
Agile Engineering of Internal Domain-Specific Languages
with Dynamic Programming Languages

Sebastian Günther, Maximilian Haupt, Matthias Splieth
School of Computer Science

University of Magdeburg
Germany

Email: sebastian.guenther@ovgu.de, maximilian.haupt@st.ovgu.de, matthias.splieth@st.ovgu.de

Abstract—Domain-Specific Languages (DSL) abstract from the do-
main entities and operations to represent domain knowledge in the
form of an executable language. While they solve many of the current
software development challenges, related literature claims that DSLs
usually have a flaw: The high effort required to implement and use
them. However, internal DSLs are developed with less effort because
they are built on top of an existing programming language and can use
the whole language infrastructure consisting of interpreter, compiler, or
editors. This article presents an engineering process for internal DSLs.
An agile process leads from analysis to design and implementation.
Expressions and language capabilities are implemented using tests and
a set of patterns, which provide reusable knowledge how to properly
structure and design the DSL implementation. As a case study, we
show how to implement a software product line configuration DSL
using Ruby and Python as host languages. In summary, the proposed
process and patterns facilitate the successful planning and developing
of internal DSLs using dynamic programming languages as the host.

Keywords-domain-specific languages

I. INTRODUCTION

Domain-Specific Languages (DSL) are tailored towards a spe-
cific application area [20]. They use domain-specific notations and
abstractions [29] to represent domain knowledge in a precise and
reusable form. Benefits of DSLs comprise efficient code reuse,
increased productivity and significant error reduction [10], [16].
DSLs cover diverse application areas, like healthcare systems [24],
financial products [1], or web applications [12]. A good overview
of all research topics in the DSL field can be found in [29].

DSLs are differentiated into their appearance (textual vs. graphi-
cal [6]), their origin (internal vs. external [10]) and their implemen-
tation (interpreter, compiler/generator, preprocessor, embedding,
extensible compiler/interpreter, commercial of the shelf, and hybrid
[23]). The origin is a crucial characteristic. External DSL allow to
define the language’s syntax and semantic freely, at the cost of
providing code-generators and editors. Internal DSL instead are
built on top of an existing programming language [23], which is
also called the host language. Several modifications and extensions
are applied to the host language in order to represent the domain.

External DSLs require considerable investments, as new lan-
guages, tools and techniques have to be learned. This investment is
only taken when the DSL has a profound impact on development
productivity [23]. In contrast, internal DSLs require less effort: De-
velopers can reuse the existing language infrastructure, consisting
of compiler, interpreter and editor. And since each DSL expression
is also an expression of the host language, the integration with other
DSLs, frameworks, and application written in the same language is
simplified. In our view, these benefits prevail possible constraints.

Our focus is internal DSLs – and we mean this specific type
whenever we speak of DSL in the following. In prior work, we

implemented several DSLs with the Ruby programming language.
One DSL expresses the configuration of software product lines with
their structure and constraints [18]. Another one enables to use
feature-oriented programming in Ruby by implementing features
as first-class entities inside a program [19]. We reflected and saw
that we used several steps in an iterative nature to analyze, design
and implement the DSL. We also used patterns to address DSL-
engineering specific problems.

This paper’s contribution is the summary of our own DSL
development experience: An agile DSL-engineering process using
patterns. Iterations combining analysis, design, and implementation
extend the DSL with new expressions or provide enhanced lan-
guage capabilities. Constant refactoring keeps the code base min-
imal and extensible. Patterns – meaningfully structured to support
several DSL-engineering concerns – provide reusable knowledge
how to properly structure and design the DSL’s implementation.
The process utilizes dynamic programming languages, because they
require less amount of code for programs [26], which increases
the languages readability, and their support for metaprogramming,
which has been reported to be beneficial in DSL-engineering
[9][11]. Using this process in the context of application devel-
opment allows DSLs to become by-products that immediately
increase the productivity for the current project and are eligible
for future reuse.

