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Abstract—With the increasing disclosure of vulnerabilities
in open-source software, software composition analysis (SCA)
has been widely applied to reveal third-party libraries and
the associated vulnerabilities in software projects. Beyond the
revelation, SCA tools adopt various remediation strategies to fix
vulnerabilities, the quality of which varies substantially. However,
ineffective remediation could induce side effects, such as compi-
lation failures, which impede acceptance by users. According
to our studies, existing SCA tools could not correctly handle
the concerns of users regarding the compatibility of remediated
projects. To this end, we propose Compatible Remediation
of Third-party libraries (CORAL) for Maven projects to fix
vulnerabilities without breaking the projects. The evaluation
proved that CORAL not only fixed 87.56% of vulnerabilities
which outperformed other tools (best 75.32%) and achieved a
98.67% successful compilation rate and a 92.96% successful unit
test rate. Furthermore, we found that 78.45% of vulnerabilities
in popular Maven projects could be fixed without breaking the
compilation, and the rest of the vulnerabilities (21.55%) could
either be fixed by upgrades that break the compilations or even
be impossible to fix by upgrading.

Index Terms—Remediation, Compatibility, Java, Open-source
software

I. INTRODUCTION

The exposure of open-source third-party libraries (TPLs)
vulnerabilities in recent years, such as the well-known
Log4Shell vulnerability [1], [2], has been drawing increasing
attention. To accurately detect the versioned TPLs and the dis-
closed vulnerabilities in users’ projects, software composition
analysis (SCA) [3] has been widely applied to scan projects
and return detected TPLs for security analysis. The detection
has been well developed and implemented in various academic
and commercial SCA tools [4]–[9]. However, the remediation
to fix vulnerabilities in TPLs by version adjustments has no
broadly acknowledged solution but various strategies.

We further investigated existing tools. Community tools,
such as Dependabot [5], only considers vulnerabilities of direct
dependencies. Other popular anonymous commercial tools use
reachability analysis as the prioritization metric, but none con-
siders the compatibility of upgrades of the dependencies. An
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academic tool, Steady, calculates the percentage of changed
classes or methods as the probability for compatibility, which
is inaccurate by its nature of uncertainty.

Due to different strategies, the effectiveness of remediation
tools varies substantially, which will be clarified in the pre-
liminary study and the evaluation. Moreover, the side effects
of remediation could hinder the adoption of suggestions by
users. According to our study [10] of the rejected remediation
suggestions at GitHub, the primary concern of users was
incompatibility, which accounted for 51.31%.

Unfortunately, these concerns, especially compatibility, can-
not be appropriately handled by existing remediation tools
due to two reasons: (1) They conduct local optimization on
individual libraries instead of the global optimization of the
entire dependency graph (DG), which may miss incompat-
ible relationships and fail to handle the trade-off between
compatibility and security. (2) They offer suggestions based
on the original DG and overlook the structural changes that
suggestions bring to it and the underlying call graphs. As a
result, the outdated DG could lead to incompatibility, lack of
remediation on new vulnerabilities, and wasted remediation on
unused dependencies.

To address the problems of existing tools and achieve
remediation of better quality, three major challenges have
to be resolved: c1: The absolutely optimal solutions for
libraries are not always available. So the trade-off between
security and compatibility during decision-making has to be
handled. c2: The complexity of global optimization increases
exponentially with the number of dependencies because the
version combinations over all libraries should be traversed. c3:
The suggestions on one library can, directly and indirectly,
change the DG structure, call graphs, and compatibility of
DG. Accordingly, the optimal solutions for the rest of the
libraries may also be changed. These effects propagate from
the changed library to the entire DG through dependency
relationships, referred to as ripple effects in this paper. The
ripple effects may lead to sub-optimal solutions if DG is not
updated accordingly.

To tackle the above-mentioned challenges, we propose
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Compatible Remediation of Third-party Libraries (CORAL)
to remediate vulnerabilities in dependencies by version sug-
gestions without breaking the projects with a balanced time
cost for Maven [11]. CORAL starts with the DG and the
underlying call graphs of the target project. Then, CORAL
splits the DG into subgraphs with two steps of partitioning
for c1. CORAL walkthroughs subgraphs with a top-down
approach and calculates the best solutions with SMT solver
within subgraphs for c2. During the walkthrough, subsequent
subgraphs are dynamically updated for the ripple effects to
handle c3. To avoid dead ends, backtracking mechanisms are
implemented in CORAL.

We have evaluated CORAL by comparing it with state-of-
the-art remediation tools regarding security and compatibility.
It turned out CORAL fixed the most vulnerabilities (87.56%)
among all tools (best of others 75.32%) and achieved the
best assurance of compatibility (98.67% successful compi-
lation rate and 92.96% successful unit test rate). Moreover,
the designs of subgraph partitioning and the trade-off be-
tween compatibility and security were evaluated against the
baselines. The result showed CORAL broke fewer projects
and spent much less time than them at the cost of 4.05%
fewer vulnerabilities fixed. Furthermore, we found that 78.45%
of vulnerabilities in popular Maven projects could be fixed
without breaking the projects. However, without the aid of
CORAL, only 25.71% could be straightforwardly fixed by
users. The contributions we have made are as follows.
• We proposed CORAL as a remediation tool for Maven

projects to handle the global optimization for enhanced
security and compatibility.

• We studied the concerns of users regarding remediation
suggestions by analyzing Pull Requests (PRs) and found
that 51.31% of cases were related to incompatibility.

• We empirically compared and analyzed strategies of popular
remediation tools regarding their support of compatibility
and prioritization for the reference of other researchers.

II. MOTIVATIONS

A. Motivating Example

Dependabot has been widely used as the most popular
dependency security management extension at GitHub. One of
the most popular Maven projects, commons-lang [12], adopted
Dependabot to manage their dependencies. Nevertheless, the
remediation caused build failure after upgrading [13]. Depend-
abot has implemented the compatibility score by calculating
the test passing rates from other repositories as the confidence
score. However, in this case, the compatibility score was
unknown. The compatibility score relying on knowledge of
the crowd cannot guarantee a successful compilation without
code-based compatibility calculation. Thus, CORAL relies on
static code-based compatibility checkers aligning with a global
perspective of DG to ensure the adjusted dependencies do not
break the project. Motivated by the motivating example, we
studied the strategies of state-of-the-art remediation tools to
understand how existing tools handle incompatibility issues.
Then, we further studied the concerns of users regarding the

remediation suggestions at GitHub to recognize what can be
improved.

