
A Partition-based Approach for XPath Testing  
 

Claudio de la Riva, José García-Fanjul, Javier Tuya 
Department of Computer Science 

University of Oviedo 
Campus of Viesques, s/n, 33204 (SPAIN) 

claudio@uniovi.es, jgfanjul@uniovi.es, tuya@uniovi.es 
 
 

Abstract—The XML language is becoming the preferred 
means of data interchange and representation in web 
based applications. Usually, XML data is stored in XML 
repositories, which can be accessed efficiently using the 
standard XPath as query language. However, the specific 
techniques for testing these queries often ignore the 
functional testing. This work addresses this problem by 
introducing a technique based on the category-partition 
method for the systematic design of test input data for an 
XPath query. The method permits the automatic 
identification of categories and choices in the XPath and 
XML Schema implementations and the construction of 
constraints in order to obtain complete and valid test 
cases. The technique is illustrated over a practical 
example. 

Keywords-Software Testing; Category-Partition 
Method; XML Repositories; XPath 

I.  INTRODUCTION 
The XML language [11] is playing an important 

role as the standard language for data representation 
and interchange over Internet. With the growing 
number of XML documents generated, there is an 
increasing need in the use of standard XML 
technologies for the management and the access to 
XML repositories (XML data stores) [10]. Between 
them, XML Schema [13] is a language for the 
definition of the XML document structure and data 
types, and XPath [12] is a query language for elements 
navigation and selection. In a typical scenario, a web-
based application will use one or more XML Schemas 
to validate the syntactic content and structure of the 
XML data, and will access the content using XPath 
queries, perhaps embedded in other languages, such as 
XQuery, XSLT or Java. 

In the development of a software project, testing is a 
labor-intensive and expensive process which may 
account for 50 percent of the total project cost. 
Therefore, more effort is needed in the definition and 
organization of the testing processes. Between them, the 
construction of test cases is an important aspect, 
because it directly affects the effectiveness of the whole 
process. 

However, the specific testing practices in querying 
XML repositories are scarce, even when important 

errors can affect critical applications, such as e-
commerce applications or web services. The XPath 
query can specify a complex process which needs to be 
tested, not only at a syntactic level (the XPath 
expression), but also at a functional level. Because the 
semantics of XPath queries are similar to SQL queries, 
other problems are related to ones found in the database 
applications [1] [9], such as the lack of a specific 
methodology for the construction of the test cases and 
the design of the initial load. 

In this work, we present a technique that permits the 
design of the test input data (XML documents) for 
functional tests of XPath queries. The test data 
generation is based on the Category-Partition Method 
(CPM) [8] by means of the automatic identification of 
categories, choices and constraints in the XPath query. 
Because the categories are related to functional 
characteristics of the query, our approach generates test 
input data specifically addressed to test functional 
properties of XPath queries.  

The rest of the paper is organized as follows. 
Section II outlines the related work and the background 
concepts of XML, XPath and CPM. Section III 
describes each of the procedures used in the application 
of CPM to XPath, starting with an algorithm for the 
identification of categories and choices, then describing 
the construction of test frames and ending with the 
procedure to automatically generate test input data as 
instances of the test frames. Finally, conclusions and 
future research are presented in Section IV. 

II. BACKGROUND 

A. Related Work 
The approaches that address the problem of testing 

the access of XML repositories are limited and all 
recent. In general, they can be classified in two 
categories.  

The first implies the use of tools to analyze and 
validate XML documents with regard to schemas, for 
example IBM Scheme Quality Checker, or generate 
XML documents from a schema, for example XML-
DIG.  

tuya
Cuadro de texto
Copyright  © 2006 IEEE. International Conference on Software Engineering Advances (ICSEA)



<Univ> 
    <Prof id="0"> 
      <Name>John</Name> 
      <Type>A1</Type> 
      <Sub> 
        <Cod>SWE</Cod> 
        <Hours>3</Hours> 
      </Sub> 
      <Sub> 
        <Cod>PRG</Cod> 
        <Hours>3</Hours> 
      </Sub> 
    </Prof> 
    <Prof id="1"> 
      <Name>Mary</Name> 
      <Type>A2</Type> 
      <Sub> 
        <Cod>SWE</Cod> 
        <Hours>5</Hours> 
      </Sub> 
    /Prof> 
</Univ> 