Section 2 explains the DSL-engineering process. We start with
explaining the general properties of our process, then explain the
phases, and finally the patterns. Patterns address the three DSL-
engineering concerns of Language Modeling (provide executable
form of the domain model), Language Integration (integrate the
DSL into the application framework and with other DSLs), and
Language Purification (improve language readability). Patterns will
be only summarized: a detailed explanation can be found in the ac-
companying technical report [17]). In Section 3 we present how the
process and the patterns are applied. We develop a DSL for the con-
figuration of software product lines, thereby using Ruby and Python
as host languages and showing the implementation side-by-side.
Afterwards, Section 4 discusses related work on DSL-engineering
process and implementation mechanisms. Finally, Section 5 con-
cludes this paper. We apply these formats: keywords, features, and
DSL expressions.

II. AGILE ENGINEERING OF INTERNAL DOMAIN SPECIFIC

LANGUAGES

The goal of our internal DSL-engineering process is to use as
much existing knowledge as possible. Therefore, the process uses
steps that are common to application development in general. In the



L
a

n
g

u
a

g
e

 D
e

s
ig

n Create language 

expressions

Conform to host 

language

L
a

n
g

u
a

g
e

 I
m

p
le

m
e

n
ta

ti
o

n

Write test

Refactor code

Apply patterns
Write code & 

conform to tests

D
o

m
a

in
 D

e
s
ig

n

Collect documents

Define concept 

meaning

Design Domain

Model

Figure 1: The Agile DSL-Engineering Process

domain design phase, the static and the dynamic domain model are
developed. The model expresses entities, attributes, relationships,
and operations. Then, the language design phase creates DSL ex-
pressions that represent this domain model. Finally, the expressions
are implemented in the language implementation phase. Several
pattern that support common DSL-engineering problems are used
in this phase. The development phases and concrete steps are shown
in Figure 1.

The agile nature of the process follows the insight that succes-
sive iterations result in a better domain understanding. Iterations
typically take a small amount of domain knowledge, which either
results in an extension of the DSL with novel language constructs
or improves the DSL’s capabilities. The result of each iteration is a
tested and running DSL implementation, typically a set of objects
and methods. This implementation is then refactored and serves as
the starting point for a new iteration.

Integrating this process in the course of general application
development is straightforward. After the initial analysis, parts of
the application can be identified to be expressed with the help
of DSLs. Then, from requirements to implementation, the agile
process continuously develops the DSL and the specific part of
the application too. This enables DSLs to become by-products of
application development.

The next sections detail the process phases and the pat-
terns. The process is the result of several DSLs we devel-
oped, among them one for modeling software product lines
[18] and one for feature-oriented programming [19]. For find-
ing patterns and idioms, we did not stick to our empirical
gained knowledge alone, but also studied the open-source Ruby
DSL HAML (http://haml-lang.com/; HTML), SASS (http://sass-
lang.com/; CSS), DataMapper (http://datamapper.org/; database
connector), and Sinatra (http://sinatrarb.com/; web application
framework). For Python we used Bottle (http://bottle.paws.de/; web
application framework) and SQLAlchemy (http://sqlalchemy.com/;
database connector). Further analyzed literature is [25][13][28].

A. Domain Design

In the beginning of DSL-engineering, the first goal is to develop
a deep-founded understanding of the domain. Various handbooks,
documentation, systems and general stakeholder expressions are
collected: this is called domain material. The material is studied to
produce either formal or informal expressions about the domain.
One form is to use variability and commonality analysis and
collect statements in natural-language about the domain [9]. Other

forms are domain engineering techniques like FODA (Feature-
Oriented Domain Analysis) [10]. If only experts possess the
required knowledge, creative techniques like brainstorming or more
formal questionnaires (checklists etc.) [8] are applicable. Special
attention should be given to seemingly contradicting statements
– they point at misunderstandings of the domain that need to be
resolved. A profound understanding (not necessarily a “complete”
specification!) of the domain guards against undesired changes in
later iterations.

The collected statements contain singular and compound ex-
pressions about the concepts and the relationships. The gained
knowledge is then refined to the static domain model, consisting of
the concepts, attributes and their relationships. As well as the static
domain model, its dynamic counterpart is important too, where
domain concepts interact according to domain operations. Concrete
model representations are specific to the concrete application devel-
opment process. One suggestion is to use the UML class diagram
for the static structure of entities, attributes and relationships, and
the UML state diagram to represent the different status of the
domain. When we speak of domain model in the following, we
mean both its static and dynamic part.