B. Study of Remediation Strategies of Existing Tools

To understand the implicit reasons for the breaking in
Section II-A, we first empirically compared the published
remediation strategies of existing tools and then quantitatively
evaluated them in Section IV. We only counted tools that
provided actionable advice for dependencies, while tools that
only offered multiple suggestions for vulnerabilities were out
of the discussion because users would have to select the
version out of multiple suggestions manually during decision-
making for each library. The tools included Dependabot,
Steady, and two popular commercial tools denoted by Com
A and Com B.
• Dependabot: Dependabot is able to create PRs to upgrade

vulnerable dependencies to clean versions instead of provid-
ing an overall suggestion for the entire DG. As for the com-
patibility, Dependabot calculates the successful test rate of
the upgrades from other repositories as the confidence score.
However, this score can be unreliable because it is usually
unavailable, and the compatibility ultimately depends on the
context of the code base.

• Steady: Steady is an open-source academic SCA tool with
an open-source vulnerability database. Steady adjusts the
versions of both direct and transitive dependencies to reduce
the vulnerability risks at a fine granularity. Also, it utilizes
the reachability analysis of vulnerabilities to filter out the un-
reachable CVEs with low risks. The reachability comprises
both static and dynamic analysis, which only constructs call
graphs once at the beginning. As for the version selection,
Steady prioritizes the non-vulnerable versions, then deter-
mines the best candidate with the compatibility probability
p. To derive p, it defines the reachable constructs (class,
method, etc.) as touch points and calculates the percentage
of present touch points in upgraded versions as p. The
probability could be unreliable due to its uncertainty.

• Com A: Towards a DG, Com A tweaks only the direct de-
pendencies to remediate the vulnerabilities. The fundamental
strategy is to upgrade the libraries with vulnerabilities to
the closest non-vulnerable versions, as the closer versions
usually are more likely to be compatible. The reachability
is implemented by WALA [14] in a static manner to
prioritize the critical reachable vulnerabilities. However, the
compatibility of the remediation is not taken into account.

• Com B: Com B conducts the remediation on the direct
dependencies. The key feature is that Com B considers all
vulnerabilities of transitive dependencies associated with the
direct dependencies. Specifically, it iterates over all direct
dependencies. For each, Com B attempts the version candi-
dates and resolves the subsequent dependencies to measure
the updated overall vulnerabilities. Then, Com B selects
the version with the fewest overall vulnerabilities for this
direct dependency. The strategy considers the ripple effects
from the upgraded direct dependency to the upstream tree.
However, as direct dependencies are usually not independent



TABLE I: Comparison of State-of-the-art SCA Tools That Provide Remediation

Tool Fix level Fix target Compatibility S & C trade-off Reachability Dep conflict Ripple effects Unused dependencies

Steady All graph Vertex Sec first
Dependabot Direct Vertex Sec first
Com A Direct Vertex Sec only
Com B Direct Tree Sec only

1) Fix level: direct/direct+transitive dependencies. Fix target: basic units that the tools consider during optimization. S&C trade-off : prioritization of security
or compatibility during version determination. Ripple effects: the support to handle the side effects brought by ripple effects.

but inter-connected by transitive dependency relationships,
the respective optimization of each direct dependency does
not necessarily result in global optimization.
The comparison of SCA tools is demonstrated in Table I.

Fix level refers to the direct/transitive dependencies to be
fixed. Fix unit denotes the basic units that the tools optimize.
S&C trade-off means the prioritization of determining the best
candidates. The rest of the columns are summarized in the next
section. From the remediation strategies of tools, we found
three major causes of incompatibility issues. (1) No reliable
detection: Although Steady and Dependabot support compat-
ibility scores, their results were unreliable due to inaccuracy.
(2) Lack of global optimization: Because vertices in DG were
interconnected with each other, optimizations of them were
not independent. Thus, it is impractical to optimize each vertex
individually without a global perspective. (3) Lack of support
of handling ripple effects: The optimization was conducted
based on the original DG without updating structures and call
graphs. Then, the optimal solutions based on the new DG were
changed so that the existing tools would return sub-optimal
solutions.

C. Study of Users’ Concerns with Remediation Suggestions

GitHub provides various automated SCA extensions to
create PRs of security updates for dependencies, but these PRs
are far from perfect, and thus sometimes rejected by users.
To increase the acceptance rate of suggestions, we conducted
a study to understand the concerns of users towards the
remediation at GitHub by analyzing the reasons for rejected
remediation suggestions and the accepted suggestions as a
comparison.

Due to the lack of existing studies on Maven projects, the
data set was collected by ourselves. First, we derived 9, 527
projects active in the last three years with 100+ starts at
GitHub. Then, 5, 356 un-merged PRs created by bots were
located and narrowed down to 306 PRs with human participa-
tion. Finally, we manually went through the comments in these
PRs and summarized several reasons why PRs were unmerged.
• (91 cases, 29.74%) Duplication: The upgrades were super-

seded by other PRs, which were eventually merged.
• (82 cases, 26.80%) Compilation/Test/CI failures and De-

pendency conflict (DC): The developers ran tests on the
projects with upgraded dependencies, and incompatible is-
sues occurred. Particularly, tests failed at dependency res-
olution, compilation, and test stages. For all PRs created

by Dependabot in this category, compatibility scores were
shown as unknown.

• (75 cases, 24.51%) Incompatibility concerns: The develop-
ers were concerned by incompatibility risks because either
the upgrades had large spans, such as major upgrades, or
they were known to be breaking. All compatibility scores
were shown as unknown as well.

• (23 cases, 7.51%) Internal errors: Bots reported their
internal errors in comments, so the users closed the PRs.

• (12 cases, 3.92%) Unused dependencies: The developers
found the dependencies to be upgraded were not in use
anymore, so the PRs were closed. The bloated dependencies
were supposed to be ignored during the remediation.

• (9 cases, 2.94%) Disobeying rules or absence of signed
agreements: The developers closed the PRs because the
PRs failed to follow the rules of the repositories or sign
the contributor agreements.

