
SOA-aware Authorization Control

Christian Emig, Heiko Schandua, Sebastian Abeck
Cooperation & Management, Universität Karlsruhe (TH)

{emig | schandua | abeck}@cm-tm.uka.de

Abstract

The question how to handle authorization of digital

identities in a service-oriented architecture (SOA)
remains an open issue. In this paper we present a
design pattern for the integration of legacy systems
with SOA using out-of-the-box (unmodified)
application servers and discuss how the architecture
has to be extended by an Identity Management (IdM)
infrastructure. We claim that the IdM infrastructure
itself must be designed in a service-oriented way to fit
into the overall SOA approach. We introduce a
possibility how to decouple the policy enforcement
point from the application server and propose an
architectural design pattern to seamlessly integrate the
SOA’s business-related functionality and the IdM
infrastructure. An implementation case study
illustrates how to apply the invocation pattern for
secured web services.

1. Introduction

Currently most companies use web service
technologies as their first step towards SOA. However,
SOA can not be built from scratch but rather the
functionality of the existing legacy systems and their
components are being wrapped to web service
interfaces. This not only eases their integration but also
enables business analysts to perform so-called
Programming-in-the-Large, the orchestration of
business-related services along business processes [1,
2].

The mass and complexity of the existing and
upcoming specifications in the web service security
area like WS-Security, SAML, WS-Trust, WS-Policy
or the Liberty Alliance’s stack proposal make software
developers often neglect the web service security part
at first. This is why, as yet, the existing web services in
most cases have little or no identity management
features. Hence web service invocations are simply
“trusted” by default. Complication increases when
composing several web services which provide

functionality from different underlying applications.
To benefit from the advantages of SOA, the
composition of two or more web services is
implemented using the Business Process Execution
Language (BPEL, [3]). This is where missing identity
management becomes an obstruction and that is the
reason why web services should be secured by a
sophisticated identity management solution [4, 5].

The question how to integrate the existing
applications, especially their internal identity
management, remains. The migration of existing
applications to SOA is an important step for the
protection of the companies’ investments. These legacy
systems have to be hooked into SOA. To achieve this
goal, their (mainly) proprietary interfaces considering
their communication protocols and interface
description have to be wrapped to WSDL interfaces [6]
and SOAP communication [7], being the lowest
common denominator in SOA. Application servers are
used for this adaption. In the context of SOA the
application servers are just a means to an end so their
internal parts should be rather transparent for both the
software developer involved in the application
integration and the upper part of the SOA itself. For the
sake of flexibility, the application servers should be
interchangeable, at least if staying in the same of the
two hemispheres: the Java/J2EE world or the
Microsoft .NET part. Ensuring flexibility and
transparency at the level of the employed application
servers regarding the identity management aspects is
the key driver for the work in this paper.

In this paper we focus on the core web service layer
[8] where the application servers reside and where the
context change from SOA to application specific
identity management has to take place. A central
question is where to put the necessary IdM
infrastructure elements and why. We suggest applying
design patterns at the core web service layer to solve
this challenge. In this paper we set up on the design
patterns secure service proxy (SSP) and intercepting
web agent (IWA) [9] that will be discussed in chapter 2
and enhance them for a better fit to SOA.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

The succeeding chapters are organized as follows:
Chapter 2 treats the related work in the combination of
SOA with the authorization part of IdM. The two
software design patterns intercepting web agent (IWA)
and secure service proxy (SSP) are introduced and
discussed. Chapter 3 builds up on these patterns and
introduces our approach how to add security to web
services that are implemented using existing (legacy)
systems with out-of-the-box application servers. In
chapter 4 the policy enforcement point is focused upon.
In chapter 5 the application of our approach is
illustrated using a concrete case study. In chapter 6 an
evaluation comparing our solution to the existing
approaches is given. A conclusion and an outlook on
future work in this area close the body of the paper.

2. Related Work

In [9] security patterns and best practices for
identity management in the context of web services are
addressed. Among these there are two patterns
introduced that have a strong relationship with the
security layer in SOA: the secure service proxy (SSP)
and the intercepting web agent (IWA).