B. Language Design

In the language design phase, we develop the syntax for the DSL.
Both the static and the dynamic domain model are considered, so
that all domain concepts, attributes, relationships, and operations
can be expressed. DSL expressions need to be valid statements
in terms of the host language. Two principal approaches are
available. The first one is to design expressions without the host
language in mind, and to make them host language compatible
afterwards. An useful metaphor is that of a language game. The
philosopher Wittgenstein used language games to determine the
grammatical correctness of expressions [21]. Such language games
can be used with a compiler or interpreter. If a DSL expression
raises only semantic errors, then it is syntactical valid according
to the host language. The second approach works vice versa –
taking host language expressions, and simplifying them to increase
the language’s readability. Here, developers use their language
knowledge to simplify relationship expressions, improve readability
of passing arguments to methods, and generally remove domain-
foreign symbols and token. The important point is to provide a
high readability. It is naturally to disambiguate method parameters,
to structure expressions according to the natural hierarchy of the
domain entities, and more.



C. Language Implementation

In language implementation, a form of behavior-driven develop-
ment is used: We first provide a test, and then its implementation.
Having a set of DSL expressions available, first iterations typically
use example expressions as test cases to build an implementation
that provides the semantics for the used objects and operations.
In Ruby, the RSpec (http://rspec.info) library can be used, and in
Python, we can test the result of DSL expressions with assert state-
ments. In later development stages, tests are written for extending
the language capabilities or to cover errors. After passing all tests,
we refactor our code to provide a minimal and sufficient DSL
implementation.

The implementation is supported by patterns. In computer sci-
ence, a pattern names and explains ”... an important and recurring
design” [15]. Patterns are a way to record mature and proven
design structures [7], and furthermore establish a vocabulary to
describe solutions [14]. The focus of the shortly presented patterns
is to provide a clear expression of the domain in terms of its
concepts and operations, to have a high readability of the language,
and to integrate the DSL with other DSLs and frameworks.
These concerns are the core points that provide readability and
maintainability for the application part written with the DSL.
Other Concerns like domain-specific errors or optimization [23],
and constraints regarding the language’s usage, are not covered
here. Several patterns have a close relationship to or are even
similar to existing patterns. The difference of patterns used for
application development and for DSL-engineering lies in the kind
of abstraction they construct upon, which is a language in our case.

The patterns are grouped according to the following DSL-
engineering concerns:

• Language Modeling – All concepts, attributes, and operations
in the domain form the vocabulary. Naturally, this should form
the basic structure of the DSL too. In object-oriented program-
ming languages, we can use modules, classes, instances, and
methods for this purpose.

• Language Integration – Using the DSL in isolation limits its
potential. The real value lies in the integration with other
domain-specific languages, libraries, and frameworks. The
language integration patterns help to decouple and structure
the parts of the DSL so they can work together with other
components easily, or they show how expressions can be
integrated.

• Language Purification – Certain syntactical constraints of the
used host language can be a burden to the DSL. Language
Purification is the task of eliminating non-domain relevant
symbols and tokens by providing syntactical improvements
or alternatives, and thus to improve language readability.

All patterns are explained in Table I. The table summarizes the
patterns with their name, a short description, and indicate whether
they are available in Ruby or Python (a “+” means it is available,
a “(+)” means limited availability, and a “-” means not available).
The accompanying technical report [17] details these patterns and
shows implementation examples.

III. EXAMPLE: THE SOFTWARE PRODUCT LINE

CONFIGURATION LANGUAGE

Software Product Lines address the challenge of structuring
and systematically reuse software by providing a set of valuable

Mandatory 

feature

Optional 

feature

More 

relation

Or 

relation

And 

relation

Weight

Weighted Unweighted

Type

Directed Undirected

Search

BFS DFS None

Connected 

Components
Strongly Connected 

Components
Cycle

MST 

Prime

MST 

Kruskal

Shortest

Path

Algorithms

Number

GPL

Figure 2: The Graph Product Line

production assets [10]. Assets are documentation, configuration,
source code, libraries, handbooks and much more. Structurally, a
”product line is a group of products sharing a common, managed
set of features” [30], where features describe modularized core
functionality [4].

