in our replication package [21].

Three main lessons can be learned from our results. First,
Q the choice of the pre-training objective can make a sub-
stantial difference in the performance of transformers. Within
each task, contrasting the best-performing combination with
the worst-performing one results in statistically significant
differences (p-value < 0.001) with ORs of 2.9 (bug-fixing), 38
(code summarization), and 29 (code completion). For example,
in the case of code summarization, we move from the 4.73%
of correct predictions ensured by MLM, down to the 1.94%
achieved with the NSP objective.

Second, the @ high effectiveness of the MLM pre-training
objective: MLM is involved, alone or in combination with other
objectives, in all best configurations we found (i.e., IMF +
MLM for bug-fixing, MLM for code summarization and code
completion).



Moreover, even in the bug-fixing task in which the MLM
objective in isolation is not the best-in-class, the difference in
performance with respect to the best configuration (i.e., IMF
+ MLM) is not statistically significant.

Third, concerning the task-specific objectives we devised,
we only observed a (not statistically significant) improvement
over MLM for the bug-fixing task with the IMF objective.
The latter provides the model with information substantially
different from those that can be captured by MLM and it closely
resembles the fine-tuning task. This might not be the case
for the other two task-specific objectives. For example, the
Method Name Generation MNG objective devised for code
summarization is a sort of more specific version of MLM:
rather than randomly masking 15% of tokens in the training
instance, the method name is the only masked token the
model has to predict. We conclude that @ task-specific pre-
training objectives might boost performance if they (i) capture
orthogonal information as compared to non-specific objectives
such as MLM; and (ii) strictly simulate the downstream task.
However, even in this case, the gain over the classic MLM
objective may be limited and should be assessed empirically.

V. THREATS TO VALIDITY

Construct validity. The usage of the correct predictions as
metric only provides a limited view about the performance
of the experimented models. For example, for code sum-
marization, the model might generate a code summary that,
while different from the one written by developers, may be
semantically equivalent. To partially address this threat, for
the code summarization task we also computed the BLEU-4
score [80] of the predictions, being the overlap in terms of
4-grams between the predicted and the reference summary.

Similarly, for the code completion task, we compute the
normalized token-level Levenshtein distance [81] between the
predicted code block and the target one. The latter indicates
the percentage of code tokens in the prediction that should
be changed to obtain the target code block. The results of
this analysis are available in our replication package [21]. In
short, our findings hold by considering these metrics instead of
the correct predictions (e.g., the best pre-training objective for
code summarization in RQ2 is the same both by considering
the percentage of correct predictions or the BLEU-4).

Internal validity. As a design choice, we did not perform
any hyperparameter tuning of TS5, using the architecture pro-
posed by the original authors [20]. However, we compared the
different models (e.g., with/without pre-training) when using
the same exact configuration. Thus, we expect no impact of
this choice on our findings.

When we employed the small versions of the fine-tuning
datasets, we observed a substantial drop of the models’ per-
formance in RQ;. This may pose questions on how realistic
is the size of the small-ft datasets we used. However, we just
mirrored the size we had for the bug fixing task, for which the
scarcity of training data is a real problem.

For the SLR, we did not consider papers published in 2022,
since we started working on this paper in December 2021
running the search queries in January 2022. We acknowledge
that several works relying on pre-trained transformers have
been published in the meanwhile. However, the goal of our
work was not to be comprehensive in terms of all pre-training
objectives ever used in SE, but to get a good overview to
inform our main study (Section III).

Finally, due to the stochastic nature of neural networks,
small variations are possible when re-running our trained
models on the same test set. This is something we observed
in our experiments with a few predictions changing from one
run to another. The overall findings are not affected by such
minor changes.

External validity. We used TS5 as representative of trans-
formers. Other DL models may lead to different results. Also,
all our experiments are focused on Java and executed at
method-level granularity. Our findings may not generalize to
other settings.

VI. RELATED WORK

Given the space constraints, we do not discuss the extensive
literature related to the usage of pre-trained models in SE, par-
tially documented in our SLR. We focus on (i) related literature
reviews and (ii) empirical studies investigating specific aspects
concerning the usage of DL models in SE.

Related Literature Reviews. At the time of writing, we
found three SLRs related to the use of DL models in SE.
Le [82] et al. investigated practices and challenges of using
DL for source code modeling and generation, classifying the
used architectures, the strategies for dealing with issues such
as the large vocabulary of source code, and the targeted tasks.

Ferreira [83] et al. conducted a mapping study to understand
the usage of DL models in SE. The authors focus the attention
on the tasks addressed through DL and the architectures used.

Watson [84] et al. also presented a SLR aimed at docu-
menting the use of DL in SE. The authors summarize 151
manuscripts to answer five research questions, related to (i)
the tasks addressed via DL, (ii) the data pre-processing and
datasets creation pipeline, (iii) the DL models used, (iv) the
reported performance, and (v) the replicability of the studies.

Our SLR has a different goal: We investigated the objectives
used to pre-train transformers in the SE literature as a starting
point to inform our main study (Section III).

Empirical Studies on DL Models in SE. By considering
the non-trivial effort needed to create labeled datasets, Robbes
and Janes [15] suggested the use of pre-trained models in SE.
They showed that pre-trained models can substantially boost
performance when small fine-tuning datasets are available.

Zhou et al. [46] investigated the ability of CodeBERT [56]
to generalize beyond its pre-trained data and to reuse em-
bedded knowledge in various SE tasks. The results confirmed
the superiority of CodeBERT compared to specialized models.
Both pre-training objectives exploited by CodeBERT (i.e.,
MLM and RTD) have been considered in our study.



Paltenghi and Pradel [85] studied if the artificial attention
mechanisms of DL models behave similarly to skilled devel-
opers comprehending code. The results showed that models
and humans tend to focus on different parts of code.

Chen et al. [86] investigated the proposal by Ahmed and De-
vanbu [87] to pre-train DL models on multiple programming
languages. The authors reported that multilingual models have
worst performance as compared to monolingual ones.

To the best of our knowledge, our work is the first exten-
sively studying the impact of pre-training on the performance
of transformers when automating code-related tasks.

VII. CONCLUSIONS

We investigated the impact on the performance of transform-
ers [1] of the pre-training phase, nowadays adopted in most
of the applications of these models to SE tasks. Two aspects
have been investigated: (i) the extent to which pre-training
helps the learning even when the task at hand allows to build
very large datasets for fine-tuning; and (ii) the impact on the
model’s performance the choice of the pre-training objective(s)
can have.

We found that when the size of the fine-tuning dataset is
large enough, approaching that of the pre-training dataset, the
pre-training phase is unlikely to help. Instead, it provides
a substantial boost of performance for tasks in which the
scarcity of training data leads to small fine-tuning datasets.
We also observed the major role played by the choice of
the pre-training objectives, with different combinations of
objectives providing substantially different performance. Pre-
training objectives specifically tailored for the downstream
tasks can help but, at least in our study, did not result in a
significant improvement of performance as compared to the
classic Masked Language Model task.
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