The SSP pattern is suggested to be applied in
scenarios when wrapping legacy systems as a whole
for integration purposes and is derived from the
generic proxy design pattern which is enriched for
security by forming a policy enforcement point (PEP).
There are two aspects that have to be thought about:
First of all, the signatures of the methods in the
existing system should not change as there is a very
tight coupling between the proxy and the addressed
functionality in the system. Whenever there is a change
in signatures, the proxy itself has to be changed as
well. Additionally the SSP has to be enhanced (or a
new SSP has to be created) in case of new methods in
the backend systems. But the great advantage of an
SSP is the ability to transform protocols, for example a
transformation from a HTTP/SOAP to a proprietary
protocol. This is achieved by the complete decoupling
of the requesting subject from the requested object. So
what the SSP does is to cut off all the communication
from the client, to enforce the corresponding security
policies by calling its associated policy decision point
(PDP), optionally to transform the protocol and format
and then to call the destination method of the legacy
system. Finally the way back goes as well through the
SSP which can perform protocol transformation if
necessary. An important point is that the service
requestor (subject) does not get in touch with the
destination service (object) itself at all. If a security
context for the destination service is needed, this job is
done by the SSP and masked for the service requestor.

The strong relationship between the SSP and the
system to proxy leads to much work in software
development as the SSP has always to be recoded
when changes occur in the backend. This does not only
comprise identity management related functionality,
but the business-related one as well. That is what led to
the design pattern intercepting web agent (IWA). The
idea of the IWA is to act like a “door steward” that has
never to be replaced when changes at the protected
services occur. The IWA acts as a PEP which is
technically speaking realized as a component that is
hooked into a container like a web server or application
server as an “entrance” module. There it is added to the
communication queue and listens to the incoming
requests. For every request it verifies the authorization
by asking the corresponding PDP and either lets the
request pass through or rejects it without letting the
requestor get in touch with the desired resource.
Typically this is implemented as a module – like
mod_access in the Apache web server, or a handler
within the Apache Axis SOAP engine. Though this
approach is highly flexible to changes with the
protected backend services as it does not rely on
method signatures, the problem is that the IWA is
strongly bound to a specific application server. For
each combination of application server and PDP
(represented quite often in an IdM-Suite), an individual
IWA has to be implemented considering the
architecture of the application server which often
differs strongly.

In [10], a typical authorization architecture with the
following logical actors is discussed: The subject (e.g.
a user) wants to access an object (e.g. an service). The
authorization architecture (which is part of the identity
management architecture) involves a policy
enforcement point (PEP) that takes care of requesting
authorization decisions and enforcing them. It has to
intercept the requests of the users and ask the policy
decision point (PDP) if the user is authorized. The PDP
evaluates the applicable policies and builds the
authorization decision (deny / permit) upon that. The
paper focuses on the realization of the combination of
PDP and PEP and applies the IWA design pattern.
There a JAX-RPC message handler for the Apache
Axis SOAP engine is used, which results in a very
tight coupling. The major weakness of this approach is
that for each application server (like JBoss, BEA, …)
further handlers have to be developed. A strong
binding to the technology of the application server is
introduced.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

3. The Secure Service Agent (SSA)

As discussed in the previous chapters, an
appropriate solution for identity management is a
prerequisite to establishing service-oriented
architectures. The central question is where to place the
necessary IdM infrastructure elements as PEP and PDP
and why. [9] introduces the SSP design pattern which
is hard to apply in SOA as it is necessary to generate
an individual proxy for each method (operation) in the
existing systems. This is both laborious and
unnecessary. The IWA design pattern on the other
hand solves this problem but introduces a very tight
coupling to the application server where the service is
deployed. This sets up unnecessary constraints and
reduces flexibility at the service provider, which is
fixed to application servers that are supported by the
developer of the IWA.

For that reason we decided to combine and enhance
the existing approaches and to create a design pattern
that we call “Secure Service Agent” (SSA). It is based
on the SSP and IWA pattern but the PEP is moved out
of the internal part of the web or application server and
both the proprietary and the close binding of the PEP
to the server itself is reduced. So a central feature of
the SSA is to achieve the same flexibility as with the
web service deployment: web services should be
deployable without change apart from the specific
deployment descriptor at any application server of the
same kind (Java/J2EE vs. MS .NET).

