A Novel Framework for Test Domain Reduction
using Extended Finite State Machine

Nutchakorn Ngamsaowaros
Department of Computer Science,
Faculty of Science and Technology,
Thammasat University (Rangsit Campus),
Patumthani, 12121, Thailand
nng@cs.tu.ac.th

Abstract

Test case generation is an expensive, tedious, and error-
prone process in software testing. In this paper, test case
generation is accomplished using an Extended Finite State
Machine (EFSM). The proper domain representative along
the specified path is selected based on fundamental calculus
approximation. The pre/post-conditions of class behavior is
derived from a continuous or piece-wise continuous func-
tion whose values are chosen from partitioned subdomains.
Subsequent test data for the designated class can be gener-
ated from the selected test frames. In so doing, the domain
is partitioned wherein reduced test cases are generated, yet
insuring complete test coverage of the designated test plan.
The proposed modeling technique will be conducive toward
a new realm of test domain analysis. Its validity can also be
procedurally proved by straightforward mathematical prin-
ciples.

Keywords : Software Testing, Domain Analysis, Test Par-
titioning, Path Testing.

1. Introduction

Testing is an important stage of software development
and maintenance. It provides a method to establish con-
fidence in the reliability of software. It is an expensive
process in software engineering. Many researchers are in-
terested in this cost reduction. A difficult problem of testing
is automated test data generation in a small test suit that sat-
isfies the designated testing criteria.

Several approaches have been proposed in the literature
to reduce the number of test cases and to automate the test
case generation process, such as Combinatorial Black-Box
Testing Techniques [11] [4], Finite State Machine Based
Testing [5] [13] [9] [7], and Domain Testing [14] [10] [6].

Peraphon Sophatsathit
Advanced Virtual and Intelligent Computing
(AVIC) Center, Faculty of Science,
Chulalongkorn University,
Bangkok, 10330, Thailand
peraphon.s@chula.ac.th

However, manual generation of such test cases can be time-
consuming and error prone. The primary goal of this work
is to reduce the size of the input domain and be able to detect
faults in the same manner as combinatorial techniques.

Our approach is based on model-based test genera-
tion (MBTG) which can be modeled using formal descrip-
tion language like Specification and Description Language
(SDL). The model describes operations in terms of (1) Sys-
tem state S, (2) Input/Output parameters X, Y, and (3) Pre-
and postconditions on S, P. An Extended Finite State Ma-
chine (EFSM) can be extracted from the underlying model.
There are many approaches such as [8], [3], [12], and
[1] that make use of an EFSM/FSM representation from
MBTG. Then, test cases can be generated using structural
criteria on the extracted EFSM.

This paper proposes a new approach to generate test data
that combining black-box and white-box testing. We use
black-box testing which is based on domain partitioning by
means of a software function f that maps its input to out-
put. We use structural criteria on the EFSM, represented
by predicates, to partition and reduce input domains in the
same equivalence class to the same output, i.e., f(x) = f(y).
This implies that one input from each equivalence class pro-
vides 100% output coverage.

This paper is organized as follows. Section 2 describes
some basic concepts used in the proposed approach, EFSM
model, partition testing, and the fundamentals of domain re-
duction. Section 3 elaborates the proposed technique. The
essence of model application is given in Section 4. Some
benefits and possible extensions are summarized in the Con-
clusion. Future Work furnishes some inferences for new
courses of action.

2 Basic Concepts and Definitions

In this section, we describe some basic concepts which
will be used in the proposed approach. A few relevant defi-

nitions, notations, and assumptions are also provided.
2.1 System Model

The model-based test generation is an approach to gen-
erate test cases from a model-based specification which is
formal specification. It can be used as a prototype to bridge
the gap between user requirements and formal specification.
The model can serve both the purpose of specifying how the
system should respond to inputs from its environment and
to guide the selection of test cases. The model formulation
is elucidated below.

2.1.1 Extended Finite State Machine

Definition 1 Let X and Y be finite sets of input and out-
put parameters, and V' be a finite set of local and external
variables. Denote the domain of X,Y, and V by Dx, Dy,
and Dy, respectively.

