
1

Testing a Network by Inferring Representative State
Machines from Network Traces

Nancy Griffeth, Yuri Cantor, and Constantinos Djouvas
The City University of New York

345 Fifth Avenue
New York, NY

Abstract— This paper describes an innovative approach to
network testing based on automatically generating and analyzing
state machine models of network behavior. The models are
generated by the network test tool AGATE (Automatic Generator
of Automata for TEsting), which is also described in this
paper. The proposed test approach mimics experimental method,
requiring repeated cycles of observing the network, modeling
the network, making predictions about network behavior, and
evaluating predictions.

This paper focusses on the modeling step, in which the test tool
AGATE automatically generates representative state machines
from observed network traces. The generated state machines
closely approximate the behavior of components of the network
under test. Faults in the system may be immediately apparent
from the state machines, but more importantly the state machines
can be used for formal analysis. We propose this as a cost-effective
alternative to manually defining a state machine before beginning
tests.

I. I NTRODUCTION

Network testing can be quite difficult due to non-
deterministic behaviors, unpredictable interactions of large
numbers of components, and the variety of equipment and
software involved in a network. A failure that occurs at a
vulnerable point in the execution of a protocol can have a
catastrophic effect, while the same failure at any other point
is benign. It is therefore crucial to support network testing with
formal models that allow analysis of the network and of the
effectiveness of the testing. However, experience has shown
that formal models are rarely available before a networked
system is tested [6], [11].

Because of this, we propose an experimental approach
to network testing, illustrated in Figure 1 and described in
more detail in [10]. The target modeling language is I/O
automata [25].

The approach can be summarized as follows:

1) Prepare. Determine the requirements for the network.
In our experiments, we state the requirements as trace
properties of I/O automata, thereby avoiding the need
for detailed modeling.

2) Iterate. Repeat until the tester develops a high level of
confidence that the model is representative of the actual
network behavior.
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Fig. 1. The test process.

a) Observe.Design and run tests. The output of the
tests is a collection of network traces, as created
by tcpdump or ethereal, in libpcap format.

b) Model.Generate timed I/O automata models of the
processes running in the network.

c) Analyze.Prove the required properties for the au-
tomata or find counter-examples. In our experi-
ments, we use PVS[27] for theorem-proving and
GMC2[12], [14] for model-checking.

II. BACKGROUND

We use timed I/O automata (TIOA) to model network
behavior [20], [25]. TIOA provide an integrated model of time,
a natural composition operator for automata, and tools for
converting TIOA to other forms. For example, tools have been
developed to convert TIOA to the automated theorem-proving
system PVS[27] and are being developed to convert them to
the randomized, Monte-Carlo model checker GMC2[13].

This work is motivated by experience with protocol confor-
mance testing and interoperability testing. Most importantly,
the seminal work of David Lee and others[1], [15], [23], [24]
illustrates the power of formal models in testing. Many authors
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have subsequently developed models for test case generation,
verification, or model-checking of network protocols[3], [5],
[7], [17], [29], [19].

The biggest problem that testers encounter with applying
formal methods to testing is that formal models are seldom
available until years after the software has been implemented
in the network. Also, much software is proprietary, so that
testers do not have the option of generating a model from the
software, but must develop their own model.

Generating state machines from a network trace is closely
related to synthesis of state machines from message sequence
charts (MSCs). MSCs for important scenarios of a network
protocol are commonly seen in requirements documents, but
state machines are much less common. Thus synthesizing state
machines from MSCs is a useful step toward using a formal
model to generate test cases and perform other analyses of the
requirements.

A number of researchers have described algorithms for syn-
thesizing state machines from MSCs. Kruger et al[21] define
semantics for MSCs and describe an algorithm for defining
Statecharts[16] from MSCs. Alur et al[2] give answers to
some questions raised by this use of MSCs: Is a collection of
MSCs realizable by state machines for the components? Can
a state machine be synthesized from a collection of MSCs?
Are additional, possibly undesirable MSCs implied by the
collection, and can they be identified?

Generating state machines from network traces is motivated
differently and raises different issues. We generate the state
machines in order to analyze what the system actually does,
rather than what it should do, and then ask if what it does is
correct. Important issues include how to obtain network traces
that cover enough behaviors to generate a representative state
machine; how to use such a state machine to find errors and
anomalies in the system under test; and how to create a state
machine that can be interpreted by a tester.