Application Server

Web Service Wrapper Component

Business Related
Component (BRC)PEP

Component
(SSA) :PEP_Invoke

Legacy System

Policy Server WSDL/
SOAP

Proprietary
Interface

WSDL/
SOAP

Client

SOAP Engine

SOA Credentials Technical User
Legacy Environment

Web Service
Wrapper Component

PDP
Component

Figure 1: Secure Service Agent – Component

Diagram

Figure 1 describes the relevant elements of this

approach:

1. On the right hand side is the legacy system,
whose functionality is to be exposed via web services
for easiness of integration and reuse in SOA.

2. In the middle there is the application server that
catches the proprietary interface. This is handled by a
business-related component (BRC) which is deployed
at the application server and wrapped to a web service

using the application server’s web service wrapper
component.

3. The PEP is developed as a stand-alone
component that is deployed at the application server.
As a major difference to the IWA design pattern, the
PEP is not hooked into the web service wrapper
component which leads to much work considering the
adaption to exactly suit for the concrete web service
wrapper – with hard coded support for the combination
of security protocols that have to be applied. To give
an example what problems might arise by doing so:
Even if staying with the same web service wrapper,
like Apache Axis for instance, there is the need for
adoption if the next version is released. Not even to
think of changing to JBoss or BEA etc. As application
servers are just a means to an end this is the reason
why we decided to put the PEP both out of the web
service wrapper as well as out of the application server
internal part. This enables flexible deployment at
application servers within the same basis framework
(Java/J2EE vs. MS .NET).

4. The PDP is implemented at a policy server which
is usually external to the application server and should
be equipped with a SOA compatible WSDL / SOAP
interface. Loose coupling and static interfaces enable
the service-oriented usage with different application
servers.

5. The client uses its SOAP engine to communicate
with the web service.

We focus on the second and third point, the
definition of the PEP component. We suggest splitting
up the PEP into two elements. First, a single PEP
component, that is not fixed to one specific application
server – this can be achieved by using standard design
like a stateless session bean (EJB) in the Java/J2EE
context. Secondly a simple PEP_Invoke, that is
implemented in each component deployed at the
application server. As this invocation has a
standardized and fixed signature, the extension of the
business-related code to the IdM-related part can be
done automatically using toolsets in software
developer’s integrated development environment
(IDE), to ensure that he is not to be asked for as
regards content. Putting the IdM relevant parameters to
the SOAP body offers the chance to bypass the
proprietary internals of the application server and do
the IdM handling in the applications server’s “user
space”. This is a promising achievement as most
security standards require that all servers in integration
scenarios have PEP modules which are capable of
handling the defined combination of security standards.
We call this design pattern with the split-up PEP with
small PEP_Invoke and a flexibly deployable PEP

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

component “Secure Service Agent” (SSA) as an
enhancement of SSP and IWA to web services.

The following chapter focuses on the combination
of the PEP component (SSA) and the corresponding
PEP_Invoke that has to be inserted to the BRCs.

4. The SSA-compliant PEP Component

As discussed in chapter 3, we suggest keeping the
signature of the PEP_Invoke as generic as possible to
avoid going back for adapting the security part if
changes occur and to ensure not to burden the software
developer but to handle this automatically using tools.

Considering the BRC component, there is no further
security shield maintained by the application server. If
the BRC wants to use the IdM infrastructure,
instantiated in the PEP and PDP components, it is
invited to simply add the generic PEP_Invoke into its
program code.

The signature of the PEP’s service interface offered
towards the BRCs has to comprise the following items:

1. The SOA security token of the subject (usually
the user). This is the (temporary) session token issued
to the user at the SOA’s portal after successful
authentication which is completed in a separate
process. The token could be a XML-style document
like a SAML token.

2. The identification of the object (e.g. the service)
that is to be invoked. In the web service context this
has to be at a granularity of operations. The
identification of the object is needed so that the PDP
can match it against the policies, if authorization exists.
To ensure the uniqueness of this identifier, it is
reasonable to build upon the identifier that is used in
the service registry (e.g. UDDI). This enhances the
useful coupling between the registry and the policy
decision point.

3. The set of parameters that has been attached to
the service invocation. This might be necessary for the
PDP as it is possible that a subject can perform action
on an object dependant of the applied parameters. This
enables the evaluation of fine-grained security policies.