An Extended Finite State Machine (EFSM) M over
X,Y,V,Dx, Dy, and Dy is atuple (S, s, f,T), where

1. S is a finite set of states,
2. sis the initial state,
3. f is the exit state,

4. T is a finite set of transitions from states ¢ — j, pro-
vided that 7,5 € S. A transition ¢t € T is a 7-tuple
(a’a T, U, Py Aa Y, a,)’ where

e a,a’ € S are the initial and final states of the
transition, respectively.

e z € X istheinputtoa andy € Y is the output
of a

e p: Dx x Dy — {True, False} is a predicate
function of the transition.

e A : Dx x Dy — Dy is the output parameter
function of the transition.

An EFSM consists of states (including an initial state and
a final state) and transition between states. A state transition
is triggered by an event provided that the enabling condition
is satisfied. When a transition is traversed, the correspond-
ing output parameter functions may be performed. An out-
put parameter function may manipulate variables, read in-
put, or produce output. An enabling condition is a boolean
predicate that may use EFSM variables and must evaluate
to TRUE in order to transit to next state. An EFSM can be
represented as directed graphs where states are denoted by
nodes and transitions by directed arcs. Figure 1 shows a
graphical illustration of an EFSM representing the specifi-
cations of mid() function. State 1 and state 6 denote initial
and exit state, respectively.

X ;iffysxsz)vfz<x<y)
mid(x, y, 2) = { yiif(x<y<z)v(z<y=xx)

ziffy<z<x)vixsz<y)

Figure 1. EFSM representing the specifica-
tions of mid() function.

2.1.2 Domain Mapping Function

As EFSM operations commence, the state changes while
executing the input parameters that subsequently trans-
formed into output parameters. These output parameters
will in turn become input parameters of the next state. Thus,
some input domain portion may be cut off during such tran-
sition through the path of execution using predicate function
(p) as shown in Figure 2 while traveling through the path 1-
2-4-6.

state 1 state 2 s‘ate 4 state 6
[12

Figure 2. Domain perspective in an EFSM
model (Dx =5 D} £23 DY)

A predicate function is an algebraic expression of input
and local variables related by one of the conditional opera-
tors {>, <,=, >, <, #}. The output value of this function
isTRUF or FALSE. If the value is T RU E, then it maps
the valid domain from node ¢ to the next node ¢ 4 1. Thus,
a predicate function restricts the space of program variables
to certain portions of the input domain. For example, the
predicate > 10 describes the portion of the input domain
of the incoming node that must be greater than 10.

To simplify the problem, predicate functions in this pa-
per are based on the following assumptions:

e The predicate functions are of numeric relationships.

e Domains are either finite integer (piece-wise) or con-
tinuous.

e predicate functions are of the forms

- 20y,
— 20Oc¢, or

- xOexp

where © denotes a relational operator {>, <, =, >, <, #},
c is a constant, and exp is an expression.

2.2 Fundamentals of Domain Reduction

From the previous example, an input domain may be re-
duced by getting rid of invalid subdomains. From Figure
2, the predicate function p maps the relevant domain from
node ¢ to the next node, reducing the size of the domain.
The invalid portions are thus discarded from the original
domain during such transitions.

To further elaborate domain reduction concepts, consider
a predicate function of two variables x and y. Let [l,, u,]
and [l,, u,| be the domains of z and y. And suppose that
the precondition is x > y. The six possible domain arrange-
ments of z and y are shown in Figure 3. The invalid portions
of z and y satisfying the predicate x > y are highlighted in
the Figure. From this example, additional premises can be
inferred that a domain may be reduced if

e variables are in the same convex domain, and

e variables are dependent.

f —
y r
- x — x
P A ey [—
(3) — 4)
¥ r
T & x
() et ey Y ——
—_—

Figure 3. The valid domains satisfying the
predicate = > y. The shaded areas are in-
valid domains

2.3 Hoare Triple Sequence

We utilize Hoare tipple to describe the formulation of the
proposed EFSM model.

Definition 2 Let a € S be an arbitrary state. An assertion
at a, denoted by g(a), can be evaluated to true or false. An
assertion of the preceding state a is called a precondition
P, and an assertion of the succeeding state a is called a
postcondition). The set of precondition and postcondition
are denoted by { P} and {Q}, respectively.

Definition 3 An execution sequence is a Hoare triple de-
noted by { P} M{Q}.