This section explains how we used our DSL-engineering process
to implement a DSL for configuring software product lines. Ruby
and Python are used as the host languages. The goal of the DSL
is to provide an internal model of a product line. The model can
be used to test the programs configuration at runtime. We show
the processes with side-by-side explanation of the domain analysis,
language design and implementation. We do not show the iterations
per phase, but summarize the results of several iterations in the
explanation.

A. Domain Analysis

We began our study with various scientific work on software
product lines and feature modeling [30][10][22]. This material
formed our initial understanding of the domain. As the background
example, we choose the often cited graph product line [22].

The graph product line is shown as a feature diagram in Figure 2.
At the top of the graph, we see GPL – the root node, representing
the graph product line itself. At the next layer, four features are
defined. Type, Weight, Algorithms, Search. Each of them is a
mandatory feature that has to be included inside the product line.
Weight determines whether the edges of the graph have a weight or
not – thus, the corresponding features Weighted and Unweighted
are alternatives. The optional Algorithms determine the available
graph operations.

With the addition of these constraints, we can formulate our
domain understanding. We distinguish into the following entities
and operations.

• Feature – An entity realizing a set of functionality important
to a stakeholder.

• Relationships – Features can have subfeatures, and they
take a specific place inside the feature tree (root, node,
leaf).

• Constraints – Features impose constraints upon other features,
which we name require. The constraints are to strongly
require a specific feature (is), to select one or more from a
list, or to provide any other feature.



Table I: Language Modeling Patterns
Type Pattern Description Ruby Python

Modeling
Command A quick way to provide objects that execute domain-specific operations.

The command pattern, as originally introduced in [15], defines an abstract “Command”
class. Subclasses overwrite the “execute” method with the domain-specific operation.
This pattern is good to quickly implement functionality, but does not provide adequate
support for complex domain models.

+ +

Domain
Objects

Entities and their properties are represented as objects with attributes.
Using object-oriented mechanisms, entities are expressed as modules, classes and instance
objects – dependent on the required mechanisms how to combine and extend the objects.
Working with domain objects directly in expressions is an indicator for readability.

+ +

Domain Oper-
ations

Provide methods and functions to express status changes in the domain or relate domain
objects to each other.
Representing domain operations as functions that are flexible in terms of receiving and
parsing arguments help to express complex domain operations.

+ +

Integration
Internal Inter-
preter

A global interpreter object executes both internal and external DSLs.
While the internal DSL directly manipulates its language model in terms of objects and
attributes, statements of the external DSL need to be parsed and analyzed for execution.

+ +

Hooks Use host language specific or self created hooks for intercepting DSL execution.
Any application has two specific call stacks. The first one is called application call
stack and represents the unique composition of objects and modules that the application
provides. The second one is the language call stack, which is represented with the
language-internal objects and methods. DSLs can use both hooks to customize the
expression execution, like calling statements of another DSL.

+ +

Language
Modules

Provide parts of a DSL as reusable modules.
Modules serve as containers for functionality, which is copied to different entities. By
directly modifying the module or by combination of modules from different DSLs,
integrated language expressions describe the interaction of application parts.

+ +

Purification
Keyword Ar-
guments

Use named arguments when calling methods to explicitly state their meaning.
Method calls with more then two parameters require the user to know their type and order.
Arguments indexed by keywords express the meaning of arguments and can further be
used to form natural language like sentences.

+ +

Block Scope Provide a clear context for evaluating statements or stack hierarchical information.
Ruby supports closures and anonymous code blocks. Code is specified in one place, but
can be executed in any other. This mechanism can be used to provide (i) a clear execution
context as expressions have an explicit place, (ii) seamless method extensions by passing
closures to other functions that are used in combination, and (iii) to express structured
data with a hierarchical layout. Block Scope does not work with Python, since method
calls are always fully-qualified.

+ -

Method
Chaining

Statements of chained methods mirror natural language expressions.
Instead of using one-line commands typical for programming languages, chain method
calls that always manipulate the same entity. This can improve the language’s readability,
but requires semantic changes within the methods.