 

Figure 1.  An XML document sample and its hierarchical representation 

The second approach is based on the adaptation of 
classical testing techniques used in other systems. Li 
and Miller [6] use a mutation-based technique to test 
the semantics correctness of XML Schema. They define 
a set of mutation operators, which can be used to detect 
some faults in the schema. Figueiredo et al [4] define a 
test process that involves generating XML documents 
with some modifications with regard to the original. 
Then they use queries in these documents to validate 
the schema. The approach is fault-based and, therefore, 
classes of faults that may be present in the XML 
Schema are identified. In [7] a partition method based 
on boundary values to generate XML documents from 
an XML Schema is presented. The generated XML 
documents are used to validate web services. 

The major difference between the previous 
approaches and ours is that in the former the testing 
process is based only in the schema structure. In our 
work, functional tests are systematically generated from 
the both XPath and XML Schema implementation. 

B. XML 
Extensible Markup Language (XML) [11] is a 

hierarchical markup language used to describe semi-
structured data in a way that is independent of its 
appearance. The XML documents are structured using 
tags, where the data is placed between <tag> and 
</tag>. Fig. 1 shows a well-formed XML document 
and its hierarchical representation with data about a set 
of professors and the subjects that they teach in a 
university. 

Sometimes, the XML documents must be valid with 
respect to schema, which defines the hierarchical 
structure and data types of the elements. The schema 
can be defined with a set of grammatical rules using 
Document Type Definitions (DTD) or using XML 

Schema [13]. In general, XML Schema offers more 
facilities to define and manage data types. 

C. XPath 
XML Path Language (XPath) [12] is a declarative 

language based on expressions used to navigate and to 
access the elements of an XML document. An XPath 
query is formed by one or more location paths. Similar 
to the file path in the operating systems, a location path 
specifies the access to elements in the XML document. 
Analogous to SQL language, XPath queries also can 
specify filters by means of predicates (“[ ]”). 
Intuitively, the XPath queries are evaluated from left to 
right and the result is the set of the elements in the 
XML documents that satisfy the expression. For 
example, /Univ/Prof[Type="A1"]/Name over 
the document of Fig. 1 returns the names of the 
professors with type A1 (the element John). 

D. Category-Partition Method 
In software testing, the term partition testing 

encompasses a set of strategies of test case construction 
that is based on the partition of the input data into a set 
of classes. Between them, the Category-Partition 
Method (CPM) [8] is frequently used, because it 
provides a systematic approach to the generation of test 
cases. CPM consists in the separation of data input into 
a set of categories that represent the main 
characteristics of the software (for example “Professor 
Type” in the query of Section II.C). Each category is 
divided into a set of choices that represent the different 
values which they can take in the category, assuming 
that every value in a category will produce a similar 
behavior (for example, “Professor Type=A1” or 
“Professor Type≠A1”). Then, it is necessary to detect 
constraints between the different choices in order to 
construct valid combinations of choices or test frames. 

Univ

Prof (id = 0) Prof (id=1)

Name Sub

John

SWE

Cod Hours

3

Sub

Cod Hours

PRG 4

Name Sub

Mary

SWE

Cod

5

Hours

Type

A1

Type

A2



Lastly, the test cases are generated as instances of each 
test frame. 

III. PARTITION TESTING FOR XPATH QUERIES  

A. Basic Definitions 
In order to provide a mechanism to generate XML 

documents and capture the most important 
characteristics, we define a model for XML Schema. 
The representation is based on the Regular Tree 
Grammars (RTG). 