• (8 cases, 2.61%) Unknown reasons: The developers closed
the PRs without explicitly mentioning the reasons.

• (6 cases, 1.96%) Other: There were various reasons: (1)
Upstream projects demanded to keep the current version.
(2) Java version was not compatible. (3) The PR introduced
new CVEs. (4) Wrong user configuration. (5) A formatting
issue.

From the result, excluding the duplicated PRs and unrelated
reasons, such as internal errors, it is evident that the com-
pilation/test failures and incompatibility concerns were the
primary concerns of users (51.53%). The upgrades on unused
dependencies could be avoided by the reachability analysis.
The perspectives of concerns of users are demonstrated in
Table I. Dep conflict refers to the support of the detection
of possible dependency conflicts raised by Maven. The ripple
effects denotes the support of dynamically handling the ripple
effects. Unused dependencies means the support of detecting
and ignoring unused dependencies.

Besides the reasons for rejected PRs, merged PRs were also
studied as a comparison, but they usually failed to include the
reasons for acceptance. Thus, we studied the distribution of
their upgrades. Since the number of merged PRs is enormous,
we studied the 556, 257 PRs merged in the last two years for
Maven projects. The distribution was (1) Major: 11.91%; (2)
Minor: 38.34%; (3) Patch: 48.55%; (4) pre-release: 0.89%; (5)
No SemVer available: 0.31%. The result indicated that most
merged PRs (87.79%) did not bump the versions to major
upgrades, which followed the criteria of SemVer because non-



major upgrades were supposed to maintain backward compati-
bility. Therefore, the remediation suggestions with fewer major
upgrades are more likely to be accepted by users.

III. METHODOLOGY

A. Problem Formulation

By summarizing the users’ concerns, we are able to define
the objectives and constraints of the remediation. The primary
objective is to minimize the total vulnerability risks:

min Fvul =

M∑
m=1

V ul∑
vul=1

θvulfcvss(vul) (1)

where M is the number of libraries and V ul is the number of
vulnerabilities of a vertex m. fcvss is the Common Vulnerabil-
ity Scoring System (CVSS) [15] weight. θv is the reachability
coefficient for vulnerability v, particularly, θv is larger for
reachable vulnerabilities, because the reachable vulnerabilities
are possible to be exploited by attackers. However, in reality,
not all vulnerabilities are open-source, which also increases
the difficulty for attackers. Thus, the vulnerabilities with un-
certain vulnerable classes or methods are classified as unknown
vulnerabilities whose severity is ranked between the reachable
and unreachable vulnerabilities. Since different vulnerabilities
result in different risks, we use CVSS, a normalized score
provided by NVD, to prioritize the vulnerabilities with higher
risks during calculation.

The remediation is less likely to be accepted if it breaks the
users’ projects, according to the study in Section II-C. Thus,
the pre-condition of successful remediation is the compatibility
of version adjustments.

s.t. cincom =

M∑
m=1

P∑
p=1

θv ∗ incom(vp, vm) = 0 (2)

P is the number of parent vertices of vm, while vp is a parent
vertex. cincom is the total number of dependency relationships
that cause incompatible issues. The incompatibility comprises
two types of code-based breaking (semantic and syntactic
breaking) and DC issues.

To achieve the global optimization and handle the ripple
effects mentioned above, CORAL is supposed to optimize all
connected vertices altogether in a dynamically adjusted DG.
These goals bring three challenges: (1) Trade-off between the
security and the compatibility during decision making. (2) The
time complexity increase exponentially with the size of DG
as O(n) =

∏N
n=1 if all solutions are to be iterated over. (3)

The ripple effects requires dynamically updated DG.

B. Overview

CORAL is implemented in four steps as illustrated in
Fig. 1. (1) Generating DG and the call graph (CG) from
the project object model (pom) file, a version control file of
Maven, and class files of the project. (2) Partitioning the DG
into subgraphs. (3) Optimizing the subgraphs regarding the
vulnerability risks based on the pre-computed vulnerability
mappings while ensuring compatibility. (4) Backtracking to

Construct CG

Maven Project

Dynamically Updating

DG & CG


Partitioning

SMT Solving

BacktrackSliding over

Subgraphs


+

If backtrack
needed

Dependency graph

Z3 Solver

Fig. 1: Overview of CORAL

parent vertices heuristically if the dead end is met. Then,
the final remediation suggestions of version adjustment of all
TPLs in the DG are returned.

C. Constructing Dependency Graph and Call Graph

With pom files and class files, CORAL extracts the de-
pendency tree by the Maven command and recovers the
DG by completing the absent dependency relationships from
a pre-computed dependency database. According to Maven
documentation [16], as dependencies with test scope are not
involved in the normal use of the projects, CORAL excludes
dependencies with test scope from the DG. Specifically, DG
is represented as DG = Graph(V,E), where V = {exi | i ∈
{0, ..., N − 1}, x ∈ {0, ..., L}} and E = {ei → ej | i, j ∈
{0, ..., N − 1}}. → denotes the direction of the calling edge,
and x specifies the stack level w.r.t the DG.

The CG is constructed statically based on Soot [17] by
the Spark algorithm [18] from the class files of the projects.
The main methods are considered the entry points which
serve as the start of the call graphs. If main methods are
absent, we overestimate that it is possible to execute all
methods implemented in the projects. Thus, all methods in
users’ projects are considered entry points. Since handling the
ripple effects requires the dynamically updated CG to achieve
real-time reachability analysis, the call edges in the CG are
collected modularly. i.e. call edges are not extracted from a
Uber jar [19] (root project with all dependencies) but from
jars of each dependency separately and sequentially and then
integrated into one graph originating from the root project.
Particularly, for each dependency, the callers from the parent
libraries serve as the entry points for child libraries. After
the remediation, if the child libraries are suggested for other
versions, the callees in them can be substituted accordingly to
generate the real-time CG flexibly.