The precondition { P} is the condition representing se-
lected input value while the postcondition {Q} describes

the output domain. M is the assertion statements g(a) un-
der investigation.

Figure 4 demonstrates how Hoare triple is applied to the
proposed model. {P, D%} selects the input domain for use
by the EFSM, which in turn produces {@, Dy }. Further
analysis of the EFSM (M) reveals the path 1-M;-6 formed
by {(y > z), D’y) }M1{Q, Dy }. Using the precondition as
a domain mapping function and focusing on the dependent
variables, a series of progressive transitions can be estab-
lished to derive some expressions (predicates) representing
the path expression, or simply put state transition from i to
7. One such expression/predicate is the output of node 1 as
y > x which becomes the input of M;. Subsequent analysis
of M; can be carried out in the same manner.

™y
P, D. , D
{ g}_{ ersm (@00
i e
M.
M,

G ao 05 DY) (N5 DY NG)1 @ @)
N N o

Figure 4. Hoare Triple being applied to an
EFSM model

3 Domain of Partition Testing

Partition testing is a popular approach to generate test
cases from a model-based specification. This study employs
the technique to divide the input domain into subdomains,
whereby representatives of each sub-domain are selected to
generate the desired test cases from proper combination of
subdomains. Two input values are considered to be equiva-
lent if and only if the operations have the same behavior sat-
isfying the same preconditions of the specification. We will
introduce the data structure and its construction rules used
in the domain partitioned model. Figure 3 demonstrates
one-dimensional domain partitioning from the given pred-
icate. We will show how the same modeling approach is
extended to higher dimensions and more complicated pred-
icate functions in the sections that follow.

3.1 Domain Partitioned Model

The basic representation of input domain partitioning to
subdomains employs conventional tree notion. As shown
in Figure 5, the input domain denotes the root of the tree.
All intermediate nodes represent various hierarchies of par-
titions and sub-partitions. The leaf nodes denote test frames
generated from their corresponding parent partitions. The
data structure of such representation can be written as a 2-
tuple sequence of the form (p, D), where p is a predicate

function serving as the partition function and D is the set of
variables. The partition function is either predicates in an
EFSM or preconditions { P} from Hoare triple sequence.
The resulting domain subspace Z can be defined as

Zij = {(Pa DOX)v (plszl)a (piijin)}

where i € {1..m} and j € {1...n}.
The " domain at level k partitioned in n pieces can be
defined as

n

k. _ k+1
Di; = D5
=1

Figure 5. Domain partitioning tree represen-
tation

3.2 Test Frame Derivation

Analysis of partition function on a given input domain
utilizes principles of Calculus. The underlying input speci-
fication, preconditions, and predicates are taken into deriva-
tion. If the set of variables is continuous over the entire
input domain, the corresponding partition function will be
easily derived. On the contrary, should the above govern-
ing mandates do not come in concert with one another, the
set of variables may not be entirely continuous, but piece-
wise continuous. In which case, the representative function
must be separately derived, resulting in partitioned domain
functions. We illustrate the derivation by a few examples
as shown in Figure 6, where 6a and 6b demonstrate frame
derivation on linear and quadratic domains. The third exam-
ple (6¢) depicts the case of piece-wise continuous partition
function.

Thus, the valid domain can be estimated by the function:

n

S (uy — F(Ax)) Az

i=1

Uy —lg
n

where Ax = ' =i—1

However, it is not necessary to divide the rectangle in the
same width. The proposed partitioning technique by rec-
tangular approximation merely rests on Calculus principles
that are simple to automate the test process.

(a) (b)

x D<x<a,
y=9 ¢ a<x<h;cisaconstant
x bex

Figure 6. Examples of test frames derivation
using rectangular approximation

During rectangular approximation, each subdivision
D%, D% ;»D%.ij-D% ijx» - - determines not only how close
the approximation will be, but the granularity of test parti-
tions as Ax is successively refined, or equivalently deeper
traversal into domain partition tree. Upon stopping of sub-
divisioning, the path from D x to each leaf node will denote
an expression of the designated test frame. All variables,
preconditions, and input specification of that test frame will
constitute the desired test cases.

Each test frame can be described from the root node D x
to its leaf node 7;; as follows:

Tij = (lo <7 <ug) A(f(2) <y <wy)

where f(x) = p is a predicate function, [, is the lower
bound of x satisfying the function f(z), and w,, is the upper
bound of y satisfying the function f(x).