Definition 1. An XML Schema X  is a tuple <E, A, 
D, N, R, n0> where: 

• E is a finite set of elements 

• A is a finite set of attributes 

• D is a finite set of data types 

• N is a finite set of non-terminal symbols  

• R is a finite set of production rules divided into:  

o Non-terminal production, NTR: rules 
of the form n→e(re), where n∈N, 
e∈E and re is a regular expression 
over N 

o Terminal production, TR: rules of the 
form n→a(d), where n∈N, a∈E or 
a∈A and d∈D 

• n0∈N, is the initial symbol 

Example 1. A schema for the XML document in 
Fig. 1 could be X U = <E, A, D, N, R, n0>, where: 

• E = {Univ, Prof, Name, Type, Sub, Cod, 
Hours} 

• A = {id} 

• D = {string, integer} 

• N = {n0, nP, nT, nS, nI, nN, nC, nH}  

o RNT={n0→Univ(nP*), nP→Prof(nI 
nN nT nS*), nS→Sub(nC nH)} 

o RT={nI→id(integer), 
nN→Name(string), 
nT→Type(string), nC→Cod(string), 
nH→Hours(integer)} 

Definition 2: An XPath query Q is an expression 
that can be formed using the following grammatical 
rules: 

exp ::=  l  |  exp op exp  |  const 
l ::=  r  |  /r  |  //r  
r ::=  p |  r/p  |  r//p 
p ::=  .  |  ..  |  e ([exp])* 

The above syntax specifies that an XPath query is 
formed by location paths (represented by l) and 
constant values (represented by const) with basic 
logic and relational operators (represented by op). The 
location paths can be absolute or relative. The absolutes 
start by / (child axis) or // (descendant axis). The 
relatives (represented by r) consist in a list of steps 
(denoted by p) connected with / or //. A step can be a 
self reference (.), a reference to parent element (..) or an 
expression formed by element names (e) and a 
sequence of predicates (represented by [exp]*). 

Example 2: The XPath query QU 
/Univ/Prof[Type=”A2”]/Sub[Hours>4]/Co
d over the document of Fig. 1 returns the subject codes 
of the subjects having hours greater than 4 and taught 
by a professor of the type A2. In the example, this 
query returns the element SWE. 

Definition 3: A path tn for the element en∈E in a 
schema X describes the access from the root element of 
the X S to en, tn=/e1/e2/.../en, ei∈E. A query path tq for 
the query Q is a path in X for the desired element 
obviating the predicates. A predicate path tp is a path in 
X for a predicate in Q, tp=/e1/e2/.../ek op v, ei∈E, op is a 
relational operator and v is a constant value. Therefore, 
a query Q is formed by a query path and zero or more 
predicate paths. 

Example 3: The query QU of the Example 2 is 
formed by one query path /Univ/Prof/Sub/Cod 
and two predicate paths, one for each predicate in QU, 
/Univ/Prof/Type=”A2” and 
/Univ/Prof/Sub/Hours>4, respectively. 

B. Identification of Categories and Choices 
Next, we detail an algorithm that allows identifying 

the categories and choices for a query Q and a schema 
X. The categories are represented between “< >” and 
the choices between “{}”. A choice {e} in the category 
<C> is denoted as {C:e}. 

Step 1. For each predicate path tp=/e1/e2/.../ek op v: 

• Construct the category <Ck> corresponding to 
the element ek (if it does not exist). 

• Construct at least the choices {Ck:op v}, 
{Ck:!op v} and {Ck:=∅}1 (if they do not exist). 

                                                        
1 It should be noted that more choices could be defined based on the 
relational operator of the predicate. For example, for the operator 
“>”, the choices {Ck:>v}, {Ck:=v} and {Ck:<v} could be considered 



TABLE I.  CATEGORIES AND CHOICES FOR QU 

Path Step Category Choices 
/Univ/Prof/Type=”A2” 1 <Type> {Type:≠”A2”} {Type:=”A2”} {Type:=∅} 
/Univ/Prof/Sub/Hours>4 1 <Hours> {Hours:>4} {Hours:=4} {Hours:<4}{Hours:=∅} 
/Univ/Prof/Sub/Cod 2 <Cod> {Cod:=∅} {Cod:≠∅} 
/Univ/Prof/Sub 4 <#Sub> {#Sub:=0} {#Sub:>0}  
/Univ/Prof 4 <#Prof> {#Prof: =0} {#Prof:>0} 
/Univ 4 <#Univ> {#Univ:=0} {#Univ:>0} 
/Univ 4 <Univ> {Univ:=∃} {Univ:≠∃} 

 

Step 2. For the query path tq=/e1/e2/.../em 

• If em is a leaf element in X, construct the 
category <Cm> (if it does not exist), with at 
least the choices {Cm:=∅} and {Cm:≠∅} (if 
they do not exist). 