D. Partitioning Dependency Graph

Due to the high complexity of optimization over the entire
DG, CORAL partitions the DG into subgraphs to reduce the
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size of the overall solution space. The partitioning comprises
two steps, vertical partitioning, and horizontal partitioning. As
illustrated in Fig. 2 (a), the vertical partitioning iteratively
splits the DG into multiple partitions that are not connected
with each other by dependency edges except the direct re-
lationships from the root project v1 until all unconnected
partitions are split. Since the direct dependencies do not
depend on each other, optimizations on multiple partitions can
be conducted independently and concurrently. For example, in
Fig. 2 (a), partition 1 and partition 2 do not depend on each
other. Hence, they can be partitioned to boost performance.

However, the vertical partitioning is not always sufficient,
especially for the large partition at left in Fig. 2 (a). In this
case, horizontal partitioning can further reduce the solution
space. The subgraphs are partitioned by levels to preserve
the semantics. According to [20], the semantics of a method
decays along the calling chain, i.e. dependencies closer to the
root matter more than those farther from the root in terms of
the semantics or functioning they provide. For better notations,
dependencies are labeled by tags called level to denote the
smallest number of hops from the root. To better preserve the
semantics of dependencies against the potential incompatibil-
ity, CORAL split DG and group vertices at level l and l−1 into
subgraphs as in Fig. 2 (b). Then, because the closer dependen-
cies preserve more semantics, CORAL starts the optimization
from the root user projects in a top-down manner. Particularly,
the lower-level dependencies should humor the upper ones in
terms of the compatibility constraints as much as possible.
Hence, CORAL attempts to optimize dependencies in two
adjacent levels at a time and then moves the sliding window
of a partition down to the next level with a newly updated
CG. With the horizontal partition, the complexity can be
reduced to O(n) =

∑Phori

phori=1

∑Pvert

pvert=1

∏Np

n=1. The side effect
is that the potential better solution with lower vulnerability
risks may be overlooked for dependency edges across multiple
levels. To compensate for the loss, Section III-F introduces the
backtracking mechanisms to avoid sub-optimal situations.

E. Optimizing Subgraphs

In this subsection, the detailed specification of the optimiza-
tion on subgraphs based on Z3 SMT solver [21] is described.

1) Objectives and Constraints Definition: In each sub-
graph, CORAL conducts the optimization to minimize the
vulnerability risks in the condition that the version changes are
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Fig. 3: Example of the Version Selection of a Dependency
Library

compatible. The vulnerability elimination follows the objective
function in Equation (1). The basic vulnerability elimination
strategy is to find versions with the fewest reachable and
unknown vulnerabilities. Then, if more than one versions
satisfy these conditions and other constraints, the versions
without unreachable vulnerabilities are preferred.

Theoretically, the compatibility constraint is supposed to
be strict. However, not all types of incompatibility can be
accurately detected. Generally, there are three major types
that CORAL aims to resolve, namely, semantic breaking,
syntactic breaking, and dependency conflicts, as discussed in
Section II-C. Except for semantic breaking, the rest can be
detected statically and efficiently. Thus, the detection of the



rest is integrated into the optimization as constraints:

s.t. csynb =

M∑
m=1

σ ∗ synb(P (x′m), x′m) = 0 (3)

The synb, Syntactic Breaking, is calculated based on the
reachability analysis and the API compatibility checkers. For
each version pair of one library, the modified APIs that can
cause the failure of compilation are calculated by the three
most widely used API compatibility checkers japi-compliance-
checker [22], revapi [23], japicmp [24] based on the pair of
jar files. Then, based on the reachability analysis, the called
APIs of this library are obtained from CG. If any problematic
APIs are called, the compilation would mostly fail, so CORAL
would label this candidate version as breaking and discard it.

s.t. cdc =

M∑
m=1

dc(P (x′m), x′m) = 0 (4)

The DC issues are calculated based on Maven version rules
[25]. Like other package managers, version ranges define
the allowed versions for dependencies. If two version ranges
required by dependents do not overlap, Maven would report
Dependency Conflict during version resolution before the
compilation. A similar logic is implemented in CORAL to
only select versions within the intersection of ranges defined
by dependents. It is noteworthy that over 99% dependency
version specifications are not determined with ranges, but sin-
gle recommended versions instead, which means all versions
are available regardless of compatibility. In this case, CORAL
would include all versions as candidates for DC detection as
Maven.

Since the semantic breaking is usually revealed by unit tests
subject to limited coverage according to [26], it is hard to
detect it statically and efficiently. Also, it is the leading cause
of unit test failures [27], which is one of the main reasons why
users reject remediation suggestions. Thus, CORAL relies on
auxiliary information to infer the potential semantic breaking
and minimize its probability by following the SemVer and
Maven versioning guides. According to SemVer, the Major
upgrades are allowed to break the original implementations.
Hence, CORAL avoids using Major upgrades/downgrades as
much as possible unless they are less vulnerable and satisfy
the other compatibility criteria. Thus, besides the primary
objective, we add a secondary objective, fmajor, the number
of dependencies that have Major upgrades/downgrades:

min fmajor =

N∑
n=1

fmajor,xn
(xn, x

′
n) (5)

where fmajor =

{
0 if xn to x′n is not major
1 if xn to x′n is major

Although SemVer stipulates Minor should not include in-
compatible changes, researchers from [28] found that Minor
upgrades are not as compatible as Patch upgrades, which
generally introduce more breaking changes. Therefore, CORAL
always prefers Patch upgrades rather than Minor if all other
conditions stand. Another secondary objective function of

fminor is created to fulfill the purpose.

min fminor =

N∑
n=1

fminor,xn(xn, x
′
n) (6)

where fminor =

{
0 if xn to x′n is not minor
1 if xn to x′n is minor

Besides SemVer, Maven version control rules [25] also help
identify potentially breaking versions. First, the pre-release
versions, also known as development versions, such as alpha,
beta, SNAPSHOT versions, are unstable and prone to breaking
changes, which are selected at a lower priority than Major
upgrades. Second, the larger version spans are usually more
likely to induce incompatible changes. CORAL attempts to
reduce the version span from the original version to the new
version as much as possible. In terms of these two objectives,
the functions of fdev and fspan are formally given as:

min fdev =

N∑
n=1

fdev,xn
(xn, x

′
n) (7)

where fdev =

{
0 if x′n is not dev
1 if xn is not dev, x′n is dev

min fspan =

N∑
n=1

dist(xn, x
′
n) (8)

where dist(x, y) is the distance between x,y in sorted versions.
After solving with the SMT solver, each vertex in the

subgraph is assigned with a selected version, and upgraded
libraries in CG will be updated accordingly. However, the
selected versions can be overthrown by the next optimization.
Thus, all selectable candidate versions are saved and fed to the
next optimization. For instance, in Fig. 3 (a), Lib 3 initially
has 7 candidates and gets filtered to 3 by incompatibility and
vulnerabilities. In the next iteration (b), Lib 3 has its candidates
further filtered to 2 because of the incompatibility. Then, v5
is selected due to its smaller version span from the original
version. However, in the third iteration (c), v5 is overthrown
because it is not compatible with the parent library Lib 13
at a lower level. Since the compilation and Maven resolution
would fail regardless of the levels, the selected versions must
follow the constraints in Equations (3) and (4). Therefore, v5
is discarded, and v6 with compatible changes is selected.