+ +

Superscope Use strings and symbols to transcend execution scope.
Using the classic Proxy pattern [15], symbols and strings can be used to reference entities
in another scope, thus decoupling DSL expressions from the application’s implementation.

+ +

Parentheses
Cleaning

Eliminate parentheses around method calls to improve language readability.
Parentheses are a necessity of most programming languages, but usually do not carry
semantic information. In most cases, Ruby allows to drop parentheses. Bun in Python,
they are required.

+ -

Boolean Lan-
guage

Use natural language for boolean operation.
The standard boolean operators and, or, and not are part of Ruby and Python language.
They and can be used instead of their symbolic representation.

+ +

Operator Re-
definition

Redefine language symbols to be used in DSL expressions.
Symbols for addition, subtraction and more are a natural way to express relationships
among domain objects. Many symbols in Ruby and Python are actually (re)definable
operations on objects. They can be changed for specific objects only, or those defined in
a specific namespace.

+ +

Custom
Return
Objects

Return multiple values with the simplest data store – a custom object.
Parsing multiple return values typically requires structural knowledge on the receiver
side. If we put the data inside an object, and access its values directly, the languages
readability is improved.

+ +

Aliasing Change existing methods to have a more domain-specific name.
By changing the names of methods and objects, even built-in types can look like
domain entities. While Ruby allows to manipulate core classes, Python demands to build
subclasses first, which limits this patterns applicability. As an alternative, the classical
Proxy pattern can be used too.

+ (+)

Seamless
Constructor

Create instances without using the new operator.
In Ruby, the “new” operator expresses the intent to initialize a new instance of any class.
Some DSLs may need new objects, but don’t want to use the “new” operator at all. Ruby
allows redefining the constant for the class as a method of the same name, which in its
body calls “new”. In Python, instances are created seamlessly per default.

+ +



• Product Line – A set of features, relationships, and constraints.
A product line is valid if all constraints are satisfied.

• Product Variant – A concrete configuration that is either
valid or not valid according to its product line.

B. Language Design and Implementation

Because we needed to experiment with Ruby and Python,
Language Design and Implementation was an interwoven process.
To keep the explanation focused, we will only present how the
Feature entity was implemented. The final expressions to con-
figure features are shown in Figure 3 – the next paragraphs detail
their meaning.�

1 gpl = Feature.configure do
2 name :GPL
3 root
4 subfeatures :Type, :Weight, :Search, :Algorithms
5 requires :GPL => "all :Type, :Weight, :Search,

:Algorithms"
6 end� �

A) Ruby�
1 with Feature() as gpl:
2 gpl.name = ’GPL’
3 gpl.root()
4 gpl.subfeatures("Type", "Weight", "Search",

"Algorithms")
5 gpl.requires("GPL", "all Type, Weight, Search,

Algorithms")� �
B) Python

Figure 3: Defining Features with the DSLs based on Ruby and
Python

We started with the design of feature definitions. We wanted
to have a syntax that reads naturally and explains the feature’s
name, position in the feature tree, and constraints. Many Ruby
programs use do...end blocks to express code within a named
context – this is the Block Scope pattern. This syntax is appealing
because it reads naturally. We designed the first Ruby expression to
be Feature.configure do...end (Line 1). The expressions
in this block are executed in the contexts of its receiver – an
instance of Feature in this case. Python has a similar concept
called context manager, which results in the expression with
Feature()as gpl (Line 1). But inside the context manager,
method calls require a fully-qualified name, so the gpl object has
to be put in front of every statement inside the context manager’s
body.

The next part was to express the feature properties. Initially,
we just used basic assignments, like name = "GPL". But this
notation is typical for programming languages. We wanted to have
a notation that expresses the properties as statements. Therefore,
the next iteration evolved the language to use method calls. Ruby
allows to drop the parentheses with the Parentheses Cleaning
pattern, so this statement could be rewritten to name "GPL" –
in Python, parentheses are required, which makes this statement
gpl.name("GPL") (Line 2). We also used this notation to express
the position a feature has inside the feature tree. For Ruby, this
statement is root, and in Python gpl.root() (Line 3).