• If em is not a leaf element in X, construct the 
category <#Cm> (if it does not exist), where the 
symbol “#” represents “number of”, with at 
least the choices {#Cm:=0} and {#Cm:>0}, (if 
they do not exist). 

• Moreover, if m=1 (em is the root element of the 
schema), construct the category <Cm> with two 
choices {Cm:=∃} and {Cm:≠ ∃}. 

Step 3. Construct the set T of all paths which are 
sub-paths of tq, T={tq

m-1, tq
m-2,..., tq

1} 

Step 4: For each tqi∈T, perform the Step 2. 

Next, we illustrate the algorithm over the schema 
XU and the XPath query QU, both described in the 
Examples 1 and 2 in Section III.A, respectively. 

Step 1. For the predicate path 
/Univ/Prof/Type=”A2” the category <Type> is 
constructed with the choices {Type:=”A2”}, 
{Type:≠”A2”} and {Type:=∅}. For the path 
/Univ/Prof/Sub/Hours>4, the choices 
{Hours:=4}, {Hours:>4}, {Hours:<4} and {Hours:=∅} 
are constructed. 

Step 2. For the query path 
/Univ/Prof/Sub/Cod, the choices {Cod:=∅} and 
{Cod:≠ ∅} are constructed. 

Step 3. T = {/Univ/Prof/Sub, /Univ/Prof, /Univ}. 

Step 4. This step generates the choices {#Sub:=0}, 
{#Sub:>0},{#Prof:=0}, {#Prof:>0}, {#Univ:=0} and 
{#Univ:>0}. Moreover, the path /Univ identifies the 
root element of the schema, therefore, the choices 
{Univ:=∃} and {Univ:≠∃} are also constructed. 

Table 1 summarizes the application of the algorithm 
for the query QU. For each category, the path, the step 
of the algorithm and the generated choices are 
represented. 

C. Test Frames Generation 
The next task in CPM consists in the combination of 

the choices in each category in order to form test 
frames. Then, the test cases are obtained from the test 
frames. In absence of constraints between the choices, 
the number of test cases that could be generated is 
equivalent to the product of the number of choices in 
each category (for example, in QU we obtain 384 test 
frames).  

However, many combinations of choices are 
impossible, because they can not form valid test cases. 
For example, a constraint in QU is that the choice 
{Univ:≠∃} can not be combined with any choices in 
any category. 

Given that, implicitly, the schema imposes 
restrictions in the construction of XML documents, 
these are used to obtain a set of useful constraints. 
Intuitively, if there is a category <#Ci> for the element 
ei with a choice {#Ci:=0}, this can not be combined 
with any choice corresponding to elements in an 
inferior level in the schema. The same is applicable for 
the choices in the form {Ci:≠∃}. These constraints 
applied over QU reduce the number of valid test frames 
to 300. 

An important additional characteristic of the test 
frames is the completeness. According to [1], a test 
frame F is said to be complete, whenever a single 
element is selected from every potential choice in F, a 
test case is formed. From the point of view of the 
testing, only complete test frames are useful. Moreover, 
they improve the effectiveness of the test and reduce the 
number of test cases that must be generated. Thus, the 
test frame {{Univ:=∃},{#Univ:>0},{#Prof:>0}} is 
incomplete for QU, because we need additional 
information over the values of the choices in the 
categories <Type>, <Sub>, <Hours> and <Cod> in 
order to form a test case for QU. Intuitively, a test frame 
for a query Q is complete if it contains choices that 
cover every element in Q, or, it contains choices in the 
form of {#C:=0} or {C:≠∃}. By considering these 
constraints, the number of test frames is reduced to 30. 