F. Backtracking

Although sequential partitions of DG reduce the complexity,
they could lead to sub-optimal solutions and dead ends. To mit-
igate such issues, two types of backtracking mechanisms are
implemented in CORAL, the hard and the soft backtracking.

1) Hard Backtracking: Hard backtracking is implemented
to avoid dead ends. It happens during deciding the best version
of a library where all versions disobey the constraints by
potentially breaking the project. The backtrack targets are
parent libraries of the current library. Since backtracking
requires re-visiting the related vertices, the parent library at
the lowest level is prioritized to reduce the efforts of re-
visiting. And then, the higher ones are attempted if the lower
parent triggers the backtrack again. During one backtrack, the



Algorithm 1: Algorithm of CORAL

Input: Dependency Graph G 〈V,E〉 (vertices V and edges E) with
h levels, class files cf of the project

Output: Remediated G′ 〈V ′, E′〉 with newly assigned versions
1 partsv ← verticalPartition(G)
2 foreach part in partsv do
3 foreach ith in h do
4 parth ← Vi + Vi+1
5 cg ← CallGraph(parth, cf)
6 foreach v in V do
7 parents← parentsOf(v)
8 foreach ver in versionsOf(v) do
9 if ver has synb or DC then

10 cand.remove(ver)

11 if sizeOf(cand) == 0 then
12 hardBacktrack
13 break

14 vuls← vulsOf(ver)
15 foreach vul in vuls do
16 θ ← reachability(vul, cf)

17 sort candidates by θ

18 s← SMTsolver(Vi, Vi+1)
19 if vuls(s)! = min(vuls)) then
20 softBacktrack
21 break

22 cg ← updateBy(s)
23 G← updateBy(s)
24 if hardBacktrack then
25 p← parentlowest
26 p.incompatible← ver
27 backtrack to p

28 if softBacktrack then
29 p← parentlowest
30 runs← saveV ul(p)
31 backtrack to p
32 foreach rth run in p.vers do
33 runs← saveV ul(pr)

34 s← min(runs)

35 return G′ 〈V ′, E′〉

selected version of the target parents is temporarily marked as
incompatible, and other versions are attempted.

2) Soft Backtracking: Soft backtracking is used to avoid
sub-optimal solutions. It is triggered when the version se-
lected by the SMT solver is not the version with the lowest
vulnerability risks in the version list, such as non-vulnerable
versions. Like the hard backtrack, the soft backtrack prior-
itizes the parent libraries at lower levels. The different part
is that soft backtrack does not mark the parent’s current
version as incompatible but unpreferrable instead. It means
if other versions are proven to be not as optimal as the
unpreferrable version after the backtracking, the unpreferrable
would still be selected. Thus, even if versions satisfy the
constraints, they could be ignored by soft backtracking. During
the soft backtracking, CORAL saves the overall vulnerabilities
between the backtracked library and the target parent for
future comparison. After the backtracking, CORAL compares
the vulnerabilities of the current run with the ones saved
previously and adopts the run with the fewest vulnerabilities to
apply the versions to backtracked libraries accordingly. Note
that to avoid an infinite loop, soft bakctracking would not be
triggered again during one run of soft backtracking. Also, if

the hard backtracking is triggered during soft backtracking,
the current run would be discarded, and other versions would
be attempted.

In conclusion, CORAL was designed to overcome the chal-
lenges of the high complexity of global optimization and ripple
effects. The algorithm is presented in Algorithm 1. CORAL
starts with vertical and horizontal partitions to split the DG into
multiple parts. Then, the SMT solver is used to optimize the
remediation results in each partition in a top-down manner. If
any backtrack is triggered, CORAL backtracks to the previous
vertices to avoid the sub-optimal solutions.

IV. EVALUATION

We aim to answer the following research questions:
RQ1: How is CORAL compared with other cutting-edge
remediation tools regarding security and compatibility?
RQ2: How effectively does CORAL resolve the challenge of
global optimization by subgraph partitioning?
RQ3: How many vulnerabilities CAN/CANNOT be fixed
without breaking the projects in the Maven ecosystem?

A. Preparation

1) Data Collection: To build a data set of in-development
Maven projects, we collected 301 most starred projects man-
aged by Maven at GitHub on May 21st, 2022. We first selected
Java projects with the most stars from GitHub and excluded
non-Maven projects. Next, we manually modified the POM
files of each project to apply the remediation suggestions from
these tools. Considering the efforts of manual work, we filtered
these projects with 1K+ stars. Finally, we got 301 selected
projects. The demographics of the data set are illustrated in
Fig. 4. It has the following features: (1) The code base size
is non-trivial (average 22.19 kloc). (2) The range of sizes of
dependency graphs is large (max 327, average 32.0). (3) The
projects are affected by an adequate number of CVEs (average
27.6). (4) The projects are popular because they are highly
starred.