Our approach reverses an important approach to protocol
conformance and interoperability testing, which requires using
a state machine to generate an optimal set of test cases [1], [8].
For that kind of testing, the state machine must be available
before the implementation can been tested.

Developing a model of the system to be tested can be
extremely time-consuming for present-day protocols. For ex-
ample, TCP was first standardized in RFC 793[28], in 1981. In
most cases TCP models have been only partial[32], [9], [31].
A complete model of TCP[6] was developed 24 years after
the TCP standard, and reportedly took a full 9 staff-years to
develop.

Another, more efficient approach is to model-check the
code itself. This was done quite successfully in developing a
switching software for a voice over IP gateway [18]. Another
interesting use of this method was testing TCP [26]. However,
this is possible only if code is available; often, when testing
a network, the code is proprietary.

Our approach is also related tomachine identification[23],
[4], which describes algorithms for identifying a finite state
machine by observing its input/output behaviors. Some of the
assumptions cannot be satisfied in the testing environment,
however. In particular, there is no way to know how many

states the state machine has.
Instead of trying to determine exactly what state machine is

executing, we seek to use network traces and tester knowledge
of the intended workings of the protocol to approximate the
state machine more and more closely on successive iterations.

III. T HE AGATE ALGORITHM

The goal of the algorithm is to construct I/O automata cor-
responding to the components involved in a networked system,
such that every observed network trace could be generated by
executing the constructed automata. The automata may also
generate additional traces, which can reasonably be inferred
from observed network traces.

In fact, we may find it convenient to generate and then
compose different automata for a single network component,
each managing a different activity in the component. For
example, a DHCP server incorporates two important activ-
ities: One is communication with its clients and the other
is determination of which IP address to offer a client. We
generate one automaton to manage communication between
client and server and a second automaton to manage IP
address allocation. These automata are simple to generate and
their composition emulates the behavior of a single network
component doing both.

A. Roles of fields in messages

Generating an automaton from a set of traces requires
making some assumptions about the way the components use
the fields in the messages. We assume first that there are
related sequences of messages, which we callsessions, and
that each session is uniquely identified by the values of one
or more fields (thesession identifiers). We assume that the
way a component processes a session is the same, regardless
of the exact values of the session identifier fields.

An example of a session is a TCP session. A single TCP
session transmits a single stream of data. Thesession identifier
fields are the IP address and port for the source and the
destination.

Another example is a DHCP communication session. The
session identifierfield is the transaction ID. A DHCP session
includes all the communication between a DHCP client and
a DHCP server, involving the client’s requests to lease and
repeatedly renew a lease on some IP address.

A second type of DHCP session manages allocation of the
IP addresses, and involves all the messages between clients
and servers involving a single IP address. In an IP session,
the IP address may be allocated to one client after another.
(Of course, correct behavior requires that it be allocated to at
most one at a time.)

The fields identifying separate components of the networked
system areautomaton identifiers. For a TCP session, automata
are identified by IP address and port. For a DHCP session,
server automata are identified by the server IP address and
client automata are identified by the client hardware address.

A message contains other identifying fields in addition to
session and automaton identifiers. These fields identify objects
of interest in the session, for example, an offered IP address
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in a DHCP session. The values of these fields are arbitrary,
and different values will be treated similarly by the networked
components. We call such fieldssymbolic, and we assume that
any permutation of the values of the symbolic fields in a legal
session results in another legal session for the automaton. The
concept of symbolic field is closely related to the concept of
data independencein model checking[22]. Roughly speaking,
a protocol is data independent with respect to a data type if
the only operation performed on the data type in the operation
of the protocol is to test it for equality. It would appear that
fields are symbolic for a protocol exactly when the protocol
is data independent with respect to the type of the field.

For example, a requested IP address is an arbitrary identifier
in DHCP. Clients and servers treat the IP address in the same
way, regardless of its value. Similarly, the offered IP address is
an arbitrary identifier. The server ID is an arbitrary identifier to
the client; the client hardware address is an arbitrary identifier
to the server.