 



TABLE II.  TEST FRAMES FOR QU 

F1   = { {Univ:≠∃} } 
F2   = { {Univ:=∃},{#Univ:=0} } 
F3    = { {Univ:=∃},{#Univ:>0},{#Prof:=0} } 
F4   = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=∅},{#Sub:=0} } 
F5   = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=”A2”},{#Sub:=0} } 
F6   = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:≠”A2”},{#Sub:=0} } 
F7   = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=∅},{#Sub:>0},{Hours:=∅},{Cod: ≠∅} } 
F8    = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=”A2”},{#Sub:>0},{Hours:=∅},{Cod:=∅} }  
F9   = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:≠”A2”},{#Sub:>0},{Hours: =∅},{Cod:≠∅} }  
F10  = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=∅},{#Sub:>0},{Hours:=4},{Cod:≠∅} }  
F11  = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=”A2”},{#Sub:>0},{Hours:=4},{Cod:=∅} }  
F12  = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:≠”A2”},{#Sub:>0},{Hours:=4},{Cod:≠∅} }  
F13  = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=∅},{#Sub:>0},{Hours:>4},{Cod:≠∅} }  
F14 = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=”A2”},{#Sub:>0},{Hours:>4},{Cod:=∅} }  
F15 = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type: ≠”A2”},{#Sub:>0},{Hours:>4},{Cod:≠∅} } 
F16  = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=∅},{#Sub:>0},{Hours:<4},{Cod:=∅} }  
F17 = { {Univ:=∃},{#Univ:>0},{#Prof:>0},{Type:=”A2”},{#Sub:>0},{Hours:<4},{Cod:≠∅} }  

 

With the goal of reducing even more the number of 
test cases, we can impose other constraints related to 
the fulfillment of a certain coverage criterion [14]. Note 
that, the test frames generated fulfill the multiple 
condition criterion, because the complete test frames 
cover every possible combination of valid choices.  

A less strict criterion could be the multiple 
condition coverage applied only in the choices 
corresponding to the predicates of the query. For 
example, in QU only every possible combination of 
choices in the categories <Type> and <Hours> are 
considered, but not in the category <Code>. This 
criterion reduces the number of test frames to 18. Table 
2 shows the complete and valid test frames generated in 
the query QU by applying the multiple condition 
coverage criteria to the choices related to the predicates 
of the QU. 

D. Test Input Data Generation 
Using the complete test frames for the query Q, each 

test case is generated selecting a value from each 
choice. Given that for a query the number of choices 
can be greater, the automatic support for the test case 
generation is an important feature to consider.  

In a previous work [3], we presented a technique to 
generate test input data for XPath queries using test 
specifications. As test generator, the model checker 
SPIN [5] is used. The schema X is represented as a 
finite state system, where the states are the XML 
elements of the schema and each production rule 
defines a transition between the states. Additional 
insert, modify and delete transitions are provided to the 
finite state system in order to perform changes in the 
elements. The test specification is translated to a 
temporal logic formula that negates the specification. 
Thus, a counterexample is obtained showing the 

inconsistency of the negation. For example, if the test 
specification is “there are professors with type A2”, this 
is translated to a temporal logic formula that states 
“there is not a professor with type A2”. The obtained 
counterexample shows an instance of X (XML 
document), where there are professors with type A2. 

The test frames obtained by applying the procedures 
described in the previous sections represent detailed 
specifications of the test input data. Therefore, we use 
the previous approach to automatically generate XML 
documents as test input data. For each test frame {c1, 
c2,...,cn}, where ci are choices, a temporal logic formula 
[]!(c1∧c2∧...∧cn) is created, where [] represents 
the always operator in temporal logic and ∧ is the logic 
operator AND. Such property asserts that instances in 
the schema X fulfilling the conditions represented in 
each ci never exist. Fig. 2 shows the test input data 
(XML document) for the test frame F13 in the Table 2 
obtained following the previous procedure. 
<Univ> 
    <Prof> 
      <Name>P1</Name> 
      <Type></Type> 
      <Sub> 
        <Cod>S1</Cod> 
        <Hours>5</Hours> 
      </Sub> 
    </Prof> 
    <Prof> 
      <Name>P2</Name> 
      <Type></Type> 
      <Sub> 
        <Cod>S2</Cod> 
        <Hours>6</Hours> 
      </Sub> 
    </Prof> 
</Univ> 