A test case, t, generated from a given test frame, 7;;, can
be expressed as

t={(z,y) € R2|lx <z < uy, f(x) <y <uy}

Once the test frame and its corresponding test cases are
obtained, a test path that forms the domain subspace Z is
applied to the EFSM for cross-validation on all precondi-
tions { P}, statements M, and postconditions {Q}.

The following comprehensive example describes the
process of test frame generation from domain partitioning.

Example Consider the test problem of Figure 1 which is
further elucidated in Figure 4. Suppose we want to generate
test cases which exercise the path 1-2-4-6. Let the initial
domains of z, y, and z be z,y,z€ [0....,99]. If we map the

domain to two dimensional graph, the initial domain cov-
ered by x and y will be the area bounded by the lines x =
0,z=99,y =0, and y = 99 which form a rectangle shown
in Figure 7(a). This domain is the input domain D% of Mj.
The predicate y > x (p1) enables the transition to the exit
state of My. This predicate function partitions D% into two
subdomains, namely D%m satisfying the condition y > x
and D}(’Q satisfying y < x, as depicted in Figure 7(b). The
reduced domain D! thus serves the test path 1-2.

Consider the next test path 2-4, rather than taking all
D}(J to be the input domain for M7, we further divide D}Q 1
into four test frames DY ;;, D% 15, D% 15, and D% |, us-
ing rectangular estimation principle of Calculus as shown
in Figure 7(c). Figure 7(d) and (e) illustrate the domain par-
tition on condition z > x.

The final transition from state 4 to 6 considers the rela-
tionship between the domains of y and z, superimposed on
the previous domain in Figure 7 (e). The final partitioning is
degenerated to lines bounding previously defined partitions
that represent only valid z.

It is worth noting that domain partitioning using rectan-
gular approximation can be performed at different level of
granularity. The above example utilizes four equal width
partitions D%{,u, D%{,12’ D}(’m, and D}(’M for illustra-
tive purpose only. In actual analysis, Az should be small
enough to closely approximate the predicate function in the

same manner as that of Calculus.

IT IR (T yex 100 frosssrmmmnennssnsnse” § =X 1m0 ran y=x
-— - : 1 —
' u
D. E o S o [P
50 50 S48y,
1
DI
ol @ m * 0 5 1w ¥ L 50 m ¥

j+34 4 Py y —
L) /o, ye:
[i0x m - Fox -
-] s 10 foeen T e S oFEx
i 1T am I S
Dr :
L2 |)
L 40y, u | i
F ;
] ,
o 50 o ¥ L @ m X A - Im' :
@ ® U]

Figure 7. Test frame generation for the path
1-2-4-6

3.2.1 Representation of Domain

For each execution state of the EFSM, the set of input pa-
rameters, as well as output parameters can be denoted by
X, and Y;, respectively, where X; = {X1,..., X}, and
Y; = {Y1,..., X, }. The region of each domain is repre-

sented by
ley < 21 < Uy, by <oy <oy,
lxg S xQ S uxg) ly2 S y2 S U;y2
ley, < Tm < Uz, ly, < oyn < ouy,
in matrix notation
1 T Uy i
lzz T2 Uz,
. <. <.)
ls,, i Im |, Uz |,
Zyl 1 Uy
l Y2 U
y y
o< <|.”
lyn i Ym i Uy, 13

or in final matrix form

Lx <X <Ux,Ly <Y <Uy

3.2.2 Predicate Function Representation

In the proposed EFSM model, a predicate function of an
edge between state ¢ and ¢+1 can be represented in a general
equation as follows:

A X! 4 A X2 4+ A, XMOC

where © is one of conditional operators {>, <,=,>, <, #
}. X[is a vector of variables =} at state 4, and A,, is a
coefficient matrix of vector X, A,, € C™*" of the form

Ty ail a2 e Q1m
n
- Ty ag1 a9 e Q2m
Xr = An =
xl a a a
m i ml m2 cee mm

For example, the predicate function yy > 22 represented
in equation as y — 2 > 0 denoted in matrix by

IRIBEEIER

4 Model Evaluation

To achieve the goal of the study, the following questions
are addressed:

1. How is the effectiveness measured?

2. How is cost reduction measured?

Two metrics are defined to answer the above questions
quantitatively.