The remaining fields are either ignored (invisibleto AGATE)
or regular, meaning that they are significant in the state
changes in the generated state machine.

A tester must be able to identify the types of the fields
in order to use AGATE. This is not a particularly high bar,
since the tester must know the network and the protocol well
enough to identify errors in the traces. This certainly requires
that the tester knows and understands the use of the fields in
the messages.

The state machine generation algorithm uses an xml file, like
the one shown in Figure 2, to define the fields in a packet. The
file is based on a Packet Details Markup Language (PDML)
and NetPDL, which have been developed for a Windows-
based network analyzer [30]. PDML is also one output format
provided by the network analyzer Ethereal. Field attributes are
specified by keywords such as name, size, and so on. Optional
fields typically follow the fixed fields, and are usually encoded
as〈type, length, value〉 triples. The example shows how these
are defined using a combination of a loop and a case structure.

Finally, the automaton field(s), session identifier field(s),
regular fields, symbolic fields, and invisible fields are identified
are the representation of the fields in the messages has been
defined.

B. The Algorithm

In this section, we describe the automated construction of a
session state graph. The session state graph is a directed graph
representing a finite state machine. Equivalent sequences of
messages follow the same paths through the graph. Equiva-
lence of sessions is defined as follows.

Definition 1. Let m1, ...,mk andw1, ..., wk be two
sequences of messages. Denote the value of fieldf
of a message bym(f). Then we say thatm1, ...,mk

is equivalentto w1, ..., wk if
1) For each regular fieldr and eachi, mi(r) =

wi(r).
2) For each symbolic fieldp and eachi, there is

a permutationπp of the values ofp such that
πp(mi(p)) = wi(p).

<proto name="DHCP">
<fields>
<fixed name="op" />
<fixed name="htype" />
<fixed name="hlen" />
<fixed name="hops" />
<fixed name="xid" size="word" />
<fixed name="secs" size="short" />
<fixed name="flags" size="short" />
<fixed name="ciaddr" size="word" />
<fixed name="yiaddr" size="word" />
<fixed name="siaddr" size="word" />
<fixed name="giaddr" size="word" />
<fixed name="chaddr" vector="16" />
<fixed name="sname" vector="64" />
<fixed name="file" vector="128" />
<fixed name="magic" size="word" />
<loop>
<looptype type="while" oper="1"/>
<fixed name="opcode"/>
<switch>
<case value="50" >
<includeblk name="IPRequest"/>
</case>
<case value="51" >
<includeblk name="leaseTime"/>
</case>
<case value="53" >
<includeblk name="msgType"/>
</case>
...
</switch>
</loop>
</fields>

<block name="IPRequest">
<fields>
<fixed name="len"/>
<fixed name="address" size="word"/>
</fields>
</block>
<block name="leaseTime">
<fields>
<fixed name="len"/>
<fixed name="time" size="word"/>
</fields>
</block>

<block name="msgType">
<fields>
<fixed name="len"/>
<fixed name="type"/>
</fields>
</block>
...
</proto>

automaton servID
session xid
symbolic yiaddr, chaddr, IPRequest
regular leaseTime, msgType
invisible op, htype, hlen, secs, flags, ciaddr,

siaddr, giaddr, sname, file, hops

Fig. 2. Message definition file for DHCP Server automaton. This definition
was used to generate the automaton in Figure 3. For readability of the
examples, we select just a few key fields to work with:servID is the server
id, xid is the transaction id,yiaddr is the IP address offered by a server,
chaddr is the client hardware address, andIPrequest is the IP address
requested by a client. The only regular fields areleaseTime , which is
the number of minutes proposed for the lease, andmsgType , which is the
message type.

An efficient representation of messages permitting efficient
determination of the equivalence of sessions is defined in
Section III.C.1.

C. The Session State Graph

We outline the AGATE algorithm for constructing a session
state graph here and expand on the details in subsections
III.C.1, 2, and 3.

1) Partition the network trace at a component intosessions
according to the values of the session fields and map
the symbolic fields to the normal representation of their
values (defined in the Section III.C.1).

2) Define a tree corresponding to the messages in the trace,
using the above equivalence relation (section III.C.2).