The definition of subfeatures evolved through two versions.
The first version required to use concrete objects. How-
ever, in order to modularize feature declaration and to de-
couple the declaration order, the next iteration introduced
the Superscope pattern to resolve the symbols to point
to the real objects at execution time. In Ruby, this is
expressed as subfeatures :Type, :Weight, :Search,
:Algorithms, and in Python gpl.subfeatures("Type",
"Weight", "Search", "Algorithms") (Line 4).

The constraints were a challenge. We imagined an expression
with the feature responsible for the constraint to the left, a
keyword specifying what kind of constraints, and then one or
more features to the right. The solution is the Keyword Argu-
ments pattern. Although we could have used the Block Scope
pattern again, we wanted to express constraints in one line only,
which is arguably more readable for multiple constraints. We
used a string to express the constraints, which is actually a
method call executed with the eval metaprogramming method.
This works both in Python and in Ruby. Thus, the last ex-
pression to configure a feature is in Ruby requires :GPL
=> "all :Type, :Weight, :Search, :Algorithms" re-
spective in Python gpl.requires("GPL", "all Type,
Weight, Search, Algorithms") (Line 5).

As we can see, the steps and the applied patterns are very
similar. However, the final DSL has syntactical differences due
to one important construct: Rubys anonymous code blocks allow
eliminating the caller, while the caller must always be expressed
in Python. Because the caller and parentheses can be left out, the
resulting Ruby-based DSL is more readable. This concludes our
case study.

IV. DISCUSSION AND RELATED WORK

Comparing our approach with related work, we see that both
the process as well as the concrete mechanisms to engineer DSLs
differ. Both are explained in the following.

A. Process

Depending on the DSL type, different processes can be found.
For internal DSL, a process using commonality and variability
analysis to capture the domain in plain English is described in
[9]. Expressing the domain model in a class diagram like form
is shown in [11]. From the class diagram, the language’s syntax
using EBNF is defined, and then all language elements are im-
plemented. For external DSL, some publications explain complete
development environments [2][3]. The environments require to
specific the DSL’s syntax and semantics using formal expressions.
A tool-independent approach is shown in [5], which suggests to
use commonality and variability analysis to elaborate language
requirements, objects and operations, and notations. Independent
of the DSL type, [23] describes are general process. It has similar
phases than our process except for two additional phases. First, the
decision phase analyzes whether a DSL should be implemented at
all. Two criteria are supporting the concerns to improve software
economics and to enable software development by users with less
amount of knowledge. Second, the deployment phase – although
only briefly mentioned – targets the accompanying user training
phase or developing tool-support for using the DSL.



External DSL Internal DSL

Compiler

Interpreter

Extensible 

Compiler

Extensible 

Interpreter

Meta-

programming

Templates

Syntactical 

Processing

Lexical 

Processing

Preprocessors

Macros

Internal 

Interpreter

Abstraction

Level

Patterns

Figure 4: DSL-Engineering Mechanisms

Our approach contrasts from these explanations. At first, we
do not prescribe what specific technique should be used to un-
derstand the domain. We argue that the availability of proven
design techniques strengthens the DSL-engineering success and
utilization. Second, the process requires fewer investments then
other approaches. The only investment is into understanding the
used languages and its metaprogramming mechanisms. Ultimately,
this improves developers productivity with the whole language and
impacts the application as well. Third, we emphasize the agile
nature. Each iteration produces a working DSL – ready to be
used with the current development phase. We are certain that the
agile approach has long term benefits on the languages design and
implementation. And fourth, since the DSL stays within the lan-
guage, it has better portability to other interpreters that implement
the full language specification, and it is open to integration with
arbitrary other DSLs, applications, and frameworks. In summary,
if developers learn to see DSL-engineering as a means to solving
application development problems, DSLs can become by-product
of software development: Increasing the productivity of the current
development, and at the same time suitable for future reuse within
other projects.

B. Mechanisms

If we consider all mechanisms mentioned in
[5][10][27][23][9][11] and extend it with our findings regarding
the use of patterns, then we see the general available mechanisms
of how to engineer DSLs in Figure 4. From left to right, we
see the available mechanisms for each DSL type. Mechanisms
depicted in the middle are available for both types. From top to
bottom, we denote the increasing abstraction level.