There is no need that the business-related
component itself is capable of identifying,
authenticating or authorizing the requesting subject. It
simply has to transparently pass through the given
information to the PEP component. This ensures that
the security-related functionality is minimal in the
business-related component. Furthermore it is
important to notice that at the BRC the realm of the
SOA credential ends. If the PDP confirms
authorization, the BRC is meant to connect to the

backend system using a technical user’s credentials
(might be equipped with a higher access level). So the
authorization part of the backend system is
externalized to the PDP.

The following shows an OMG IDL [11] description
of the interface of the PEP towards the BRCs:

module SSA
{
interface PEP2BRC
{
 void PEP_Invoke
 (
 in char[] subject_soa_security_token,
 in string object_id,
 in string[] parameters,
 out boolean authorization_decision
)
};

Figure 2 depicts the dynamic aspects of the SSA
pattern using a sequence diagram:

Client SSA
(PEP)

Policy Server
(PDP)

Business-Related
Component

(BRC)

Send Request

Validate Semantic Correctness
(Check for Authorization)

Verify Syntactic
Correctness

Forward IdM-related Part
(PEP_Invoke)

Deny or
Perform Action

Send back Authorization
Decision

Figure 2: Secure Service Agent – Sequence

Diagram

The client sends a request to the BRC. Both the

business-related parameters, as well as the subject’s
SOA security token (e.g. temporary session ticket) are
transmitted from the client to the BRC which forwards
them, as described above, to the PEP (PEP_Invoke)
together with its object identification. The SSA then
verifies the syntactic correctness of the token, first of
its bare existence then if it has the appropriate
structure, for instance a SAML assertion or simply an
array of char / byte. After confirming the syntactic
correctness, the SSA starts communication with the
external PDP. The complexity of this web service
communication was one of the reasons for splitting of
the PEP into two elements.

The SSA forwards the subject’s session token, the
objects identification and the subject’s parameters
within an XACML statement to the PDP. There the
actual policy decision takes place, resulting in an

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

XACML answer to the SSA. This answer is then
transformed by the SSA to a yes/no reply and sent back
to the BRC. Upon the Boolean answer it either denies
the request or performs the desired action.

From the view of the BRC, the PEP_Invoke is quite
similar to a remote procedure call, with the following
pseudo code:

if (PEP_Invoke(
subject_soa_security_token,
object_id, parameter[]) == FALSE)
{

end all operations and exit;
}
// business-related functionality
follows here

As both the BRC and the PEP component reside on

the same application server, there is no need for
complex and expensive web service style invocations,
but internal access structures like RMI can be used, if it
is a Java-based application server like JBoss.

5. Implementation Case Study

In this chapter the application of the SSA pattern
within an integration project being pursued at our
university is presented. We focus on two different
applications needed in the administration process for
generating certificates after students have passed an
exam. One of these two systems is SAP Campus
Management [12], the higher education component for
the SAP R/3 enterprise resource planning system. SAP
CM is internally built up with SAP’s ABAP code stack
and is not shipped with built-in web services interfaces.
To get SAP R/3 web service compatible, there is the
Java Connector (JCo) which is an adapter for Java to
call SAP’s proprietary interfaces. With SAP only
deploying JCo, there is the intrinsic limitation to the
Java framework. This is why the application server in
our scenario is favored to be Java-based. Because
established decentralized IT structures are in use at the
university, the centralized usage of a fixed application
server for the complete university is not feasible. We
decided to use JBoss 4.0.3 SP1, a J2EE-conforming,
open-source application server for deploying the
business-related component, providing the service for
the getExamResult() method of SAP CM that was
deployed as an Enterprise Java Bean (EJB). Combined
with JBoss comes an adapted version of Apache Axis
(WS4EE), a web service wrapper component. The
second application which had to be integrated is a HR
System of HIS GmbH, which is quite popular at
German universities but will not be discussed here

further. It is used to obtain the relevant personal core
data of the students (getPersonalCoreData).