3) Roll up equivalent branches of the tree from the leaves
(section III.C.3). The motivating idea is that if the set of
futures of two states are identical (i.e., the set of possible
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traces starting in those states), then the states themselves
are indistinguishable from outside the automaton and
therefore we can combine the two states.

1) Representing values of symbolic fields.:In this section,
we define a representation for the symbolic fields of messages
that allows efficient determination of the equivalence of mes-
sages and hence of sessions, which are sequences of messages.

For each session, the algorithm converts the values of the
symbolic fields to theirnormal representationto make them
easier to process in subsequent steps. The normal represen-
tation is used to determine efficiently whether two sessions
are equivalent. The normal representation seems to be a rather
obvious way to represent such values, but since we have not
yet seen it discussed in the literature we present it here.

Definition 2. Given any sequence of values
x1, ..., xk, define the normal representation
n1, ..., nk of the sequence as follows:
(1) ni = nj if there is aj < i such thatxi = xj

(2) ni = size({xj |j < i ∧ xj 6= xi}) otherwise

In other words, the first time a value appears in a se-
quence, its value in the normal representation is equal to
the number of distinct values that appear before it in the
sequence. For example, the normal representation of the se-
quencea, a, d, a, b, c, a, b, d is 0, 0, 1, 0, 2, 3, 0, 2, 1. Note that
the first value in the normal representation of any sequence
is 0. We can use of the normal representation in place of
the actual values, because if two sequences of values over
a domain are related by a permutation of the values in the
domain, then their normal representation is the same, and vice
versa.

Define thenormal representationfor a sequence of mes-
sagesm1, ...,mk as a sequence of messagesm′

1, ...,m
′
k with

the property that each sequence of symbolic field values
m′

1(pj), ...,m′
k(pj) is equal to the normal representation for

the sequencem1(pj), ...,mk(pj). We can determine the equiv-
alence of sequences of messages efficiently using the normal
representations.

Two sequences of messagesm1, ...,mn and
w1, ..., wn are equivalent if and only if the normal
representations of the messages are equal in the
regular and symbolic fields.

2) Building the session state graph.:A session state graph
is constructed so that there is a pathp1, ..., pk from the root to
a leaf for any sequence of messagesm1, ...,mk. Each edgepi

is labeled by the normal representation of the corresponding
messagemi. The tree has the property that two sessions follow
the same path fork steps if and only if the sequences of
messages consisting of the firstk messages in each session
are equivalent.

1) The first step is to initialize the tree, with a single start
state (the root of the tree).

2) Add the first session to the tree. Suppose the first session
has messagesm1, ...,mn. Then after adding the first
session, the tree has a single path starting at the root.
The edge below the root has labelm1; the next edge on
the path has labelm2; and so on, to the edge above the
leaf, which has labelmn and primary messagemn.

3) Repeat for each session: To process each subsequent
sessionw1, ..., wn in the trace, find the path with the
largestk such thatw1, ..., wk is the same asm1, ...,mk.

a) w1. Choosing the first edge requires finding the
edge below the root such that the edge labelm1 has
the same values asw1 in the regular and symbolic
fields.
If there is no messagem1 on an edge below
the root with corresponding regular and symbolic
fields equal, then create a new edge below the root
with label containingw1 and having a new state at
its child end. The remaining messagesw2, ..., wn

will be the edge labels for a new path beloww1.
b) wh+1. Assume that after processing the firsth

messages, the sequence of messagesw1, ..., wh

follows a path leading to statesh in the tree.
If there is an edge whose label ismh+1 has the
same values for regular and symbolic fields as
wh+1, then the sequence of messagesw1, ..., wh+1

leads to statesh+1 at the child end of the edge.
If there is no such edge, add a new edge belowsh

and usewh+1 as its label. The node at the child
end of the edge is a new state.

Theorem 1.Two sequences of messagesm1, ...,mk

andw1, ..., wk lead to the same levelk node of the
tree (i.e., to the same state) if and only if they are
k-equivalent.

Proof: By induction onk.
3) Combining equivalent subtrees.:The motivation of this

part of the algorithm is the idea that two states are the same
if no subsequent step of the automaton distinguishes between
them.