In Figure 4, we find extensible compilers and interpreters on
the far end of abstraction. They require detailed knowledge of the
complete interpretation and translation phase, of the used imple-
mentation language, and of the structural constraints extensions
need to regard. On the other end, patterns and metaprogramming
stay at the abstraction level of the utilized languages: Developers

just need to understand how to change the internal meaning and
behavior of their objects through host language expressions. This
kind of modification is more abstract then modifying the interpreter.
Furthermore, experienced programmers usually possess knowledge
about pattern and metaprogramming. Therefore, the great benefit
of our approach is that the required knowledge – and with it the
required time – to implement the DSL is very modest in comparison
to other DSL-engineering mechanisms.

Considering related work, only some authors try to structure the
host language’s modification. They usually speak of techniques,
and mix language characteristics with implementation decisions.
Our works helps to pinpoint the changes in the form of patterns,
and the provided pattern language can be used to communicate and
plan the solution. We can even explain DSL implementation in yet
not studied host languages. For example, the approach in [9] uses
Ruby, the mechanisms Metaprogramming, Internal Interpreter with
Syntactical Processing, and the patterns Domain Objects, Domain
Operations, Parentheses Cleaning, and Block Scope. A DSL using
the Groovy programming language is shown in [11]. Clearly, the
patterns Domain Objects, Domain Operations, and Block Scope
can be seen – although this particular programming language has
not been regarded by our process yet. The seaside framework,
implemented in Smalltalk, also uses Domain Operations and Block
Scope to implement a HTML DSL [12].

V. CONCLUSION AND FUTURE WORK

We conclude that internal DSL can be developed effectively
using our suggested process and the patterns. The agile nature of
the process has several benefits: (1) The initial domain understand-
ing is continuously refined to match the evolving requirements,
(2) the result of each iteration is a complete and writable DSL,
(3) the DSL development can be integrated with the application
development, producing the DSL as a “by-product”. The patterns
are an important cornerstone too. They record the development
knowledge and provide solutions to common domain-engineering
problems. Furthermore, they also provide a pattern language that
can be used to communicate or plan the implementation. And
since no new languages or tools are required, developers just need
to learn and apply the patterns in the context of their existing
programming knowledge and can start to agile implement DSLs.

We see two areas for future work. The first area is to analyze
existing DSL and to experiment with other dynamic programming
languages to refine and extend the pattern catalog. The second area
is to detail how the host language influences the DSL’s design and
implementation.

ACKNOWLEDGEMENTS

We thank Christian Kästner and the anonymous reviewers for
helpful comments on earlier drafts of this paper. Sebastian Günther
works with the Very Large Business Applications Lab, School of
Computer Science, at the Otto-von-Guericke-Universität Magde-
burg. The Very Large Business Applications Lab is supported by
SAP AG. Maximilian Haupt and Matthias Splieth are master degree
students with the School of Computer Science.



REFERENCES

[1] B. R. T. Arnold, A. V. Deursen, and M. Res. Algebraic
Specification of a Language for describing Financial Products. In
ICSE-17 Workshop on Formal Methods Application in Software
Engineering, pages 6–13. IEEE, 1995.

[2] R. Bahlke and G. Snelting. The PSG System: From Formal
Language Definitions to Interactive Programming Environments.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 8(4):547–576, 1986.

[3] R. A. Ballance, S. L. Graham, and M. L. V. De Vanter. The
Pan Language-Based Editing System For Integrated Development
Environments. ACM SIGSOFT Software Engineering Notes,
15(6):77–93, 1990.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. In Proceedings of the 25th International Conference
on Software Engineering (ICSE), pages 187–197. IEEE Computer
Society, 2003.

[5] C. Consel and R. Marlet. Architecturing Software Using A
Methodology for Language Development. In Proceedings of
the 10th International Symposium on Programming Language
Implementation and Logic Programming (PLILP), volume 1490
of Lecture Notes in Computer Science, pages 170–194, Berlin,
Heidelberg, New York, 1998. Springer.

[6] S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain Specific
Development with Visual Studio DSL Tools. Addison-Wesley
Professional, Amsterdam, Netherlands, 2007.