JBoss Application Server

getExam-
Result (EJB)

PEP_Invoke

SAP R/3
Campus

Management

JBoss
Application Server WSDL/

SOAP

Proprietary
Interface

WSDL/
SOAP

Oracle BPEL
Process Manager

BPEL Process
createCertificate()

JCo_Invoke

getPersonal-
CoreData (EJB)PEP

(SSA)
EJB, stateless
session bean

PEP
(SSA)

EJB, stateless
session bean

Proprietary
Interface

PEP_Invoke

HTTP_Invoke

RMI

RMI

A
BA

P

WS4EE (based on Apache Axis)

WS4EE

PDP
EJB, stateless
session bean

1

2

3

9

12
11

4

5 6

7 8

10

Proprietary
Interface HIS

HR System

SOA Credentials Technical User
Legacy Environment

Figure 3: Case Study – Implementation

Architecture

Figure 3 shows the implementation architecture.
The IT-support for the business process of certificate
creation starts with the Oracle BPEL Process Manager,
where the BPEL Process provides the
createCertificate() composed web service. The
getExamResult web service is called using SOAP
communication (1). The parameters of the web service
include the matriculation number of the student whose
certificate is to be created as well as the SOA security
token of the invoking subject, which is further passed
through all SOA layers. These parameters are caught
by the WS4EE component in JBoss. To keep the
integration process free of unnecessary bindings to the
application server, both JBoss and WS4EE are used in
the out-of-the-box version. The business-related code
for the getExamResult component was developed in
advance and finally the PEP_Invoke was added before
deploying the EJB. Though not being complex for the
software developer, the last step could be simplified
using automated deployment tools. When registering
the getExamResult web service to the UDDI, a UUID
was assigned that we use as the object_id in the
PEP_Invoke. After deserialization by the WS4EE
component, the getExamResult EJB is locally called
using RMI/JNDI passing through all parameters (2).
The first step inside the getExamResult EJB is to do the
PEP_Invoke to the SSA. This call is done using RMI
as well and passes by the subject’s parameters as well
as the service’s object_id (3). After a syntactical check,
it is SSA’s job to marshal this data and to handle the
web service communication with the external PDP (4).
In a secondary JBoss, a centralized PDP was deployed
as an EJB, which is not in the focus of this publication
(5). The Boolean return value is propagated back via
the SSA to the business-related EJB getExamResult (6)
(7) (8). In case of failure, the EJB simply stops and

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

sends back an error message, in case of success the
functionality of the backend SAP system is called.

It is important to notice that here the change of the
user contexts takes place. The SAP system is called
using a technical user with (almost) full rights to the
SAP system. This has three major advantages:

1. The policy decision is evaluated at only one
place: centrally in the SOA.

2. If backend systems have a pay-per-user concept,
it would be necessary to pay for a license for every
single user that might access the system – in the
university context this can easily be more than 10,000
people.

3. There is no need for password synchronization to
ensure that the BRC has the correct credentials to call
the backend system.

Finally the XML-based data is sent back to the
calling BPEL process (10) (11) (12) that carries on
with further calls until the final certificate is created.

6. Comparison and Evaluation

With the transparency of the IdM-related security
information that is simply passed through like
business-related parameters, there is a high flexibility
if changes in both application servers as well as applied
security standards occur. This is why the integration
project can start without the predefined decision which
application server is to be used for integration and
which security standards to apply.

When comparing the three design patterns SSA,
IWA and SSP, the first aspect is the flexibility and the
dependencies of the patterns. Focusing on the
application server, the IWA hooks into its internal
processing handlers which leads to a tight coupling and
in IT environments with different application servers,
there has to be an individual IWA for each different
server. The SSA solves this problem by moving out of
the internal part to the application server’s containers.
This enables the developing of an SSA component that
can be deployed in different servers of the same basis
framework (Java/J2EE vs. MS .NET). The SSP is not
meant to touch the application server’s internals and
should be therefore transparent in this respect.

Taking a look at the applied security standards, it is
the case that specific IWAs have to be developed for
the combination of specific application servers with
specific security standards. Having the need for the
knowledge of the interns of the application server, it is
not easy to develop a matching IWA on one’s own
compared to the SSA where it is sufficient to know

how to apply the security standards. In this respect the
SSP is comparable with the SSA.