To experiment with accurate vulnerability mappings, we
periodically crawled CVE feeds from NVD [29] with a
pipeline and pre-classified the language of CVEs by keyword
matching. As the CVE descriptions are free-text [30], [31], it
is impractical to directly extract version mappings from them.
Hence, we manually triaged the mappings from reference links
and associated Common Platform Enumerations (CPEs) [32].
So far on May 21st, 2022, we collected mappings for 1, 759
CVEs associated with Maven libraries. In this section, the
evaluation needs the reachability analysis, which requires the
vulnerable methods and classes associated with CVEs. Thus,
we first identified 750 CVEs (42.64% of all Maven CVEs)
from 2, 326 unique libraries used as dependencies in 301
projects. Then, vulnerable classes and methods of 300 CVEs
were successfully identified and manually collected from the
patches available at NVD links. The mappings and vulnerable
methods of lib-vers and CVEs are publicly accessible on our
website [10].
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Fig. 4: Demographics of the Data Set of RQ1 and RQ2

2) Tools and Environments Preparation: All tools used
in the evaluation were tested with their latest versions in May
2022. Steady was tested with version 3.2.4 with a built-in vul-
nerability database including 729 CVEs. The two commercial
tools were evaluated in their publicly accessible production en-
vironments. CORAL was implemented with 6.9kloc in Python
3.8.2 and evaluated with java 7 − 13 (depends on projects),
Maven 3.8.2, and Ubuntu 18.04.6.

B. RQ1: Comparison with Other Remediation Tools

1) Evaluation Metrics: (1) Vulnerability fixed: The pri-
mary target of remediation is fixing vulnerabilities which
are further classified in terms of reachability as remain-
ing reachable CVEs: V ulr, remaining unreachable/unknown
CVEs: V ulur/V uluk, and total fix: Fix. (2) Compilation:
Failcomp. The projects with updated pom files were compiled
by Maven to evaluate the correctness of Maven resolution and
the compile-time compatibility. (3) Unit test: Failtest. The
affiliated unit tests were run against the remediated projects to
evaluate the runtime compatibility. (4) Supplementary metrics:
The number of upgraded/downgraded libraries, total version
span, number of Major upgrades (#Major), and development
upgrades (#Dev) were counted for reference.

2) Comparison Results: The evaluation was conducted
based on the remediated projects (versions returned by reme-
diation tools were adjusted in pom files), which along with the
Maven logs, are available on our website. To emphasize the
improvement gained from the version selection strategy, we
added two baseline tools with naive strategies. Both baseline
tools share the same partitioning and backtracking mechanisms
as CORAL. Baseline A always prefers the latest versions of
vulnerable libraries. It is used to demonstrate the result of a
common practice which is upgrading vulnerable dependencies
to the latest. Baseline B always prioritizes the versions with the
fewest reachable and unknown vulnerabilities, even if it may
break the projects. Baseline B gave an idea of how many non-
trivial vulnerabilities could be fixed without being constrained
by compatibility. The comparison results with remediation
tools and baselines are provided in Table II. The analysis of
each metric is supplied as follows:
• Remaining Reachable Vuls: Due to a limited number of

vulnerable methods, only 17 CVEs could be identified as
reachable in original projects. It is noteworthy that CORAL

eliminated all reachable CVEs. Because Dependabot re-
turned far fewer remediation suggestions than other tools,
16/17 reachable CVEs remained reachable after remedi-
ation. As Steady’s vulnerability database is limited, we
re-evaluated Steady with the 729 CVEs in their database
and enclosed the updated numbers in brackets. Within this
scenario, Steady had fewer reachable CVEs than before, like
other tools.

• Remaining Unreachable and Unknown Vuls: CORAL had
much fewer unreachable vulnerabilities (reduce 87.56% of
vulnerabilities) than other tools because though the un-
reachable vulnerabilities were considered harmless, CORAL
attempted to remove them if the constraints allowed. Un-
known vulnerabilities 583 still remained in the DG for three
reasons: (1) 244, 41.87%. The versions with fewer vulnera-
bilities did not satisfy the constraints. (2) 149, 25.56%. All
versions were vulnerable. (3) 101, 17.31%. The more secure
versions with unreachable CVEs were Major upgrades with
overly large version spans. Regarding baselines, Baseline A
proved that upgrading to the latest fixed only an insignif-
icant amount of vulnerabilities. Baseline B suggested that
338 (4.05%) more vulnerabilities could be fixed without
considering compatibility.

• Compilation Failures: CORAL achieved 98.67% successful
compilation rate due to detecting syntactic breaking and
DC issues. The reasons for four failed cases were (1) Call
graph generation failure: One of the libraries along the call
chain had no call edges generated, which led to unreachable
breaking methods. (2) Exception class not captured: The
breaking exception class was not captured in the call graph
and thus deemed unreachable. (3) Overriding not captured:
The breaking methods of a class were extended and over-
ridden in the new version, but the call graph did not reflect
such overriding. For example, a project, apollo-client [33],
had a failed compilation due to the incompatibility in its
dependency, snakeyaml. The overriding of class, BaseC-
onstructor, was not captured. (4) Ghost dependency: The
breaking methods were used in an undefined dependency,
so they were not captured as reachable methods. Because of
the local optimization and unreliable or absent compatibility
detection, the rest of the tools were subject to broken
upgrades with failed compilation.

• Unit Test Failures: Since it is challenging to detect Se-
mantic Breaking effectively, it is difficult to prevent Unit
test failures. Thanks to the prioritization based on SemVer
and Maven resolution rules, CORAL was able to achieve
the fewest failures among these tools. Note that due to
private dependencies, unfinished development, special re-
quirements of running environments, etc., 88 unit tests in
original projects already failed without remediation, which
was excluded from the number of failures in the table.

• Other Statistics: It is evident that Com B had many more
lib-ver pairs changed because it manipulated the direct
dependencies to adjust the associated trees by changing
the default versions of subsequent dependencies regardless
of vulnerabilities, while other tools mostly focused on the



TABLE II: Comparison of CORAL among State-of-the-art Remediation Tools

Tool name Avg DG Size V ulr V ulur V uluk FixedCV E Failcomp Failtest #Crashes #Libs changed Version span #Dev #Major

Original 33.99 17 5,363 2,954 0 0 0 0 0 0 0 0
CORAL 36.27 0 553 583 7,198(87%) 4 15 0 2,556 70,464 3 139
Dependabot 34.93 16 5,357 2,682 262 (3%) 20 31 1 602 17,024 0 44
Steady 44.17 11(4) 1,596(955) 1,457(515) 5,253(63%) 27 36 1 2,292 75,380 4 257
Com A 34.24 7 4,199 2,410 1,469 (18%) 51 61 7 1,398 24,679 0 245
Com B 35.61 3 1,040 1015 6,277(75%) 54 70 0 6,498 134,407 0 170
Baseline A 33.81 3 4,677 2,786 869 39 45 0 2,580 16,863 7 194
Baseline B 43.11 0 422 376 7,536 54 71 0 5,860 90,931 5 329
Baseline C 35.11 0 535 547 7,252 4 12 0 2,613 56,738 1 126