The effectiveness is measured by the percentage of
domain-specification requirements covering the test model,
which can be simply estimated by summation of 7;;.
The domain-specification requirements are computed by
fli” (uy — f(x))dx. Thus, the effectiveness (VT') is evalu-
ated as follows:

VT YT
flum (Uy - f(z))dx

x

This study employs a simple bounded region which is
bounded by the lines x; =1, zo2 = ul, y1 = l;, and yo =
u’y Such a premise lends itself to exploit the benefits from
rectangular approximation as shown in the above example.
Each rectangular region (7;;) can be computed by

Tij = (up — 1) x (uy, — 1)

Table 1. VT of predicate function y > «

No.of 7 | z,y € [-20,...,20] | = € [—6,...,6],
y €10, ...,90]
1 13.0435 69.2308
2 56.5217 69.2308
4 78.2609 86.5385
8 89.1304 93.7500
16 94.4293 96.9952
32 96.9769 98.2359
64 98.2507 99.2713

The VT indicates the coverage of domain testing. Table
1 shows the resulting VT approaching 100% as the number
of 7;; increases. A corresponding test case for each 7;; is
generated. Therefore, if the results yield high VT, more
number of test cases must be generated accordingly.

The cost reduction measures how much the size of the
domain is reduced. To evaluate cost reduction, the selected
domain is compared with the initial domain. The ratio of
selected domain to the initial domain is therefore

k
D1 Ti

(uz — lz) X (uy —1y)

VS = x 100

5. Model Application

To generate test frames from an EFSM, a path from the
initial state to the exit state and the corresponding input do-
main must be specified. Preconditions are used to scope the
input domain. Predicates along the selected path are also
applied to progressively partition the domain, as well as to
check if the derived test frames are valid domain for the next
state. An algorithm for test frame generation is given below.

Input: Input domain Dx, specified path from initial
state to exit state.
Output: Set of test frames
CurrentState = s;
Tcurrentstate = 0; {Set of test frames of current
state}
Use precondition of transition to reduce the domain
of test frame;
while CurrentState # ExitState do
if TourrentState = () then
Partition domain into n test frames with
predicate function using rectangular
estimation method,
Add partition test frame into TcyrrentState
if Each test frame size is less than € then
if CurrentState # ag then
CurrentState = PreviousState
else
No solution found {not possible
domain partition}
end

end
end

else
Select some test frames to be the domain
of the next state and remove them from
TCurTentState;

CurrentState = NextState;

end
end
end

Algorithm 1: The test frame generation algorithm

Based on the definitions and representations of the pro-
posed domain reduction framework established so far, the
final EFSM of the sample program culminates to the fol-
lowing derivations which are summarized in Figure 8.

{Pa Dg{}MO{OOa@}
{(y > x)vD}(,l}Ml{ooa@}

{(z < 2), {ngl,D§(712,D§(713}}Mg{oo,®}

{(y > 2), {Dgf,na Dg’(,lzv Dg{,lS}}M?){(mid =z,Dy}

The initial input domain, under the given predicate func-
tion, is reduced by the ratio VS. The output parameter mid,
which is initially undefined, takes on designated interme-
diate results as the transition progresses, and is eventually
stabilized as the domain shrinks down by the ratio V1. Ex-
ecution of the EFSM terminates as it reaches the exit state.

The percentage of domain reduction is computed by

75

Vs = 1,000, 000

= 0.000075

St Predicate Input (Domain of) Test Frames
Ste
P Tunction Domain | Ve x ¥ z
] - p? 1 ["....,99] [D,...,99] [0,...,99]
1 [0,....24] [25,...,99] [0,....99]
2 [25,...,49] | [50,...,99] [0,...,99]
yex by,
1 . 3 [50,...,74] | [75....,99] [0,...,99]
4 [75,...,99] | [99,...,99] [0,....99]
yx nl, Discarded
D_i” 1 [0,....24] [25....,99] [24,...,99]
D.i;x 2 [25,...,49] | [50....,99] [49,...,99]
2 Izx
D_f';g 3 [50,...,74] | [75,....99] [74,...,99]
D;:y 4 [75,...,99] | [99,...,99] [99,...,99]
D_;tn 1 [0,....24] [25,...,99] [24,....24]
i 2 [25,...,49] | [50,...,99] [49.,...,49]
3 =
=4 Dl 3| (500,741 | 17500991 | [74.074]
Dl 4 [75,...,99] | [99,...,99]