[7] J. O. Coplien. Multi-paradigm design for C++. Addison-Wesley,
Boston, San Francisco, et al., 1999.

[8] M. J. E. Cuaresma and N. Koch. Requirements Engineering
for Web Applications - A Comparative Study. Journal of Web
Engineering, 2(3):193–212, 2004.

[9] H. C. Cunningham. A Little Language for Surveys: Constructing
an Internal DSL in Ruby. In Proceedings of the 46th Annual
Southeast Regional Conference (ACM-SE), pages 282–287, New
York, 2008. ACM.

[10] K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, Boston, San
Franciso et al., 2000.

[11] T. Dinkelaker and M. Mezini. Dynamically Linked Domain-
Specific Extensions for Advice Languages. In Proceedings of
the 2008 AOSD Workshop on Domain-Specific Aspect Languages
(DSAL), pages 1–7, New York, 2008. ACM.

[12] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A Flexible
Environment for Building Dynamic Web Applications. IEEE
Software, 24(5):56–63, 2007.

[13] D. Flanagan and Y. Matsumoto. The Ruby Programming Lan-
guage. O-Reilly Media, Sebastopol, 2008.

[14] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, Boston, San Francisco et al., 2003.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns - Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, Harlow et al., 10th edition, 1997.

[16] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories
- Assembling Applications with Patterns, Models, Frameworks,
and Tools. Wiley Publishing, Indianapolis, 2004.

[17] S. Günther. Agile DSL-Engineering and Patterns in Ruby.
Technical report (Internet) FIN-018-2009, Otto-von-Guericke-
Universität Magdeburg, 2009.

[18] S. Günther. Engineering Domain-Specific Languages with Ruby.
In H.-K. Arndt and H. Krcmar, editors, 3. Workshop des Centers
for Very Large Business Applications (CVLBA), pages 11–21,
Aachen, 2009. Shaker.

[19] S. Günther and S. Sunkle. Feature-Oriented Programming with
Ruby. In Proceedings of the First International Workshop on
Feature-Oriented Software Development (FOSD), pages 11–18,
New York, 2009. ACM.

[20] P. Hudak. Modular Domain Specific Languages and Tools.
In P. Devanbu and J. Poulin, editors, Proceedings of the 5th
International Conference on Software Reuse (ICSR), pages 134–
142, 1998.

[21] F. v. Kutschera. Sprachphilosophie. Wilhelm Fink Verlag,
München, 2nd edition, 1975.

[22] R. E. Lopez-Herrejon and D. Batory. A Standard Problem for
Evaluating Productline Methodologies. In Proceedings of the
Third International Conference on Generative and Component-
Based Software Engineering (GPCE), volume 2186 of Lecture
Notes in Computer Science, pages 10–24, Berlin, Heidelberg,
New York, 2001. Springer.

[23] M. Mernik, J. Heering, and A. M. Sloane. When and How to
Develop Domain-Specific Languages. ACM Computing Survey,
37(4):316–344, 2005.

[24] J. Munnelly and S. Clarke. ALPH: A Domain-Specific Language
for Crosscutting Pervasive Healthcare Concerns. In Proceedings
of the 2nd Workshop on Domain Specific Aspect Languages
(DSAL), New York, 2007. ACM.

[25] R. Olsen. Design Patterns in Ruby. Addison-Wesley, Upper
Saddle River, Boston et al., 2007.

[26] J. K. Ousterhout. Scripting: Higher-level programming for the
21st century. IEEE Computer, 21(3):23–30, 1998.

[27] D. Spinellis. Notable Design Patterns for Domain-Specific Lan-
guages. Journal of Systems and Software, 56(1):91–99, 2001.

[28] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby 1.9 -
The Pragmatic Programmers’ Guide. The Pragmatic Bookshelf,
Raleigh, 2009.

[29] A. Van Deursen, P. Klint, and J. Visser. Domain-Specific
Languages: An Annotated Bibliography. ACM SIGPLAN Notices,
35:26–36, 2000.

[30] J. Withey. Investment analysis of software assets for product lines.
Technical Report CMU/SEI96-TR-010, Software Engineering In-
stitute, Carnegie Mellon University, 1996.