The security part of this evaluation is examined by
looking at the shielding of the business-related
component. Whilst in the IWA scenario the ‘door
steward’ is positioned directly at the application
servers internal queues preventing communication to
the BRC, in both the SSA and the SSP environment
communication is meant to pass-through from the
calling party to the BRC which itself takes care of the
policy enforcement. It is important to recognize that
the SSA and the SSP are only concerned with policy
enforcement - and attacks like denial of service can
still be detected and rejected by general filters at the
application server or even before at systems in the
communication path.

Having a look at reusability the SSA has great
advantages over the IWA as it avoids the tight coupling
to the application server. When staying in the same
framework like Java/J2EE, it is only needed to change
the application-specific deployment descriptor to
deploy the SSA component on a different application
server. Considering the complexity for the software
developer of the business-related part, the SSP highly
burdens as there is a tight coupling between the BRC
and the legacy application. Each operation is meant to
be published individually. Both the SSA and the IWA
do not focus on this.

When considering performance aspects it has to be
said that the most expensive operations are not inside
the three patterns but in the communication to the PDP.

7. Conclusion and Further Work

In this paper an approach how to enforce access
control in integration scenarios especially when
migrating existing systems into SOA has been
presented. Based on the Secure Service Proxy (SSP)
and the Intercepting Web Agent (IWA) the design
pattern “Secure Service Agent” (SSA) that is more
focused to SOA has been introduced and its
practicability in a case study has been demonstrated.
The SSA was very useful in a scenario where different
organizations with heterogeneous IT systems tried to
integrate their applications using an SOA approach. In
a divide-and-conquer like process, each organization
unit tried to make their existing applications web
service compatible which is a highly individual
approach. The flexibility in respect to the application
server on the one hand and the security protocols on
the other hand allow a great decoupling of the
business-related aspects and the security ones.
Software developers of the business-related part think
about the change of their software artifacts to service-

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

orientation without the fear of blocking points at
security. With the standardized way of interaction with
the PEP, services can be combined with IdM at a later
stage.

The next steps necessary when considering an
identity management infrastructure for service-oriented
architectures are to think about the upper layers of
SOA. On the integration layer and on the process layer
technologies like BPEL are applied. The question is
how to secure them or if it is even necessary to secure
them if the underlying web services are protected?
Which security specifications fit best at which layers?
Another area to be investigated is the architecture of an
SOA conforming PDP – how should it be constructed
and how can the policies of the underlying systems be
integrated with the overall policies of the SOA?

8. References

[1] Frank Leymann: Web Services - Distributed Applications
without Limits, Business, Technology and Web, Leipzig,
2003.

[2] Christian Emig, Jochen Weisser, Sebastian Abeck:
Development of SOA-Based Software Systems – an
Evolutionary Programming Approach, International
Conference on Internet and Web Applications and Services
ICIW’06, Guadeloupe / French Caribbean, ISBN 0-7695-
2522-9, February 2006.

[3] Organization for the Advancement of Structured
Information Standards (OASIS): Web Services Business
Process Execution Language (WS-BPEL), Version 1.1.
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

[4] Jason Bloomberg: Enterprise IdM: Essential SOA
Prerequisite, Zapthink Zapflash, September 2003.

[5] Ulrike Ostler: Safety first in Service-Orientierted
Architectures, silicon.de Portal, September 2005.
http://www.silicon.de/enid/druckfunktion/15607,4

[6] W3C: Web Services Description Language (WSDL),
version 1.1, March 2001.
http://www.w3.org/TR/wsdl

[7] W3C: Simple Object Access Protocol (SOAP) 1.1, May
2000.
http://www.w3.org/TR/soap/

[8] Ali Arsanjani: Service-Oriented Modeling and
Architecture, IBM developer works, 2004.

[9] Christopher Steel, Ramesh Naggapan, Ray Lai: Core
Security Patterns, Prentice Hall, ISBN 0-131-46307-1,
Oktober 2005.

[10] Eric Yuan, Jin Tong: Attribute Based Access Control
(ABAC) for Web Services, IEEE International Conference
on Web Services (ICWS 2005), Orlando Florida, July 2005.

[11] Object Management Group (OMG): Interface Definition
Language (IDL).
http://www.omg.org/gettingstarted/omg_idl.htm

[12] SAP for Higher Education & Research, Brochures &
White Papers: SAP Campus Management.
http://www.sap.com/industries/highered/pdf/BWP_Campus_
Mgt.pdf

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