Figure 8. Test frame derivation for the path
1-2-4-6

The VS indicates that the size of the initial input do-
main is reduced by 99.99%. Since there are only three valid
test frames, three test cases representing such test frames
from the above derivation of test path 1-2-4-6 are generated.
They are

1. x=22,y=25,2=24
2. x=35,y=50,2=49
3. x=50,y=75,2=74
The VT can be computed by

i1 377,500
2999 — z)de 500,000

=0.755

which implies that only 75.5% of the approximated subpar-
tition done at state 1 are used along the test path.

6. Conclusion and Future Work

The proposed domain reduction technique, simple as it
may seen, offers an effective means to carry out test do-
main analysis. This is due entirely to the simplicity yet
well-established of various fundamental principles, rang-
ing from Calculus, logic, to Linear Algebra. Such basic
building blocks furnish not only proven bases of formula-
tion and derivation, but straightforward application to un-
tangle some recalcitrant test problems that otherwise diffi-
cult to overcome by sole application of conventional meth-
ods. Nonetheless, the limitations of the proposed technique

lie in nature of input domain which must exhibit some con-
tinuity (either continuous or piece-wise continuous). We
envision that higher mathematics can be introduced to ac-
commodate such shortcomings, as well as an addition of
preprocessing stage to cluster discrete or non-numeric data
s0 as to be ready for subsequent processing, thereby conti-
nuity requirement can be dropped.

References

[1] S. Chanson and J.Zhu. A unified approach to protocol test
sequence generation. In IEEE Proceedings.Twelfth Annual
Joint Conference of the IEEE Computer and Communica-
tions Societies. Networking: Foundation for the Future.,
pages 1d.11-1d.19, 1993.

[2] T. Chen, P. lok Poon, and T. Tse. A choice relation frame-
work for supporting category-partition test case generation.
IEEE Transactions on Software Engineering, 29(7):577-
593, July 2003.

[3] K.-T. Cheng and A. S. Krishnakumar. Automatic generation
of functional vectors using the extended finite state machine
model. ACM Trans. Des. Autom. Electron. Syst., 1(1):57-79,

1996.

[4] D. M. Cohen, S. R. Dalal, M. Fredman, and G. C. Patton.
The AETG system: An approach to testing based on combi-
natorial design. [EEE Transactions on Software Engineer-
ing, 23(7):437-444, July 1997.

[5] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state ma-
chines. In Proceedings of International Symposium on Soft-
ware Testing and Analysis, pages 112-122, 2002.

[6] D. Hamlet. On subdomains: Testing, profiles, and compo-
nents. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 71-76, 2002.

[7]1 D. Lee. Principles and methods of testing finite state ma-

chines - a survey. Proceedings of IEEE, 84(8):1090-1123,

August 1996.

[8] D. Lee and M. Yannakakis. Testing finite-state machines:
State identification and verification. IEEE Trans. Comput.,
43(3):306-320, 1994.

[9] A. Petrenko, S. Boroday, and R. Groz. Confirming config-
urations in EFSM testing. [EEE Transactions on Software
Engineering, 30(1):29—-42, January 2004.

[10] S.D. Stoller. Domain partitioning for open reactive systems.
In Proceedings of the International Symposium on Software
Testing and Analysis, pages 44-54, July 2002.

[11] K.-C. Tai and Y. Lei. A test generation strategy for pair-
wise testing. IEEE Transactions on Software Engineering,
28(1):109-111, January 2002.

[12] H. Ural and B. Yang. A test sequence selection method for
protocol testing. IEEE Trans. Communications, 39(4):514—
523, 1991.

[13] C.-J. Wang and M. T. Liu. Generating test cases for EFSM
with given fault models. In Proceedings of IEEE INFO-

COM, pages 774-781, 1993.
[14] L.J. White and E. I. Cohen. A domain strategy for computer

program testing. [EEE Transactions on Software Engineer-
ing, 6(3):247-257, May 1980.