1) V ulr : number of reachable CVEs. V ulur : number of unreachable CVEs. V uluk: number of unknown CVEs. FixedCV E : number of fixed CVEs.
Failcomp: number of projects with failed compilation. Failtest: number of projects with failed tests. Crashes: number of projects that tools crashed
and failed to return results. Dev: number of development version pairs. Major: number of Major version pairs
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Fig. 5: Ascending Order by Numbers of CVEs of Original per
Project

vulnerable vertices. The same reason stood for the version
span. Because CORAL, Steady, and Com B substantially
changed the versions of transitive dependencies, their total
version spans were larger than Dependabot’s.
To illustrate the distribution of remaining vulnerabilities

over all projects, the remaining CVEs of all tools are presented
in the scatter plot of Fig. 5. The x-axis is ordered by the
number of CVEs of the original, which serves as the upper
bound denoted by yellow stars. It is evident that CORAL has
the overall fewest remaining CVEs at the bottom of the chart,
denoted by blue dots.

Conclusions of RQ1: From the evaluation in Table II,
CORAL fixed 87.56% of all CVEs with all reachable
removed, including 911 more CVEs than the best of the
rest tools. Meanwhile, CORAL achieved the 98.67% suc-
cessful compilation rate and 92.96% successful unit test
rate, which outperformed the rest of the tools. Compared
with the two baseline tools, CORAL was proven to be
effective at balancing the compatibility and security by
breaking 106 (35.21%) fewer projects at the cost of 338
(4.05%) fewer vulnerabilities fixed.
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Fig. 6: Time Consumption of Baseline C and CORAL

C. RQ2:Effectiveness of Improvement on Global Optimization

The subgraph partitioning was implemented in CORAL to
boost the performance towards the global optimization. To
evaluate the effectiveness of partitioning, Baseline C was im-
plemented in the same logic without two types of partitioning
used by CORAL. The same data set was used to evaluate the
existing metrics and time consumption. To measure the time,
we respectively ran CORAL and Baseline C ten times against
each project and calculated the average time as the final result.
The result is presented in Fig. 6, which illustrates that the
Baseline C generally tended to spend more time than CORAL
for complete remediation. In the figure, the 301 projects are
ordered by the size of DG. Each dot in the figure represents
a single project. The tendency curves of both are fitted by the
second-degree polynomials to avoid over-fitting.

To explain the fluctuations of the consumed time of CORAL,
we manually analyzed the causes of the outliers. First, the 6
lower outliers were collected and analyzed. The cause of these
cases was subgraphs partitioned were pretty small (1-5 deps),
and the backtracking was not triggered. Second, for 18 higher
outliers, there were four major causes:
• (9 cases) Call graph generation failures: The Call graph

generation of the Soot script failed at some dependencies of
DG, which took a long time to return. Usually, the failure of
one version would persist with other versions of the same



library, so the total time was elongated.
• (5 cases) SMT solver took a long time: For these projects,

both Baseline C and CORAL spent a long time because the
SMT Solver took a long time to finish. The direct reason for
this cause was that the levels of DGs were limited, which
means the DGs were more flattened than others. Thus, the
partitioning of CORAL based on levels could still include a
substantial number of vertices in the SMT solver.

• (3 cases) Multiple backtracking: Another backtracking
could be triggered during the current run of backtracking
or after the current run fails. In these cases, 2 out of 3
cases had over three attempts of failed hard backtracking,
and the rest triggered the hard backtracking multiple times
during soft backtracking, which led to no improvement of
vulnerability reduction for this soft backtracking.

• (1 case) Jar downloading failure: The CG generation
and Syntactic breaking detection relied on the jar files
of dependencies, CORAL failed to download from Maven
Repository with time-out multiple times.
The observed metrics for Baseline C are presented in

Table II. From the table, Baseline C has fixed 54 (0.75%)
more vulnerabilities than CORAL, which implies the global
optimization without partitioning has slightly improved the
vulnerability fixing. Moreover, the number of projects with
failed compilation stayed the same because CORAL handled
the syntactic breaking and DC issues regardless of the parti-
tioned subgraphs by backtracking.

Conclusions of RQ2: The comparison between Baseline
C and CORAL substantiates that the partitioning mech-
anism could substantially reduce the time consumption
without introducing the compilation failures at an accept-
able cost of 0.75% fewer fixed vulnerabilities, especially
for the large DG.

D. RQ3: How many fixable/unfixable CVEs in Maven

We target finding out how many vulnerabilities can be
fixed without breaking the compilation and how many cannot
in popular Maven projects. Since CORAL could efficiently
exclude the solutions that broke the compilation with high
precision (98.67%), we made an assumption that CVEs fixed
by CORAL were fixable and CVEs not fixed by CORAL were
unfixable.

1) Preparation of data: To conduct a large-scale study
in the Maven ecosystem, we constructed a different data set
from RQ1 and RQ2. Considering the balance between the
representativeness and quality of the dataset, we first collected
repositories with 100+ stars managed by Maven from GitHub
to ensure the high quality of the dataset. Then, we compiled
them and extracted dependency trees from them by the Maven
command. If both steps succeeded, the dependency trees and
class files were used as input for the remediation. Eventually,
we randomly selected 2, 000 out of 6, 898 projects (average
size 103.58) for the evaluation to make sure the dataset was
representative. As for CVE mappings, the same mappings were
used as RQ1 and RQ2. Since collecting vulnerable methods

and classes is not as straightforward as version mappings,
which requires much more effort for all CVEs, we decided
not to conduct the reachability analysis of vulnerabilities in
the experiment.