Figure 2.  Test input data for the test frame F13 



IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a technique based 

on category-partition that permits the functional test for 
XPath queries. We have described a systematic 
procedure for the automatic identification of categories 
and choices from the XPath expression. Such procedure 
enables the generation of some constraints to generate 
valid and complete test frames, and how they are used 
to construct XML documents as test input data. The 
process is fully automatic. This aspect must not be 
considered as a total replacement for the intervention of 
the engineer in order to complete and/or refine 
categories, choices or constraints. Even when CPM has 
been used before in “informal” functional 
specifications, in this paper we have applied it to obtain 
functional tests from XPath and XML Schema 
implementations.  

The main future line of work is addressed to 
reducing the number of generated test frames by means 
of the definition of adequacy criteria for the query. In 
this way, the analysis of relations between choices and 
test frames will be considered. Once completed, we will 
perform experimentation to measure the effectiveness 
of the test case generated. 

ACKNOWLEDGMENTS 
This work was funded by the Ministry of Education 

and Science (SPAIN), National Plan of I+D+i, under 
the projects IN2TEST (TIN2004-06689-C03-02) and 
REPRIS (TIN2005-2479-E). 

REFERENCES 
[1] D. Chays, Y. Deng, P.G. Frankl, S. Dan, F. Vokolos, E.J. 

Weyuker: “An AGENDA for testing relational database 
applications”. Software Testing, Verification and Reliability, 
vol. 14, no. 1, pp. 17-44, 2004. 

[2] T.Y. Chen, P. Poon, T.H. Tse. “A choice relation framework 
for Supporting Category-Partition Test Case Generation“. IEEE 
Transactions on Software Engineering, vol. 29, no. 7, pp. 577-
593, 2003. 

[3] C. de la Riva, J. Tuya, J. García-Fanjul. “Testing XPath queries 
using model checking”. In Proceedings of Fourth Workshop on 
System Testing and Validation, 2006, pp. 45-52. 

[4] M.C. Figueiredo, S. Vergilio, M. Jino. “A Testing Approach 
for XML Schemas”. In Proceedings of 29th Annual 
International Computer Software and Applications 
Conference,2005, vol. 2, pp. 57-62. 

[5] G.J. Holzmann. The SPIN model checker: Primer and 
Reference Manual. Addison-Wesley, Boston, Massachusetts, 
2003. 

[6] J.B. Li, J. Miller. “Testing the semantics of W3C XML 
Schema”. In Proceedings of 29th Annual International 
Computer Software and Applications Conference, 2005, vol. 1, 
pp. 443-448. 

[7] J. Offutt, W. Xu. “Generating test cases for web services using 
data perturbation” ACM SIGSOFT Software Engineering 
Notes, vol. 29, no. 5, pp. 1-10, 2004. 

[8] T.J. Ostrand, M.J. Balcer. “The Category-Partition Method for 
specifying and generating functional tests”. Communications of 
the ACM, vol. 31. no. 6, pp. 676-686, 1988. 

[9] M.J. Suárez-Cabal, J. Tuya: “Using an SQL coverage 
measurement for testing database applications” ACM 
SIGSOFT Software Engineering Notes, vol. 29 , no. 6 pp. 253-
262, 2004. 

[10] A. Vakali, B. Catania, A. Magdalena. “XML data stores: 
emerging practices”. IEEE Internet Computing, vol. 9, no. 2, 
pp. 62-69, 2005. 

[11] World Wide Web Consortium, Extensible markup language 
(XML) http://www.w3.org/ XML/ (accessed June 2006). 

[12]  World Wide Web Consortium. XML path language (XPath). 
http://www.w3.org/ TR/xpath/ (accessed June 2006). 

[13] World Wide Web Consortium, XML schema. 
http://www.w3.org/XML/Schema/ (accessed June 2006). 

[14] H. Zhu, P.A.V Hall, J.H.R. May. “Software unit test coverage 
and adequacy”. ACM Computing Surveys, vol. 29, no. 4, pp. 
366-427, 1997. 

 