All the leaves are the same state, i.e., the terminating state.
Two states that are parents of leaves are the same state if
they have the same number of edges below them and if the
primary messages on the edges are equivalent to each other,
i.e., they have the same normal representations. Such states are
combined by the automaton generation algorithm, by throwing
away one of the states and connecting the edge above the
discarded state to the remaining state.

Subsequently, two states atk levels above the leaves are
the same state if they have the same children after rolling
up all levels up to levelk − 1 above the leaves and if the
messages on the edge to each child are equivalent. As before,
after the algorithm has determined that two states are the
same, it removes one state and connects its parent edge to
the remaining state.

A tester needs to be careful that the test run doesn’t end until
all sessions have reached some form of termination. Otherwise,
there will be incomplete sessions in the network trace, so that
messages that should only occur in the middle of a session will
appear to be at the end. This will cause AGATE to combine
some states that are not actually equivalent

IV. EXAMPLES.

We show three examples of session state graphs. The first
(Figure 3) was taken from a small LAN using a LinkSys router,
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Fig. 3. This DHCP session state graph was created from a trace taken on a
small LAN. It includes 14 DHCP transactions (sessions).

and illustrates the communication session state graph obtained
from normal operation of a DHCP server.

This figure contains four kinds of sessions:

1) States S1-S2.Sessions requesting a previously allocated
IP address, immediately after connection to the network.
In all cases, the requests were denied.

2) State S10.Sessions releasing an IP address.
3) States S3-S6.Successful allocation of an IP address.

The loop on state S3 indicates that multiple identical
DISCOVERS were sent from the client.

4) States S3-S4 and S7-S9.Successful allocation of an
IP address. This differs from the previous successful
allocation in that two IP addresses were offered and
these sessions accepted the second. If they had accepted
the first, state S9 could have been combined with S6 and
S8 with S5.

Figure 4 is included to illustrate an IP allocation session
state graph that might be observed on a correctly operating
DHCP server. This represents some sessions that a tester would
expect to see after generating a state machine from actual
network traces, assuming that the DHCP server is correct.
The left branch shows an IP address that was reallocated to
one client after initial connection to the network, followed by
allocation to a second client after the first left. The right branch
shows initial allocation of an IP address to one client and then
to another.

Fig. 4. This DHCP session state graph illustrates some sessions that might
be seen with a reasonably correct server.

Figure 5 illustrates a session state graph for IP address
allocation. This was obtained using a network trace from an
ISC DHCP server with faults injected. Thus the state machine
deviates from the expected state machine in several ways.
The session state graph records the attempted allocation of
two IP addresses to four clients on a single LAN. Dotted
boxes isolate separate transactions. Some of the transactions
are clearly incorrect - for example, the REQUEST leading
to state S1 is an INIT-REBOOT, which received a NAK, but
the OFFER should be a response to a DISCOVER in a new
transaction, not a response to a request in the same transaction.

V. CONCLUSIONS ANDFUTURE WORK

The next step is to apply formal tools to the generated I/O
automata. One such tool is PVS. The theory group at MIT
has built a TIOA to PVS converter, so that we can convert
automata directly to a form that PVS can process. The two
most important properties of DHCP are:

1) Never allocate overlapping leases on an IP address to
two clients; and

2) Allocate an IP address when possible.

We will experiment with proofs of these properties. Also,
as the examples indicate, some properties involving correct
sequencing of messages should probably be proven as well.
We will also run these experiments on the DHCP failover
protocol.

Another important step is to use timing information in the
construction of the automata. We are collecting the set of
elapsed times between messages when we build the session
state graph, and plan to use this to infer timeouts and timed
triggers. As with the roles of fields, we think that some
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Fig. 5. This DHCP session state graph organizes sessions by the IP addresses.
DHCP transactions are contained in the dotted boxes.

information from the programmer - such as the use of the lease
time in DHCP - will be necessary to make this successful.

Clearly, the quality of the test results will ultimately depend
on running the test cases that expose the faults in the code.
We plan to examine ways of using the generated session state
graphs to explore parts of the state space that may have been
neglected.

Although it was not the intent of this work, this approach
may support reverse engineering a system. It also appears that
the session state graph may support better network monitoring
by providing a useful summary of a network trace.
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