2) Results of RQ3: Fixable: The fixable CVEs are 10, 109
(78.45%) as in Fig. 7. It is inferred that around 78% vulner-
abilities could have been safely eliminated from the popular
Maven projects without breaking the compilation to reduce the
vulnerability risks of the ecosystem. We further calculated the
distribution of the CVEs regarding the levels of the libraries
and the types of upgrades that removed the CVEs. Although
78% seems to be a large number, the majority of them could
not be fixed without domain knowledge or the aid of CORAL.
According to Fig. 7, the proportion of vulnerabilities that could
be fixed by adjusting direct dependencies was 11.71%, out of
which 8.34% belonged to Minor and Patch upgrades.

As users can straightforwardly upgrade their direct depen-
dencies to non-major versions to fix vulnerabilities on their
own, we applied this naive method for the comparison with
CORAL. The result showed that 25.71% of CVEs can be fixed
by upgrading direct dependencies. Due to ripple effects, not
only were 8.34% in direct dependencies fixed but more CVEs
in transitive dependencies were also fixed. It is implied that
without the aid of CORAL, the rest of the fixable vulnerabilities
(52.74%) could not be fixed straightforwardly.

Unfixable: The number of unfixable CVEs was 2, 777
(21.55%) as in Fig. 7, which could not be fixed by CORAL
for three major reasons, the soft backtrack, all versions of
a library were vulnerable, and the secure versions were in-
compatible. Reflected in Fig. 7, it is observed that the major
reason was incompatibility which accounted for 60.10%. Note
that the incompatibility did not count the Semantic Breaking
because it could not be reliably detected. The minor reason,
soft backtrack, refers to the vulnerabilities being left unfixed
because the soft backtrack could not eradicate all CVEs, but
minimized the overall vulnerabilities by ignoring some CVEs.

Although unfixable vulnerabilities cannot be easily removed
without breaking the projects, some of them are removable at
an acceptable cost. For example, if an API is deprecated and
migrated to another, users only have to invoke the updated API
and upgrade to the target version to fix the issue and vulner-
abilities. Thus, if efforts to fix incompatibility are acceptable,
more vulnerabilities can be fixed thoroughly with minimized
efforts by quantifying efforts to fix the incompatibility.

Conclusions of RQ3: Through the experiments with the
most starred projects on GitHub, we found that 78.45% of
vulnerabilities could be fixed without breaking the compi-
lation. However, without the aid of CORAL, only 25.71%
could be fixed by upgrading the direct dependencies to
non-major secure versions.

V. THREATS OF VALIDITY

The threat of CORAL is the static call graph reliance because
only the static call graphs are not accurate enough to capture
all possible call edges, which is one of the causes of the
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Fig. 7: Distributions of Fixable/Unfixable Vulnerabilities

unit test failures in Section IV-B2. One typical example of
inaccurate static call graphs is that static call graphs may miss
invocations made by dynamic features, e.g., reflection. More-
over, The prioritization of vulnerabilities might overlook some
reachable ones due to inaccurate static call graphs. However,
to modularly and dynamically update the call graphs after each
version adjustment, we could only generate static call graphs
that are faster than dynamic ones. As it is impractical to run
tests and generate dynamic call graphs thousands of times per
project, we sacrificed accuracy for better performance.

VI. RELATED WORK

A. SCA Tools and Strategies

SCA has been a popular research topic in recent years. Re-
searchers have invested much effort to study and improve the
two major procedures: component and vulnerability detection
and vulnerability remediation.

1) SCA remediation: A limited number of research works
[34]–[38] attempted to study and enhance the remediation
strategy. Alfadel et al. [34] found for the Javascript projects
at Github 34.58% of PRs created by Dependabot were not
merged due to five reasons: (1) Duplication (2) Dependency
conflict by peer requirements (3) Test failures (4) Internal
errors (5) Disobeying rules/standards, which substantiate our
findings in Section II-C. Steady [36], [37] has been devel-
oped for years to be a code-centric and usage-based SCA
tool, which has been proved effective by Imtiaz et al. [39].
Soto et al. [38] found 22.6% of upgrades by Dependabot
were recommended for bloated dependencies. 22.6% does
not contradict our result 3.92% because 22.6% consists of
all bloated dependencies, while ours were only those found
and addressed. These works except for Steady mostly focused
on the evaluation of remediation tools, which left a blank of
remediation strategy enhancement filled by CORAL.

2) Component and vulnerability detection: Many re-
searchers and practitioners [7], [8], [35], [39]–[48] have
studied the component and vulnerability detection. Imtiaz
et al. [39] studied 9 commercial SCA tools and found the
reported vulnerabilities vary substantially, which revealed that
the vulnerability database was the key differentiator. Dann et
al. [40] reviewed six commercial and academic SCA tools
regarding their ability to handle the dependency modification

types. By testing 7k+ Java projects, they found the re-bundle
modification in Maven dependencies was not supported by
any tools. Vuln4real [35], [42] was proposed to exclude the
false alarms of vulnerabilities by identifying the vulnerabilities
in lagging, development-only, and unreachable dependencies,
which significantly reduces false alerts.

B. Study of Open-source Software Ecosystem

Apart from SCA techniques, researchers [49]–[59] have
studied the open-source software (OSS) and associated vul-
nerabilities in the OSS ecosystem, conclusions of which can
be used to guide the designs of SCA tools. Decan et al. [49]
studied NPM and Rubygems package managers and found that
33% and 40% of vulnerabilities respectively had their fixes
within the same major release. Plate et al. [58] proposed new
metrics to determine the criticality of vulnerabilities regardless
of the types and languages of vulnerabilities, which helps
with the automated impact assessment of new vulnerabilities.
Imtiaz et al. [50] studied the characteristics of security fixes
at 6 major package managers, namely, the semantic versions,
release notes, and the time lag between fixes and releases, and
offered 4 recommendations for the better practice of security
releases. Ponta et al. [51] manually collected 625 publicly
disclosed vulnerabilities for Java projects, which was also used
in the Section IV as the Steady data set at the latest version.

VII. CONCLUSION

We proposed CORAL to provide remediation without break-
ing compatibility. The evaluation demonstrated that CORAL
outperformed other tools by fixing 87.56% of vulnerabilities
and achieving 98.67% successful compilation rate and 92.96%
successful unit test rate. In the ablation study, the partitioning
of DG and trade-off between security and compatibility had
been proved effective. Furthermore, we found that 78.45%
of vulnerabilities in popular Maven projects could be fixed
without breaking the compilation.
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